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Abstract. In the present paper, we study anabelian geometry of curves over algebraically
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Introduction

0.1. Anabelian geometry. Let X• = (X,DX) be a pointed stable curve of type (gX , nX) over
an algebraically closed field k, where X denotes the underlying curve which is a semi-stable
curve over k, DX denotes the set of marked points satisfying [K, Definition 1.1 (iv)], gX denotes
the genus of X, and nX denotes the cardinality #DX of DX . Moreover, by choosing a suitable
base point x of X• (i.e., a geometric point whose image is not contained in the singular locus
of X), we have the admissible fundamental group (=geometric log étale fundamental group)

πadm
1 (X•, x)

of X• (see [Y4, Section 2] for the definitions of admissible coverings and admissible fundamental
groups). In the present paper, since we only focus on the isomorphism classes of πadm

1 (X•, x),
we omit the base point x and write ΠX• for πadm

1 (X•, x). The admissible fundamental group of a
pointed stable curve is a natural generalization of tame fundamental group of a smooth pointed
stable curve. In particular, if X• is smooth over k, then ΠX• is naturally isomorphic to the
tame fundamental group πt

1(X
•, x). The main question of interest in the anabelian geometry

of curves is, roughly speaking, the following:

How much geometric information about the isomorphism class of a pointed stable
curve is contained in the knowledge of its fundamental group?

Suppose that the characteristic char(k) of k is 0. The structure of ΠX• is well-known, which
is isomorphic to the profinite completion of the topological fundamental group of a Riemann
surface of type (gX , nX) ([V, Théorème 2.2 (c)]). In particular, ΠX• is a free profinite group
with 2gX + nX − 1 generators if nX > 0. This means that the geometric information of X•

cannot be deduced from the isomorphism class of ΠX• (i.e., no anabelian geometry exists in
this situation).

0.2. Moduli spaces and anabelian geometry in positive characteristic. When char(k) =
p > 0, the situation is quite different from that in characteristic 0, and the structure of ΠX•

is no longer known. In the remainder of the introduction, we assume that char(k) = p > 0,
and that Fp is the algebraic closure of Fp in k. The admissible fundamental group ΠX• is
very mysterious. Since the late 1990s, some developments of M. Raynaud ([R]), F. Pop-M.
Säıdi ([PS]), A. Tamagawa ([T1], [T2], [T3]), and the author of the present paper ([Y1], [Y2],
[Y4]) showed evidence for very strong anabelian phenomena for curves over algebraically closed
fields of characteristic p. In this situation, the Galois group of the base field is trivial, and the
arithmetic fundamental group coincides with the geometric fundamental group, thus there is a
total absence of a Galois action of the base field. This kinds of anabelian phenomena go beyond
Grothendieck’s anabelian geometry ([G]), and show that the admissible fundamental group of
a pointed stable curve over an algebraically closed field of characteristic p must encode“moduli”
of the curve. Moreover, this is the reason that we do not have an explicit description of the
admissible (or tame) fundamental group of any pointed stable curve in positive characteristic.

0.2.1. Let us explain some background about the theory of anabelian geometry of curves
over algebracially closed fields of characteristic p from the point of view of moduli spaces that
motivated the theory developed in the present paper.
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Let X• be a pointed stable curve of type (gX , nX) over k and oX : DX
∼→ {1, . . . , nX} a

bijective map. We shall say (X•, oX) an ordered pointed stable curve of type (gX , nX) over

k (i.e., n-pointed stable curve defined in [K, Definition 1.1]). Let Mord

g,n be the moduli stack

over Fp parameterizing ordered pointed stable curves of type (g, n) (in the sense of [K]) and

Mord
g,n ⊆M

ord

g,n the open substack classifying smooth ordered pointed stable curves. We denote

byMg,n (resp. Mg,n) the quotient [Mord

g,n/Sn] (resp. [Mg,n/Sn]) by the natural action of the

symmetric group Sn (in the sense of stacks). We write M
ord

g,n, M
ord
g,n , M g,n, Mg,n for the coarse

moduli spaces ofMord

g,n,Mord
g,n,Mg,n,Mg,n, respectively.

Let q ∈M g,n be an arbitrary point, k(q) the residue field of q, and k(q) ⊆ k′ an algebraically
closed field. Then the natural morphism Spec k′ →M g,n determines a pointed stable curve X•

q

of type (g, n) over k′. We denote by ΠX•
q
the admissible fundamental group of X•

q . Since the
isomorphism class of ΠX•

q
does not depend on the choice of the base field k′, we may write Πq

for ΠX•
q
. We denote by Πg,n the set of isomorphism classes of admissible fundamental groups

of pointed stable curves of type (g, n) over algebraically closed fields of characteristic p > 0.
Then we have a surjective map

πadm
g,n : Mg,n

def
= M g,n/ ∼fe↠ Πg,n, [q] 7→ [Πq],

where ∼fe denotes an equivalence relation determined by Frobenius actions which is called

Frobenius equivalence (see [Y4, Definition 3.4]), [q] denotes the image of q in Mg,n, and [Πq]
denotes the isomorphism class of Πq in Πg,n.

0.2.2. One of main conjectures in the theory of anabelian geometry of curves in positive
characteristic is the so-called weak Isom-version of the Grothendieck conjecture of curves over
algebraically closed fields of characteristic p (=the Weak Isom-version Conjecture) which was
formulated by Tamagawa in the case of smooth pointed stable curves, and by the author in
the general case. The Weak Isom-version Conjecture says that πadm

g,n is a bijection. This means
that the moduli spaces of curves can be reconstructed group-theoretically as sets from the
isomorphism classes of the admissible fundamental groups of curves.

0.2.3. Recently, the author observed that some further structures of moduli spaces of curves in
positive characteristic can be deduced from fundamental groups. More precisely, by using two
important group-theoretical formulas concerning generalized Hasse-Witt invariants obtained in
[Y3], [Y5], in [Y6], the author introduced a topological space which is called the moduli space of
admissible fundamental groups of type (g, n), whose underlying set is Πg,n, and whose topology
is determined by the sets of finite quotients of admissible fundamental groups of curves. We
still use the notation Πg,n to denote the moduli space of admissible fundamental groups of type
(g, n). Moreover, the author proved that πadm

g,n is a continuous map, and posed the so-called

Homeomorphism Conjecture which says that πadm
g,n is a homeomorphism, where we regard Mg,n

as a topological space whose topology is induced by the Zariski topology of M g,n. This means
that the moduli spaces of curves can be reconstructed group-theoretically as topological spaces
from the isomorphism classes of the admissible fundamental groups of curves. In [Y6], [Y7],
the author proved that the Homeomorphism Conjecture holds when dim(M g,n) ≤ 1.
The Homeomorphism Conjecture supplies a point of view to see what anabelian phenomena

that we can reasonably expect from pointed stable curves over algebraically closed fields of
characteristic p based on the following philosophy:
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The anabelian properties of pointed stable curves of type (g, n) over algebraically
closed fields of characteristic p are equivalent to the topological properties of the
topological space Πg,n.

0.3. Motivation and questions. Let R
def
= {r1, . . . , rn1} and S

def
= {s1, . . . , sn2} be distinct

subsets of {1, . . . , n} such that r1 < · · · < rn1 , that s1 < · · · < sn2 , and that n1 + n2 = n.
Let g1, g2, g ∈ Z≥0 such that g = g1 + g2. In the case of moduli spaces of curves, we have
the following important morphisms of moduli stacks (i.e., clutching morphisms defined in [K,
Definition 3.8]):

α′
g1,g2,R,S :Mord

g1,n1+1 ×Fp
Mord

g2,n2+1 →M
ord

g,n,

β′ :Mord

g−1,n+2 →M
ord

g,n.

We see that α′
g1,g2,R,S and β′ induce the following continuous maps of coarse moduli spaces:

α̃g1,g2,R,S : M
ord

g1,n1+1 ×M
ord

g2,n2+1 →M
ord

g,n,

β̃ : M
ord

g−1,n+2 →M
ord

g,n,

where M
ord

g1,n1+1×M
ord

g2,n2+1 denotes the product as topological spaces. The clutching morphisms
play important roles for studying the topological properties of moduli spaces of curves (e.g.
for studying the p-rank stratification of moduli spaces of curves in positive characteristic (e.g.
[AP1], [AP2], [FvdG])). Motived by some questions in [Y6, Problem 3.9], we ask whether or not
one can construct clutching morphisms for moduli spaces of admissible fundamental groups.

0.3.1. Write π̃adm
g,n for the composition of maps M g,n ↠ Mg,n

πadm
g,n↠ Πg,n. More precisely, we

have the following questions:

Question 0.1. Can we define a set Π
ord

g,n which can be reconstructed group-theoretically from

Πg,n such that the followings are satisfied:

(i) There exists a map πadm,ord
g,n : M

ord

g,n ↠ Π
ord

g,n which fits into the following commutative
diagram

M
ord

g,n

π̃adm,ord
g,n−−−−−→ Π

ord

g,ny y
M g,n

π̃adm
g,n−−−→ Πg,n.

(ii) There exist maps

Π
ord

g1,n1+1 × Π
ord

g2,n2+1 → Π
ord

g,n,

Π
ord

g−1,n+2 → Π
ord

g,n

which are compatible with π̃adm,ord
g,n , and which can be reconstructed group-theoretically from Πg,n.

Remark 0.1.1. For example, let [Πi] ∈ Πgi,ni
, i ∈ {1, 2}, and [Π] ∈ Πg,n. Moreover, suppose

that Π is isomorphic to the admissible fundamental group of a pointed stable curve W • over
an algebraically closed field of positive characteristic. If we want to define a clutching map

Π
ord

g1,n1
×Π

ord

g2,n2
→ Π

ord

g,n, we should detect the following group-theoretically from Π: Whether or
not Πi, i ∈ {1, 2}, is isomorphic to the admissible fundamental group of a pointed stable curve
associated to a sub-semi-graph (see 1.2 of the present paper) of the dual semi-graph ΓW • of W •.



TOPOLOGICAL AND COMBINATORIAL STRUCTURES OF POINTED STABLE CURVES 5

The above questions cannot be solved by using the classical point of view of anabelian
geometry (i.e., the anabelian geometry considered in [G], which focuses on a comparison between
two geometric objects via their fundamental groups).

0.3.2. We maintain the notation introduced in 0.1. Moreover, write ΓX• for the dual semi-
graph of X•. The topological and combinatorial data associated to X•, roughly speaking,
consist of the set of types of pointed stable sub-curves of X•, the set of admissible fundamental
groups of pointed stable sub-curves of X•, and the set of sub-semi-graph of ΓX• (e.g. (gX , nX),
the dual semi-graph ΓX• of X•, the admissible fundamental groups of smooth pointed stable
curves associated to irreducible components of X•, etc., see Definition 1.4 for precise definitions
of topological and combinatorial data associated pointed stable curves). Then Question 0.1 is
essentially equivalent to the following mono-anabelian problem:

Question 0.2. Does there exists a group-theoretical algorithm whose input datum is an abstract
topological group which is isomorphic to ΠX•, and whose output data are the topological and the
combinatorial data associated to X•?

The philosophy of “mono-anabelian geometry” was introduced by S. Mochizuki ([M4]). The
classical point of view of anabelian geometry focuses on a comparison between two geometric
objects via their fundamental groups. Moreover, the term “group-theoretical”, in the classical
point of view, means that “preserved by an arbitrary isomorphism between the fundamental
groups under consideration”. The classical point of view is referred to as bi-anabelian geometry.
On the other hand, mono-anabelian geometry focuses on the establishing a group-theoretical
algorithm whose input datum is an abstract topological group which is isomorphic to the fun-
damental group of a given geometric object of interest (resp. a continuous homomorphism of
abstract topological groups which are isomorphic to the fundamental groups of given geomet-
ric objects of interest), and whose output datum is a geometry object which is isomorphic to
the given geometric object (resp. a morphism of geometric objects which is isomorphic to the
given geometric objects) of interest. In the point of view of mono-anabelian geometry, the term
“group-theoretical algorithm” is used to mean that “the algorithm in a discussion is phrased
in language that only depends on the topological group structure of the fundamental groups
under consideration”. Mono-anabelian results are the strongest form in the theory of anabelian
geometry, and we have “mono-anabelian results ⇒ bi-anabelian results”.

0.4. Main results.

0.4.1. The main theorem of the present paper is as follows (see Theorem 3.11 for a more
precise statement):

Theorem 0.3. We maintain the notation introduced above. Then there exists a group-theoretical
algorithm whose input datum is an abstract topological group which is isomorphic to ΠX•, and
the output data are the topological and the combinatorial data associated to X• (i.e., the topo-
logical and the combinatorial data associated to X• can be mono-anabelian reconstructed from
ΠX•).

As a consequence, we obtain the following corollary (see Corollary 3.12, and 1.2 of the present
paper for the definitions of various data concerning Γ and Γ \ L):

Corollary 0.4. We maintain the notation introduced in Theorem 3.11. Let W • be a pointed
stable curve of type (gW , nW ) over an algebraically closed field of positive characteristic and ΠW •

the admissible fundamental group of W •. Then we can detect group-theoretically whether or not
there exists a sub-semi-graph Γ of ΓX• (resp. a semi-graph associated to a sub-semi-graph Γ of
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ΓX• and a set of edges L of Γ) such that (gW , nW ) = (gΓ, nΓ) (resp. (gW , nW ) = (gΓ\L, nΓ\L))

and ΠW •
∼→ ΠΓ̂ (resp. ΠW •

∼→ Π
Γ̂\L).

Remark 0.4.1. We would like to mention that a special case of a bi-anabelian version of
Theorem 0.3 has been proved by the author (see [Y1, Theorem 1.2]). Roughly speaking, [Y1,
Theorem 1.2] says that the following holds:

Let i ∈ {1, 2}, and let X•
i be a pointed stable curve of type (gXi

, nXi
) over

an algebraically closed field of characteristic pi > 0 and ΠX•
i
the admissible

fundamental group of X•
i . Suppose that ΠX•

1

∼→ ΠX•
2
is an isomorphism. Then

the following data associated to X•
i are same (e.g. there exists an isomorphism

of the dual semi-graphs ΓX•
1

∼→ ΓX•
2
):

• pi, (gXi
, nXi

), ΓX•
i
.

• the conjugacy class of the inertia group of every marked point of X•
i .

• the conjugacy class of the inertia group of every node of X•
i .

• the conjugacy class of the admissible fundamental group associated to an
irreducible component of X•

i .

Let us explain the difference between [Y1, Theorem 1.2] and Theorem 0.3. [Y1, Theorem
1.2] and its proof tell us that the topological and the combinatorial data associated to X•

1

and X•
2 are same when their admissible fundamental groups are isomorphic. However, [Y1,

Theorem 1.2] and its proof cannot tell us the relation between X•
1 and X•

2 when their admissible
fundamental groups are not isomorphic, and cannot tell us how to produce the topological and
the combinatorial data associated to X•

i by only using an abstract topological group which is
isomorphic to ΠX•

i
. Then we cannot deduce a similar result of Corollary 0.4 from [Y1, Theorem

1.2].

