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ABSTRACT. In the present paper, we study anabelian geometry of curves over algebraically
closed fields of positive characteristic. Let X® = (X, Dx) be a pointed stable curve over an
algebraically closed field of characteristic p > 0 and IIx. the admissible fundamental group of
X*. We prove that there exists a group-theoretical algorithm whose input datum is the admis-
sible fundamental group Il x., and whose output data are the topological and the combinatorial
structures associated to X*®. This result can be regarded as a mono-anabelian version of the
combinatorial Grothendieck conjecture in positive characteristic. Moreover, by applying this
result, we construct clutching maps for moduli spaces of admissible fundamental groups.
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INTRODUCTION

0.1. Anabelian geometry. Let X* = (X, Dx) be a pointed stable curve of type (gx,nx) over
an algebraically closed field k£, where X denotes the underlying curve which is a semi-stable
curve over k, Dx denotes the set of marked points satisfying [K, Definition 1.1 (iv)], gx denotes
the genus of X, and ny denotes the cardinality #Dx of Dx. Moreover, by choosing a suitable
base point x of X* (i.e., a geometric point whose image is not contained in the singular locus
of X), we have the admissible fundamental group (=geometric log étale fundamental group)

7T_zlaLdm ()(o7 LE)

of X'* (see [Y4, Section 2] for the definitions of admissible coverings and admissible fundamental
groups). In the present paper, since we only focus on the isomorphism classes of w34 (X*® z),
we omit the base point x and write ITx. for 724 (X* x). The admissible fundamental group of a
pointed stable curve is a natural generalization of tame fundamental group of a smooth pointed
stable curve. In particular, if X*® is smooth over k, then Ilxe is naturally isomorphic to the
tame fundamental group 7t(X*, z). The main question of interest in the anabelian geometry
of curves is, roughly speaking, the following:

How much geometric information about the isomorphism class of a pointed stable
curve is contained in the knowledge of its fundamental group?

Suppose that the characteristic char(k) of k is 0. The structure of IIy. is well-known, which
is isomorphic to the profinite completion of the topological fundamental group of a Riemann
surface of type (gx,nx) ([V, Théoreme 2.2 (¢)]). In particular, IIxe is a free profinite group
with 2gx + nx — 1 generators if nx > 0. This means that the geometric information of X*®
cannot be deduced from the isomorphism class of IIys. (i.e., no anabelian geometry exists in
this situation).

0.2. Moduli spaces and anabelian geometry in positive characteristic. When char(k) =
p > 0, the situation is quite different from that in characteristic 0, and the structure of Ilxe
is no longer known. In the remainder of the introduction, we assume that char(k) = p > 0,
and that Fp is the algebraic closure of F, in k. The admissible fundamental group IIy. is
very mysterious. Since the late 1990s, some developments of M. Raynaud ([R]), F. Pop-M.
Saidi ([PS]), A. Tamagawa ([T1], [T2], [T3]), and the author of the present paper ([Y1], [Y2],
[Y4]) showed evidence for very strong anabelian phenomena for curves over algebraically closed
fields of characteristic p. In this situation, the Galois group of the base field is trivial, and the
arithmetic fundamental group coincides with the geometric fundamental group, thus there is a
total absence of a Galois action of the base field. This kinds of anabelian phenomena go beyond
Grothendieck’s anabelian geometry ([G]), and show that the admissible fundamental group of
a pointed stable curve over an algebraically closed field of characteristic p must encode “moduli”
of the curve. Moreover, this is the reason that we do not have an explicit description of the
admissible (or tame) fundamental group of any pointed stable curve in positive characteristic.

0.2.1. Let us explain some background about the theory of anabelian geometry of curves
over algebracially closed fields of characteristic p from the point of view of moduli spaces that
motivated the theory developed in the present paper.
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Let X*® be a pointed stable curve of type (gx,nx) over k and ox : Dx — {1,...,nx} a
bijective map. We shall say (X* ox) an ordered pointed stable curve of type (gx,nx) over

k (i.e., n-pointed stable curve defined in [K, Definition 1.1]). Let ./\/l be the moduli stack
over IFp parameterlzmg ordered pointed stable curves of type (g,n) (m the sense of [K]) and
/\/lord C /\/l the open substack clas:51fy1ng smooth ordered pointed stable curves. We denote
by Mg.n (resp M,.,) the quotient [M gn/S ] (resp. [M gn/S ]) by the natural action of the
symmetric group S, (111 the sense of stacks). We write JLV o> M Mg, My, for the coarse
moduli spaces of M pmerd M., Mg, respectively.

g Vigno

Let ¢ € M, ,, be an arbitrary point, k(q) the residue field of ¢, and k() C k' an algebraically
closed field. Then the natural morphism Spec k" — Mg’n determines a pointed stable curve X7
of type (g,n) over k’. We denote by Ilxe the admissible fundamental group of X7. Since the

isomorphism class of IIxs does not depend on the choice of the base field K, we may write II,

for IIxs. We denote by ﬁg,n the set of isomorphism classes of admissible fundamental groups
of pointed stable curves of type (g,n) over algebraically closed fields of characteristic p > 0.
Then we have a surjective map

adm . av def T
ﬂ-d :mgn — Mgn/ _»Hg,nv [Q]H[HQL

g;n

where ~¢. denotes an equivalence relation determined by Frobenius actions which is called
Frobenius equivalence (see [Y4, Definition 3.4]), [q] denotes the image of ¢ in M, ,,, and [II,]
denotes the isomorphism class of II, in II,,.

0.2.2. One of main conjectures in the theory of anabelian geometry of curves in positive
characteristic is the so-called weak Isom-version of the Grothendieck conjecture of curves over
algebraically closed fields of characteristic p (=the Weak Isom-version Conjecture) which was
formulated by Tamagawa in the case of smooth pointed stable curves, and by the author in
the general case. The Weak Isom-version Conjecture says that Wadm is a bijection. This means
that the moduli spaces of curves can be reconstructed group- theoretically as sets from the
isomorphism classes of the admissible fundamental groups of curves.

0.2.3. Recently, the author observed that some further structures of moduli spaces of curves in
positive characteristic can be deduced from fundamental groups. More precisely, by using two
important group-theoretical formulas concerning generalized Hasse-Witt invariants obtained in
[Y3], [Y5], in [Y6], the author introduced a topological space which is called the moduli space of
admissible fundamental groups of type (g,n), whose underlying set is ﬁg’n, and whose topology
is determined by the sets of finite quotients of admissible fundamental groups of curves. We
still use the notation ﬁg » to denote the moduli space of admissible fundamental groups of type
(g,m). Moreover, the author proved that 7Tadm is a continuous map, and posed the so-called

adm

Homeomorphism Conjecture which says that Ty 18 & homeomorphism, where we regard ﬁgyn

as a topological space whose topology is mduced by the Zariski topology of Hg,n. This means
that the moduli spaces of curves can be reconstructed group-theoretically as topological spaces
from the isomorphism classes of the admissible fundamental groups of curves. In [Y6], [Y7],
the author proved that the Homeomorphism Conjecture holds when dim(M,,,) < 1.

The Homeomorphism Conjecture supplies a point of view to see what anabelian phenomena
that we can reasonably expect from pointed stable curves over algebraically closed fields of
characteristic p based on the following philosophy:
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The anabelian properties of pointed stable curves of type (g,n) over algebraically

closed fields of characteristic p are equivalent to the topological properties of the

topological space ﬁgvn.
0.3. Motivation and questions. Let R & {ri,...,rn,} and S o {s1,...,Sn,} be distinct
subsets of {1,...,n} such that ry < --- < 7, that s1 < -+ < Spy, and that ny + ny = n.
Let g1, g2, g € Z>( such that ¢ = g1 + g». In the case of moduli spaces of curves, we have
the following important morphisms of moduli stacks (i.e., clutching morphisms defined in [K,

Definition 3.8]):

——ord ——ord ——ord
Oég1,g2,RS 'Mgl,’n1+1 X]F M g2,m2+1 - Mg,n?

——ord ——ord

B M, 3 = M,

We see that o ¢ and [’ induce the followmg continuous maps of coarse moduli spaces:

91,92, R,
M M e
O‘ghgz,R S - g1, n1+1 X 92, n2+1 - g;n>

ﬂ : lefl,nJrZ — M;T;Li?
where M- grmi+1 X M, g2.ma+1 denotes the product as topological spaces. The clutching morphisms
play important roles for studying the topological properties of moduli spaces of curves (e.g.
for studying the p-rank stratification of moduli spaces of curves in positive characteristic (e.g.
[AP1], [AP2], [FvdG])). Motived by some questions in [Y6, Problem 3.9], we ask whether or not
one can construct clutching morphisms for moduli spaces of admissible fundamental groups.

0.3.1. Write ﬂadm for the composition of maps M,
have the followmg questions:

—- M, , — II,,. More precisely, we

Question 0.1. Can we define a set ﬁzfs which can be reconstructed group-theoretically from
M0, such that the followings are satisfied:

(i) There exists a map 7Tadm ord . 7, ﬁzfs which fits into the following commutative

g’n
diagram

~adm,ord
——ord Tgn —ord

M IT

g’n g’n

l !

— T —

g,n
M,, - T

(i) There exist maps

—ord —ord
Hg1,m+1 X H 92, n2+1 - Hg,n’
—ord —ord
e e

gadmord = gnd which can be reconstructed group-theoretically from ﬁgm.

which are compatible with 7
Remark 0.1.1. For example, let [II;] € T1,, .., i € {1,2}, and [I] € II,,,. Moreover, suppose
that II is isomorphic to the admissible fundamental group of a pointed stable curve W* over

an algebraically closed field of positive characteristic. If we want to define a clutching map
—ord —ord

II x II T we should detect the following group-theoretically from II: Whether or

g1,m1 g2,n2 g,n’
not I1;, 7 € {1,2}, is isomorphic to the admissible fundamental group of a pointed stable curve

associated to a sub-semi-graph (see 1.2 of the present paper) of the dual semi-graph 'y of .
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The above questions cannot be solved by using the classical point of view of anabelian
geometry (i.e., the anabelian geometry considered in [G], which focuses on a comparison between
two geometric objects via their fundamental groups).

0.3.2.  We maintain the notation introduced in 0.1. Moreover, write I'x. for the dual semi-
graph of X*®. The topological and combinatorial data associated to X°®, roughly speaking,
consist of the set of types of pointed stable sub-curves of X*, the set of admissible fundamental
groups of pointed stable sub-curves of X*, and the set of sub-semi-graph of I'y. (e.g. (gx,nx),
the dual semi-graph I'x. of X*, the admissible fundamental groups of smooth pointed stable
curves associated to irreducible components of X*, etc., see Definition 1.4 for precise definitions
of topological and combinatorial data associated pointed stable curves). Then Question 0.1 is
essentially equivalent to the following mono-anabelian problem:

Question 0.2. Does there exists a group-theoretical algorithm whose input datum is an abstract
topological group which is isomorphic to llxe., and whose output data are the topological and the
combinatorial data associated to X*?

The philosophy of “mono-anabelian geometry” was introduced by S. Mochizuki ([M4]). The
classical point of view of anabelian geometry focuses on a comparison between two geometric
objects via their fundamental groups. Moreover, the term “group-theoretical”, in the classical
point of view, means that “preserved by an arbitrary isomorphism between the fundamental
groups under consideration”. The classical point of view is referred to as bi-anabelian geometry.
On the other hand, mono-anabelian geometry focuses on the establishing a group-theoretical
algorithm whose input datum is an abstract topological group which is isomorphic to the fun-
damental group of a given geometric object of interest (resp. a continuous homomorphism of
abstract topological groups which are isomorphic to the fundamental groups of given geomet-
ric objects of interest), and whose output datum is a geometry object which is isomorphic to
the given geometric object (resp. a morphism of geometric objects which is isomorphic to the
given geometric objects) of interest. In the point of view of mono-anabelian geometry, the term
“group-theoretical algorithm” is used to mean that “the algorithm in a discussion is phrased
in language that only depends on the topological group structure of the fundamental groups
under consideration”. Mono-anabelian results are the strongest form in the theory of anabelian
geometry, and we have “mono-anabelian results = bi-anabelian results”.

0.4. Main results.

0.4.1. The main theorem of the present paper is as follows (see Theorem 3.11 for a more
precise statement):

Theorem 0.3. We maintain the notation introduced above. Then there exists a group-theoretical
algorithm whose input datum is an abstract topological group which is isomorphic to llxe, and
the output data are the topological and the combinatorial data associated to X*® (i.e., the topo-
logical and the combinatorial data associated to X® can be mono-anabelian reconstructed from

Ty ).

As a consequence, we obtain the following corollary (see Corollary 3.12; and 1.2 of the present
paper for the definitions of various data concerning I' and I' \ L):

Corollary 0.4. We maintain the notation introduced in Theorem 3.11. Let W* be a pointed
stable curve of type (gw,nw) over an algebraically closed field of positive characteristic and Ily e
the admissible fundamental group of W*. Then we can detect group-theoretically whether or not
there exists a sub-semi-graph I' of T'xe (resp. a semi-graph associated to a sub-semi-graph T of
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Ixe and a set of edges L of I') such that (gw,nw) = (gr,nr) (resp. (gw,nw) = (9r\z,nr\z))
and Iye = Iz (resp. Mye = HF/\I)

Remark 0.4.1. We would like to mention that a special case of a bi-anabelian version of
Theorem 0.3 has been proved by the author (see [Y1, Theorem 1.2]). Roughly speaking, [Y1,
Theorem 1.2] says that the following holds:

Let ¢ € {1,2}, and let X? be a pointed stable curve of type (gx,,nx,) over
an algebraically closed field of characteristic p; > 0 and IIxs the admissible

fundamental group of X?. Suppose that ILys S0 xg is an isomorphism. Then
the following data associated to X are same (e.g. there exists an isomorphism
of the dual semi-graphs I'ys — I'xy):

® D, (gX¢7nXi)7 1—‘X,L'

e the conjugacy class of the inertia group of every marked point of X?.

e the conjugacy class of the inertia group of every node of X .

e the conjugacy class of the admissible fundamental group associated to an

irreducible component of X?.