Remark 0.4.2. In this remark, we explain a similar result of Theorem 0.3 in characteristic
0 obtained by Y. Hoshi and Mochizuki. Let ki, i ∈ {1, 2}, be an algebraically closed field of
characteristic 0, X•

i a pointed stable curve over ki, ΠX•
i
the admissible fundamental group of

X•
i , Ii

∼= Ẑ a pro-cyclic group, and ρi : Ii → Out(ΠX•
i
)
def
= Aut(ΠX•

i
)/Inn(ΠX•

i
) an outer Galois

representation. Hoshi and Mochizuki proved the following result (see [HM, Theorem A] for a
more precise statement):

Suppose that ρi : Ii → Out(ΠX•
i
), i ∈ {1, 2}, is a certain outer Galois represen-

tation of NN-type ([HM, Definition 2.4]), that α : ΠX•
1

∼→ ΠX•
2
and β : I1

∼→ I2
are isomorphisms of profinite groups, and that the diagram

I1
ρ1−−−→ Out(ΠX•

1
)

β

y out(α)

y
I2

ρ2−−−→ Out(ΠX•
2
),

is commutative. Then the data appeared in Remark 0.4.1 associated to X•
1 and

X•
2 are same.

This result is called the (bi-anabelian) combinatorial Grothendieck conjecture in characteristic 0
which plays a central role in the theory of combinatorial anabelian geometry in characteristic 0.
Then Theorem 0.3 can be regarded as a mono-anabelian version of combinatorial Grothendieck
conjecture in positive characteristic. The proof of Hoshi-Mochizuki requires the use of the non-
trivial outer Galois representations which is completely different from the proof of Theorem
0.3.
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The combinatorial Grothendieck conjecture and the theory of combinatorial anabelian geom-
etry in characteristic 0 have many applications (e.g. anabelian geometry for higher dimensional
varieties ([HMM]), Belyi-type results([M3], [HM]), mapping class groups ([HI]), Grothendieck-
Teichmüller group ([HMM]), etc.). The author hopes that Theorem 0.3 plays a prominent role
to establish a theory of combinatorial mono-anabelian geometry in positive characteristic.

0.4.2. By using Theorem 0.3, we solve Question 0.1 as follows (see Theorem 4.1, Theorem 4.3,
and Theorem 4.5 for more precise statements):

Theorem 0.5. (i) There exists a set Π
ord

g,n which can be mono-anabelian reconstructed from

Πg,n. Moreover, there are natural surjective maps

π̃adm,ord
g,n : M

ord

g,n ↠ Π
ord

g,n, Π
ord

g,n ↠ Πg,n

which fit into the following commutative diagram

M
ord

g,n

π̃adm,ord
g,n−−−−−→ Π

ord

g,ny y
M g,n

π̃adm
g,n−−−→ Πg,n.

(ii) Let R
def
= {r1, . . . , rn1} and S

def
= {s1, . . . , sn2} be distinct subsets of {1, . . . , n} such that

r1 < · · · < rn1, that s1 < · · · < sn2, and that n1 + n2 = n. Let g1, g2, g ∈ Z≥0 such that

g = g1 + g2. There exists a map αgp
g1,g2,R,S : Π

ord

g1,n1+1 × Π
ord

g2,n2+1 → Π
ord

g,n which fits into the
following diagram

M
ord

g1,n1+1 ×M
ord

g2,n2+1

α̃g1,g2,R,S−−−−−−→ M
ord

g,n

π̃adm,ord
g1,n1+1×π̃adm,ord

g2,n2+1

y π̃adm,ord
g,n

y
Π

ord

g1,n1+1 × Π
ord

g2,n2+1

αgp
g1,g2,R,S−−−−−−→ Π

ord

g,n.

Moreover, Π
ord

g1,n1+1, Π
ord

g2,n2+1, and αgp
g1,g2,R,S can be mono-anabelian reconstructed from Πg,n.

(iii) There exists a map βgp : Π
ord

g−1,n+2 → Π
ord

g,n which fits into the following diagram

M
ord

g−1,n+2

β−−−→ M
ord

g,n

π̃adm,ord
g−1,n+2

y π̃adm,ord
g,n

y
Π

ord

g−1,n+2

βgp

−−−→ Π
ord

g,n.

Moreover, Π
ord

g−1,n+2 and βgp can be mono-anabelian reconstructed from Πg,n.

Remark 0.5.1. In [Y8], we will prove that αgp
g1,g2,R,S and βgp are continuous maps (in the sense

of moduli spaces of admissible fundamental groups defined in [Y6]). Moreover, we will prove
that the images of αgp

g1,g2,R,S and βgp are closed subsets of Πg,n.
The author believes that αgp

g1,g2,R,S and βgp will play important roles for studying the purity

of the p-rank staratification of Πg,n and the problems concerning the dimension of Πg,n (see
[Y6, Problem 3.9]).
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0.5. Structure of the present paper. The present paper is organized as follows. In Section
1, we introduce some notation and recall some results which will be used in the present paper.
In Section 2, we establish a correspondence between a subset of cohomology classes and the set
of vertices (resp. the set of edges) of the dual semi-graph of a pointed stable curve. In Section
3, we prove Theorem 0.3. In Section 4, we prove Theorem 0.5.

0.6. Acknowledgments. The author would like to thank Prof. Akio Tamagawa for com-
ments, and the referee very much for carefully reading to the former version of the present
paper and for giving various comments on it, which were very useful in improving the pre-
sentation of the present paper. This work was supported by JSPS KAKENHI Grant Number
20K14283, and by the Research Institute for Mathematical Sciences (RIMS), an International
Joint Usage/Research Center located in Kyoto University.

1. Topological and combinatorial data associated to pointed stable curves

1.1. Semi-graphs.

Definition 1.1. Let G be a semi-graph ([M2, Section 1]).
(a) We shall denote by v(G), eop(G), and ecl(G) the set of vertices of G, the set of open edges

of G, and the set of closed edges of G, respectively. Let e ∈ ecl(G) ∪ eop(G) be an edge. We
denote by v(e) ⊆ v(G) the subset of vertices which are abutted by e. We shall say e a loop of
G if e ∈ ecl(G) and #(v(e)) = 1, where #(−) denotes the cardinality of (−). We denote by
elp(G) ⊆ ecl(G) the set of loops of G.

(b) The semi-graph G can be regarded as a topological space with natural topology induced
by R2. We define an one-point compactification Gcpt of G as follows: if eop(G) = ∅, we put

Gcpt = G; otherwise, the set of vertices of Gcpt is the disjoint union v(Gcpt)
def
= v(G) ⊔ {v∞},

the set of closed edges of Gcpt is ecl(Gcpt)
def
= ecl(G) ∪ eop(G), the set of open edges of Gcpt is

empty, and every edge e ∈ eop(G) ⊆ ecl(Gcpt) connects v∞ with the vertex of G that is abutted
by e.

(c) Let v ∈ v(G). We shall say that G is 2-connected at v if G \ {v} is either empty or
connected. Moreover, we shall say that G is 2-connected if G is 2-connected at each v ∈ v(G).
Note that, if G is connected, then Gcpt is 2-connected at each v ∈ v(G) ⊆ v(Gcpt) if and only
if Gcpt is 2-connected.

(d) We put

b(v)
def
=

∑
e∈eop(G)∪ecl(G)

be(v),

where be(v) ∈ {0, 1, 2} denotes the number of times that e meets v. We put

v(G)b≤1 def
= {v ∈ v(G) | b(v) ≤ 1},

and denote by ecl(G)b≤1 the set of closed edges of G which meet a vertex of v(G)b≤1. We put

bcl(v)
def
=

∑
e∈ecl(G)

be(v).

We shall say that a vertex v is terminal if the following conditions are satisfied: (i) G is a
connected semi-graph. (ii) G is a tree (i.e., the Betti number of G is 0). (iii) bcl(v) ≤ 1.
(e) Let G′ be a semi-graph. We shall say G′ a sub-semi-graph of G if either G′ = {e} for

some e ∈ eop(G) ∪ ecl(G) or the following conditions hold: (i) G′ is connected and v(G′) ̸= ∅.
(ii) v(G′) ⊆ v(G). (iii) ecl(G′) ⊆ ecl(G) is the subset of closed edges such that v(e) ⊆ v(G′).
(iv) eop(G′) ⊆ (ecl(G) ∪ eop(G)) \ ecl(G′) is the subset of edges such that #(v(e) ∩ v(G′)) = 1.
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Note that (iii) and (iv) imply that, if e is a loop and v(e) ⊆ v(G′), then e ∈ ecl(G′). If
G′ = {e} for some e ∈ eop(G) ∪ ecl(G), we will use e to denote G′.

(f) Let G′ be a sub-semi-graph of G such that v(G′) ̸= ∅ and L ⊆ eop(G′) ∪ ecl(G′) a subset
of edges of G′. We shall say G′ \ L a semi-graph associated to G′ and L if G′ \ L is connected
(as a topological space), and the following conditions hold (i.e., removing L from G′): (i)

v(G′ \ L) def
= v(G). (ii) eop(G′ \ L) def

= eop(G′) \ L. (iii) ecl(G′ \ L) def
= ecl(G′) \ L.

Remark 1.1.1. Suppose that G is a connected semi-graph, and that G is a tree. Then Gcpt

is 2-connected if and only if one of the following holds: (i) #(v(G)) = 1; (ii) #(v(G)) = 2 and
#(eop(G)) = 0; (iii) #(v(G)) ≥ 2 and each terminal vertex of G meets some open edge of G.

Example 1.2. We give some examples of semi-graphs to explain Definition 1.1. We use the
notation “ • ” and “ ◦ ” to denote a vertex and an open edge, respectively.

Let G be a semi-graph, G′ a sub-semi-graph of G such that v(G′) = {v1}, and L
def
= {e1, e2}

a subset of edges of G′. Then we have the following:

v1

e2

e3

e1 v2 e4G:

v1

e2

e3

e1 v2 v∞e4
Gcpt:

v1

e3

e2

e1G′:

v1

e3

G′ \ L:

1.2. Pointed stable curves and admissible fundamental groups.

1.2.1. Let p be a prime number, and let X• = (X,DX) be a pointed stable curve of type
(gX , nX) over an algebraically closed field k of characteristic char(k) = p, where X denotes
the underlying curve, DX denotes the set of marked points, gX denotes the genus of X, and
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nX
def
= #DX . Write ΓX• for the dual semi-graph of X• and rX

def
= dimQ(H

1(ΓX• ,Q)) for the
Betti number of the semi-graph ΓX• .

1.2.2. We shall write ΠX• , Πét
X• , and Πtop

X• for the admissible fundamental group of X• (see
[Y4, Section 2] for the definitions of admissible coverings and admissible fundamental groups),
the étale fundamental group of X, and the profinite completion of the topological fundamental
group of ΓX• , respectively. Then we have the following natural surjections

ΠX• ↠ Πét
X• ↠ Πtop

X• .

Let H ⊆ ΠX• be an arbitrary open subgroup. We write X•
H for the pointed semi-stable curve

of type (gXH
, nXH

) over k corresponding to H, ΓX•
H
for the dual semi-graph of X•

H , and rXH

for the Betti number of ΓX•
H
. Then we obtain an admissible covering

f •
H : X•

H → X•

over k induced by the natural injection H ↪→ ΠX• , and obtain a natural morphism of dual
semi-graphs

f sg
H : ΓX•

H
→ ΓX•

induced by f •
H , where “sg” means “semi-graph”. We shall say that f •

H is étale if the underlying
morphism fH : XH → X induced by f •

H is étale.
Moreover, if H is an open normal subgroup, then ΓX•

H
admits an action of ΠX•/H induced

by the natural action of ΠX•/H on X•
H . Note that the quotient of ΓX•

H
by ΠX•/H coincides

with ΓX• , and that H is isomorphic to the admissible fundamental group ΠX•
H
of X•

H . We also

use the notation H ét and Htop to denote Πét
X•

H
and Πtop

X•
H
, respectively.

1.2.3. We define pointed stable curves associated to various semi-graphs introduced in Def-
inition 1.1. Let Γ ⊆ ΓX• be a sub-semi-graph (Definition 1.1 (e)). We write XΓ for the
semi-stable sub-curve of X (i.e., a closed subscheme of X which is a semi-stable curve) whose
irreducible components are the irreducible components corresponding to the vertices of v(Γ),
and whose nodes are the nodes corresponding to the edges of ecl(Γ). Moreover, write DXΓ

for
the set of closed points XΓ∩{xe}e∈eop(Γ)⊆eop(ΓX• )∪ecl(ΓX• ), where xe ∈ X denotes the closed point

corresponding to e ∈ eop(ΓX•) ∪ ecl(ΓX•). We define a pointed stable curve

X•
Γ = (XΓ, DXΓ

)

of type (gΓ, nΓ) over k. Note that the dual semi-graph of X•
Γ is naturally isomorphic to Γ. We

shall say X•
Γ the pointed stable curve of type (gΓ, nΓ) associated to Γ, or the pointed stable curve

associated to Γ for short. We denote by ΠX•
Γ
the admissible fundamental group of X•

Γ.

1.2.4. Let L ⊆ ecl(Γ) such that Γ \ L is a semi-graph associated to Γ and L (i.e., Γ \ L is
connected, see Definition 1.1 (f)), and NL the set of nodes of XΓ corresponding to L. We write

norL : XΓ\L → XΓ

for the normalization of XΓ at NL corresponding to L. Moreover, we put

DXΓ\L

def
= nor−1

L (DXΓ
∪NL).

We define a pointed stable curve of type (gΓ\L, nΓ\L) to be

X•
Γ\L = (XΓ\L, DΓ\L).
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Note that the dual semi-graph of X•
Γ\L is not isomorphic to Γ \ L. On the other hand, if write

Lop for the set of open edges of the dual semi-graph of X•
Γ\L corresponding to nor−1

L (NL), then

there is a natural isomorphism ΓX•
Γ\L
\ Lop ∼→ Γ \ L.

We shall say X•
Γ\L the pointed stable curve of type (gΓ\L, nΓ\L) associated to Γ \ L, or the

pointed stable curve associated to Γ \ L for short. By the construction of X•
Γ\L, we see that

rXΓ\L = rXΓ
− #(L), gΓ\L = gΓ − #(L), and nΓ\L = nΓ + 2#(L). We denote by ΠX•

Γ\L
the

admissible fundamental group of X•
Γ\L. Note that we have the following natural outer injections

ΠX•
Γ\L

↪→ ΠX•
Γ
↪→ ΠX• .

1.2.5. Denote by Γv ⊆ ΓX• the sub-semi-graph such that v(Γv) = {v}. Write Xv for the

irreducible component corresponding to v and norv : X̃v → Xv for the normalization of Xv. We
put

DX̃v

def
= nor−1

v ((DX ∩Xv) ∪ (Xv ∩Xsing)),

where (−)sing denotes the singular locus of (−). We see that X̃v = XΓv\elp(Γv) and DX̃v
=

DX
Γv\elp(Γv)

. We shall say

X̃•
v

def
= (X̃v, DX̃v

) = X•
Γv\elp(Γv)

the smooth pointed stable curve of type (gv, nv)
def
= (gΓv\elp(Γv), nΓv\elp(Γv)) associated to v, or

the smooth pointed stable curve associated to v for short. We denote by ΠX̃•
v
the admissible

fundamental group of X̃•
v .