Let us explain the difference between [Y1, Theorem 1.2] and Theorem 0.3. [Y1, Theorem
1.2] and its proof tell us that the topological and the combinatorial data associated to X7
and X3 are same when their admissible fundamental groups are isomorphic. However, [Y1,
Theorem 1.2] and its proof cannot tell us the relation between X7 and X3 when their admissible
fundamental groups are not isomorphic, and cannot tell us how to produce the topological and
the combinatorial data associated to X} by only using an abstract topological group which is
isomorphic to [Ixs. Then we cannot deduce a similar result of Corollary 0.4 from [Y1, Theorem

1.2].

Remark 0.4.2. In this remark, we explain a similar result of Theorem 0.3 in characteristic
0 obtained by Y. Hoshi and Mochizuki. Let k;, i € {1,2}, be an algebraically closed field of

characteristic 0, X a pointed stable curve over k;, Ixs the admissible fundamental group of

X?, I, = 7 a pro-cyclic group, and p; : I; — Out(Ilxs) o Aut(Ilxs)/Inn(ILys) an outer Galois

representation. Hoshi and Mochizuki proved the following result (see [HM, Theorem A] for a
more precise statement):

Suppose that p; : I; — Out(Ilxs), i € {1,2}, is a certain outer Galois represen-

tation of NN-type ([HM, Definition 2.4]), that « : Ilxs = Ilys and §: [y = I
are isomorphisms of profinite groups, and that the diagram

Il L) Out(HXI-)

B l out () l

I L OUt(HX2->,

is commutative. Then the data appeared in Remark 0.4.1 associated to X7 and
X5 are same.

This result is called the (bi-anabelian) combinatorial Grothendieck congjecture in characteristic 0
which plays a central role in the theory of combinatorial anabelian geometry in characteristic 0.
Then Theorem 0.3 can be regarded as a mono-anabelian version of combinatorial Grothendieck
conjecture in positive characteristic. The proof of Hoshi-Mochizuki requires the use of the non-
trivial outer Galois representations which is completely different from the proof of Theorem
0.3.
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The combinatorial Grothendieck conjecture and the theory of combinatorial anabelian geom-
etry in characteristic 0 have many applications (e.g. anabelian geometry for higher dimensional
varieties ([HMM]), Belyi-type results([M3], [HM]), mapping class groups ([HI]), Grothendieck-
Teichmiiller group ([HMM]), etc.). The author hopes that Theorem 0.3 plays a prominent role
to establish a theory of combinatorial mono-anabelian geometry in positive characteristic.

0.4.2. By using Theorem 0.3, we solve Question 0.1 as follows (see Theorem 4.1, Theorem 4.3,
and Theorem 4.5 for more precise statements):

Theorem 0.5. (i) There exists a set ﬁ(;r: which can be mono-anabelian reconstructed from

I1, .. Moreover, there are natural surjective maps

——ord —ord —ord —
II

%adm,ord . M s H H s

g,n : g,n g,n? g,n g,m

which fit into the following commutative diagram

~adm,ord
——ord Tgn’ —ord

Mg,n Hg7n

l !

Mg,n - Hg,n'

(ii) Let R o {ri,...,r,} and S o {s1,...,8n,} be distinct subsets of {1,...,n} such that
ry < o0 < Ty, that 51 < - < S, and that ny +ne = n. Let g1, g2, g € Z>o Such that

&P e o = ﬁzrd which fits into the

g = g1+ g2. There exists a map o o pg @ g g x I,y

following diagram

1

—ord —ord agl,gQ,R,S —ord
Mg17n1+1 X Mgzmz—&-l Mg,n

~adm,ord _ ~adm,ord ~adm,ord
ﬂ'gl,n1+l><7rg2,n2+ll Tg,n

gp
—ord —ord agl ,92,R,S ﬁol‘d

Hg1,n1+1 X Hg2,n2+1 gm’
—ord —ord =
gp -
Moreover, 1L, .y, 1L, o4y, and o) ) g o can be mono-anabelian reconstructed from Ilg .
ord —ord

(iii) There ezists a map (%P :ﬁg_17n+2 — I, ,, which fits into the following diagram

Word B Mord

9717n+2 gn

~adm,ord ~adm,ord
Tg—1,n+2 Tg,n

—ord 38P —ord

Hgfl,nJrQ — Hg,n :

—ord =
gp , '
Moreover, 11,y ,, 1o and (38 can be mono-anabelian reconstructed from 1l ,.

Remark 0.5.1. In [Y8], we will prove that af? . g and 3% are continuous maps (in the sense

of moduli spaces of admissible fundamental groups defined in [Y6]). Moreover, we will prove
that the images of ag’ 5 ¢ and % are closed subsets of Il ,.

The author believes that ag’, P and S5 will play important roles for studying the purity

of the p-rank staratification of II,, and the problems concerning the dimension of Il,, (see
[Y6, Problem 3.9]).
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0.5. Structure of the present paper. The present paper is organized as follows. In Section
1, we introduce some notation and recall some results which will be used in the present paper.
In Section 2, we establish a correspondence between a subset of cohomology classes and the set
of vertices (resp. the set of edges) of the dual semi-graph of a pointed stable curve. In Section
3, we prove Theorem 0.3. In Section 4, we prove Theorem 0.5.

0.6. Acknowledgments. The author would like to thank Prof. Akio Tamagawa for com-
ments, and the referee very much for carefully reading to the former version of the present
paper and for giving various comments on it, which were very useful in improving the pre-
sentation of the present paper. This work was supported by JSPS KAKENHI Grant Number
20K14283, and by the Research Institute for Mathematical Sciences (RIMS), an International
Joint Usage/Research Center located in Kyoto University.

1. TOPOLOGICAL AND COMBINATORIAL DATA ASSOCIATED TO POINTED STABLE CURVES
1.1. Semi-graphs.

Definition 1.1. Let G be a semi-graph ([M2, Section 1]).

(a) We shall denote by v(G), e°P(G), and e?(G) the set of vertices of G, the set of open edges
of G, and the set of closed edges of G, respectively. Let e € e?(G) U e°?(G) be an edge. We
denote by v(e) C v(G) the subset of vertices which are abutted by e. We shall say e a loop of
G if e € e(G) and #(v(e)) = 1, where #(—) denotes the cardinality of (—). We denote by
e?(G) C e?(G) the set of loops of G.

(b) The semi-graph G can be regarded as a topological space with natural topology induced

by R2. We define an one-point compactification G®* of G as follows: if e°?(G) = (), we put

GP* = G; otherwise, the set of vertices of GP* is the disjoint union v(G°P*) o v(G) UA{va b,

the set of closed edges of G is e (GP) o e (G) U e°P(G), the set of open edges of GP* is
empty, and every edge e € eP(G) C e(G") connects v,, with the vertex of G that is abutted
by e.

(c) Let v € v(G). We shall say that G is 2-connected at v if G\ {v} is either empty or
connected. Moreover, we shall say that G is 2-connected if G is 2-connected at each v € v(G).
Note that, if G is connected, then GP* is 2-connected at each v € v(G) C v(G®") if and only
if G°P* is 2-connected.

(d) We put

b) = DD belw),
e€e°P(G)Ue(G)
where b.(v) € {0, 1,2} denotes the number of times that e meets v. We put

v(G)'<! = {v € v(G) | b(v) < 1},
and denote by e (G)’<! the set of closed edges of G which meet a vertex of v(G)*<!. We put

F0)E DT be(v).

e€el(G)

We shall say that a vertex v is terminal if the following conditions are satisfied: (i) G is a
connected semi-graph. (ii) G is a tree (i.e., the Betti number of G is 0). (iii) b°(v) < 1.

(e) Let G’ be a semi-graph. We shall say G’ a sub-semi-graph of G if either G’ = {e} for
some e € e°P(G) U e?(G) or the following conditions hold: (i) G’ is connected and v(G') # ().
(ii) v(G') C v(G). (iii) e(G') C e(G) is the subset of closed edges such that v(e) C v(G').
(iv) eP(G') C (e?(G) Ue®(G)) \ e(G') is the subset of edges such that #(v(e) Nv(G')) = 1.
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Note that (iii) and (iv) imply that, if e is a loop and v(e) C v(G’), then e € e(G'). If
G’ = {e} for some ¢ € e?(G) U e(G), we will use e to denote G'.

(f) Let G’ be a sub-semi-graph of G such that v(G') # 0 and L C e°?(G’) U e (G’) a subset
of edges of G'. We shall say G’ \ L a semi-graph associated to G' and L if G’ \ L is connected

(as a topological space), and the following conditions hold (i.e., removing L from G'): (i)
def

o(G\ L) € o(G). (i) eP(G/'\ L) & e(G) \ L. (iii) e(G'\ L) ¥ (G \ L.

Remark 1.1.1. Suppose that G is a connected semi-graph, and that G is a tree. Then G°P*
is 2-connected if and only if one of the following holds: (i) #(v(G)) = 1; (ii) #(v(G)) = 2 and
#(e?(G)) = 0; (iii) #(v(G)) > 2 and each terminal vertex of G meets some open edge of G.

Example 1.2. We give some examples of semi-graphs to explain Definition 1.1. We use the

« 2

notation “e” and “o” to denote a vertex and an open edge, respectively.

Let G be a semi-graph, G’ a sub-semi-graph of G such that v(G') = {v;}, and L o {e1,e2}
a subset of edges of G’. Then we have the following:

GI 61 U2 0€4

cht : 61 U2 e Voo
4

€2
G': el U1
€3

1.2. Pointed stable curves and admissible fundamental groups.

1.2.1. Let p be a prime number, and let X* = (X, Dx) be a pointed stable curve of type
(9x,nx) over an algebraically closed field k of characteristic char(k) = p, where X denotes
the underlying curve, Dx denotes the set of marked points, gx denotes the genus of X, and
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nx dof #Dx. Write I'ye for the dual semi-graph of X*® and rx dof dimg(H*(T'x+,Q)) for the

Betti number of the semi-graph I'ye.

1.2.2.  We shall write [Ty, 1., and HE?E’ for the admissible fundamental group of X* (see
[Y4, Section 2] for the definitions of admissible coverings and admissible fundamental groups),
the étale fundamental group of X, and the profinite completion of the topological fundamental
group of ['xe, respectively. Then we have the following natural surjections

8 t
Txe —» 11§ — TT°P.

Let H C IIxe be an arbitrary open subgroup. We write X3, for the pointed semi-stable curve
of type (gx,,nx,) over k corresponding to H, I'xs for the dual semi-graph of X3, and rx,
for the Betti number of I'ys . Then we obtain an admissible covering

Xy —=X°
over k induced by the natural injection H < Ilxe, and obtain a natural morphism of dual
semi-graphs
induced by f7;, where “sg” means “semi-graph”. We shall say that f}; is étale if the underlying
morphism fy : Xy — X induced by f}; is étale.
Moreover, if H is an open normal subgroup, then I'ys admits an action of IIx./H induced

by the natural action of Ilx./H on Xj;. Note that the quotient of I'ys by Ilye/H coincides
with I'xe, and that H is isomorphic to the admissible fundamental group IIys of Xj. We also

use the notation H® and H*P to denote Hé};] and HE?I.I;, respectively.

1.2.3.  We define pointed stable curves associated to various semi-graphs introduced in Def-
inition 1.1. Let I' C I'ye be a sub-semi-graph (Definition 1.1 (e)). We write Xr for the
semi-stable sub-curve of X (i.e., a closed subscheme of X which is a semi-stable curve) whose
irreducible components are the irreducible components corresponding to the vertices of v(I'),
and whose nodes are the nodes corresponding to the edges of e/(T"). Moreover, write Dx,. for
the set of closed points XN {Ze }eceor(ryCeor (I yo)uee (I e )> Where 2, € X denotes the closed point
corresponding to e € e°P(I'xs) U e(I'ye). We define a pointed stable curve

Xp = (Xr,Dx;)

of type (gr,nr) over k. Note that the dual semi-graph of X} is naturally isomorphic to I". We
shall say X the pointed stable curve of type (gr,nr) associated to I', or the pointed stable curve
associated to I' for short. We denote by IIys the admissible fundamental group of Xp.

1.2.4. Let L C e(T') such that I' \ L is a semi-graph associated to I and L (i.e., ['\ L is
connected, see Definition 1.1 (f)), and N, the set of nodes of X corresponding to L. We write

nory, : Xp\r, — Xr
for the normalization of X at Ny corresponding to L. Moreover, we put
Dxy., of nor;l(DXF UNp).
We define a pointed stable curve of type (gr\r,nr ) to be
Xt = (X1, Dryp).
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Note that the dual semi-graph of Xf\L is not isomorphic to T'\ L. On the other hand, if write
L°P for the set of open edges of the dual semi-graph of Xf\ ;, corresponding to nor; ' (Ng), then
there is a natural isomorphism I'xy '\ L ST\ L.

We shall say X7, the pointed stable curve of type (gr\r,nr\z) associated to T'\ L, or the
pointed stable curve associated to I' \ L for short. By the construction of X;\ 1, we see that
rxp, = Txy — #(L), gr\z = gr — #(L), and np\;, = np + 2#(L). We denote by [xp , the
admissible fundamental group of X;\ .- Note that we have the following natural outer injections

HXI:\L — HXI! 5 Ilye.