By the definition of sub-semi-graphs, we see that X•
Γv

= X̃•
v if and only if #(v(e)) = 2 for all

e ∈ ecl(Γv) (i.e., Γv does not contain loops).
Suppose that Γv ⊆ Γ. Then we have the following natural outer injections

ΠX̃•
v
↪→ ΠX•

Γv
↪→ ΠX•

Γ
↪→ ΠX• .

Example 1.3. Suppose that ΓX• is a semi-graph as follows:

v1

e2

e3

e1 v2 e4ΓX• :

Then we have

v1

e3

e2

e1Γv1 = ΓX•
Γv1

:



12 YU YANG

v1

e3

e2

Γv1 \ elp(Γv1):

v1

e3

e2

e1,1

e1,2

ΓX̃•
v1

= ΓX•
Γv1\elp(Γv1 )

:

1.3. Topological and combinatorial data.

1.3.1. We put

X̂
def
= lim←−

H⊆ΠX• open

XH , DX̂

def
= lim←−

H⊆ΠX• open

DXH
, ΓX̂•

def
= lim←−

H⊆ΠX• open

ΓX•
H
.

We shall say that

X̂• = (X̂,DX̂)

is the universal admissible covering associated to ΠX• , and that ΓX̂• is the dual semi-graph of

X̂•. Note that we have that Aut(X̂•/X•) = ΠX• , and that ΓX̂• admits a natural action of ΠX• .
We denote by πX : ΓX̂• ↠ ΓX• the natural surjection.

1.3.2. Let Γ ⊆ ΓX• be a sub-semi-graph, L ⊆ ecl(Γ) a subset of closed edges of Γ such that

Γ \ L is a semi-graph associated to Γ and L (i.e., Γ \ L is connected), Γ̂ ⊆ Γ̂X• a connected

component of π−1
X (Γ), and Γ̂ \ L a connected component of π−1

X (Γ \ L). We denote by

ΠΓ̂ ⊆ ΠX• , Π
Γ̂\L ⊆ ΠX•

the stabilizer subgroups of Γ̂ and Γ̂ \ L, respectively.
Let v ∈ v(ΓX•) and v̂ ∈ π−1

X (v). We denote by Πv̂ ⊆ ΠX• the stabilizer subgroup of v̂. We
see that

Πv̂ = Π
Γ̂\L

if Γ = Γv and L = elp(Γv).

1.3.3. By the theory of admissible fundamental groups, the following facts are well-known: ΠΓ̂

is isomorphic to ΠX•
Γ
, Π

Γ̂\L is isomorphic to ΠX•
Γ\L

, and, in particular, Πv̂ is (outer) isomorphic

to ΠX̃•
v
. Note that we have the following natural injections

Π
Γ̂\L ↪→ ΠΓ̂ ↪→ ΠX•

if Γ̂ \ L ⊆ Γ̂. Moreover, if Γ = {e} for some e ∈ eop(ΓX•) ∪ ecl(ΓX•), then Iê
def
= Πê is (outer)

isomorphic to an inertia subgroup associated to the closed point of X corresponding to e. Then

we have that Iê ∼= Ẑ(1)p′ , where (−)p′ denotes the maximal pro-prime-to-p quotient of (−). Let
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e ∈ eop(Γv) ∪ ecl(Γv) such that ê abuts on v̂, and Γ̂v ⊆ Γ̂. Then we have the following natural
injections

Iê ↪→ Πv̂ ↪→ ΠΓ̂v
↪→ ΠΓ̂ ↪→ ΠX• .

1.3.4. We denote by Sub(ΓX•) the set of sub-semi-graphs of ΓX• and put

CSub(ΓX•)
def
= {Γ \ L | Γ \ L is a semi-graph associated to

Γ and L}Γ∈Sub(ΓX• ),L⊆ecl(Γ).

Furthermore, we put

Sub(ΠX•)
def
= {ΠΓ̂}Γ∈Sub(ΓX• ),

CSub(ΠX•)
def
= {Π

Γ̂\L}Γ\L∈CSub(ΓX• ).

In particular, we denote by

Ver(ΠX•)
def
= {Πv̂}v̂∈v(Γ

X̂• ) ⊆ CSub(ΠX•),

Edgop(ΠX•)
def
= {Iê}ê∈eop(Γ

X̂• ) ⊆ Sub(ΠX•),

Edgcl(ΠX•)
def
= {Iê}ê∈ecl(Γ

X̂• ) ⊆ Sub(ΠX•).

Note that Sub(ΠX•), CSub(ΠX•), Ver(ΠX•), Edgop(ΠX•), and Edgcl(ΠX•) admit natural actions
of ΠX• (i.e., the conjugacy actions), and that we have the following natural bijections

Sub(ΠX•)/ΠX•
∼→ Sub(ΓX•),

CSub(ΠX•)/ΠX•
∼→ CSub(ΓX•),

Ver(ΠX•)/ΠX•
∼→ v(ΓX•),

Edgop(ΠX•)/ΠX•
∼→ eop(ΓX•),

Edgcl(ΠX•)/ΠX•
∼→ ecl(ΓX•).

Definition 1.4. We shall say that {(gΓ, nΓ)}Γ∈Sub(ΓX• ) and {(gΓ\L, nΓ\L)}Γ\L∈CSub(ΓX• ) are the
topological data associated to X•, and that Sub(ΓX•), CSub(ΓX•), Sub(ΠX•), and CSub(ΠX•)
are the combinatorial data associated to X•.

1.4. The limit of p-averages. Let t ∈ N be an arbitrary positive natural number, Kpt−1

the kernel of the natural surjection ΠX• ↠ Πab
X• ⊗ Z/(pt − 1)Z, where (−)ab denotes the

abelianization of (−). The following important group-theoretical invariant was introduced by
Tamagawa ([T2]). We put

Avrp(ΠX•)
def
= lim

t→∞

dimFp(K
ab
pt−1 ⊗ Fp)

#(Πab
X• ⊗ Z/(pt − 1)Z)

,

and shall say that Avrp(ΠX•) is the limit of p-averages of ΠX• . The following formula concerning
Avrp(ΠX•) plays a fundamental role in the theory of (tame or admissible) anabelian geometry
of curves over algebraically closed fields of characteristic p > 0.

Theorem 1.5. We maintain the notation introduced above. Suppose that Γcpt
X• is 2-connected

(Definition 1.1 (c)). Then we have

Avrp(ΠX•) = gX − rX −#v(ΓX•)b≤1 +#ecl(ΓX•)b≤1.

Proof. We maintain the notation introduced in [Y3, Theorem 5.2]. Note that #v(ΓX•)b≤1 =
#V tre

X• and #ecl(ΓX•)b≤1 = #Etre
X• . Then the theorem follows from [Y3, Theorem 5.2]. □
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Remark 1.5.1. Suppose that Γcpt
X• is 2-connected. Note that #v(ΓX•)b≤1 ̸= 0 if one of the

following conditions holds: (i) X• is smooth and eop(ΓX•) ≤ 1; (ii) DX = ∅ (i.e., #eop(ΓX•) =
0), #ecl(ΓX•) = 1, and #v(ΓX•) = 2. In particular, if #v(ΓX•)b≤1 ̸= 0, we have Avrp(ΠX•) =
gX − 1.

Remark 1.5.2. Let ∆ be an arbitrary profinite group and m,N ∈ N positive natural numbers.
We define the closed normal subgroup DN(∆) of ∆ to be the topological closure of [∆,∆]∆N ,
where [∆,∆] denotes the commutator subgroup of ∆. Moreover, we define the closed normal

subgroup D
(m)
N (∆) of ∆ inductively by D

(1)
N (∆)

def
= DN(∆) and D

(i+1)
N (∆)

def
= DN(D

(i)
N (∆)),

i ∈ {1, . . . ,m− 1}. Let ℓ ̸= p be a prime number. We put

H
def
= D

(3)
ℓ (ΠX•).

Then we see that the following conditions hold (e.g. [Y6, Lemma 5.4]): (i) (#(ΠX•/H), p) = 1;

(ii) the genus of X̃H,v is positive for each v ∈ v(ΓX•
H
); (iii) ΓX•

H
is 2-connected and #(v(ΓX•

H
)b≤1) =

0.

1.4.1. Let f • : Y • → X• be an admissible covering over k, f : Y → X the underlying morphism
induced by f •, and deg(f) the degree of f . For any e ∈ ecl(ΓX•) (resp. e ∈ eop(ΓX•)), write xe

for the node (resp. marked point) of X• corresponding to e. We put

ecl,raf

def
= {e ∈ ecl(ΓX•) | #f−1(xe) = 1},

ecl,étf

def
= {e ∈ ecl(ΓX•) | #f−1(xe) = deg(f)},

eop,raf

def
= {e ∈ eop(ΓX•) | #f−1(xe) = 1},

vraf
def
= {v ∈ v(ΓX•) | #Irr(f−1(Xv)) = 1},

vspf
def
= {v ∈ v(ΓX•) | #Irr(f−1(Xv)) = deg(f)},

where Irr(−) denotes the set of irreducible components of (−). If the Galois closure of f • is a
Galois admissible covering whose Galois group is a p-group, then the definition of admissible
coverings implies that #ecl,raf = #eop,raf = 0.

1.4.2. We have the following lemma.

Lemma 1.6. Let f • : Y • → X• be a Galois admissible covering over k and ΓY • the dual
semi-graph of Y •. Suppose that Γcpt

X• is 2-connected, and that Γcpt
Y • is not 2-connected. Then

there exists a unique vertex v ∈ v(ΓX•) such that f−1(Xv) is irreducible.

Proof. Let f sg : ΓY • → ΓX• be the map of dual semi-graphs induced by f • and v ∈ v(ΓX•) an
arbitrary vertex of ΓX• . Since Γcpt

Y • is not 2-connected, we have #v(ΓX•) ≥ 2.
Suppose that DX ̸= ∅. Then we have v(Γcpt

X•) = v(ΓX•) ∪ {vX,∞} and v(Γcpt
Y • ) = v(ΓY •) ∪

{vY,∞}. Moreover, f sg can be extended to a map

f sg,cpt : Γcpt
Y • → Γcpt

X•

such that f sg,cpt(vY,∞) = vX,∞. Since Γcpt
X• is 2-connected, we obtain that Γcpt

X• \{v} is connected,
and that (f sg,cpt)−1(Γcpt

X• \ {v}) is connected. Then, for each w ∈ (f sg,cpt)−1(v), there exists a
closed edge of Γcpt

Y • which meets w and (f sg,cpt)−1(Γcpt
X• \{v}). We obtain that Γcpt

Y • is 2-connected.
This contradicts our assumptions. Then we may assume that DX = ∅.
Since we assume that DX = ∅, we have Γcpt

X• = ΓX• and Γcpt
Y • = ΓY • . Let v1 and v2 be vertices

of v(ΓX•) distinct from each other. Suppose that (f sg)−1(v1) and (f sg)−1(v2) are connected.
Since ΓX• is 2-connected, ΓX• \{v} is connected. If v ̸∈ {v1, v2}, we see that (f sg)−1(ΓX• \{v})
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is connected (since v1 and v2 are contained in ΓX• \ {v}), and that, for each w ∈ (f sg)−1(v),
there exists a closed edge of ΓY • which meets w and (f sg)−1(ΓX• \{v}). This means that ΓY • is
2-connected at w for each w ∈ (f sg)−1(v). Suppose that v = v1. Then we have that ΓX• \ {v1}
is connected, and that (f sg)−1(ΓX• \ {v1}) is connected (since v2 is contained in ΓX• \ {v1}).
Thus ΓY • is 2-connected at (f sg)−1(v1). Similar arguments to the arguments given in the proof
above imply that ΓY • is 2-connected at (f sg)−1(v2). Then ΓY • is 2-connected. This contradicts
our assumptions.

Suppose that (f sg)−1(v′) is not connected for each v′ ∈ v(ΓX•). Then we have the following:

Claim: Let w ∈ (f sg)−1(v). Then ΓY • \ {w} is connected.
Let us prove the claim. Since we focus only on v and its inverse images (f sg)−1(v)
and ΓX• is 2-connected (i.e., ΓX• \ {v} is connected), to verify the claim, it’s
sufficient to prove the claim when v(ΓX•) = {v, v∗} (e.g. by replacing X• by
the deformation of X• along the set of nodes corresponding to the set of closed
edges ecl(ΓX•) \ e(v), where e(v) denotes the set of edges of ΓX• which abuts to
v).

Let ev,v∗ ∈ ecl(ΓX•). Then ev,v∗ meets v and v∗. Since (f sg)−1(v′) is not
connected for each v′ ∈ v(ΓX•), we see that (f sg)−1(ev,v∗) is a loop in ΓY • (i.e., the
element of the topological fundamental group πtop

1 (ΓY •) induced by (f sg)−1(ev,v∗)
is not trivial), and that (f sg)−1(v) and (f sg)−1(v∗) are contained in (f sg)−1(ev,v∗).
Then ΓY • \ {w} is connected for all w ∈ (f sg)−1(v).

On the other hand, the above claim contradicts our assumptions that ΓY • is not 2-connected
(i.e., there exists v′′ ∈ v(ΓX•) such that ΓY • \{w′′} is not connected for some w′′ ∈ (f sg)−1(v′′)).
We complete the proof of the lemma. □

2. Cohomology classes, sets of vertices, and sets of edges

2.0.1. Settings. Let X• = (X,DX) be a pointed stable curve of type (gX , nX) over an alge-
braically closed field k of characteristic p > 0, ΠX• the admissible fundamental group of X•,

ΓX• the dual semi-graph of X•, and rX
def
= dimQ(H

1(ΓX• ,Q)) for the Betti number of the
semi-graph ΓX• .

2.1. Sets of vertices. Some results of this subsection are also contained in [Y1, Section 3].

2.1.1. Let ℓ be a prime number. We put

v(ΓX•)>0,ℓ def
= {v ∈ v(ΓX•) | dimFℓ

(H1
ét(X̃v,Fℓ)) > 0} ⊆ v(ΓX•),

where X̃v denotes the normalization of Xv (1.2.5). Write M ét
X• and M top

X• for Hom(Πét
X• ,Fℓ)

and Hom(Πtop
X• ,Fℓ), respectively (1.2.2). Note that there is a natural injection M top

X• ↪→ M ét
X•

induced by the natural surjection Πét
X• ↠ Πtop

X• . Moreover, we put

Mnt
X•

def
= coker(M top

X• ↪→M ét
X•),

where “nt” means that “non-top”.

2.1.2. The elements of M ét
X• correspond to étale, Galois abelian coverings of X• of degree ℓ.

We denote by V ∗
X,ℓ ⊆ M ét

X• the subset of elements whose image in Mnt
X• is not 0. Let α ∈ V ∗

X,ℓ.
We denote by

X•
α = (Xα, DXα)→ X•
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the étale covering (i.e., the morphism of underlying curves is étale) corresponding to the element
α and denote by ΓX•

α
the dual semi-graph of X•

α. Then we have a map

ι : V ∗
X,ℓ → Z, α 7→ #v(ΓX•

α
).