1.2.5. Denote by I, C I'ye the sub-semi-graph such that v(I',) = {v}. Write X, for the
irreducible component corresponding to v and nor, : X, — X, for the normalization of X,. We
put

Dz, = nor, ' ((Dx N X,) U (X, N X)),

where (—)8 denotes the singular locus of (—). We see that X, = Xrjerr,) and Dg =
Dx - We shall say

Fv\elp(ru
ve def /3> e
X, = (XU,D;(U) = A,\elP(Ty)
def

the smooth pointed stable curve of type (gs,ny) = (gr\elo(ry) Mr\elo(r,)) @ssociated to v, or
the smooth pointed stable curve associated to v for short. We denote by I, the admissible

fundamental group of )~(;

By the definition of sub-semi-graphs, we see that Xp = )Z'; if and only if #(v(e)) = 2 for all
e € e(T,) (ie., T, does not contain loops).

Suppose that I', C I'. Then we have the following natural outer injections

HX’; — HXEU — HX; — Ilxe.

Example 1.3. Suppose that I"y. is a semi-graph as follows:
€2

FXO: 61 U2 o€4

Then we have
€2
Iy, =Txe el U1
Typ

€3
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€2
1 .

Ly \ eP(Iy,): U1
€3
€1,2 €9

I'ce =T xe : U1

X;1 erl\elp(rv1>

€3

€1,1

1.3. Topological and combinatorial data.

1.3.1. We put
X< lim Xp, Dg® lim o Dy, T ® lim T,
HClIIye open HCIIyxe open HCIIye open
We shall say that
X* = (X,Dg)

is the universal admissible covering associated to IIx., and that I'¢, is the dual semi-graph of

X*. Note that we have that Aut()?’/X') = IIx., and that I' ¢, admits a natural action of ITy..
We denote by mx : I'gs — I'xe the natural surjection.

1.3.2. Let I' C I'x. be a sub-semi-graph, L C ¢?(T") a subset of closed edges of I' such that
'\ L is a semi-graph associated to I' and L (i.e., I'\ L is connected), I' C I'x« a connected

component of 7' ('), and '\ L a connected component of 75 (I'\ L). We denote by

Hf g ]:[)(o7 HF/\I g HX'
the stabilizer subgroups of T and F/\\L, respectively.
Let v € v(I'ye) and ¥ € 7y'(v). We denote by Iz C Ilx. the stabilizer subgroup of v. We
see that

My = iy

if ' =T, and L = e'?(T,).

1.3.3. By the theory of admissible fundamental groups, the following facts are well-known: Ilx
is isomorphic to I xe, HP/\Z is isomorphic to II X, and, in particular, I; is (outer) isomorphic
to IIg,. Note that we have the following natural injections

HF\\L‘%Hf‘—)HX-

if T\ L CT. Moreover, if I' = {e} for some e € ¢®?(I'xe) U e/(I'ys), then I CL s (outer)
isomorphic to an inertia subgroup associated to the closed point of X corresponding to e. Then
we have that I; = Z(1)”', where (=) denotes the maximal pro-prime-to-p quotient of (—). Let
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e € e°P(T',) U e(T,) such that € abuts on v, and ', CT. Then we have the following natural
injections

Iz = g = Il < Iy < Ilx..
1.3.4.  We denote by Sub(I'xe) the set of sub-semi-graphs of I'y. and put

CSub(T'xe) o {T'\ L | '\ L is a semi-graph associated to

I' and L}FGSub(FX.),LgeCI(F)-

Furthermore, we put

Sub(ITxe) o {IIg }resub(rye);

ef
CSub(Ilx.) € {TI57 I\ Lecsub(r o)

In particular, we denote by
Ver(ILxe) € {Is}seu(r o) € CSub(Ilxe),
Edg™(ILx+) © {I:}eceon(r,) S Sub(Ilxe),
Edg” (I1xe) = {Ie}ocei(r ) C Sub(Ilxe).
Note that Sub(ILy.), CSub(Ilx.), Ver(ILy. ), Edg®(ILy.), and Edg®(IIx.) admit natural actions
of IIy. (i.e., the conjugacy actions), and that we have the following natural bijections
Sub(ILye)/Ixe = Sub(T'x.),
CSub(Ilyes)/Ilxe — CSub(Tye),
Ver(Ilxe ) /Tlxe = v(Txe),
Edg® (ILye)/Hxe = eP(T'ye),
Edg® (Ixe)/Txe = (T xs).
Definition 1.4. We shall say that {(gr, nr) }resubry.) and {(gr\r, 7 z) }r\Lecsub(rye) are the

topological data associated to X°®, and that Sub(I'ys), CSub(I'xs), Sub(Ilx.), and CSub(Ilxe)
are the combinatorial data associated to X°.

1.4. The limit of p-averages. Let t € N be an arbitrary positive natural number, K,:_;
the kernel of the natural surjection Ilx. — I35 ® Z/(p' — 1)Z, where (—)** denotes the
abelianization of (—). The following important group-theoretical invariant was introduced by
Tamagawa ([T2]). We put

I dimFP(KZPA X Fp)

im ,

% R /(7 — D)

and shall say that Avr,(Ilx.) is the limit of p-averages of Il xe. The following formula concerning

Avr,(Ilx.) plays a fundamental role in the theory of (tame or admissible) anabelian geometry
of curves over algebraically closed fields of characteristic p > 0.

Avr,(Ilxe) = aof

Theorem 1.5. We maintain the notation introduced above. Suppose that Fg?.t 18 2-connected
(Definition 1.1 (¢)). Then we have

AVrp(HXo) =0gx —Tx — #U(I‘X.)bﬁl + #ecl(FX.)bgl‘

Proof. We maintain the notation introduced in [Y3, Theorem 5.2]. Note that #uv(I'ye)’st =
#VEe and #e(Txe)’<t = #E%S. Then the theorem follows from [Y3, Theorem 5.2]. O
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Remark 1.5.1. Suppose that FC . is 2-connected. Note that #uv(I'xe)’<t # 0 if one of the
following conditions holds: (i) X‘ is smooth and e®(I'xe) < 1; (ii) Dx = 0 (i.e., #e°P(I'xs) =
0), #e?(I'xs) = 1, and #v(T'x+) = 2. In particular, if #v(I'xe)’<! £ 0, we have Avr,(Ilx.) =
gx — 1.
Remark 1.5.2. Let A be an arbitrary profinite group and m, N € N positive natural numbers.
We define the closed normal subgroup Dy (A) of A to be the topological closure of [A, A]JAY,
where [A; A] denotes the commutator subgroup of A. Moreover, we define the closed normal
subgroup DYY(A) of A inductively by DW(A) € Dy(A) and DYTV(A) & Dy (DY (A)),
ie{l,...,m—1}. Let £ # p be a prime number. We put

gy 4t D(S)(H)(-)
Then we see that the following conditions hold (e.g. [Y6, Lemma 5.4]): (i) (#(Ilx+/H),p) = 1;
(ii) the genus of Xy, is positive for each v € v(I'xs ); (iii) Txs is 2-connected and #(v(T xs )"=")
0.

1.4.1. Let f*:Y*®* — X* bean admissible covering over k, f : Y — X the underlying morphism
induced by f*, and deg(f) the degree of f. For any e € e(I'ys) (resp. e € e°P(I'ys)), write z,
for the node (resp. marked point) of X* corresponding to e. We put

clra def{ c 6C1<FX') | #f~ ( e) =1},

e;let def{ c 6C1<FX ) | #f, ( ) deg( )}
e def {e € e®(Txe) | #f () = 1},
v e u(Tye) | #m(f1(X)) = 1),

oF i {v € o) | #1re(f7 (X)) = deg(f)},
where Irr(—) denotes the set of irreducible components of (—). If the Galois closure of f* is a
Galois admissible covering whose Galois group is a p-group, then the definition of admissible
coverings implies that #e(}l = e =

1.4.2.  We have the following lemma.

Lemma 1.6. Let f* : Y* — X°® be a Galois admissible covering over k and U'ys the dual
semi-graph of Y*. Suppose that FX. 18 2-connected, and that Fcyp.t 1s not 2-connected. Then
there exists a unique vertex v € v(Lxe) such that f~1(X,) is irreducible.

Proof. Let f* :T'ye — I'ye be the map of dual semi-graphs induced by f® and v € v(I'xe) an
arbitrary vertex of ['y.. Since F;p.t is not 2-connected, we have #v(I'ys) > 2.

Suppose that Dx # 0. Then we have v(I'h) = v(I'xe) U {vx.00o} and v(I'5) = v(T'y+) U
{vy.}. Moreover, f* can be extended to a map

F A AR

such that f&P!(vy ) = vx.. Since I'Pr is 2-connected, we obtain that I \ {v} is connected,
and that (f5P) "%\ {v}) is connected. Then, for each w € (f*&P)~1(v), there exists a
closed edge of I'{%y which meets w and (f%<P*)~1(I'Pr\ {v}). We obtain that I'{y is 2-connected.
This contradicts our assumptions. Then we may assume that Dy = ().

Since we assume that Dy = (), we have Fg?f =I'ye and Fg,p.t =T'y.. Let v; and vy be vertices

of v(I'yxe) distinct from each other. Suppose that (f%)~!(v;) and (f*¢)~!(vy) are connected.
Since I'ye is 2-connected, I'xe \ {v} is connected. If v & {vy,v2}, we see that (f58)~(T'xe \ {v})
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is connected (since v; and vy are contained in I'xe \ {v}), and that, for each w € (f*¢)~1(v),
there exists a closed edge of I'y« which meets w and (f*¢)~*(T'x. \ {v}). This means that T'y. is
2-connected at w for each w € (f%8)~!(v). Suppose that v = v;. Then we have that T'xe \ {v;}
is connected, and that (f%8)~!(T'xe \ {v;}) is connected (since vy is contained in T'xs \ {v;}).
Thus T'y. is 2-connected at (f*¢)~!(v1). Similar arguments to the arguments given in the proof
above imply that I'ye is 2-connected at (f*¢)~!(v;). Then I'y. is 2-connected. This contradicts
our assumptions.
Suppose that (f*8)~!(v') is not connected for each v € v(I'ye). Then we have the following:

Claim: Let w € (f*¢)~*(v). Then T'y. \ {w} is connected.

Let us prove the claim. Since we focus only on v and its inverse images ( f%¢) ! (v)

and ['ye is 2-connected (i.e., I'xe \ {v} is connected), to verify the claim, it’s

sufficient to prove the claim when v(I'xe) = {v,v*} (e.g. by replacing X* by

the deformation of X*® along the set of nodes corresponding to the set of closed

edges e(I'xs) \ e(v), where e(v) denotes the set of edges of I'ye which abuts to

v).
Let €, € €¥('xs). Then e,,~ meets v and v*. Since (f*8)7'(¢v') is not

connected for each v' € v(T'xe), we see that () (e,,+) is a loop in T'y+ (i.e., the

element of the topological fundamental group 7;°"(T'y+) induced by (%)~ (e,,+)

is not trivial), and that (f%¢)~!(v) and (f*¢)~!(v*) are contained in (f%8) (e, ).

Then T'ye \ {w} is connected for all w € (f%€)~!(v).
On the other hand, the above claim contradicts our assumptions that I'ye is not 2-connected
(i.e., there exists v” € v(I'y+) such that Ty« \ {w”} is not connected for some w” € (f*8)~1(v")).
We complete the proof of the lemma. O

2. COHOMOLOGY CLASSES, SETS OF VERTICES, AND SETS OF EDGES

2.0.1. Settings. Let X* = (X, Dx) be a pointed stable curve of type (gx,nx) over an alge-
braically closed field &k of characteristic p > 0, Ilxs the admissible fundamental group of X*°,

I'y. the dual semi-graph of X*, and ry < dimg(H'(Txe,Q)) for the Betti number of the
semi-graph I"ye.

2.1. Sets of vertices. Some results of this subsection are also contained in [Y1, Section 3].

2.1.1. Let ¢ be a prime number. We put
v(Cyxe)” (v € v(Txe) | dimg, (HL (X, Fr)) > 0} € v(Dxe),

where X, denotes the normalization of X, (1.2.5). Write M, and M for Hom(II¢., F,)
and Hom(TI%%, Fy), respectively (1.2.2). Note that there is a natural injection Myr — M.
induced by the natural surjection 15, — Ht;;‘.’. Moreover, we put

def ’
MY = coker(MY — M),

where “nt” means that “non-top”.

2.1.2. The elements of M¢. correspond to étale, Galois abelian coverings of X* of degree /.
We denote by Vi, C M. the subset of elements whose image in My, is not 0. Let a € Vy,.
We denote by

X® = (Xa,Dx,) = X*
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the étale covering (i.e., the morphism of underlying curves is étale) corresponding to the element
« and denote by I'xe the dual semi-graph of X;. Then we have a map

LiVie = Z, ar #u(lxs).

Furthermore, we put

def . . .
Ve = {a € Vi | ¢ attains its maximum}

={ac€ Vi | () = t#v(Txe) — L+ 1}
={a e Vg, | #vf =1}(1.4.1).
For each a € Vx,, t(a) = (#v([xs) — £ + 1 implies that there exists a unique irreducible
component Z C X, whose decomposition group under the action of Z/¢Z is not trivial. Let
Vo € v(I'xs) such that X,, = fo(Z). Then we have v, € v(I'x+)”*". This means that V¥, =0

if and only if v(I'xe)>%¢ = ().

2.1.3. Let S,S5 be sets. We shall call f:S — S" a quasi-map if f is a map from some subset

S; C S to 5. Moreover, suppose that S™** is the maximal subset of S such that f is a map
def

from 5™ to S’. Let S* = S\ S™**. Then we shall write f(s) = for all s € S*.

Let H C IIx. be an open subgroup. Write f77 : T’ xs, — I'xe for the map of dual semi-graphs
induced by the admissible covering f7, : X}, — X°® over k corresponding to H. We define a
quasi-map (i.e., we allow that an element maps to empty set)

I‘fr’e : U(FXI-{)>O’Z — v(Iyxe)0¢
as follows: Let vy € v(I'xs )”"" and v o 7 (vi) € v(I'xs ). Then we have that et o) = vif
dimg, (Hom(II$, , ) # 0; otherwise, F3e(vg) = 0. Moreover, if H C Ily. is an open normal

)>0,€

subgroup, then v(I'xe admits a natural action of IIxe/H.

Proposition 2.1. We define a pre-equivalence relation ~ on Vx , as follows:

Let o, 8 € Vx,. We have that o ~ B if Aa + uB € Vg, for each A, i € F) for
which Ao+ pf € Vy .
Then ~ is an equivalence relation on Vx ,. Moreover, we have a natural bijection

def

kxe: Ve = Viy/ ~5 o(Txe )%, [a] = va,

where o] denotes the image of o in V.

Proof. Since Vx, = 0 if and only if v(I'xe)>%¢ = (), we may suppose that v(Ixe)>%¢ # (). Let
a, B eV,

If vy = vg, then, for each A, u € F; for which Aa+ 8 # 0, we have vyq4,8 = Vo = vg. Thus,
o~ f.

On the other hand, if & ~ B, we have v, = wvg; otherwise, there exist two irreducible
components of X3, 5 whose decomposition groups under the actions of Z/¢Z are not trivial
(e, a+ 05 ¢& V)’g’g). Thus, a ~ 3 if and only if v, = vg. This means that ~ is an equivalence
relation on V¥ ,.

Next, we prove that the map

Kxp: VX,Z — U(FX.)>O’Z, [Oé] = Vy

is a bijection. It is easy to see that rx is an injection. On the other hand, for any irreducible
component X, € v(I'ys)”% we see that there is a Galois étale covering f* : Y* — X* (ie.,
the underlying morphism f is étale) whose Galois group is isomorphic to Z/¢Z such that X, is
the unique irreducible component of X* whose inverse image f~1(X,) is connected. Then the
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cardinality of the set of irreducible components of Y* is equal to ¢(#v(I'xe) — 1) + 1. Thus,
Y*® induces an element of Vx . This implies that xx , is a surjection. We complete the proof of
the proposition. O

Remark 2.1.1. Let ¢ and ¢ be prime numbers distinct from each other. Write
Vxie, Ve
for the sets associated to ¢ and ¢ defined above, respectively. Suppose that v(I'ye)>%¢ C
v(Lxe)>% (note that v(I'xe)>% = v(I'xe)>%" if £ and ¢ are not equal to p). Then we may
define a natural injection
Ve = Vxe
which fits into the following commutative diagram

Ve —25 p(Dxe)>04

! !

VXJI M} U(FX0)>O’£/

as follows: For each a € Vx, and each o’ € Vxp, we write X3 — X*® and X, — X* for the
Galois admissible coverings corresponding to v and o/, respectively. We consider the following
connected Galois admissible covering

X(; X xe X;/ — X*

over k whose Galois group is isomorphic to Z/0'Z, where X2 x xo X2, denotes the fiber product
in the category of pointed stable curves. Then it is easy to see that v, = v, if and only if the
cardinality of the set of irreducible components of X Xy« X3, is equal to

o' (#v(Lxe) — 1) + 1.
Then we obtain a natural injection
VX’g — VX’gl, [a] —> [Q&l],

where the cardinality of the set of irreducible components of X2 x x« X2, is equal to £¢'(#v(I" xe )—
1) + 1. In particular, if ¢ and ¢ are not equal to p, then the injection Vy, < Vx ¢ constructed
above is a bijection.

Remark 2.1.2. Let H C IIxe be an arbitrary open subgroup,
f;{ : X;I = (XHaDXH) — X*

the admissible covering over k with degree deg(fy) corresponding to H, I'ys the dual semi-
graph of X3, and ¢ a prime number such that (¢, deg(fy)) = 1.
Write Vx,, ¢ and Vx, for the sets defined above. Then we claim that the natural injection
H — IIx. induces a quasi-map
Tt Ve = Vi
which fits into the following commutative diagram:

KX g,

VXH,Z —_— U(Fxf{)>0’g

ver, £ ver,/
Tu fu

Ve — % v(Tye)”0

Moreover, suppose that H C IIx. is an open normal subgroup. Then Vx,, , admits an action of
[Ixe/H such that kx, , is compatible with ITy./H-actions (i.e., kx,, ¢ is Ilxs/H-equivariant).



18 YU YANG

We prove the claim. Let [ax] € Vx¢. Then ax induces an element Sx, € Hom(H,F,) via
the natural homomorphism Hom(Ilxe,Z/¢Z) — Hom(H, Z/{Z) such that Sx, can be written

as
Z Cﬂﬁ, cg € FZ,
BELay
where L, is a subset of V¥, , such that, if 5i,82 € L, distinct from each other, then
[B1] # [B]-
ver,/

Let [ax,]| € Vx,e. Then we define v, ([ax,]) = [ax] if there exists [ax] € Vx, such that

ver,f

18] = [ax,] (ie., B~ ax,) for some 5 € L,,. Otherwise, we put v " ([ax,]) = 0. It is easy

to check that 4} is well-defined, and that the following diagram

VXH,E M U(FXE)N)’@

ver,{ ver,{
TH fu

VX’g ' U(FX.)>O,£
is commutative.
Moreover, suppose that H is an open normal subgroup of IIxe. The natural exact sequence
l1—>H—>1lxe > 1lxe/H — 1

induces an outer representation

xe/H — Out(H) % ?nu;g)).

Then we obtain an action of Iy« /H on V¥, , C Hom(H®,Z/{Z) = Hom(H®"*", Z/(Z) induced
by the outer representation. Let o € Ily./H and ax,, o, € V¥, , Then we have that
axy ~ o, if and only if o(ax,) ~ o(a, ). Thus, we obtain an action of IIxe/H on Vg
induced by the natural injection H < IIxe. On the other hand, it is easy to check that the
above commutative diagram is compatible with the I1x./H-actions.

Remark 2.1.3. We maintain the notation introduced in Remark 2.1.2. In this remark, we
explain that 7}’?’3 : Vxu0 — Vx,o defined above can be described in another way which will be

used in the remainder of the present paper.
Write (), for the kernel of IIxe —» Hé}. = F,. Let 5 € V;EH,Z' Write ()p for the kernel

oy B
H — H® — TF,. Note that X éax nQ, 18 isomorphic to a connected component of Xéﬂ X xo Xéax,
and that XéaXmH is isomorphic to X7, X xe XC.QaX' Then we see that § € L,, (see Remark
2.1.2 for L, ) if and only if one of the following statements holds: (1) Qs = Qa, N H; (2)

#o(Uxs, no,) = 0Ty )

Note that (1) (resp. (2)) happens if X3, is (resp. is not) irreducible. Namely, we have the
following:

ver,{

Let [ax,] € Vx, ¢ Then v, (Jax,]) = [ax] if and only if one of the following
holds: (1) there exists § € Vg, , such that 8 ~ ax, and Qs = Qay N H; (2)
there exists § € V¥, , such that 8 ~ ay,, and that

#U(FXé = E#U(FXE)QXHH)'

OLXQQ,B)
2.2. Sets of edges.
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2.2.1. Assumptions. We maintain the notation introduced in 2.0.1. Moreover, in this subsec-
tion, we suppose that the genus g, of X? (1.2.5) is positive for each v € v(I'xe), and that I‘}pf
is 2-connected.

2.2.2.  We shall say that

Te C (0, d, f3 Y = X°)

is an edge-triple associated to X* if the following conditions are satisfied:
(i) ¢ and d are prime numbers distinct from each other and from p;
(ii) £ = 1 (mod d); this means that all dth roots of unity are contained in [F,; moreover, we

write p1g C F)* for the subgroup of dth roots of unity;

(iii) fy @ Y* o (Y,Dy) — X* is a Galois étale covering (i.e., the underlying morphism

fx 1Y — X is étale) whose Galois group is isomorphic to pg such that #v?}’( =0 (1.4.1) holds
(note that since g,, v € v(I'xe), is positive, fy exists).

2.2.3. In the remainder of this subsection, we fix an edge-triple ¥ y. dof (0,d, fy :Y* — X*)

associated to X°®. Let IIy. C Ilxe be the admissible fundamental group of Y*. Write Mf/t.
and My« for Hom(II%  Fy) and Hom(Ily.,F,), respectively. We obtain a natural injection
M, < My, induced by the natural surjection Iy« — TI$f,. Then we have an exact sequence

0 — M& — Mye — M < coker(ME < My.) — 0

with a natural action of pg.

Let My , C Mi% be the subset of elements on which pg acts via the character yg C F and
Ez . © My-. the subset of elements that map to nonzero elements of My% , . Let a € EZ_,.
Write

g Y —=>Y®
for the admissible covering corresponding to the element o and I'y.s for the dual semi-graph of
Y?. Then we obtain a map

€: By = L, o #(e®(Dyy) Ue(Tys)).

We define two subsets of E*X as follows:

cl.x def " clra op.1a
ES Y o e B, | #eS = d, #e™ = 0} (1.4.1),

Heg'™ =0, #e™ = d},

1
where “cl” means “closed edge”, and “op” means “open edge”. Note that Eg”, and E™) are
Xe Xe

def

Op,* ke *
Bel, ={a€ B,

not empty. For each a € E;ln* (resp. a € EZ™ ), since the image of a is contained in M4 , |
xe xe ?

we obtain that the action of uy on the set
{vetocers © Nod(Y®) (resp. {ye}eeesp S Dy)

is transitive, where Nod(—) denotes the set of nodes of (—), and y. denotes the node (resp. the
marked point) of Y'* corresponding to e. Then there exists a unique node (resp. marked point)
zo of X* such that fx(y.) = z, for every y. € {ye}eeeglc;ta (resp. Ye € {Ye}eceonr=). We denote
by e, € ¢ (T'xe+) the closed edge (resp. e, € ¢°P(I'x+) the open edge) corresponding to z,.
Proposition 2.2. We maintain the notation introduced above. We define a pre-equivalence
relation ~ on Eg)’:. (resp. E37,) as follows:

Let a, 8 € E;lx*. (resp. a,f € E;i’:) Then o ~ B if Ao+ pf € E;l;. (resp.
E7) for each N, € By for which Aa + pf € Bz _,.
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Then the pre-equivalence relation ~ on EC (resp. Egif ) defined above is an equivalence
relation. Moreover, we have a natural bzyectzon

C def Ccl.x ~ C
08 L EBE S EST )~ e (Txe), [a] - eq

(resp. I3, 1 B, = o EP7 )~ eP(Txe), [a] = ea),

where [a] denotes the image of o in ES_, (resp. E, ).

Proof. Let a, 8 € EdX* If gt = echr® then, for each A, u € Fj for which Ao+ puf # 0, we

9@ )
clra _ ,clra _ _clra
have o 5 = Cgl =€) Thus, a ~ .
On the other hand, if & ~ 3, then we have eglcfa = eglﬂ’ra; otherwise, we obtain #e;fj@ = 2d.

Thus, o ~ § if and only if e = egg’ra, This means that ~ is an equivalence relation on Eg;.
Next, let us prove that ﬁ%lx. is a bijection. It is easy to see that ﬁ%lx. is an injection. On the
other hand, for each e € e(I'xs), the structure of the maximal pro-¢ admissible fundamental
groups implies that there is a Galois admissible covering of h® : Z* — Y® such that the element
corresponding to h*® is contained in E;lx*. Then 19%1)(. is a surjection.
Similar arguments to the arguments given in the proof above imply that the “resp” part
holds. This completes the proof of the proposition. 0

Remark 2.2.1. In this remark, we prove that the sets
op
ET)(O’ E‘IX.

do not depend on the choices of Tx. in the following sense. We only treat the case of closed

edges. Let
The C (0,05 [ Y 5 X

be an arbitrary edge-triple associated to X*®. Hence we obtain E%lx and a natural bijection
cl . cl cl

We will show that there exists a bijection EC%(. = ng, which fits into the following commu-

tative diagram
oL,
1 xe 1
E‘%}- —— e“(I'xe)

l H

cl

Eg . 2% eIy,

First, suppose that ¢ # ¢*, and that d # d*. Then we may define a bijection
E —> Esx.

which is compatible with the bijections 19%1}. and 19%}(. as follows: Let o € E%X. and o* € E%X .
Write Y — Y* and Y?. — Y** for the Galois admissible coverings corresponding to a and o,
respectively. We consider the following connected Galois admissible covering

Y2 Xxe Yo — X°
over k with Galois group Z/dd*¢¢*Z. Then we see that e, = e, if and only if the cardinality
of the set of nodes of Y,? X x« Y2, is equal to

«

dd* (00" (F#eM (Do) — 1) + 1).
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Then we deﬁne a map
1* = %1 o) [ *] [ ]
xe® X

by choosing a such that the cardinality of the set of nodes of Y,* x x+ Y%, is equal to dd* (€% (#e% (T x+)—
1)+1).
Next, let us prove the general case. Let
(E**. déf (é**) d**’ f.,** : Y.,** % X.)

be an edge-triple associated to X*® such that ¢** # ¢, (** # (*, d** # d, and d** # d*. Hence we

obtain E%lx and a bijection 19%1)( : E%lx = e(T'xe). Then the proof above implies that there
are two bijections

cl ~ cl cl ~ cl
Ege, = Ex, and Egs. — E. .

ok
xe

Thus, we obtain the desired map E‘%IX. - E¢ ..