Furthermore, we put

V ⋆
X,ℓ

def
= {α ∈ V ∗

X,ℓ | ι attains its maximum}
= {α ∈ V ∗

X,ℓ | ι(α) = ℓ#v(ΓX•)− ℓ+ 1}
= {α ∈ V ∗

X,ℓ | #vrafα = 1}(1.4.1).
For each α ∈ V ⋆

X,ℓ, ι(α) = ℓ#v(ΓX•) − ℓ + 1 implies that there exists a unique irreducible
component Z ⊆ Xα whose decomposition group under the action of Z/ℓZ is not trivial. Let
vα ∈ v(ΓX•) such that Xvα = fα(Z). Then we have vα ∈ v(ΓX•)>0,ℓ. This means that V ⋆

X,ℓ = ∅
if and only if v(ΓX•)>0,ℓ = ∅.

2.1.3. Let S, S ′ be sets. We shall call f : S → S ′ a quasi-map if f is a map from some subset
S1 ⊆ S to S ′. Moreover, suppose that Smax is the maximal subset of S such that f is a map

from Smax to S ′. Let S∗ def
= S \ Smax. Then we shall write f(s) = ∅ for all s ∈ S∗.

Let H ⊆ ΠX• be an open subgroup. Write f sg
H : ΓX•

H
→ ΓX• for the map of dual semi-graphs

induced by the admissible covering f •
H : X•

H → X• over k corresponding to H. We define a
quasi-map (i.e., we allow that an element maps to empty set)

fver,ℓ
H : v(ΓX•

H
)>0,ℓ → v(ΓX•)>0,ℓ

as follows: Let vH ∈ v(ΓX•
H
)>0,ℓ and v

def
= f sg

H (vH) ∈ v(ΓX•
H
). Then we have that fver,ℓ

H (vH) = v if

dimFℓ
(Hom(Πét

X̃•
v
,Fℓ)) ̸= 0; otherwise, fver,ℓ

H (vH) = ∅. Moreover, if H ⊆ ΠX• is an open normal

subgroup, then v(ΓX•
H
)>0,ℓ admits a natural action of ΠX•/H.

Proposition 2.1. We define a pre-equivalence relation ∼ on V ⋆
X,ℓ as follows:

Let α, β ∈ V ⋆
X,ℓ. We have that α ∼ β if λα + µβ ∈ V ⋆

X,ℓ for each λ, µ ∈ F×
ℓ for

which λα + µβ ∈ V ∗
X,ℓ.

Then ∼ is an equivalence relation on V ⋆
X,ℓ. Moreover, we have a natural bijection

κX,ℓ : VX,ℓ
def
= V ⋆

X,ℓ/ ∼
∼→ v(ΓX•)>0,ℓ, [α] 7→ vα,

where [α] denotes the image of α in VX,ℓ.

Proof. Since VX,ℓ = ∅ if and only if v(ΓX•)>0,ℓ = ∅, we may suppose that v(ΓX•)>0,ℓ ̸= ∅. Let
α, β ∈ V ⋆

X,ℓ.

If vα = vβ, then, for each λ, µ ∈ F×
ℓ for which λα+µβ ̸= 0, we have vλα+µβ = vα = vβ. Thus,

α ∼ β.
On the other hand, if α ∼ β, we have vα = vβ; otherwise, there exist two irreducible

components of X•
α+β whose decomposition groups under the actions of Z/ℓZ are not trivial

(i.e., α + β ̸∈ V ⋆
X,ℓ). Thus, α ∼ β if and only if vα = vβ. This means that ∼ is an equivalence

relation on V ⋆
X,ℓ.

Next, we prove that the map

κX,ℓ : VX,ℓ → v(ΓX•)>0,ℓ, [α] 7→ vα

is a bijection. It is easy to see that κX,ℓ is an injection. On the other hand, for any irreducible
component Xv ∈ v(ΓX•)>0,ℓ, we see that there is a Galois étale covering f • : Y • → X• (i.e.,
the underlying morphism f is étale) whose Galois group is isomorphic to Z/ℓZ such that Xv is
the unique irreducible component of X• whose inverse image f−1(Xv) is connected. Then the
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cardinality of the set of irreducible components of Y • is equal to ℓ(#v(ΓX•) − 1) + 1. Thus,
Y • induces an element of VX,ℓ. This implies that κX,ℓ is a surjection. We complete the proof of
the proposition. □
Remark 2.1.1. Let ℓ and ℓ′ be prime numbers distinct from each other. Write

VX,ℓ, VX,ℓ′

for the sets associated to ℓ and ℓ′ defined above, respectively. Suppose that v(ΓX•)>0,ℓ ⊆
v(ΓX•)>0,ℓ′ (note that v(ΓX•)>0,ℓ = v(ΓX•)>0,ℓ′ if ℓ and ℓ′ are not equal to p). Then we may
define a natural injection

VX,ℓ ↪→ VX,ℓ′

which fits into the following commutative diagram

VX,ℓ

κX,ℓ−−−→ v(ΓX•)>0,ℓy y
VX,ℓ′

κX,ℓ′−−−→ v(ΓX•)>0,ℓ′

as follows: For each α ∈ VX,ℓ and each α′ ∈ VX,ℓ′ , we write X•
α → X• and X•

α′ → X• for the
Galois admissible coverings corresponding to α and α′, respectively. We consider the following
connected Galois admissible covering

X•
α ×X• X•

α′ → X•

over k whose Galois group is isomorphic to Z/ℓℓ′Z, where X•
α×X• X•

α′ denotes the fiber product
in the category of pointed stable curves. Then it is easy to see that vα = vα′ if and only if the
cardinality of the set of irreducible components of X•

α ×X• X•
α′ is equal to

ℓℓ′(#v(ΓX•)− 1) + 1.

Then we obtain a natural injection

VX,ℓ ↪→ VX,ℓ′ , [α] 7→ [α′],

where the cardinality of the set of irreducible components ofX•
α×X•X•

α′ is equal to ℓℓ′(#v(ΓX•)−
1) + 1. In particular, if ℓ and ℓ′ are not equal to p, then the injection VX,ℓ ↪→ VX,ℓ′ constructed
above is a bijection.

Remark 2.1.2. Let H ⊆ ΠX• be an arbitrary open subgroup,

f •
H : X•

H = (XH , DXH
)→ X•

the admissible covering over k with degree deg(fH) corresponding to H, ΓX•
H

the dual semi-
graph of X•

H , and ℓ a prime number such that (ℓ, deg(fH)) = 1.
Write VXH ,ℓ and VX,ℓ for the sets defined above. Then we claim that the natural injection

H ↪→ ΠX• induces a quasi-map
γver,ℓ
H : VXH ,ℓ → VX,ℓ

which fits into the following commutative diagram:

VXH ,ℓ

κXH,ℓ−−−→ v(ΓX•
H
)>0,ℓ

γver,ℓ
H

y fver,ℓ
H

y
VX,ℓ

κX,ℓ−−−→ v(ΓX•)>0,ℓ.

Moreover, suppose that H ⊆ ΠX• is an open normal subgroup. Then VXH ,ℓ admits an action of
ΠX•/H such that κXH ,ℓ is compatible with ΠX•/H-actions (i.e., κXH ,ℓ is ΠX•/H-equivariant).
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We prove the claim. Let [αX ] ∈ VX,ℓ. Then αX induces an element βXH
∈ Hom(H,Fℓ) via

the natural homomorphism Hom(ΠX• ,Z/ℓZ) → Hom(H,Z/ℓZ) such that βXH
can be written

as ∑
β∈LαX

cββ, cβ ∈ F×
ℓ ,

where LαX
is a subset of V ⋆

XH ,ℓ such that, if β1, β2 ∈ LαX
distinct from each other, then

[β1] ̸= [β2].

Let [αXH
] ∈ VXH ,ℓ. Then we define γver,ℓ

H ([αXH
]) = [αX ] if there exists [αX ] ∈ VX,ℓ such that

[β] = [αXH
] (i.e., β ∼ αXH

) for some β ∈ LαX
. Otherwise, we put γver,ℓ

H ([αXH
]) = ∅. It is easy

to check that γver,ℓ
H is well-defined, and that the following diagram

VXH ,ℓ

κXH,ℓ−−−→ v(ΓX•
H
)>0,ℓ

γver,ℓ
H

y fver,ℓ
H

y
VX,ℓ

κX,ℓ−−−→ v(ΓX•)>0,ℓ

is commutative.
Moreover, suppose that H is an open normal subgroup of ΠX• . The natural exact sequence

1→ H → ΠX• → ΠX•/H → 1

induces an outer representation

ΠX•/H → Out(H)
def
=

Aut(H)

Inn(H)
.

Then we obtain an action of ΠX•/H on V ⋆
XH ,ℓ ⊆ Hom(H ét,Z/ℓZ) = Hom(H ét,ab,Z/ℓZ) induced

by the outer representation. Let σ ∈ ΠX•/H and αXH
, α′

XH
∈ V ⋆

XH ,ℓ. Then we have that
αXH

∼ α′
XH

if and only if σ(αXH
) ∼ σ(α′

XH
). Thus, we obtain an action of ΠX•/H on VXH ,ℓ

induced by the natural injection H ↪→ ΠX• . On the other hand, it is easy to check that the
above commutative diagram is compatible with the ΠX•/H-actions.

Remark 2.1.3. We maintain the notation introduced in Remark 2.1.2. In this remark, we
explain that γver,ℓ

H : VXH ,ℓ → VX,ℓ defined above can be described in another way which will be
used in the remainder of the present paper.

Write QαX
for the kernel of ΠX• ↠ Πét

X•
αX↠ Fℓ. Let β ∈ V ⋆

XH ,ℓ. Write Qβ for the kernel

H ↠ H ét
β
↠ Fℓ. Note that X

•
QαX

∩Qβ
is isomorphic to a connected component of X•

Qβ
×X•X•

QαX
,

and that X•
QαX

∩H is isomorphic to X•
H ×X• X•

QαX
. Then we see that β ∈ LαX

(see Remark

2.1.2 for LαX
) if and only if one of the following statements holds: (1) Qβ = QαX

∩H; (2)

#v(ΓX•
QαX

∩Qβ
) = ℓ#v(ΓX•

QαX
∩H

).

Note that (1) (resp. (2)) happens if X•
H is (resp. is not) irreducible. Namely, we have the

following:

Let [αXH
] ∈ VXH ,ℓ. Then γver,ℓ

H ([αXH
]) = [αX ] if and only if one of the following

holds: (1) there exists β ∈ V ⋆
XH ,ℓ such that β ∼ αXH

and Qβ = QαX
∩ H; (2)

there exists β ∈ V ⋆
XH ,ℓ such that β ∼ αXH

, and that

#v(ΓX•
QαX

∩Qβ
) = ℓ#v(ΓX•

QαX
∩H

).

2.2. Sets of edges.
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2.2.1. Assumptions. We maintain the notation introduced in 2.0.1. Moreover, in this subsec-

tion, we suppose that the genus gv of X̃•
v (1.2.5) is positive for each v ∈ v(ΓX•), and that Γcpt

X•

is 2-connected.

2.2.2. We shall say that

TX•
def
= (ℓ, d, f •

X : Y • → X•)

is an edge-triple associated to X• if the following conditions are satisfied:
(i) ℓ and d are prime numbers distinct from each other and from p;
(ii) ℓ ≡ 1 (mod d); this means that all dth roots of unity are contained in Fℓ; moreover, we

write µd ⊆ F×
ℓ for the subgroup of dth roots of unity;

(iii) f •
X : Y • def

= (Y,DY ) → X• is a Galois étale covering (i.e., the underlying morphism
fX : Y → X is étale) whose Galois group is isomorphic to µd such that #vspfX = 0 (1.4.1) holds
(note that since gv, v ∈ v(ΓX•), is positive, f •

X exists).

2.2.3. In the remainder of this subsection, we fix an edge-triple TX•
def
= (ℓ, d, f •

X : Y • → X•)
associated to X•. Let ΠY • ⊆ ΠX• be the admissible fundamental group of Y •. Write M ét

Y •

and MY • for Hom(Πét
Y • ,Fℓ) and Hom(ΠY • ,Fℓ), respectively. We obtain a natural injection

M ét
Y • ↪→MY • induced by the natural surjection ΠY • ↠ Πét

Y • . Then we have an exact sequence

0→M ét
Y • →MY • →M ra

Y •
def
= coker(M ét

Y • ↪→MY •)→ 0

with a natural action of µd.
Let M ra

Y •,µd
⊆M ra

Y • be the subset of elements on which µd acts via the character µd ⊆ F×
ℓ and

E∗
TX• ⊆ MY • the subset of elements that map to nonzero elements of M ra

Y •,µd
. Let α ∈ E∗

TX• .
Write

g•α : Y •
α → Y •

for the admissible covering corresponding to the element α and ΓY •
α
for the dual semi-graph of

Y •
α . Then we obtain a map

ϵ : E∗
TX• → Z, α 7→ #(eop(ΓY •

α
) ∪ ecl(ΓY •

α
)).

We define two subsets of E∗
TX• as follows:

Ecl,⋆
TX•

def
= {α ∈ E∗

TX• | #ecl,ragα = d,#eop,ragα = 0} (1.4.1),

Eop,⋆
TX•

def
= {α ∈ E∗

TX• | #ecl,ragα = 0,#eop,ragα = d},
where “cl” means “closed edge”, and “op” means “open edge”. Note that Ecl,⋆

TX• and Eop,⋆
TX• are

not empty. For each α ∈ Ecl,⋆
TΠX•

(resp. α ∈ Eop,⋆
TΠX•

), since the image of α is contained in M ra
Y •,µd

,

we obtain that the action of µd on the set

{ye}e∈ecl,ragα
⊆ Nod(Y •) (resp. {ye}e∈eop,ragα

⊆ DY )

is transitive, where Nod(−) denotes the set of nodes of (−), and ye denotes the node (resp. the
marked point) of Y • corresponding to e. Then there exists a unique node (resp. marked point)
xα of X• such that fX(ye) = xα for every ye ∈ {ye}e∈ecl,ragα

(resp. ye ∈ {ye}e∈eop,ragα
). We denote

by eα ∈ ecl(ΓX•) the closed edge (resp. eα ∈ eop(ΓX•) the open edge) corresponding to xα.

Proposition 2.2. We maintain the notation introduced above. We define a pre-equivalence
relation ∼ on Ecl,⋆

TX• (resp. Eop,⋆
TX• ) as follows:

Let α, β ∈ Ecl,⋆
TX• (resp. α, β ∈ Eop,⋆

TX• ). Then α ∼ β if λα + µβ ∈ Ecl,⋆
TX• (resp.

Eop,⋆
TX• ) for each λ, µ ∈ F×

ℓ for which λα + µβ ∈ E∗
TX• .
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Then the pre-equivalence relation ∼ on Ecl,⋆
TX• (resp. Eop,⋆

TX• ) defined above is an equivalence
relation. Moreover, we have a natural bijection

ϑcl
TX• : Ecl

TX•
def
= Ecl,⋆

TX•/ ∼
∼→ ecl(ΓX•), [α] 7→ eα

(resp. ϑop
TX• : Eop

TX•
def
= Eop,⋆

TX•/ ∼
∼→ eop(ΓX•), [α] 7→ eα),

where [α] denotes the image of α in Ecl
TX• (resp. Eop

TX• ).

Proof. Let α, β ∈ Ecl,⋆
TX• . If e

cl,ra
gα = ecl,ragβ

, then, for each λ, µ ∈ F×
ℓ for which λα + µβ ̸= 0, we

have ecl,ragλα+µβ
= ecl,ragα = ecl,ragβ

. Thus, α ∼ β.