Remark 2.2.2. Let H C IIx. be an arbitrary open subgroup, f;; : X7, — X°* the Galois
admissible covering over k with degree deg(fy) induced by the natural injection H < Ilx.,
and I'xs the dual semi-graph of X7;. Moreover, we have two natural maps

fIC} : QCI(FXZI) — 601(Fxo),
i eP(xs ) — eP(xe)
induced by f.

Let Txe & (¢,d, f% : Y* — X*) be an edge-triple associated to X* such that (¢,deg(fn)) =
(d,deg(fr)) = 1. Then we obtain an edge-triple

Txs ©(0d, [y, 20 LY xxe X5y = X3p)

associated to X}, induced by the edge-triple Tx.. Moreover, we obtain two natural maps
fa eCl(FX;I) — e(Txe),
o o €P(Txs) — eP(Ixe)

induced by f7;. Then we claim that the natural injection H < IIx. induces surjective maps

cl . cl cl
VS o, H * ETX;{ — Eg .,

op . 9P op
fYTXo,H . ETX;I - E‘IXO

which fit into the following commutative diagrams:

cl

Txe
BY . Dy, )
X;_I H
cl cl
%X"Hl HJ/
cl
Tye
E¢ . — e(x.),
op
‘ZX;I
B Hy oy, )
X;{ H

op op
%X"Hl H l

op

E;i. &) e°P (FX' )7
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respectively. Moreover, suppose that H C Ilx. is an open normal subgroup. Then E%lx. and
H

E;i admit actions of IIx./H, respectively, such that ﬁ%x. and 1903‘;. are compatible with
H H H
Iy /H-actions (i.e., 95 , and 93°, are Ilys/H-equivariant), respectively.
H H
We prove the claim. We only treat the case of closed edges. Let ayxy € E%X. . Then ax
H

induces an element fx,, € Hom(Ilze, Z/¢Z) via the natural homomorphism Hom(Ily., Z/(Z) —
Hom(Ilz., Z/¢Z) such that Bx,, can be written as

Z cgf, cg € F),

BEJax

where 1. def IIye N H, and J,, is a subset of ng* such that, if 31,8 € J,, distinct from
H

each other, then 1] # [3a].
Let [ax,] € ES , . We define
H

% o (lox,]) = lox]
if [8] = [ax,] for some € J,,. It is easy to check that ”y%lx g 1s well-defined, and that the
following diagram

cl
SXQ

Ecl H ecl (FX;{ )

Tye,

cl cl
%X.,Hl HJ/

cl
Tye c
Eg ., —= e (Tx.)
is commutative.
Moreover, suppose that H is an open normal subgroup of Il x.. Since IIz. is an open normal
subgroup of Ilx., we have
[Ixe/Tze 2 1lxe /H x Z/dZ.
Then the natural exact sequence
1 =1z — IIxe — HXo/Hzo —1

induces an outer representation [Ixe /H < IIye/I1ze — Out(Ilzs). Thus, we obtain an action of
[ye/H on ng* C Hom(Il 4., Z/0Z) = Hom(I12:, Z/¢Z) induced by the outer representation.
H

Let 0 € Illx+/H and ax,, o, € ECI)’:;{. We obverse that ax, ~ o, if and only if

o(ax,) ~ o(al,). Thus, we obtain an action of Ily./H on ECIX induced by the natural

o
injection H — Ilxe.. On the other hand, it is easy to check that the above commutative
diagram is compatible with the ITx./H-actions.

Remark 2.2.3. We maintain the notation introduced in Remark 2.2.2. In this remark, we
explain that 'y%x., I E%lx. — E%X. defined above can be described in another way which will

be used in the remainder of the present paper.
Write P, for the kernel of ax. Let 5 € ng* . Write P for the kernel §. Note that X7, p,
H

is isomorphic to a connected component of Xp X xe X]';&X, and that XfDaX ~g 1s isomorphic to
Xir Xx+ Xp, . Then we see that § € Ja, (see Remark 2.2.2 for J,, ) if and only if one of the
following statements holds: (1) Ps = P,, N H; (2)

#€CI<FX1.DO¢XOPB) = g#eq(rX}ame)'
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Note that (1) (resp. (2)) happens when #e(I'xs ) = 1 (resp. #e(I'xs) > 1). Namely, we
have the following:
Let [ax,] € E%IX;{ Then v¢ , ;([ax,]) = [ax] if and only if one of the following

statements holds: (1) there exists § € Eg;. such that § ~ ax, and P; =
H
P, N H; (2) there exists § € Eg;;{ such that § ~ ay,,, and that

#6C1<FX1':&XQPB) — g#ed(FX;aXmH)‘
2.2.4. Let e € e(T'ye) (resp. e € eP(I'xs)). We put
pox 4 {a € Eg}’:. | e = €}

(Ixo,e
eq = €}).
Then, for each e, e’ € e?(T'xs) (resp. e, ¢’ € eP(I'xs)) distinct from each other, we have

cl,x cl,x - op,x op,*x
ETXo,e N E‘Ixc,e/ - @ (reSp. ETXO,S N ETXQ,GI - ®>

op,x  def Op,*
(resp. E7) . = {a € EFY,

Thus, we have
clyx cl,x op,x op,*
ETxo - |_| ETXo,e (resp' E xe |_| ETXQ,G)'
e€e!(Ixe) e€e’P(I'xe)
For each m € Z>, we put

Ecl,*,m déf {Oé c Ecl,* | #USP — m}

TXQ,G Txo,e Ja

(resp. BT < {a € BET | #0 = m}).
If e is a closed edge corresponding to a node which is contained in two irreducible components
of Y* distinct from each other, then E;IX*.”; = () for m > #v(Ty.) — 1. If e is a closed edge
corresponding to a node which is contained in a unique irreducible component of Y*, then
E&*™ — () for m > #v(Dy.). If e is an open edge, then EL70 =0 for m > #o(Tye).

Txe,e

Lemma 2.3. For each m € Zxq, if Ed)’:.’m # 0 (resp. EZ7™ #0), then the composition of
maps
Egr™ s EgY - ES |5 e?(Txe),

~

(resp. E;i*m s E;i* —» E;i. = eP(T'xs))

is a surjection. In particular, we have that ESX*.”; £ 0 if Eg;’m # 0 (resp. ELTT # 0 if
Fop*m 7§ @)

Tye

Proof. The lemma follows immediately from the structures of maximal pro-prime-to-p admis-
sible fundamental groups. 0

2.2.5.  We note that the edge-triple

Txe C(0,d, 3 Y = X°)

associated to X* is equivalent to a triple

T © (4,d,y),

where y € Hom(I1¢., F,;) induced by the Galois admissible covering f%. We shall say that Ty,
an edge-triple associated to IIxe.. Then we also use the notation

* cl,x op,x cl op cl,x op,x cl,x,m op,x,m cl op
ETHXc ’ E‘IHX. ’ E‘IHXQ ) EQHX' ) E‘IHX. ) ETHX. e’ ETHX. e’ ETHX. e’ ETHX. e’ 1911—1)(. ) 19THX.
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Ecl,* Op,* Ecl,*,m Eop,*,m 1961

* Clv* Oop,* cl
to denOte E(IX.7 ETX ) ETX E o) (Ixo,€7 Txo,67 Txo,67 (Ixo,e ) TXU

op
. o) Txe? ETX
tively.

JS° ., respec-

3. MONO-ANABELIAN COMBINATORIAL GROTHENDIECK CONJECTURE IN POSITIVE
CHARACTERISTIC

We maintain the notation introduced in previous sections.

3.1. Mono-anabelian reconstructions. First, let us define the term “mono-anabelian re-
construction”.

Definition 3.1. Let i € {1,2}, and let F; be a geometric object and Iz a profinite group
associated to the geometric object F;.

Let Invz, be an invariant depending on the isomorphism class of F; (in a certain category),
we shall say that Invz, can be mono-anabelian reconstructed from 11z, if there exists a group-
theoretical algorithm whose input datum is IIz,, and whose output datum is Invg,.

Let Addz be an additional structure (e.g. a family of subgroups, a family of quotient
groups) on the profinite group Iz, depending functorially on F;. We shall say that Addz, can
be mono-anabelian reconstructed from Ilz, if there exists a group-theoretical algorithm whose
input datum is IIz,, and whose output datum is Addg,.

We shall say that a map (or a morphism) Addz, — Addz, can be mono-anabelian recon-
structed from 11z — Ilz, if there exists a group-theoretical algorithm whose input datum is
17, — Il£,, and whose output datum is Addr, — Addg,.

3.1.1.  One of the main difficulties of establishing a group-theoretical algorithm for reconstruct-
ing the topological and the combinatorial structures associated to X* is that, for each open
subgroup H C Ilx., we need to prove that the profinite completion of the topological funda-
mental group of I'xe and the étale fundamental group of the underlying curve of X3 (or the
weight-monodromy filtration of the first f-adic étale cohomology group of Xy, where ¢ # p)
can be mono-anabelian reconstructed from H. When the base field is an arithmetic field, the
weight-monodromy filtration can be mono-anabelian reconstructed by applying the theory of
“weight”. In our situation (i.e., the base field is an algebraically closed field), we have the
following key observation:

The formula for Avr,(H) of H plays a role of (outer) Galois representations in
the theory of the combinatorial anabelian geometry of curves over algebraically
closed fields of characteristic p > 0.

3.1.2.  We maintain the notation introduced in 2.0.1. In order to simplify the formula of
Avr,(Ilx.), we introduce the following condition for X*.

Condition A . We shall say that X* satisfies Condition A if the following conditions hold: (i)
gy is positive for each v € v(['xe); (ii) T'Es is 2-connected (Definition 1.1 (c)); (iii) #v(I'xs )<t =
0 and #e®(T'xe)*<t = 0 (Definition 1.1 (d)).

3.2. Reconstructions of various additional structures.

3.2.1. Settings. We maintain the notation introduced in 2.0.1. Moreover, in the remainder of
this section, we suppose that X* satisfies Condition A unless indicated otherwise. Note that
Theorem 1.5 and Condition A imply that

Avr,(Tlxe) = gx — Tx.
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3.2.2.  Firstly, we have the following lemmas.

Lemma 3.2. (i) The data p o char(k), gx, nx = #e®(T'xs), rx, and I's® can be mono-

anabelian reconstructed from Ilxe, where Hg})?’p denotes the maximal pro-p quotient of HE?I.)

(1.2.2).
(11) The set v(T'xe)”% (2.1.1) can be mono-anabelian reconstructed from Tlye.
(iii) Let H C I xe be any open normal subgroup. Suppose that Fg?}f{ 15 2-connected. Then the
natural map
U(FXI-{>>O’p — U(FX.)>O’p
can be mono-anabelian reconstructed from the natural injection H — Ilxe.
(iv) The cardinality #v(I'xe) of v(I'xe) can be mono-anabelian reconstructed from I xe.

Proof. (i) A similar result has been proved in [Y1, Proposition 6.1 and Lemma 6.4], for readers’
convenience, we put the proof here. If dimg, (IT§% ® Fy) = dimg,, (IT3% @ Fy) holds for every two
prime numbers ¢ and ¢, then gx = 2gx + nx — 1 if nx > 0, and gx = 2¢gx if nxy = 0. Thus,
either (gx,nx) = (0,1) or (gx,nx) = (0,0) holds. Since IIy. is the admissible fundamental
group of a pointed stable curve, this is a contradiction. Thus, p is the unique prime number
such that dimg, (IT3% @ F,) # dimg, (113 ® F,) holds for each prime number ¢ # p.

Let H be any open normal subgroup of IIy.. We note that, if Iy /H is a p-group, then the
decomposition group in Ily./H of every irreducible component of X}, is trivial if and only if

Ixy — Txy = #Uxe/H)(gx — x).
Thus, Theorem 1.5 implies that we may detect whether the equality
9Xg — TXg = #(HX'/H)(QX - 7aX)
cpt

holds or not, group-theoretically from I1x. and H if I’ xs, is 2-connected. We put

Top, (ITx.) &f {H C IIx. open normal | [Ix«/H is a p-group

and, for any characteristic subgroup ) C Ily.,
9Xung — Txnng = #ULxg /(H N Q))(g9x4 — Txg)}-
Note that Lemma 1.6 implies that F%m@ is 2-connected. Then by applying Theorem 1.5, we
have that Top,(Ilx+) can be mono-anabelian reconstructed from Ily.. Thus, we obtain that
I =Tx./( () H)
HeTop, (Il xe)
can be mono-anabelian reconstructed from IIx.. Moreover, we have that
ry = dimg(II'%P* @ Q)
can be reconstructed group-theoretically from Ilx.. By Theorem 1.5 again, the genus
gx = Avr,(Ilxe) + rx

can be mono-anabelian reconstructed from Il ye.
Let ¢ # p be a prime number. If dimg, (134 ® Fy) # 2gx, then we have

nx = dimg, (5% @ Fy) — 2gx + 1.

Suppose that dimg, (I13% ®F;) = 2gx. Then ny = 0 if, for any open normal subgroup H C Ily.,
dimy,(H*™ ® Fy) = 2gx,,. Otherwise, we have nx = 1. We complete the proof of (i).