On the other hand, if α ∼ β, then we have ecl,ragα = ecl,ragβ
; otherwise, we obtain #ecl,ragα+β

= 2d.

Thus, α ∼ β if and only if ecl,ragα = ecl,ragβ
. This means that ∼ is an equivalence relation on Ecl,⋆

TX• .

Next, let us prove that ϑcl
TX• is a bijection. It is easy to see that ϑcl

TX• is an injection. On the

other hand, for each e ∈ ecl(ΓX•), the structure of the maximal pro-ℓ admissible fundamental
groups implies that there is a Galois admissible covering of h• : Z• → Y • such that the element
corresponding to h• is contained in Ecl,⋆

TX• . Then ϑcl
TX• is a surjection.

Similar arguments to the arguments given in the proof above imply that the “resp” part
holds. This completes the proof of the proposition. □
Remark 2.2.1. In this remark, we prove that the sets

Ecl
TX• , Eop

TX•

do not depend on the choices of TX• in the following sense. We only treat the case of closed
edges. Let

T∗
X•

def
= (ℓ∗, d∗, f •,∗

X : Y •,∗ → X•)

be an arbitrary edge-triple associated to X•. Hence we obtain Ecl
T∗
X•

and a natural bijection

ϑcl
T∗
X•

: Ecl
T∗
X•
→ ecl(ΓX•).

We will show that there exists a bijection Ecl
T∗
X•

∼→ Ecl
TX• which fits into the following commu-

tative diagram

Ecl
T∗
X•

ϑcl
T∗
X•−−−→ ecl(ΓX•)y ∥∥∥

Ecl
TX•

ϑcl
TX•−−−→ ecl(ΓX•).

First, suppose that ℓ ̸= ℓ∗, and that d ̸= d∗. Then we may define a bijection

Ecl
T∗
X•

∼→ Ecl
TX•

which is compatible with the bijections ϑcl
T∗
X•

and ϑcl
TX• as follows: Let α ∈ Ecl

TX• and α∗ ∈ Ecl
T∗
X•
.

Write Y •
α → Y • and Y •

α∗ → Y •,∗ for the Galois admissible coverings corresponding to α and α∗,
respectively. We consider the following connected Galois admissible covering

Y •
α ×X• Y •

α∗ → X•

over k with Galois group Z/dd∗ℓℓ∗Z. Then we see that eα = eα∗ if and only if the cardinality
of the set of nodes of Y •

α ×X• Y •
α∗ is equal to

dd∗(ℓℓ∗(#ecl(ΓX•)− 1) + 1).
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Then we define a map

Ecl
T∗
X•

∼→ Ecl
TX• , [α∗] 7→ [α]

by choosing α such that the cardinality of the set of nodes of Y •
α×X•Y •

α∗ is equal to dd∗(ℓℓ∗(#ecl(ΓX•)−
1) + 1).

Next, let us prove the general case. Let

T∗∗
X•

def
= (ℓ∗∗, d∗∗, f •,∗∗ : Y •,∗∗ → X•)

be an edge-triple associated to X• such that ℓ∗∗ ̸= ℓ, ℓ∗∗ ̸= ℓ∗, d∗∗ ̸= d, and d∗∗ ̸= d∗. Hence we
obtain Ecl

T∗∗
X•

and a bijection ϑcl
T∗∗
X•

: Ecl
T∗∗
X•

∼→ ecl(ΓX•). Then the proof above implies that there

are two bijections

Ecl
T∗∗
X•

∼→ Ecl
TX• and Ecl

T∗∗
X•

∼→ Ecl
T∗
X•
.

Thus, we obtain the desired map Ecl
T∗
X•

∼→ Ecl
TX• .

Remark 2.2.2. Let H ⊆ ΠX• be an arbitrary open subgroup, f •
H : X•

H → X• the Galois
admissible covering over k with degree deg(fH) induced by the natural injection H ↪→ ΠX• ,
and ΓX•

H
the dual semi-graph of X•

H . Moreover, we have two natural maps

f cl
H : ecl(ΓX•

H
)→ ecl(ΓX•),

f op
H : eop(ΓX•

H
)→ eop(ΓX•)

induced by f •
H .

Let TX•
def
= (ℓ, d, f •

X : Y • → X•) be an edge-triple associated to X• such that (ℓ, deg(fH)) =
(d, deg(fH)) = 1. Then we obtain an edge-triple

TX•
H

def
= (ℓ, d, f •

XH
: Z• def

= Y • ×X• X•
H → X•

H)

associated to X•
H induced by the edge-triple TX• . Moreover, we obtain two natural maps

f cl
H : ecl(ΓX•

H
)→ ecl(ΓX•),

f op
H : eop(ΓX•

H
)→ eop(ΓX•)

induced by f •
H . Then we claim that the natural injection H ↪→ ΠX• induces surjective maps

γcl
TX• ,H : Ecl

TX•
H

→ Ecl
TX• ,

γop
TX• ,H : Eop

TX•
H

→ Eop
TX•

which fit into the following commutative diagrams:

Ecl
TX•

H

ϑcl
TX•

H−−−→ ecl(ΓX•
H
)

γcl
TX• ,H

y fcl
H

y
Ecl

TX•

ϑcl
TX•−−−→ ecl(ΓX•),

Eop
TX•

H

ϑop
TX•

H−−−→ eop(ΓX•
H
)

γop
TX• ,H

y fop
H

y
Eop

TX•

ϑop
TX•−−−→ eop(ΓX•),
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respectively. Moreover, suppose that H ⊆ ΠX• is an open normal subgroup. Then Ecl
TX•

H

and

Eop
TX•

H

admit actions of ΠX•/H, respectively, such that ϑcl
TX•

H

and ϑop
TX•

H

are compatible with

ΠX•/H-actions (i.e., ϑcl
TX•

H

and ϑop
TX•

H

are ΠX•/H-equivariant), respectively.

We prove the claim. We only treat the case of closed edges. Let αX ∈ Ecl
TX•

H

. Then αX

induces an element βXH
∈ Hom(ΠZ• ,Z/ℓZ) via the natural homomorphism Hom(ΠY • ,Z/ℓZ)→

Hom(ΠZ• ,Z/ℓZ) such that βXH
can be written as∑

β∈JαX

cββ, cβ ∈ F×
ℓ ,

where ΠZ•
def
= ΠY • ∩ H, and JαX

is a subset of Ecl,⋆
TX•

H

such that, if β1, β2 ∈ JαX
distinct from

each other, then [β1] ̸= [β2].
Let [αXH

] ∈ Ecl
TX•

H

. We define

γcl
TX• ,H([αXH

]) = [αX ]

if [β] = [αXH
] for some β ∈ JαX

. It is easy to check that γcl
TX• ,H is well-defined, and that the

following diagram

Ecl
TX•

H

ϑcl
TX•

H−−−→ ecl(ΓX•
H
)

γcl
TX• ,H

y fcl
H

y
Ecl

TX•

ϑcl
TX•−−−→ ecl(ΓX•)

is commutative.
Moreover, suppose that H is an open normal subgroup of ΠX• . Since ΠZ• is an open normal

subgroup of ΠX• , we have
ΠX•/ΠZ• ∼= ΠX•/H × Z/dZ.

Then the natural exact sequence

1→ ΠZ• → ΠX• → ΠX•/ΠZ• → 1

induces an outer representation ΠX•/H ↪→ ΠX•/ΠZ• → Out(ΠZ•). Thus, we obtain an action of

ΠX•/H on Ecl,⋆
TX•

H

⊆ Hom(ΠZ• ,Z/ℓZ) = Hom(Πab
Z• ,Z/ℓZ) induced by the outer representation.

Let σ ∈ ΠX•/H and αXH
, α′

XH
∈ Ecl,⋆

TX•
H

. We obverse that αXH
∼ α′

XH
if and only if

σ(αXH
) ∼ σ(α′

XH
). Thus, we obtain an action of ΠX•/H on Ecl

TX•
H

induced by the natural

injection H ↪→ ΠX• . On the other hand, it is easy to check that the above commutative
diagram is compatible with the ΠX•/H-actions.

Remark 2.2.3. We maintain the notation introduced in Remark 2.2.2. In this remark, we
explain that γcl

TX• ,H : Ecl
TX•

H

→ Ecl
TX• defined above can be described in another way which will

be used in the remainder of the present paper.
Write PαX

for the kernel of αX . Let β ∈ Ecl,⋆
TX•

H

. Write Pβ for the kernel β. Note that X•
PαX

∩Pβ

is isomorphic to a connected component of X•
Pβ
×X• X•

PαX
, and that X•

PαX
∩H is isomorphic to

X•
H ×X• X•

PαX
. Then we see that β ∈ JαX

(see Remark 2.2.2 for JαX
) if and only if one of the

following statements holds: (1) Pβ = PαX
∩H; (2)

#ecl(ΓX•
PαX

∩Pβ
) = ℓ#ecl(ΓX•

PαX
∩H

).
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Note that (1) (resp. (2)) happens when #ecl(ΓX•
H
) = 1 (resp. #ecl(ΓX•

H
) > 1). Namely, we

have the following:

Let [αXH
] ∈ Ecl

TX•
H

. Then γcl
TX• ,H([αXH

]) = [αX ] if and only if one of the following

statements holds: (1) there exists β ∈ Ecl,⋆
TX•

H

such that β ∼ αXH
and Pβ =

PαX
∩H; (2) there exists β ∈ Ecl,⋆

TX•
H

such that β ∼ αXH
, and that

#ecl(ΓX•
PαX

∩Pβ
) = ℓ#ecl(ΓX•

PαX
∩H

).

2.2.4. Let e ∈ ecl(ΓX•) (resp. e ∈ eop(ΓX•)). We put

Ecl,⋆
TX• ,e

def
= {α ∈ Ecl,⋆

TX• | eα = e}

(resp. Eop,⋆
TX• ,e

def
= {α ∈ Eop,⋆

TX• | eα = e}).
Then, for each e, e′ ∈ ecl(ΓX•) (resp. e, e′ ∈ eop(ΓX•)) distinct from each other, we have

Ecl,⋆
TX• ,e ∩ Ecl,⋆

TX• ,e′ = ∅ (resp. E
op,⋆
TX• ,e ∩ Eop,⋆

TX• ,e′ = ∅).
Thus, we have

Ecl,⋆
TX• =

⊔
e∈ecl(ΓX• )

Ecl,⋆
TX• ,e (resp. E

op,⋆
TX• =

⊔
e∈eop(ΓX• )

Eop,⋆
TX• ,e).

For each m ∈ Z≥0, we put

Ecl,⋆,m
TX• ,e

def
= {α ∈ Ecl,⋆

TX• ,e | #vspgα = m}

(resp. Eop,⋆,m
TX• ,e

def
= {α ∈ Eop,⋆

TX• ,e | #vspgα = m}).
If e is a closed edge corresponding to a node which is contained in two irreducible components
of Y • distinct from each other, then Ecl,⋆,m

TX• ,e = ∅ for m ≥ #v(ΓY •) − 1. If e is a closed edge
corresponding to a node which is contained in a unique irreducible component of Y •, then
Ecl,⋆,m

TX• ,e = ∅ for m ≥ #v(ΓY •). If e is an open edge, then Eop,⋆,m
TX• ,e = ∅ for m ≥ #v(ΓY •).

Lemma 2.3. For each m ∈ Z≥0, if E
cl,⋆,m
TX• ̸= ∅ (resp. Eop,⋆,m

TX• ̸= ∅), then the composition of
maps

Ecl,⋆,m
TX• ↪→ Ecl,⋆

TX• ↠ Ecl
TX•

∼→ ecl(ΓX•),

(resp. Eop,⋆,m
TX• ↪→ Eop,⋆

TX• ↠ Eop
TX•

∼→ eop(ΓX•))

is a surjection. In particular, we have that Ecl,⋆,m
TX• ,e ̸= ∅ if Ecl,⋆,m

TX• ̸= ∅ (resp. Eop,⋆,m
TX• ,e ̸= ∅ if

Eop,⋆,m
TX• ̸= ∅).

Proof. The lemma follows immediately from the structures of maximal pro-prime-to-p admis-
sible fundamental groups. □
2.2.5. We note that the edge-triple

TX•
def
= (ℓ, d, f •

X : Y • → X•)

associated to X• is equivalent to a triple

TΠX•
def
= (ℓ, d, y),

where y ∈ Hom(Πét
X• ,Fd) induced by the Galois admissible covering f •

X . We shall say that TΠX•

an edge-triple associated to ΠX• . Then we also use the notation

E∗
TΠX•

, Ecl,⋆
TΠX•

, Eop,⋆
TΠX•

, Ecl
TΠX•

, Eop
TΠX•

, Ecl,⋆
TΠX• ,e

, Eop,⋆
TΠX• ,e

, Ecl,⋆,m
TΠX• ,e

, Eop,⋆,m
TΠX• ,e

, ϑcl
TΠX•

, ϑop
TΠX•
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to denote E∗
TX• , E

cl,⋆
TX• , E

op,⋆
TX• , E

cl
TX• , E

op
TX• , E

cl,⋆
TX• ,e, E

op,⋆
TX• ,e, E

cl,⋆,m
TX• ,e, E

op,⋆,m
TX• ,e , ϑ

cl
TX• , ϑ

op
TX• , respec-

tively.

3. Mono-anabelian combinatorial Grothendieck conjecture in positive
characteristic

We maintain the notation introduced in previous sections.

3.1. Mono-anabelian reconstructions. First, let us define the term “mono-anabelian re-
construction”.

Definition 3.1. Let i ∈ {1, 2}, and let Fi be a geometric object and ΠFi
a profinite group

associated to the geometric object Fi.
Let InvFi

be an invariant depending on the isomorphism class of Fi (in a certain category),
we shall say that InvFi

can be mono-anabelian reconstructed from ΠFi
if there exists a group-

theoretical algorithm whose input datum is ΠFi
, and whose output datum is InvFi

.
Let AddFi

be an additional structure (e.g. a family of subgroups, a family of quotient
groups) on the profinite group ΠFi

depending functorially on Fi. We shall say that AddFi
can

be mono-anabelian reconstructed from ΠFi
if there exists a group-theoretical algorithm whose

input datum is ΠFi
, and whose output datum is AddFi

.
We shall say that a map (or a morphism) AddF1 → AddF2 can be mono-anabelian recon-

structed from ΠF1 → ΠF2 if there exists a group-theoretical algorithm whose input datum is
ΠF1 → ΠF2 , and whose output datum is AddF1 → AddF2 .

3.1.1. One of the main difficulties of establishing a group-theoretical algorithm for reconstruct-
ing the topological and the combinatorial structures associated to X• is that, for each open
subgroup H ⊆ ΠX• , we need to prove that the profinite completion of the topological funda-
mental group of ΓX•

H
and the étale fundamental group of the underlying curve of X•

H (or the
weight-monodromy filtration of the first ℓ-adic étale cohomology group of XH , where ℓ ̸= p)
can be mono-anabelian reconstructed from H. When the base field is an arithmetic field, the
weight-monodromy filtration can be mono-anabelian reconstructed by applying the theory of
“weight”. In our situation (i.e., the base field is an algebraically closed field), we have the
following key observation:

The formula for Avrp(H) of H plays a role of (outer) Galois representations in
the theory of the combinatorial anabelian geometry of curves over algebraically
closed fields of characteristic p > 0.