(ii) Since each Galois admissible covering of degree p is étale, by applying (i), we obtain that
V%, (2.1.2) can be mono-anabelian reconstructed from Ilx.. Then to verify (ii), Proposition



26 YU YANG

2.1 implies that it is sufficient to prove that Vg  (2.1.2) can be mono-anabelian reconstructed
from Ily.. Let a € V¥, X the Galois admissible covering corresponding to «, I'ye the dual
semi-graph of X2, and 7y, the Betti number of I'ys. Moreover, let 0 # v € Hom(II\%?, F,)
if HE?I.’ P is not trivial, X3 the Galois admissible covering corresponding to 7, X . the pointed
stable curve X3 xxe X3, I'ye  the dual semi-graph of X3 ., I'xe the dual semi-graph of X3,
Tx,., the Betti number of I Xs. and 7y the Betti number of I’ Xs- Then we have the following
claim:

Claim:

#u(l'xg) = p(#v(lxe) — 1) + 1
if and only if
’I“Xa = pPrx.
Moreover, suppose that rx # 0. Then

#0(Txs) = p(#0(Tx) = 1)+ 1
if and only if
TXeo = PTx, +p*—2p+ 1.
Let us prove the claim. Since rx, = #e?(Ixs) — #v(T'xs) + 1 and ry = #e(Txs) —
#v(I'xe) 4+ 1, we have that rx_, = pry holds if and only if

#e(Txs) — #0(Txs) = p#e? (Dxe) — p(#v(Txe) — 1) — L.
Since #e (I xs) = p#e?(Lxe), we have

if and only if rx, = prx.
Suppose that ry # 0. Since 0 # v € Hom(II”, F,), we have

Xy = P (Dxg) — p#o(Txs) + 1.
Then
rXo, =prx, +9° —2p+1=p(p#e (Dxe) — p#o(Txe) + 1) +p* — 2p+ 1
if and only if
#e4(Pxs) — #0(Txs) = p#e(Txe) — p(F#v(Txe) — 1) — 1
if and only if
#v(Txe) = p(#v(lxe) — 1) + 1.

This completes the proof of the claim.

If rx =0 (i.e., ['xe is a tree), then by applying Remark 1.1.1 and Remark 1.5.1, Condition
A implies that either each terminal vertex (Definition 1.1 (d)) of I'xe meets some open edge of
Ixe or #v(I'xe) = 1. Then we observer that the one-point compactification of the dual semi-
graph of each connected Galois admissible covering of X* is 2-connected. Then by the first
part of the claim above and (i), we obtain that V¥ , can be mono-anabelian reconstructed from
[Ix.. If rx # 0, then Fg?f is not 2-connected in general. Moreover, by the choice of 7, we see
that the natural map of dual semi-graphs f3¢: I xs = I'xe induced by the admissible covering
X3 — X* is a topological covering. In particular, #((f%¥)'(v)) > 1 and #((f3%,)"'(v)) > 1
for all v € v(I'xs), where f32 : I'xs — DI'ye denotes the natural map of dual semi-graphs
induced by the admissible covering X3 — X*. Then Lemma 1.6 implies that Fggf and r;?(.jv
are 2-connected. Then the “moreover” part of the claim above and (i) imply that Vyx  can be
mono-anabelian reconstructed from ITx.. Thus, by Proposition 2.1, the set v(I'x+)>%? can be
mono-anabelian reconstructed from ITy.. This completes the proof of (ii).
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(iii) Since Fg?}.i is 2-connected, we obtain that X}, satisfies Condition A. Moreover, by re-

placing X* by X7, (i) implies that v(I'xs )”*” can be mono-anabelian reconstructed from H.
Then (iii) follows from Remark 2.1.2 and (ii).

(iv) Since Vy , C Hom(Q,F,) for each open normal subgroup @ C Ilx., V3, p admits a
natural action of I1xe/@Q via the natural outer representation

Iye/Q — Out(Q) — Aut(Q™)
induced by the natural exact sequence
12Q —1lxe = Ixe/Q — 1.

We have the following:
Claim: There is an open normal subgroup ¢ C IIxe such that the p-rank of
X§,, is positive for each v € v(I'xy ).
Let us prove the claim. Since we assume that X* satisfies Condition A, T'¥s is
2-connected. Then [YS Corollary 3.5] implies that the natural homomorphlsm
Hab ® Z/mZ — 118% @ Z/mZ, v € v(I'xs), is injective for all m € Z prime to
p. By applying Theorem 1.5 to Hab there exists m, € Z-o prime to p such

that the p-rank of smooth pointed stable curve correspondlng to the kernel of
the natural surjection Ilg, — Hab ® Z/m,Z (< 13 ® Z/m,Z) is positive. We

put d¥ max{mv}v@(px,) and

def

Q = ker(Ixe — 1% ® Z/dZ).
Then we see immediately that @) satisfies the conditions of the claim. This
completes the proof of the claim.
Let " be an open normal subgroup @' C Ily. satisfying the conditions of the above

claim. Moreover, we may assume that X¢, satisfies Condition A. Then we obtain Vi, , =
(FXo )>0P = v(FX- ). Thus, we have

#u(Txe) = max{#(Vx,,p/(Ux+/Q)) | @ C IIx open normal}.
This completes the proof of the lemma. O

Lemma 3.3. The data #e?(I'x.), HE?I.), and 11$¢. can be mono-anabelian reconstructed from
IMye..

Proof. By Lemma 3.2 (i) (iv), we obtain that ry and #uv(I'x.) can be mono-anabelian recon-
structed from Ilye.. Then
el (Txe) =rx +#v([xe) — 1
and
#eP(Lxe) =ny
can be also mono-anabelian reconstructed from IIx.. We put

Et(I1xe) def {H C Il x. open normal | for each proper characteristic open normal subgroup

Q, we have #e™(I'xe ) = #(Ilxe/(H N Q))#e(I'xe)

HNQ
and #e (T, ) = #(Txe [(H 1 Q) e (Txe)}.
Note that, for each proper characteristic open normal subgroup @, since I'Y. X. is 2-connected,

Lemma 1.6 implies that ' is 2-connected. Moreover, X} fing satisfies Condition A. Then
HNQ
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#GCI(FX;mQ) and #¢e(I'yy ) can be mono-anabelian reconstructed from HNQ. Thus Et(I1x.)
can be mono-anabelian reconstructed from IIx.. This implies that

Y. =Mx./ (] H

HEEt(Tlxe)
can be mono-anabelian reconstructed from IIxe.. On the other hand, we put

Top(I1xe) o {H C . open normal | for each proper characteristic open normal subgroup @,

IXnne — "Xune = #(xe/(H N Q))(9x — rx)}.

Note that since X}, satisfies Condition A, Lemma 3.2 (i) implies that Top(Ilx.) can be
mono-anabelian reconstructed from Ilx.. Thus we have that

oy =n%./ () H

HeTop(Tlxe)
can be mono-anabelian reconstructed from IIxe. This completes the proof of the lemma. [

Lemma 3.4. Let H C Ilx. be an arbitrary open normal subgroup. Then the data gx,,, nx,,
rxys #e(Lxs,), and #v(Cxs ) can be mono-anabelian reconstructed from Ixe and H. Fur-
thermore, we have that H'P and H® can be mono-anabelian reconstructed from Ixe and H.

Proof. Suppose that rx = 0. Then by applying Remark 1.1.1, Condition A implies that either
each terminal vertex of I'ys meets some open edge of I'xe or #v(I'ys) = 1 holds. Then we
observer that the one-point compactification of the dual semi-graph of each connected Galois
admissible covering of X* is 2-connected. Then X7}, satisfies Condition A. Thus, the lemma
follows from Lemma 3.2 and Lemma 3.3.

Suppose that rx # 0. Then Fg?;z is not 2-connected in general. Since p can be mono-anabelian

reconstructed from Ily., we may choose a prime number ¢ # p such that (¢, #(Ilx./H)) = 1.
2

Let 0 # ~ € Hom(IIY%, F,), H, the kernel of Ilxe — 1Y% — Fy, X3 — X* the admissible
covering corresponding to H,, Xy the pointed stable curve X7 xxe Xp;  I'xy - the dual

'Y’
semi-graph of XI.me and "X o, the Betti number of FXJ.LIHHW' By Lemma 1.6, F;?;t{mw and

Cpt ° . oy
PX;I.Y are 2-connected. Moreover, Xj, satisfies Condition A. Then gx,, » "xyen s "Xpuau, -

#e(Pxs ), and #v(I'xs ) can be mono-anabelian reconstructed from ITye and H N H,.
We note that
nXHﬂH-y - anH’ #GCI(FX' ) = ﬁ#ed(rX;{)’ #U<FX' ) = E#U<FX;I)7

HNHy HNH~

Pxyom, = rxy — 0+ 1, and gx,,, = lgx, — 1) + 1.

Then gx,,, Nxy, "5 #e“l(FX;{), and #v(I'xs ) can be mono-anabelian reconstructed from ITx.
and H. Moreover, similar arguments to the arguments given in the proof of Lemma 3.3 imply
that H'*P and H® can be mono-anabelian reconstructed from IIy. and H. O

Proposition 3.5. (i) Let £ be an arbitrary prime number. Then the sets V§ , defined in 2.1.2
and the Vx defined in Proposition 2.1 can be mono-anabelian reconstructed from Ilx..

(ii) Let €', 0" be prime numbers distinct from each other such that ¢" # p. Then there is a
natural injection

Vxo — V.
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which fits into the following commutative diagram

VX7[/ M) U(FX0)>O’£/

l l

Kx e 1"
VX74// — U(FX-)NM .

Moreover, the injection can be mono-anabelian reconstructed from Ilxe.
(iii) The set of vertices v(I'xs) of I'xs can be mono-anabelian reconstructed from Il xe.

Proof. (i) If V¥, can be mono-anabelian reconstructed from Ilyxe, then Proposition 2.1 implies
that Vx , can be mono-anabelian reconstructed from II xe+. Thus, we only need to treat the case
of V¥,

By Lemma 3.3, we obtain that IS can be mono-anabelian reconstructed from Ily.. By
replacing IIy. and p by [I<. and ¢, respectively, then similar arguments to the arguments given

in the proof of Lemma 3.2 (i) imply II'%" can be mono-anabelian reconstructed from Ixe.

Moreover, by replacing ITI'%" and p by II'%" and ¢, respectively, then similar arguments to the
arguments given in the proof of Lemma 3.2 (ii) imply (i) holds.
(ii) Let o/ € V¥, and o € Vg . Write X3, and X, for the pointed stable curves corre-

sponding to o' and o, H, and H,~ for the open subgroups of IIxe corresponding to X2, and

X2, (i.e., the kernels of ITxs — IS, % Fy and Txe — T4, % Fy), respectively. Then we
obtain that

X;/ X xe X;//
is a connected pointed stable curve corresponding to the open normal subgroup H, N H,» C
[Txe. Moreover, Lemma 3.4 implies that the cardinality of the set of irreducible components of
X2 X xe X2, can be mono-anabelian reconstructed from H, N H,» and IIx.. Then (ii) follows
from Remark 2.1.1.

(iii) Lemma 3.2 (i) implies that p can be mono-anabelian reconstructed from IIx.. Then we
may choose a prime number /¢ distinct from p. Moreover, since X* satisfies Condition A, we
have

U(FX0)>O’£ = U(Fxo).
Then (iii) follows from (i), (ii), and Proposition 2.1. O

Proposition 3.6. Let Ty, g (¢,d,y) be an arbitrary edge-triple associated to llys (2.2.5), H,

the kernel of Ilxe —» 11 5 Fq, and f* : Y* — X* the Galois admissible covering corresponding
to Hy,. Then the sets
Ecl,* E;p,* ’ E%l ’ EOP
Mxe Iye

THX.’ THXo
defined in 2.2.3 and Proposition 2.2, respectively, can be mono-anabelian reconstructed from
IIxe and H,.

Proof. We only treat E;ln* and Egn . Moreover, by Proposition 2.2, it’s sufficient to treat
Xxe Xxe
the case of Egﬁ* . Note that the construction of Y* implies that #((f%¢)~'(v)) = 1 for all

v € v(I'xs), where f*8 : I'ye — I'ye denotes the natural map of dual semi-graphs induced by

f*. Since Fg?f is 2-connected, Lemma 1.6 implies that F;P.t is 2-connected. Moreover, since X*

satisfies Condition A, we have that Y'* satisfies Condition A. By the definition of £ , Lemma
X.

3.3 implies that the set £ (2.2.3) can be mono-anabelian reconstructed from IIx. and H,,.
X.

Hence, to verify the proposition, it is sufficient to prove that the set Egn* C Ez, (2.2.3)
X xe
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can be mono-anabelian reconstructed from Ilxe and H,. Let o € Ez, , Ho C Hy the kernel
X.

of a, Y3 — Y* the admissible covering corresponding to H,, and I'ye the dual semi-graph of
Y?. We observe that
clx

a € by

TMxe

if and only if

#e(Tyg) = l(#e! (Tys) — d) +d, #eP(Tyg) = (#eP(Tys).
Since H, C H, (resp. H, C llx.) is an open normal subgroup, by Lemma 3.4, we have
that #eCI(FYJ) and #e"p(l“ya-) (resp. #e(T'y.) and #e°?(T'y+)) can be mono-anabelian recon-
structed from H, and H, (resp. H, and IIx.). Then we obtain that Egn* can be mono-

anabelian reconstructed from IIy. and H,. This completes the proof of the proposition. 0
Next, we generalize Lemma 3.4 to the case where H is an arbitrary open subgroup of Ily..