3.1.2. We maintain the notation introduced in 2.0.1. In order to simplify the formula of
Avrp(ΠX•), we introduce the following condition for X•.

Condition A . We shall say that X• satisfies Condition A if the following conditions hold: (i)
gv is positive for each v ∈ v(ΓX•); (ii) Γcpt

X• is 2-connected (Definition 1.1 (c)); (iii) #v(ΓX•)b≤1 =
0 and #ecl(ΓX•)b≤1 = 0 (Definition 1.1 (d)).

3.2. Reconstructions of various additional structures.

3.2.1. Settings. We maintain the notation introduced in 2.0.1. Moreover, in the remainder of
this section, we suppose that X• satisfies Condition A unless indicated otherwise. Note that
Theorem 1.5 and Condition A imply that

Avrp(ΠX•) = gX − rX .
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3.2.2. Firstly, we have the following lemmas.

Lemma 3.2. (i) The data p
def
= char(k), gX , nX = #eop(ΓX•), rX , and Πtop,p

X• can be mono-
anabelian reconstructed from ΠX•, where Πtop,p

X• denotes the maximal pro-p quotient of Πtop
X•

(1.2.2).
(ii) The set v(ΓX•)>0,p (2.1.1) can be mono-anabelian reconstructed from ΠX•.
(iii) Let H ⊆ ΠX• be any open normal subgroup. Suppose that Γcpt

X•
H
is 2-connected. Then the

natural map
v(ΓX•

H
)>0,p → v(ΓX•)>0,p

can be mono-anabelian reconstructed from the natural injection H ↪→ ΠX•.
(iv) The cardinality #v(ΓX•) of v(ΓX•) can be mono-anabelian reconstructed from ΠX•.

Proof. (i) A similar result has been proved in [Y1, Proposition 6.1 and Lemma 6.4], for readers’
convenience, we put the proof here. If dimFℓ

(Πab
X•⊗Fℓ) = dimFℓ′

(Πab
X•⊗Fℓ′) holds for every two

prime numbers ℓ and ℓ′, then gX = 2gX + nX − 1 if nX > 0, and gX = 2gX if nX = 0. Thus,
either (gX , nX) = (0, 1) or (gX , nX) = (0, 0) holds. Since ΠX• is the admissible fundamental
group of a pointed stable curve, this is a contradiction. Thus, p is the unique prime number
such that dimFp(Π

ab
X• ⊗ Fp) ̸= dimFℓ

(Πab
X• ⊗ Fℓ) holds for each prime number ℓ ̸= p.

Let H be any open normal subgroup of ΠX• . We note that, if ΠX•/H is a p-group, then the
decomposition group in ΠX•/H of every irreducible component of X•

H is trivial if and only if

gXH
− rXH

= #(ΠX•/H)(gX − rX).

Thus, Theorem 1.5 implies that we may detect whether the equality

gXH
− rXH

= #(ΠX•/H)(gX − rX)

holds or not, group-theoretically from ΠX• and H if Γcpt
X•

H
is 2-connected. We put

Topp(ΠX•)
def
= {H ⊆ ΠX• open normal | ΠX•/H is a p-group

and, for any characteristic subgroup Q ⊆ ΠX• ,

gXH∩Q
− rXH∩Q

= #(ΠX•
Q
/(H ∩Q))(gXQ

− rXQ
)}.

Note that Lemma 1.6 implies that Γcpt
X•

H∩Q
is 2-connected. Then by applying Theorem 1.5, we

have that Topp(ΠX•) can be mono-anabelian reconstructed from ΠX• . Thus, we obtain that

Πtop,p
X• = ΠX•/(

∩
H∈Topp(ΠX• )

H)

can be mono-anabelian reconstructed from ΠX• . Moreover, we have that

rX = dimQ(Π
top,p,ab
X• ⊗Q)

can be reconstructed group-theoretically from ΠX• . By Theorem 1.5 again, the genus

gX = Avrp(ΠX•) + rX

can be mono-anabelian reconstructed from ΠX• .
Let ℓ ̸= p be a prime number. If dimFℓ

(Πab
X• ⊗ Fℓ) ̸= 2gX , then we have

nX = dimFℓ
(Πab

X• ⊗ Fℓ)− 2gX + 1.

Suppose that dimFℓ
(Πab

X•⊗Fℓ) = 2gX . Then nX = 0 if, for any open normal subgroup H ⊆ ΠX• ,
dimFℓ

(Hab ⊗ Fℓ) = 2gXH
. Otherwise, we have nX = 1. We complete the proof of (i).

(ii) Since each Galois admissible covering of degree p is étale, by applying (i), we obtain that
V ∗
X,p (2.1.2) can be mono-anabelian reconstructed from ΠX• . Then to verify (ii), Proposition
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2.1 implies that it is sufficient to prove that V ⋆
X,p (2.1.2) can be mono-anabelian reconstructed

from ΠX• . Let α ∈ V ∗
X,p, X

•
α the Galois admissible covering corresponding to α, ΓX•

α
the dual

semi-graph of X•
α, and rXα the Betti number of ΓX•

α
. Moreover, let 0 ̸= γ ∈ Hom(Πtop,p

X• ,Fp)

if Πtop,p
X• is not trivial, X•

γ the Galois admissible covering corresponding to γ, X•
α,γ the pointed

stable curve X•
α ×X• X•

γ , ΓX•
α,γ

the dual semi-graph of X•
α,γ, ΓX•

γ
the dual semi-graph of X•

γ ,
rXα,γ the Betti number of ΓX•

α,γ
, and rXγ the Betti number of ΓX•

γ
. Then we have the following

claim:

Claim:
#v(ΓX•

α
) = p(#v(ΓX•)− 1) + 1

if and only if
rXα = prX .

Moreover, suppose that rX ̸= 0. Then

#v(ΓX•
α
) = p(#v(ΓX•)− 1) + 1

if and only if
rXα,γ = prXγ + p2 − 2p+ 1.

Let us prove the claim. Since rXα = #ecl(ΓX•
α
) − #v(ΓX•

α
) + 1 and rX = #ecl(ΓX•) −

#v(ΓX•) + 1, we have that rXα = prX holds if and only if

#ecl(ΓX•
α
)−#v(ΓX•

α
) = p#ecl(ΓX•)− p(#v(ΓX•)− 1)− 1.

Since #ecl(ΓX•
α
) = p#ecl(ΓX•), we have

#v(ΓX•
α
) = p(#v(ΓX•)− 1) + 1

if and only if rXα = prX .
Suppose that rX ̸= 0. Since 0 ̸= γ ∈ Hom(Πtop,p

X• ,Fp), we have

rXα,γ = p#ecl(ΓX•
α
)− p#v(ΓX•

α
) + 1.

Then
rXα,γ = prXγ + p2 − 2p+ 1 = p(p#ecl(ΓX•)− p#v(ΓX•) + 1) + p2 − 2p+ 1

if and only if
#ecl(ΓX•

α
)−#v(ΓX•

α
) = p#ecl(ΓX•)− p(#v(ΓX•)− 1)− 1

if and only if
#v(ΓX•

α
) = p(#v(ΓX•)− 1) + 1.

This completes the proof of the claim.
If rX = 0 (i.e., ΓX• is a tree), then by applying Remark 1.1.1 and Remark 1.5.1, Condition

A implies that either each terminal vertex (Definition 1.1 (d)) of ΓX• meets some open edge of
ΓX• or #v(ΓX•) = 1. Then we observer that the one-point compactification of the dual semi-
graph of each connected Galois admissible covering of X• is 2-connected. Then by the first
part of the claim above and (i), we obtain that V ⋆

X,p can be mono-anabelian reconstructed from

ΠX• . If rX ̸= 0, then Γcpt
X•

α
is not 2-connected in general. Moreover, by the choice of γ, we see

that the natural map of dual semi-graphs f sg
γ : ΓX•

γ
→ ΓX• induced by the admissible covering

X•
γ → X• is a topological covering. In particular, #((f sg

γ )−1(v)) > 1 and #((f sg
α,γ)

−1(v)) > 1
for all v ∈ v(ΓX•), where f sg

α,γ : ΓX•
α,γ
→ ΓX• denotes the natural map of dual semi-graphs

induced by the admissible covering X•
α,γ → X•. Then Lemma 1.6 implies that Γcpt

X•
γ
and Γcpt

X•
α,γ

are 2-connected. Then the “moreover” part of the claim above and (i) imply that V ⋆
X,p can be

mono-anabelian reconstructed from ΠX• . Thus, by Proposition 2.1, the set v(ΓX•)>0,p can be
mono-anabelian reconstructed from ΠX• . This completes the proof of (ii).
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(iii) Since Γcpt
X•

H
is 2-connected, we obtain that X•

H satisfies Condition A. Moreover, by re-

placing X• by X•
H , (ii) implies that v(ΓX•

H
)>0,p can be mono-anabelian reconstructed from H.

Then (iii) follows from Remark 2.1.2 and (ii).
(iv) Since V ⋆

XQ,p ⊆ Hom(Qab,Fp) for each open normal subgroup Q ⊆ ΠX• , V ⋆
XQ,p admits a

natural action of ΠX•/Q via the natural outer representation

ΠX•/Q→ Out(Q)→ Aut(Qab)

induced by the natural exact sequence

1→ Q→ ΠX• → ΠX•/Q→ 1.

We have the following:

Claim: There is an open normal subgroup Q ⊆ ΠX• such that the p-rank of

X̃•
Q,v is positive for each v ∈ v(ΓX•

Q
).

Let us prove the claim. Since we assume that X• satisfies Condition A, Γcpt
X• is

2-connected. Then [Y3, Corollary 3.5] implies that the natural homomorphism
Πab

X̃•
v
⊗ Z/mZ → Πab

X• ⊗ Z/mZ, v ∈ v(ΓX•), is injective for all m ∈ Z prime to

p. By applying Theorem 1.5 to Πab
X̃•

v
, there exists mv ∈ Z>0 prime to p such

that the p-rank of smooth pointed stable curve corresponding to the kernel of
the natural surjection ΠX̃•

v
↠ Πab

X̃•
v
⊗Z/mvZ (↪→ Πab

X• ⊗Z/mvZ) is positive. We

put d
def
= max{mv}v∈v(ΓX• ) and

Q
def
= ker(ΠX• ↠ Πab

X• ⊗ Z/dZ).
Then we see immediately that Q satisfies the conditions of the claim. This
completes the proof of the claim.

Let Q′ be an open normal subgroup Q′ ⊆ ΠX• satisfying the conditions of the above
claim. Moreover, we may assume that X•

Q′ satisfies Condition A. Then we obtain VXQ′ ,p
∼→

v(ΓX•
Q′ )

>0,p = v(ΓX•
Q′ ). Thus, we have

#v(ΓX•) = max{#(VXQ,p/(ΠX•/Q)) | Q ⊆ ΠX• open normal}.
This completes the proof of the lemma. □
Lemma 3.3. The data #ecl(ΓX•), Πtop

X• , and Πét
X• can be mono-anabelian reconstructed from

ΠX•.

Proof. By Lemma 3.2 (i) (iv), we obtain that rX and #v(ΓX•) can be mono-anabelian recon-
structed from ΠX• . Then

#ecl(ΓX•) = rX +#v(ΓX•)− 1

and
#eop(ΓX•) = nX

can be also mono-anabelian reconstructed from ΠX• . We put

Et(ΠX•)
def
= {H ⊆ ΠX• open normal | for each proper characteristic open normal subgroup

Q, we have #ecl(ΓX•
H∩Q

) = #(ΠX•/(H ∩Q))#ecl(ΓX•)

and #eop(ΓX•
H∩Q

) = #(ΠX•/(H ∩Q))#eop(ΓX•)}.
Note that, for each proper characteristic open normal subgroup Q, since Γcpt

X• is 2-connected,
Lemma 1.6 implies that Γcpt

X•
H∩Q

is 2-connected. Moreover, X•
H∩Q satisfies Condition A. Then
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#ecl(ΓX•
H∩Q

) and #eop(ΓX•
H∩Q

) can be mono-anabelian reconstructed fromH∩Q. Thus Et(ΠX•)

can be mono-anabelian reconstructed from ΠX• . This implies that

Πét
X• = ΠX•/

∩
H∈Et(ΠX• )

H

can be mono-anabelian reconstructed from ΠX• . On the other hand, we put

Top(ΠX•)
def
= {H ⊆ Πét

X• open normal | for each proper characteristic open normal subgroup Q,

gXH∩Q
− rXH∩Q

= #(ΠX•/(H ∩Q))(gX − rX)}.
Note that since X•

H∩Q satisfies Condition A, Lemma 3.2 (i) implies that Top(ΠX•) can be
mono-anabelian reconstructed from ΠX• . Thus we have that

Πtop
X• = Πét

X•/
∩

H∈Top(ΠX• )

H

can be mono-anabelian reconstructed from ΠX• . This completes the proof of the lemma. □

Lemma 3.4. Let H ⊆ ΠX• be an arbitrary open normal subgroup. Then the data gXH
, nXH

,
rXH

, #ecl(ΓX•
H
), and #v(ΓX•

H
) can be mono-anabelian reconstructed from ΠX• and H. Fur-

thermore, we have that Htop and H ét can be mono-anabelian reconstructed from ΠX• and H.

Proof. Suppose that rX = 0. Then by applying Remark 1.1.1, Condition A implies that either
each terminal vertex of ΓX• meets some open edge of ΓX• or #v(ΓX•) = 1 holds. Then we
observer that the one-point compactification of the dual semi-graph of each connected Galois
admissible covering of X• is 2-connected. Then X•

H satisfies Condition A. Thus, the lemma
follows from Lemma 3.2 and Lemma 3.3.

Suppose that rX ̸= 0. Then Γcpt
X•

H
is not 2-connected in general. Since p can be mono-anabelian

reconstructed from ΠX• , we may choose a prime number ℓ ̸= p such that (ℓ,#(ΠX•/H)) = 1.

Let 0 ̸= γ ∈ Hom(Πtop
X• ,Fℓ), Hγ the kernel of ΠX• ↠ Πtop

X•
γ
↠ Fℓ, X

•
Hγ
→ X• the admissible

covering corresponding to Hγ, X
•
H∩Hγ

the pointed stable curve X•
H ×X• X•

Hγ
, ΓX•

H∩Hγ
the dual

semi-graph of X•
H∩Hγ

, and rXH∩Hγ
the Betti number of ΓX•

H∩Hγ
. By Lemma 1.6, Γcpt

X•
H∩Hγ

and

Γcpt
X•

Hγ
are 2-connected. Moreover, X•

H∩Hγ
satisfies Condition A. Then gXH∩Hγ

, nXH∩Hγ
, rXH∩Hγ

,

#ecl(ΓX•
H∩Hγ

), and #v(ΓX•
H∩Hγ

) can be mono-anabelian reconstructed from ΠX• and H ∩Hγ.

We note that

nXH∩Hγ
= ℓnXH

, #ecl(ΓX•
H∩Hγ

) = ℓ#ecl(ΓX•
H
), #v(ΓX•

H∩Hγ
) = ℓ#v(ΓX•

H
),

rXH∩Hγ
= ℓrXH

− ℓ+ 1, and gXH∩Hγ
= ℓ(gXH

− 1) + 1.

Then gXH
, nXH

, rXH
, #ecl(ΓX•

H
), and #v(ΓX•

H
) can be mono-anabelian reconstructed from ΠX•

and H. Moreover, similar arguments to the arguments given in the proof of Lemma 3.3 imply
that Htop and H ét can be mono-anabelian reconstructed from ΠX• and H. □

Proposition 3.5. (i) Let ℓ be an arbitrary prime number. Then the sets V ⋆
X,ℓ defined in 2.1.2

and the VX,ℓ defined in Proposition 2.1 can be mono-anabelian reconstructed from ΠX•.
(ii) Let ℓ′, ℓ′′ be prime numbers distinct from each other such that ℓ′′ ̸= p. Then there is a

natural injection

VX,ℓ′ ↪→ VX,ℓ′′
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which fits into the following commutative diagram

VX,ℓ′
κX,ℓ′−−−→ v(ΓX•)>0,ℓ′y y

VX,ℓ′′
κX,ℓ′′−−−→ v(ΓX•)>0,ℓ′′ .

Moreover, the injection can be mono-anabelian reconstructed from ΠX•.
(iii) The set of vertices v(ΓX•) of ΓX• can be mono-anabelian reconstructed from ΠX•.

Proof. (i) If V ⋆
X,ℓ can be mono-anabelian reconstructed from ΠX• , then Proposition 2.1 implies

that VX,ℓ can be mono-anabelian reconstructed from ΠX• . Thus, we only need to treat the case
of V ⋆

X,ℓ.

By Lemma 3.3, we obtain that Πét
X• can be mono-anabelian reconstructed from ΠX• . By

replacing ΠX• and p by Πét
X• and ℓ, respectively, then similar arguments to the arguments given

in the proof of Lemma 3.2 (i) imply Πtop,ℓ
X• can be mono-anabelian reconstructed from ΠX• .

Moreover, by replacing Πtop,p
X• and p by Πtop,ℓ

X• and ℓ, respectively, then similar arguments to the
arguments given in the proof of Lemma 3.2 (ii) imply (i) holds.
(ii) Let α′ ∈ V ⋆

X,ℓ′ and α′′ ∈ V ⋆
X,ℓ′′ . Write X•

α′ and X•
α′′ for the pointed stable curves corre-

sponding to α′ and α′′, Hα and Hα′′ for the open subgroups of ΠX• corresponding to X•
α′ and

X•
α′′ (i.e., the kernels of ΠX• ↠ Πét

X•
α′

↠ Fℓ′ and ΠX• ↠ Πét
X•

α′′

↠ Fℓ′′), respectively. Then we
obtain that

X•
α′ ×X• X•

α′′

is a connected pointed stable curve corresponding to the open normal subgroup Hα′ ∩Hα′′ ⊆
ΠX• . Moreover, Lemma 3.4 implies that the cardinality of the set of irreducible components of
X•

α′ ×X• X•
α′′ can be mono-anabelian reconstructed from Hα′ ∩Hα′′ and ΠX• . Then (ii) follows

from Remark 2.1.1.
(iii) Lemma 3.2 (i) implies that p can be mono-anabelian reconstructed from ΠX• . Then we

may choose a prime number ℓ distinct from p. Moreover, since X• satisfies Condition A, we
have

v(ΓX•)>0,ℓ = v(ΓX•).

Then (iii) follows from (i), (ii), and Proposition 2.1. □

Proposition 3.6. Let TΠX•
def
= (ℓ, d, y) be an arbitrary edge-triple associated to ΠX• (2.2.5), Hy

the kernel of ΠX• ↠ Πét
X•

y
↠ Fd, and f • : Y • → X• the Galois admissible covering corresponding

to Hy. Then the sets

Ecl,⋆
TΠX•

, Eop,⋆
TΠX•

, Ecl
TΠX•

, Eop
TΠX•

defined in 2.2.3 and Proposition 2.2, respectively, can be mono-anabelian reconstructed from
ΠX• and Hy.

Proof. We only treat Ecl,⋆
TΠX•

and Ecl
TΠX•

. Moreover, by Proposition 2.2, it’s sufficient to treat

the case of Ecl,⋆
TΠX•

. Note that the construction of Y • implies that #((f sg)−1(v)) = 1 for all

v ∈ v(ΓX•), where f sg : ΓY • → ΓX• denotes the natural map of dual semi-graphs induced by
f •. Since Γcpt

X• is 2-connected, Lemma 1.6 implies that Γcpt
Y • is 2-connected. Moreover, since X•

satisfies Condition A, we have that Y • satisfies Condition A. By the definition of E∗
TΠX•

, Lemma

3.3 implies that the set E∗
TΠX•

(2.2.3) can be mono-anabelian reconstructed from ΠX• and Hy.

Hence, to verify the proposition, it is sufficient to prove that the set Ecl,⋆
TΠX•

⊆ E∗
TΠX•

(2.2.3)
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can be mono-anabelian reconstructed from ΠX• and Hy. Let α ∈ E∗
TΠX•

, Hα ⊆ Hy the kernel

of α, Y •
α → Y • the admissible covering corresponding to Hα, and ΓY •

α
the dual semi-graph of

Y •
α . We observe that

α ∈ Ecl,⋆
TΠX•

if and only if

#ecl(ΓY •
α
) = ℓ(#ecl(ΓY •)− d) + d, #eop(ΓY •

α
) = ℓ#eop(ΓY •).

Since Hα ⊆ Hy (resp. Hy ⊆ ΠX•) is an open normal subgroup, by Lemma 3.4, we have
that #ecl(ΓY •

α
) and #eop(ΓY •

α
) (resp. #ecl(ΓY •) and #eop(ΓY •)) can be mono-anabelian recon-

structed from Hα and Hy (resp. Hy and ΠX•). Then we obtain that Ecl,⋆
TΠX•

can be mono-

anabelian reconstructed from ΠX• and Hy. This completes the proof of the proposition. □
Next, we generalize Lemma 3.4 to the case where H is an arbitrary open subgroup of ΠX• .

Proposition 3.7. Let H ⊆ ΠX• be an arbitrary open subgroup. Then the data gXH
, nXH

, rXH
,

#ecl(ΓX•
H
), and #v(ΓX•

H
) can be mono-anabelian reconstructed from ΠX• and H. Furthermore,

we have that Htop and H ét can be mono-anabelian reconstructed from ΠX• and H.

Proof. Let N ⊆ H be a proper open characteristic subgroup of ΠX• . Then X•
N satisfies Con-

dition A. Since N is a normal open subgroup of ΠX• , Lemma 3.2 and Lemma 3.4 imply that
the data gXN

, nXN
, rXN

, #ecl(ΓX•
N
), #v(ΓX•

N
), N top, and N ét can be mono-anabelian recon-

structed from N . Moreover, by Proposition 3.5, we obtain that v(ΓX•
N
) can be mono-anabelian

reconstructed from N , and that v(ΓX•
N
) admits a natural action of H/N . Then we obtain that

#v(ΓXH
) = #(v(ΓXN

)/(H/N)).

Let TN
def
= (ℓ, d, y) be an arbitrary edge-triple associated to N , Ny the kernel of N ↠ N ét

y
↠

Fd, and f • : Y •
N → X•

N the Galois admissible covering corresponding to Ny. Then Proposition
3.6 implies that

Ecl
TN

, Eop
TN

can be mono-anabelian reconstructed from ΠX• and Ny. Moreover, Ecl
TN

and Eop
TN

admit natural
actions of H/N . Then we obtain that

#ecl(ΓX•
H
) = #(Ecl

TN
/(H/N)), nXH

= #eop(ΓX•
H
) = #(Eop

TN
/(H/N)).

Moreover, we have that
rXH

= #ecl(ΓX•
H
)−#v(ΓX•

H
) + 1.

On the other hand, since the ramification indexes of the Galois admissible covering Y •
N → X•

H

at each marked points can be mono-anabelian reconstructed from N and H via the action of
H/N on Eop

TN
, the Riemann-Hurwitz formula implies that the genus gXH

can be mono-anabelian
reconstructed from ΠX• and N .

Similar arguments to the arguments given in the proof of Lemma 3.3 imply that Htop and
H ét can be mono-anabelian reconstructed from ΠX• and H. This completes the proof of the
proposition. □

Proposition 3.8. (i) Let T′
ΠX•

def
= (ℓ′, d′, y′) and T′′

ΠX•
def
= (ℓ′′, d′′, y′′) be edge-triples associated

to ΠX•, Hy′ and Hy′′ the kernels of ΠX• ↠ Πét
X•

y′

↠ Fd′ and ΠX• ↠ Πét
X•

y′′

↠ Fd′′, f
•,′ : Y •,′ → X•

and f •,′′ : Y •,′′ → X• the Galois admissible coverings corresponding to Hy′ and Hy′′, respectively.
Then there are natural bijections

Ecl
T′
ΠX•

∼→ Ecl
T′′
ΠX•

, Eop
T′
ΠX•

∼→ Eop
T′′
ΠX•
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which fit into the following commutative diagrams

Ecl
T′
ΠX•

ϑcl
T′
ΠX•−−−−→ ecl(ΓX•)y ∥∥∥

Ecl
T′′
ΠX•

ϑcl
T′′
ΠX•−−−−→ ecl(ΓX•),

Eop
T′
ΠX•

ϑop

T′
ΠX•−−−−→ eop(ΓX•)y ∥∥∥

Eop
T′′
ΠX•

ϑop

T′′
ΠX•−−−−→ eop(ΓX•),

respectively. Moreover, the above bijections can be mono-anabelian reconstructed from ΠX•,
Hy′, and Hy′′.

(ii) The set of closed edges ecl(ΓX•) of ΓX• and the set of open edges eop(ΓX•) of ΓX• can be
mono-anabelian reconstructed from ΠX•.

Proof. We only treat the case of closed edges. (i) Let α′ ∈ Ecl,⋆
T′
ΠX•

and α′′ ∈ Ecl,⋆
T′′
ΠX•

. Write

Y •
α′ → Y •,′ and Y •

α′′ → Y •,′′ for the Galois admissible coverings corresponding to α′ and α′′, Hα′

and Hα′′ for the open subgroups of ΠX• corresponding to Y •
α′ and Y •

α′′ (i.e., the kernels of α′

and α′′), respectively. Then we obtain that

Y •
α′ ×X• Y •

α′′

is a connected pointed stable curve corresponding to the open subgroup Hα′ ∩ Hα′′ ⊆ ΠX• .
Moreover, Proposition 3.7 implies that the cardinality of the set of nodes of Y •

α′ ×X• Y •
α′′ can be

mono-anabelian reconstructed from Hα′ ∩Hα′′ and ΠX• . Then (i) follows from Proposition 3.6
and Remark 2.2.1.
(ii) By Lemma 3.2 (i) and Lemma 3.3, p and Πét

X• can be mono-anabelian reconstructed from
ΠX• . Then there is an edge-triple

T′′′
ΠX•

def
= (ℓ′′′, d′′′, y′′′)

associated to ΠX• which can be mono-anabelian reconstructed from ΠX• , where y′′′ ∈ Hom(Πét
X• ,Fd′′′).

Thus, (ii) follows from (i) and Proposition 2.2. This completes the proof of the proposition. □

3.3. Reconstructions of dual semi-graphs.

Proposition 3.9. Let H ⊆ ΠX• be an arbitrary open subgroup.
(i) The natural maps

v(ΓX•
H
)→ v(ΓX•), ecl(ΓX•

H
)→ ecl(ΓX•), and eop(ΓX•

H
)→ eop(ΓX•)

induced by the Galois admissible covering X•
H → X• can be mono-anabelian reconstructed from

the natural injection H ↪→ ΠX•.
(ii) Suppose that H is normal. Then the natural action of ΠX•/H on v(ΓX•

H
) (resp. ecl(ΓX•

H
),

eop(ΓX•
H
)) induced by the natural action of ΠX•/H on X•

H can be mono-anabelian reconstructed
from the natural injection H ↪→ ΠX•.
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Proof. (i) By Lemma 3.2 (i), we may choose a prime number ℓ such that ℓ ̸= p and (ℓ, [ΠX• :
H]) = 1. By Proposition 3.5, we obtain that V ⋆

X,ℓ and VX,ℓ can be mono-anabelian reconstructed
from ΠX• . Moreover, by Proposition 3.7, we obtain that the data gXH

, nXH
, rXH

, #v(ΓX•
H
),

Htop, and H ét can be mono-anabelian reconstructed from ΠX• and H. Then by applying
similar arguments to the arguments given in the proof of Proposition 3.5 (i) (i.e., by replacing

Πét
X• and Πtop,ℓ

X• by H ét and Htop,ℓ, respectively), we obtain that V ⋆
XH ,ℓ and VXH ,ℓ can be also

mono-anabelian reconstructed from ΠX• and H.
For each α ∈ V ⋆

X,ℓ and each αH ∈ V ⋆
XH ,ℓ, we write Qα ⊆ ΠX• and QαH

⊆ H for the kernels of

ΠX• ↠ Πét
X•

α↠ Fℓ and H ↠ H ét
αH↠ Fℓ, respectively. Then, by Remark 2.1.3, we have that

[αH ] 7→ [α],

where [α] and [αH ] denote the images of α and αH in V ⋆
X,ℓ and V ⋆

XH ,ℓ, respectively, if and only if
one of the following holds: (1) there exists α′

H ∈ V ⋆
XH ,ℓ such that αH ∼ α′

H and Qα′
H
= Qα ∩H,

where Qα′
H

denotes the kernel of H ↠ H ét
α′
H↠ Fℓ; (2) there exists α′′

H ∈ VXH ,ℓ such that
αH ∼ α′′

H and

#v(ΓX•
Qα∩Q

α′′
H

) = ℓ#v(ΓX•
Qα∩H

),

where Qα′′
H

denotes the kernel of H ↠ H ét
α′′
H↠ Fℓ. Thus, Proposition 3.7 implies that the

natural map v(ΓX•
H
)→ v(ΓX) can be mono-anabelian reconstructed from the natural injection

H ↪→ ΠX• .
Next, let us prove that the natural maps of sets of edges can be mono-anabelian reconstructed

from the natural injection H ↪→ ΠX• . We only treat the case of closed edges. By Lemma 3.2
(i), we may choose group-theoretically prime numbers ℓ and d distinct from p satisfying (i)
(ii) of 2.2.2. Moreover, by applying Lemma 3.2 (iv), Lemma 3.3, and Lemma 3.4, we may
choose group-theoretically a homomorphism y : Πét

X• ↠ Fd satisfying satisfying (iii) of 2.2.2
(i.e., a homomorphism y : Πét

X• ↠ Fd satisfying #(v(ΓX•
Hy
)) = #(v(ΓX•)), where Hy ⊆ ΠX•

denotes the kernel of ΠX• ↠ Πét
X•

y
↠ Fd.) This means that we may choose group-theoretically

an edge-triple

TΠX•
def
= (ℓ, d, y)

associated to ΠX• such that (ℓ, [ΠX• : H]) = (d, [ΠX• : H]) = 1. Moreover, we denote by

yH : H ét → H ét/Im(H ∩Hy) ∼= Fd.