Proposition 3.7. Let H C Ilx. be an arbitrary open subgroup. Then the data gx,,, nx,, "x,
#e(Txs ), and #v(Lxs ) can be mono-anabelian reconstructed from Ixe and H. Purthermore,
we have that H'? and H® can be mono-anabelian reconstructed from xe and H.

Proof. Let N C H be a proper open characteristic subgroup of IIx.. Then X3 satisfies Con-
dition A. Since N is a normal open subgroup of Ilx., Lemma 3.2 and Lemma 3.4 imply that
the data gx,, Nxy, Xy #ed(FXI-V), #v(I'xs ), N*P, and N¢ can be mono-anabelian recon-
structed from N. Moreover, by Proposition 3.5, we obtain that v(I'xs ) can be mono-anabelian
reconstructed from NN, and that v(I'xs ) admits a natural action of H/N. Then we obtain that

#0(Uxy) = #(0(Txy)/(H/N)).

Let Ty = (¢,d,y) be an arbitrary edge-triple associated to N, N, the kernel of N —» N 5
F4, and f*: Yy — X} the Galois admissible covering correspondmg to N,. Then Proposition
3.6 implies that

E‘I]\f’ E‘%l;\r

can be mono-anabelian reconstructed from IIx. and N,. Moreover, E%IN and E%)v admit natural
actions of H/N. Then we obtain that

#e (D) = #(E5, /(H/N)), nx, = #e(Lxy,) = #(ES,, /(H/N)).
Moreover, we have that
= #¢"(Dxs ) — #v(Txs) + 1.

On the other hand, since the ramification indexes of the Galois admissible covering Y5 — X}
at each marked points can be mono-anabelian reconstructed from N and H via the action of
H/N on E%’v, the Riemann-Hurwitz formula implies that the genus gx,, can be mono-anabelian
reconstructed from Ilx. and V.

Similar arguments to the arguments given in the proof of Lemma 3.3 imply that H*P and
H¢ can be mono-anabelian reconstructed from IIx. and H. This completes the proof of the
proposition. ]

Proposition 3.8. (i) Let T, o (', d'y') and Ty, o (0", d",y") be edge-triples associated

to Ilxe, Hy and H,» the kernels of Il xe — 11, Yo Fy and Ixe — 1. % Fgr, f& Y — X*
and f*" : Y*" — X* the Galois admissible coverings corresponding to H, and H,», respectively.
Then there are natural bijections

ES S EY By S Eg
HX. HX' HX. HX'
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which fit into the following commutative diagrams

19cl/
cl QHX' cl
E/ — € (FX.)
HX.

l H

1901
1 iy 1
Bg,  —% (),
X.
9P

Eg =5 e (Ixe)
X.

l H

op
19E//

Eg  —25 e®(Ix),
X.

respectively. Moreover, the above bijections can be mono-anabelian reconstructed from Iy,
Hy/, and Hy//.

(ii) The set of closed edges e (I'xe) of I'xe and the set of open edges eP(I'xe) of I'xe can be
mono-anabelian reconstructed from 1lxe..
Proof. We only treat the case of closed edges. (i) Let o/ € E;l,* and o € E;l,’,* . Write

Mxe Mxe

Y — Y* and Y5, — Y*" for the Galois admissible coverings corresponding to o/ and o, H,
and H,» for the open subgroups of [Ix. corresponding to Y% and Y, (i.e., the kernels of o/
and o), respectively. Then we obtain that

O:/ XX' a.//

is a connected pointed stable curve corresponding to the open subgroup Hy N Hyr C Ilxe.
Moreover, Proposition 3.7 implies that the cardinality of the set of nodes of Y% X x« Y%, can be
mono-anabelian reconstructed from H, N H,» and [Ix.. Then (i) follows from Proposition 3.6
and Remark 2.2.1.

(ii) By Lemma 3.2 (i) and Lemma 3.3, p and II$!. can be mono-anabelian reconstructed from
IIxe.. Then there is an edge-triple

o def o
on - (E 7d 7y )

associated to ITxe which can be mono-anabelian reconstructed from Ilx., where ¢ € Hom (1., Fgn ).
Thus, (ii) follows from (i) and Proposition 2.2. This completes the proof of the proposition. [J

3.3. Reconstructions of dual semi-graphs.

Proposition 3.9. Let H C Ilxe be an arbitrary open subgroup.
(i) The natural maps

v([xs) — v(Txe), ed(FX;{) — eN(Txe), and e (xs) — P (xe)

induced by the Galois admissible covering X3, — X*® can be mono-anabelian reconstructed from
the natural injection H — Il xe.

(i) Suppose that H is normal. Then the natural action of lixe/H onv(Txs) (resp. e'(Txs ),
e (I'xs ) ) induced by the natural action of lx«/H on Xy can be mono-anabelian reconstructed
from the natural injection H — Tlxe.
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Proof. (i) By Lemma 3.2 (i), we may choose a prime number ¢ such that ¢ # p and (¢, [[Ix. :
H]) = 1. By Proposition 3.5, we obtain that V¥ , and Vx , can be mono-anabelian reconstructed
from ITx.. Moreover, by Proposition 3.7, we obtain that the data gx,, nx,, 7x,. #U(FX;{),
H%P and H® can be mono-anabelian reconstructed from Ilxe and H. Then by applying
similar arguments to the arguments given in the proof of Proposition 3.5 (i) (i.e., by replacing
M. and IIYE by H and H'P¥, respectively), we obtain that Vi, , and Vy,,, can be also
mono-anabelian reconstructed from Ilx. and H.

For each o € V¥, and each ay € V¥, ,, we write ()q C lxe and Q,, C H for the kernels of

Mxe — IS 5 F, and H —» H® = Fy, respectively. Then, by Remark 2.1.3, we have that
[an] = [a],

where [a] and [ay] denote the images of @ and ay in V5, and V5, ,, respectively, if and only if
one of the following holds: (1) there exists o’ € Vx, , such that ay ~ oy and Qn, = Qu N H,

L
where Qg denotes the kernel of H — H® = Fy; (2) there exists o, € Vx, ¢ such that
ay ~ o and

#u(Txs )= lHo(Txs

. )
QanQ i QanH’’
H

where () denotes the kernel of H — H & 3 F,. Thus, Proposition 3.7 implies that the
natural map v(I'ys ) — v(I'x) can be mono-anabelian reconstructed from the natural injection
H — IIxe..

Next, let us prove that the natural maps of sets of edges can be mono-anabelian reconstructed
from the natural injection H < Ilx.. We only treat the case of closed edges. By Lemma 3.2
(i), we may choose group-theoretically prime numbers ¢ and d distinct from p satisfying (i)
(ii) of 2.2.2. Moreover, by applying Lemma 3.2 (iv), Lemma 3.3, and Lemma 3.4, we may
choose group-theoretically a homomorphism y : 11§, — F, satisfying satisfying (iii) of 2.2.2
(i.e., a homomorphism y : IS, — F, satisfying #(U(FX;Iy)) = #(v('x.)), where H, C Ilxe.

denotes the kernel of ITx. — I, 5 F;.) This means that we may choose group-theoretically
an edge-triple
Trge = (0,d,y)
associated to I1xe such that (¢, [IIx. : H]) = (d, [lIx. : H]) = 1. Moreover, we denote by
yg : H® — H®/Im(H N H,) = F,.

Then we obtain an edge-triple

SH déf (67 d7 yH)

associated to H.
By applying Proposition 3.6 and Proposition 3.8, we obtain that
cl,x cl ~  cl
EZnX.’ ETnX. — e (I'xe)

can be mono-anabelian reconstructed from IIxe and H,. Moreover, by Proposition 3.6, Propo-
sition 3.7 and similar arguments to the arguments given in the proof of Proposition 3.8 (i.e.,
by replacing X, IIxe by X3, H, respectively), we obtain that

cl,x cl cl
E‘IH7 ETH — € (F)qq)

can be mono-anabelian reconstructed from H and H N H,,.
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For each 3 € E;ln* and each (g € Eg}’;, we write Pg C H, C IIxe and P3, C HNH, C H
X.
for the kernels of 8 and Sy, respectively. Then, by Remark 2.2.3, we observe that

1B — (6],
where [Bg] and [(] denote the images of Sy and 3 in E%lnx. and E$ | respectively, if and only

if one of the following holds: (1) there exists £} € E;IH* such that Sy ~ B and Py, = PsN H;
(2) there exists 8% € E;lH* such that 8}, ~ Sy and

#ed(rx;’ npP ) - g#ed(l—‘X;’ mH)’
Bl B

where Pg denotes the kernel of B4. Thus, Proposition 3.7 implies that the natural map
e?(Ixs, ) — e(I'x) can be mono-anabelian reconstructed from the natural injection H < IIxe.

(ii) follows from (i), Remark 2.1.2, and Remark 2.2.2. This completes the proof of the
proposition. [

Next, we prove that the dual semi-graphs can be mono-anabelian reconstructed from the
admissible fundamental groups.

Proposition 3.10. (i) The dual semi-graph I'xs can be mono-anabelian reconstructed from
IIxe..
(ii) For each open subgroup H C Ilxe, the natural map of dual semi-graphs

FXI.-I — FX.

can be mono-anabelian reconstructed from the natural injection H < Ilxe. Moreover, if H C
IIxe is an open normal subgroup, then the action of llxe/H on I'xe induced by the action of
IIxe/H on X3 can be mono-anabelian reconstructed from the natural injection H < I x..

Proof. By Lemma 3.2 and Lemma 3.3, we may choose an edge-triple
def
‘ZHXo = (é, d7 y)

associated to IIxe. Write H, for the kernel of IIx. — H_é%. % F; and Y* for the pointed stable
curve over k corresponding to H,. Then Proposition 3.6 implies that the sets

cl op
EEHXQ ? ETHX.

can be mono-anabelian reconstructed from H, and IIx..

Let e € e(I'ys)Ue?(I'x+) be an arbitrary edge and v(e) the set of vertices on which e abuts.
We only treat the case of closed edges.

Let 8 € Egn* . Write Y3 — Y* for the Galois admissible covering corresponding to 3, Hg
for the kernel of 5 which is the open normal subgroup of H, corresponding to Y}, and FYB- for
the dual semi-graph of Y. Let m; = #v(I'xe) — 2, my = #v(I'xe) — 1, and i € {1,2}. We
observe that § € E;ln’;m , if and only if

#u(Lyy) = #o(T'ye) —mi + m; = #v(Dxe) — my + .
Since Proposition 3.9 implies that U(Fyﬁ-) and v(I'xe) can be mono-anabelian reconstructed
from H, and Ilx., we have that Egl’:’mieﬂ can be mono-anabelian reconstructed from H, and
X.7

IIx.. By Lemma 2.3, for each m € Zx, if Egn*m # (), then the composition of maps
> o

cl,x,m cl,x cl ~  cl
E‘IHX. (—> ETHX. - ETHX. —> e (FX.)
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is a surjection. In particular, we have that E;ﬂ;*’me # () if E;ln*m # 0.
X' ) X.

Let o € Ed’*’" be arbitrary element, where n = ms if Ed’*’m2 # () (i.e., e is contained in a

X.7
unique irreducible component of X*), and that n = my if E;ln* " =0 (i.e., e is contained in

two different irreducible components of X*®). Proposition 3.9 (i ) 1mp1ies that the natural map
T cv(Tys) = v(Lxe)
can be mono-anabelian reconstructed from H, < IIye.. Then we have

v(e) ={vevx) [ #(fi1) " (v) = 1}.
This means that I'xe can be mono-anabelian reconstructed from Il x.. This completes the proof

of (i).
Similar arguments to the arguments given in the proof above imply that, for each open
subgroup H C Ilxe., the dual semi-graph

Txs,

can be mono-anabelian reconstructed from Ilye and H. Then (ii) follows from Proposition
3.9. U

3.4. Main theorem. Now, we prove the main theorem of the present paper.

Theorem 3.11. Let X* be an arbitrary pointed stable curve (i.e., we do not assume that X*®
satisfies Condition A) of type (gx,nx) over an algebraically closed field of positive characteristic
and Il xe the admissible fundamental group of X*. Then the topological data

{(91“7 nF)}FeSub(FX. ) {(QF\La nF\L) }F\LECSub(FX.)

and the combinatorial data
Sub(I'ye), CSub(T'ye), Sub(Ilx.), CSub(Ilx.)
associated to X*® defined in Definition 1.4 can be mono-anabelian reconstructed from Ilye.

Proof. Since Il x. is topologically finitely generated, there exists a set of open normal subgroups

{H,;}ien (e.g. characteristic subgroups) of Ilx« such that the following conditions are satisfied:

(1) Hy def Mye; (2) H; 2 H;yy for each i € N; (3) l'glieN [ye/H; = .. By Remark 1.5.2, we

may assume that X7, satisfies Condition A.
First, we claim the following:
(1) For each i € N, the dual semi-graph I'ys of X7 corresponding to H; can be mono-

anabelian reconstructed from H;;
(2) For each ¢ € N, the natural map of dual semi-graphs

FX;I- — FX'
induced by the admissible covering X3, — X*® can be mono-anabelian reconstructed
from the natural injection H; < Ilx., and the natural action of IIxe/H; on I’X;{‘
induced by the natural action of Ilx./H; on X}, can be mono-anabelian reconstructed
from the natural injection H; < Ilye.

Proposition 3.10 (i) implies that, for each i > 2, I'xs can be mono-anabelian reconstructed

from H,;. Moreover, Remark 2.1.2 and Remark 2.2.2 1mply that, for each ¢ > 2, the natural
action of Ilye/H; on I'ys induced by the natural action of HX-/H on X}, can be mono-

anabelian reconstructed from the natural injection H; < Ilx.. For each 7,5 > 2 such that
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j > i, by applying Proposition 3.10 (ii), we may identify naturally FX;{j/(Hi/Hj) with FXZzi'
Moreover, we may identify naturally I' X3, /H; with I'xe /H;. Thus, we may put

Txe = Ty, /H>.

Then we obtain a natural map

Pxe = Uxe/H; =Uxg/Hy =Txe, i > 2,
which can be mono-anabelian reconstructed from H; < IIxe. This completes the proof of the
claim.

Since I'ye can be mono-anabelian reconstructed from Ilx., by 1.3.2 and 1.3.3, the claim
implies that the combinatorial data

Sub(T'x+), CSub(I'x+), Sub(Ilys), CSub(Ilxe)

associated to X'* can be mono-anabelian reconstructed from Ilx.. In particular, Ver(Ilx.) can
be mono-anabelian reconstructed from Ilye. On the other hand, we have that

np & #(eP(I)), nr\z o + 24 (L)

can be mono-anabelian reconstructed from Ilye (see 1.2.3 and 1.2.4). Moreover, the Betti
numbers rx, and TXpL of the dual semi-graphs of X and Xf\ ; can be mono-anabelian re-
constructed from Ilx.. Since Ver(Ilx.) can be mono-anabelian reconstructed from Iy, [T2,

Theorem 0.2] implies that {(gy,7v)}vev(rye) can be mono-anabelian reconstructed from Ilx..
Then o
gr = rxp + Z Gvy gr\L : "Xr\r + Z Gu
vew(T) vev(T\L)
can be mono-anabelian reconstructed from IIx.. We complete the proof of the theorem. U

The following corollary follows from Theorem 3.11.

Corollary 3.12. We maintain the notation introduced in Theorem 3.11. Let W* be a pointed
stable curve of type (gw,nw) over an algebraically closed field of positive characteristic and Tly e
the admissible fundamental group of W*. Then we can detect group-theoretically whether or not
there ezists a sub-semi-graph T' of I'xe (Tesp. a semi-graph associated to a sub-semi-graph I' of
['xe and a set of edges L of F) such that (gw,nw) = (gr,nr) (resp. (gw,nw) = (gr\r, nr\z))
and ye = Iz (resp. Mo = HF\L)

4. THE SET ﬁord

—ord

4.1. The definitions of ﬁgfn and w29 - M, — ﬁgn We maintain the notation introduced
in 0.2 and 1.3.

4.1.1. Let q € ngn, X, a pointed stable curve of type (g,m) corresponding to a geometric
point over ¢, and II; the admissible fundamental group of X7. Let I xg be the dual semi-graph
of X3. Since the isomorphism class of I'ys does not depend on the choices of geometric points
over ¢, we write I'y for I'ye, and say I'y the dual semi-graph associated to q. Moreover, let

fq be the dual semi-graph of the universal admissible covering of X7 associated to II,, and
Tg ' fq — I'y the surjective map of semi-graphs. We put
def o
Edg ( )_{[}eEﬂ' (e)? BEGP(Fq),

which can be mono-anabelian reconstructed from II, by Theorem 3.11.
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Let on, : {EdgP () }eeeorr,) — {1,...,n} be a bijective map. We shall say that

(HQ? an)
is an ordered admissible fundamental group of q. Let (Hq/,qu,) be an ordered admissible
fundamental group of ¢’. Let ¢ : II, = II, be an isomorphism of profinite groups and
¢+ {Edge”(Ilg) beeeor(r,) = {EdgeP(I1;) }eceor(r,) the bijective map which is mono-anabelian
reconstructed from ¢ by Theorem 3.11. An isomorphism of ordered admissible fundamental
groups is a pair
(¢7 ¢Op) : (Hq’u Ol'[q/) :> (an OHq)

such that ory, o ¢°P = o, -

4.1.2.  We denote by

—ord

IT

g7n

the set of isomorphism classes of ordered admissible fundamental groups of ¢ € M,,,. Moreover,

o —ord _ —
Theorem 3.11 implies that H;rn can be mono-anabelian reconstructed from Il ,,.

Let og : €?(Ty) = {1,...,n} be a bijective map. Then (X, 0x,) is an ordered pointed stable
curve of type (g,n), where ox, : Dx, = {1,...,n} is the bijective map induced by o,. Moreover,

since o, does not depend on the choices of geometric points over ¢, we have (g, 0,) € H;r:. We
put

Fadm . Mg,n — 11, ,, ¢— [I1,],

an
and put
- d d
oo s My — T, (q.04) = (T, 0m,)],

where ory, denotes the bijective map induced by o, via the natural bijection (1.3.4)
{Edge”(Iy) }eeeon(r,) = Edg™ (ILy) /Ty = e (),

and [(II4, orr, )] denotes the isomorphism class of (Il,, or,). Then we obtain the following result:

Theorem 4.1. Denote by ﬁ;fs the set of isomorphism classes of ordered admissible fundamental
groups of q € Mgm. Then there are natural surjective maps

~adm.or ——ord —ord
ngz ord M;,n - H;,nv (Q70q) = [(Hq,OHq)],
and
—ord ==
Hg,n — g, (1L, OHq)] = [IL],
which fit into the following commutative diagram
~adm,ord
Mord Tg.n ﬁord

g7n g7n

l |

Mg,n : Hg,n ‘

rd

— . —
Moreover, 11, can be mono-anabelian reconstructed from Il,,,.

N

4.2. Clutching maps I. We maintain the notation introduced in 4.1.



TOPOLOGICAL AND COMBINATORIAL STRUCTURES OF POINTED STABLE CURVES 37
42.1. Let RY {ry,...,rn, } and S o {s1,...,8n,} be distinct subsets of {1,...,n} such that
ry < ..o <7y, that s < -+ < sp,, and that n; + ngy = n. Recall that we have the following
clutching morphism for moduli stacks ([K, Definition 3.8]):

’ Cpord ——ord ——ord
Qg1.92,R.S Mgl,n1+1 XFp Mgz,n2+1 - Mg,m

/

where g = g1 + go. We see that « ¢ induces the following continuous map of topological

91’927R7
spaces:
~ ——ord ——ord ——ord
Qg1,92,R,S - Mgl,nl-i-l X Mgz,nz-i-l - Mg,n’
here M0 L x MO L d he prod logical
where M, . x M, ., denotes the product as topological spaces.

4.2.2. Let i € {1,2}, [(Il;,om, )] € ﬁ;:iliﬂ, and [(IIy, or,)] € ﬁ;f:. Moreover, let I'j, and T,
be the dual semi-graphs associated to ¢; and ¢, respectively.

Let e; € e(I';,). We shall say that I'; is glued by I'y, and 'y, along e; and ey if the following
conditions are satisfied:

(i) There exists an isomorphism «f% : T'y, = I" | where I, € Sub(T') is a sub-semi-graph of
I, (Definition 1.1 (e)) such that a(e1) = a8(ez) = € € e(Ty).

(ii) If we regard I, as a sub-semi-graph of I'; via the isomorphism o3# (i.e., we identify Iy,
with I' ), then the following conditions hold: v(I'y, )Uv(I'y,) = v(T'y), (eP(I'y, )Ue®(T'y,))\{e} =
eP(T,), e(T,,) Ued(Ty,) U{er = el(Ty), v(ly,) Nv(ly,) = 0, e(T,) Nel(Ty,) = 0, and
e (L) Ne(ly,) = {e}.

Example 4.2. Let I'y,, i € {1,2}, be the following semi-graph:

. U
FQ1 . 6OQI—O €1

. v
FqQ : o— @2 €3
€2

Then I, is as follows, which is glued by I'y, and I';, along e; and ey:

Ly eoovl o2 oe3
e
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rd

4.2.3. Now, let us define a clutching map for ﬁ; corresponding to oy, 4, r,s. First, we note

that oy, induces a bijection

N

0g 0 €P(Ty) = {1,...,n; + 1}.

Then we write e, 41 o o, (n; +1).
We put

—ord —ord —ord
agf,gz,Rﬁ : Hg1,n1+1 X ng,n2+1 - Hg,n’ ([(qu OHqi)])iG{l,Q} = [(an OHq)];

where [(Ily,, on, )] and [(Ily, on,)] satisfy the following conditions:
(i) I'y is glued by I';, and I, along e,,, 11 and e;,1.
(ii) There exists an isomorphism of profinite groups ag, : II, — Il , where I, is the
9; v

sub-semi-graph of I'; defined in 4.2.2.
(iii) Theorem 3.11 implies that the isomorphism «,, determines group-theoretically an iso-

morphism of semi-graphs 'y, = [, Then this isomorphism coincides with the isomorphism
;¢ defined in 4.2.2.

(iv) The bijections o4, L 04, and €°P(T'y,) \ {en, 11} U eP(Ty,) \ {€n,11} — €°P(T,) induced by
ag® L age determine a bijection
0,:e¢®(,) = {1,...,n}
which fits into the following commutative diagram

04119 (g, )\ {en, 113002 [e9P (Dgy )\ feny 41}

eop(rql) \ {en1+1} U eop(r(p) \ {en2+1} v {1’ cee 7n1} U {17 s ’n2}

l l

e*P(I,) 2 {1,...,n},

where the vertical arrow on the right-hand side is the bijection

{1,...on b U{1, . o ey = {1,...,n}, a,b— 74, S
(v) The bijection e°?(I'y) = {1,...,n} induced by or, coincides with o, defined in (iv).

4.2.4. [M1, Appendix] (or [M2, Section 2] for a more general theory) implies that agi p.R.S 18

well-defined. Moreover, by applying Theorem 3.11 and Corollary 3.12, we see that a?i RS
can be mono-anabelian reconstructed from II,,,. We obtain the following result:

Theorem 4.3. There exists a map

—ord —ord —ord

sg}igz,R,S : Hgl,ﬂ1+1 X ng,anrl - Hg,n? ([(qu OHqi>])i€{172} = [(qu OHq>]

which fits into the following diagram

«

—ord —ord agl,gQ,R,S —ord
Mg1,n1+1 X Mg2,n2+1 ngn
et et | |
—ord ord g g0 RS ord
T 91,9213, T
H917n1+1 X H92,n2+1 HQJL‘
—ord —ord . =3
Moreover, 1, .y, 1L, 1y, and a?fﬁ rg can be mono-anabelian reconstructed from 1l ,.

4.3. Clutching maps II. We maintain the notation introduced in 4.1.
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4.3.1. Recall that we have the following clutching morphism for moduli stacks ([K, Definition
3.8]):

——ord —ord

/ .
ﬁ : Mg—l,n—i—? — Mg,n'

We see that ' induces the following continuous map of topological spaces:

—ord

4.3.2. Let [(Ily, om,, )] € T, 4o and [(I, o, )] € ﬁ;r:. Moreover, let I'y, and I, be the dual
semi-graphs associated to gy and ¢, respectively.

Let e, ep € e°P(I'y,). We shall say that I'; is glued by I'y, along e; and e, if there exists a
closed edge e € e?(T',) such that T, \ {e} is a semi-graph associated to I'; and {e}, and that
there exists an isomorphism

a0 T\ {er,ea} = T\ {e}.

Example 4.4. Let I'y, be the following semi-graph:

€1
Ly €o v

€2

Then I, is as follows, which is glued by I',, along e; and es:

Ly 60

4.3.3. Now, let us define a clutching map for ﬁzf: corresponding to E . First, we note that oy,
induces a bijection

04 1 €P(Cy) = {1,...,n+1,n+2}.

Then we write eps; = o (n+1), 1€ {1,2}.
We put

—ord

—ord
/ng . Hg—l,n+2 — Hgyn’ [(qua OHqO)] = [(HQ’ OHQ)]’

where [(Ily,, on, )] and [(IIy, on, )] satisfy the following conditions:
(i) There exists a closed edge e € e(T',) such that ', is glued by ', along e, and e, 2.
(ii) There exists an isomorphism of profinite groups f,, : II,, — Hrm )y
(iii) Write I'g\. for the dual semi-graph of X7 .., (1.2.4). Theorem 3.11 implies that S,
induces group-theoretically an isomorphism of semi-graphs I'y, = I'p\e. Then the restriction of

this isomorphism to Ty, \ {ent1, ent2} coincides with the isomorphism 352° : U\ {€ns1, €nsa} —
I, \ {e} defined in 4.3.2.
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(iv) The bijections og, and e(T'y)) \ {€nt1,ent2} = €P(Iy) induced by 3i&° determine a

bijection

0,:€¢®(,) = {1,...,n}

which fits into the following commutative diagram:

040 €9P (I g )\ fent1rental
eop(rqo) \ {en—i-la €n+2} = - SR > {1, c. ,n}

l H

Oq

e’ (Ty) — {1,...,n}

(v) The bijection e°P(I'y) = {1,...,n} induced by on, coincides with o, defined in (iv).

4.3.4. [M1, Appendix] (or [M2, Section 2] for a more general theory) implies that 58P is well-
defined. Moreover, by applying Theorem 3.11 and Corollary 3.12, we see that (8’ can be
mono-anabelian reconstructed from II,,,. We obtain the following result:

Theorem 4.5. There exists a map

ord —ord

/ng . ﬁg—l,TH-Q — Hg,n’ [(quﬂ OHqO)] = [(Hq7 OHQ)]’

which fits into the following diagram

——ord B —ord

Mg—l,n+2 Mg,n
~adm,ord ~adm,ord
ﬂ—gfl,n+2 Tg,n

—ord B8P —ord

II IT

g_17n+2 gn’

—ord =
gp - )
MOT@OUGT’, Hg 1,n+2 and 5 can be mono-anabelian reconstructed from Hgm.

[AP1]
[AP2]

[FvdG]
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