Then we obtain an edge-triple

TH
def
= (ℓ, d, yH)

associated to H.
By applying Proposition 3.6 and Proposition 3.8, we obtain that

Ecl,⋆
TΠX•

, Ecl
TΠX•

∼→ ecl(ΓX•)

can be mono-anabelian reconstructed from ΠX• and Hy. Moreover, by Proposition 3.6, Propo-
sition 3.7 and similar arguments to the arguments given in the proof of Proposition 3.8 (i.e.,
by replacing X•, ΠX• by X•

H , H, respectively), we obtain that

Ecl,⋆
TH

, Ecl
TH

∼→ ecl(ΓX•
H
)

can be mono-anabelian reconstructed from H and H ∩Hy.
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For each β ∈ Ecl,⋆
TΠX•

and each βH ∈ Ecl,⋆
TH

, we write Pβ ⊆ Hy ⊆ ΠX• and PβH
⊆ H ∩Hy ⊆ H

for the kernels of β and βH , respectively. Then, by Remark 2.2.3, we observe that

[βH ] 7→ [β],

where [βH ] and [β] denote the images of βH and β in Ecl
TΠX•

and Ecl
TH

, respectively, if and only

if one of the following holds: (1) there exists β′
H ∈ Ecl,⋆

TH
such that βH ∼ β′

H and Pβ′
H
= Pβ ∩H;

(2) there exists β′′
H ∈ Ecl,⋆

TH
such that β′′

H ∼ βH and

#ecl(ΓX•
Pβ∩P

β′′
H

) = ℓ#ecl(ΓX•
Pβ∩H

),

where Pβ′′
H

denotes the kernel of β′′
H . Thus, Proposition 3.7 implies that the natural map

ecl(ΓX•
H
)→ ecl(ΓX) can be mono-anabelian reconstructed from the natural injection H ↪→ ΠX• .

(ii) follows from (i), Remark 2.1.2, and Remark 2.2.2. This completes the proof of the
proposition. □

Next, we prove that the dual semi-graphs can be mono-anabelian reconstructed from the
admissible fundamental groups.

Proposition 3.10. (i) The dual semi-graph ΓX• can be mono-anabelian reconstructed from
ΠX•.

(ii) For each open subgroup H ⊆ ΠX•, the natural map of dual semi-graphs

ΓX•
H
→ ΓX•

can be mono-anabelian reconstructed from the natural injection H ↪→ ΠX•. Moreover, if H ⊆
ΠX• is an open normal subgroup, then the action of ΠX•/H on ΓX•

H
induced by the action of

ΠX•/H on X•
H can be mono-anabelian reconstructed from the natural injection H ↪→ ΠX•.

Proof. By Lemma 3.2 and Lemma 3.3, we may choose an edge-triple

TΠX•
def
= (ℓ, d, y)

associated to ΠX• . Write Hy for the kernel of ΠX• ↠ Πét
X•

y
↠ Fd and Y • for the pointed stable

curve over k corresponding to Hy. Then Proposition 3.6 implies that the sets

Ecl
TΠX•

, Eop
TΠX•

can be mono-anabelian reconstructed from Hy and ΠX• .
Let e ∈ ecl(ΓX•)∪eop(ΓX•) be an arbitrary edge and v(e) the set of vertices on which e abuts.

We only treat the case of closed edges.
Let β ∈ Ecl,⋆

TΠX•
. Write Y •

β → Y • for the Galois admissible covering corresponding to β, Hβ

for the kernel of β which is the open normal subgroup of Hy corresponding to Y •
β , and ΓY •

β
for

the dual semi-graph of Y •
β . Let m1 = #v(ΓX•) − 2, m2 = #v(ΓX•) − 1, and i ∈ {1, 2}. We

observe that β ∈ Ecl,⋆,mi

TΠX• ,eβ
if and only if

#v(ΓY •
β
) = #v(ΓY •)−mi + ℓmi = #v(ΓX•)−mi + ℓmi.

Since Proposition 3.9 implies that v(ΓY •
β
) and v(ΓX•) can be mono-anabelian reconstructed

from Hα and ΠX• , we have that Ecl,⋆,mi

TΠX• ,eβ
can be mono-anabelian reconstructed from Hy and

ΠX• . By Lemma 2.3, for each m ∈ Z≥0, if E
cl,⋆,m
TΠX•

̸= ∅, then the composition of maps

Ecl,⋆,m
TΠX•

↪→ Ecl,⋆
TΠX•

↠ Ecl
TΠX•

∼→ ecl(ΓX•)
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is a surjection. In particular, we have that Ecl,⋆,m
TΠX• ,e

̸= ∅ if Ecl,⋆,m
TΠX•

̸= ∅.
Let α ∈ Ecl,⋆,n

TΠX• ,e
be arbitrary element, where n = m2 if Ecl,⋆,m2

TΠX• ,e
̸= ∅ (i.e., e is contained in a

unique irreducible component of X•), and that n = m1 if Ecl,⋆,m2

TΠX• ,e
= ∅ (i.e., e is contained in

two different irreducible components of X•). Proposition 3.9 (i) implies that the natural map

fver
Hα

: v(ΓY •
α
)→ v(ΓX•)

can be mono-anabelian reconstructed from Hα ↪→ ΠX• . Then we have

v(e) = {v ∈ v(ΓX•) | #(fver
Hα

)−1(v) = 1}.
This means that ΓX• can be mono-anabelian reconstructed from ΠX• . This completes the proof
of (i).

Similar arguments to the arguments given in the proof above imply that, for each open
subgroup H ⊆ ΠX• , the dual semi-graph

ΓX•
H

can be mono-anabelian reconstructed from ΠX• and H. Then (ii) follows from Proposition
3.9. □

3.4. Main theorem. Now, we prove the main theorem of the present paper.

Theorem 3.11. Let X• be an arbitrary pointed stable curve (i.e., we do not assume that X•

satisfies Condition A) of type (gX , nX) over an algebraically closed field of positive characteristic
and ΠX• the admissible fundamental group of X•. Then the topological data

{(gΓ, nΓ)}Γ∈Sub(ΓX• ), {(gΓ\L, nΓ\L)}Γ\L∈CSub(ΓX• )

and the combinatorial data

Sub(ΓX•), CSub(ΓX•), Sub(ΠX•), CSub(ΠX•)

associated to X• defined in Definition 1.4 can be mono-anabelian reconstructed from ΠX•.

Proof. Since ΠX• is topologically finitely generated, there exists a set of open normal subgroups
{Hi}i∈N (e.g. characteristic subgroups) of ΠX• such that the following conditions are satisfied:

(1) H1
def
= ΠX• ; (2) Hi ⊇ Hi+1 for each i ∈ N; (3) lim←−i∈N ΠX•/Hi = ΠX• . By Remark 1.5.2, we

may assume that X•
H2

satisfies Condition A.
First, we claim the following:

(1) For each i ∈ N, the dual semi-graph ΓX•
Hi

of X•
Hi

corresponding to Hi can be mono-

anabelian reconstructed from Hi;
(2) For each i ∈ N, the natural map of dual semi-graphs

ΓX•
Hi
→ ΓX•

induced by the admissible covering X•
H → X• can be mono-anabelian reconstructed

from the natural injection Hi ↪→ ΠX• , and the natural action of ΠX•/Hi on ΓX•
Hi

induced by the natural action of ΠX•/Hi on X•
Hi

can be mono-anabelian reconstructed
from the natural injection Hi ↪→ ΠX• .

Proposition 3.10 (i) implies that, for each i ≥ 2, ΓX•
Hi

can be mono-anabelian reconstructed

from Hi. Moreover, Remark 2.1.2 and Remark 2.2.2 imply that, for each i ≥ 2, the natural
action of ΠX•/Hi on ΓX•

Hi
induced by the natural action of ΠX•/Hi on X•

Hi
can be mono-

anabelian reconstructed from the natural injection Hi ↪→ ΠX• . For each i, j ≥ 2 such that
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j > i, by applying Proposition 3.10 (ii), we may identify naturally ΓX•
Hj
/(Hi/Hj) with ΓX•

Hi
.

Moreover, we may identify naturally ΓX•
Hj
/Hj with ΓX•

Hi
/Hi. Thus, we may put

ΓX•
def
= ΓX•

H2
/H2.

Then we obtain a natural map

ΓX•
i
→ ΓX•

i
/Hi = ΓX•

2
/H2 = ΓX• , i ≥ 2,

which can be mono-anabelian reconstructed from Hi ↪→ ΠX• . This completes the proof of the
claim.

Since ΓX• can be mono-anabelian reconstructed from ΠX• , by 1.3.2 and 1.3.3, the claim
implies that the combinatorial data

Sub(ΓX•), CSub(ΓX•), Sub(ΠX•), CSub(ΠX•)

associated to X• can be mono-anabelian reconstructed from ΠX• . In particular, Ver(ΠX•) can
be mono-anabelian reconstructed from ΠX• . On the other hand, we have that

nΓ
def
= #(eop(Γ)), nΓ\L

def
= nΓ + 2#(L)

can be mono-anabelian reconstructed from ΠX• (see 1.2.3 and 1.2.4). Moreover, the Betti
numbers rXΓ

and rXΓ\L of the dual semi-graphs of X•
Γ and X•

Γ\L can be mono-anabelian re-

constructed from ΠX• . Since Ver(ΠX•) can be mono-anabelian reconstructed from ΠX• , [T2,
Theorem 0.2] implies that {(gv, nv)}v∈v(ΓX• ) can be mono-anabelian reconstructed from ΠX• .
Then

gΓ
def
= rXΓ

+
∑

v∈v(Γ)

gv, gΓ\L
def
= rXΓ\L +

∑
v∈v(Γ\L)

gv

can be mono-anabelian reconstructed from ΠX• . We complete the proof of the theorem. □
The following corollary follows from Theorem 3.11.

Corollary 3.12. We maintain the notation introduced in Theorem 3.11. Let W • be a pointed
stable curve of type (gW , nW ) over an algebraically closed field of positive characteristic and ΠW •

the admissible fundamental group of W •. Then we can detect group-theoretically whether or not
there exists a sub-semi-graph Γ of ΓX• (resp. a semi-graph associated to a sub-semi-graph Γ of
ΓX• and a set of edges L of Γ) such that (gW , nW ) = (gΓ, nΓ) (resp. (gW , nW ) = (gΓ\L, nΓ\L))

and ΠW •
∼→ ΠΓ̂ (resp. ΠW •

∼→ Π
Γ̂\L).

4. The set Π
ord

g,n

4.1. The definitions of Π
ord

g,n and πadm
g,n : M

ord

g,n ↠ Π
ord

g,n. We maintain the notation introduced
in 0.2 and 1.3.

4.1.1. Let q ∈ M g,n, X
•
q a pointed stable curve of type (g, n) corresponding to a geometric

point over q, and Πq the admissible fundamental group of X•
q . Let ΓX•

q
be the dual semi-graph

of X•
q . Since the isomorphism class of ΓX•

q
does not depend on the choices of geometric points

over q, we write Γq for ΓX•
q
, and say Γq the dual semi-graph associated to q. Moreover, let

Γ̂q be the dual semi-graph of the universal admissible covering of X•
q associated to Πq, and

πq : Γ̂q ↠ Γq the surjective map of semi-graphs. We put

Edgope (Πq)
def
= {Iê}ê∈π−1

q (e), e ∈ eop(Γq),

which can be mono-anabelian reconstructed from Πq by Theorem 3.11.
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Let oΠq : {Edgope (Πq)}e∈eop(Γq)
∼→ {1, . . . , n} be a bijective map. We shall say that

(Πq, oΠq)

is an ordered admissible fundamental group of q. Let (Πq′ , oΠq′
) be an ordered admissible

fundamental group of q′. Let ϕ : Πq′
∼→ Πq be an isomorphism of profinite groups and

ϕop : {Edgope (Πq′)}e∈eop(Γq′ )
∼→ {Edgope (Πq)}e∈eop(Γq) the bijective map which is mono-anabelian

reconstructed from ϕ by Theorem 3.11. An isomorphism of ordered admissible fundamental
groups is a pair

(ϕ, ϕop) : (Πq′ , oΠq′
)

∼→ (Πq, oΠq)

such that oΠq ◦ ϕop = oΠq′
.

4.1.2. We denote by

Π
ord

g,n

the set of isomorphism classes of ordered admissible fundamental groups of q ∈M g,n. Moreover,

Theorem 3.11 implies that Π
ord

g,n can be mono-anabelian reconstructed from Πg,n.

Let oq : e
op(Γq)

∼→ {1, . . . , n} be a bijective map. Then (X•
q , oXq) is an ordered pointed stable

curve of type (g, n), where oXq : DXq

∼→ {1, . . . , n} is the bijective map induced by oq. Moreover,

since oq does not depend on the choices of geometric points over q, we have (q, oq) ∈M
ord

g,n. We
put

π̃adm
g,n : M g,n ↠ Πg,n, q 7→ [Πq],

and put

π̃adm,ord
g,n : M

ord

g,n ↠ Π
ord

g,n, (q, oq) 7→ [(Πq, oΠq)],

where oΠq denotes the bijective map induced by oq via the natural bijection (1.3.4)

{Edgope (Πq)}e∈eop(Γq)
∼→ Edgop(Πq)/Πq

∼→ eop(Γq),

and [(Πq, oΠq)] denotes the isomorphism class of (Πq, oΠq). Then we obtain the following result:

Theorem 4.1. Denote by Π
ord

g,n the set of isomorphism classes of ordered admissible fundamental

groups of q ∈M g,n. Then there are natural surjective maps

π̃adm,ord
g,n : M

ord

g,n ↠ Π
ord

g,n, (q, oq) 7→ [(Πq, oΠq)],

and

Π
ord

g,n ↠ Πg,n, [(Πq, oΠq)] 7→ [Πq],

which fit into the following commutative diagram

M
ord

g,n

π̃adm,ord
g,n−−−−−→ Π

ord

g,ny y
M g,n

π̃adm
g,n−−−→ Πg,n.

Moreover, Π
ord

g,n can be mono-anabelian reconstructed from Πg,n.

4.2. Clutching maps I. We maintain the notation introduced in 4.1.
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4.2.1. Let R
def
= {r1, . . . , rn1} and S

def
= {s1, . . . , sn2} be distinct subsets of {1, . . . , n} such that

r1 < · · · < rn1 , that s1 < · · · < sn2 , and that n1 + n2 = n. Recall that we have the following
clutching morphism for moduli stacks ([K, Definition 3.8]):

α′
g1,g2,R,S :Mord

g1,n1+1 ×Fp
Mord

g2,n2+1 →M
ord

g,n,

where g = g1 + g2. We see that α′
g1,g2,R,S induces the following continuous map of topological

spaces:

α̃g1,g2,R,S : M
ord

g1,n1+1 ×M
ord

g2,n2+1 →M
ord

g,n,

where M
ord

g1,n1+1 ×M
ord

g2,n2+1 denotes the product as topological spaces.

4.2.2. Let i ∈ {1, 2}, [(Πqi , oΠqi
)] ∈ Π

ord

gi,ni+1, and [(Πq, oΠq)] ∈ Π
ord

g,n. Moreover, let Γqi and Γq

be the dual semi-graphs associated to qi and q, respectively.
Let ei ∈ eop(Γqi). We shall say that Γq is glued by Γq1 and Γq2 along e1 and e2 if the following

conditions are satisfied:
(i) There exists an isomorphism αsg

qi
: Γqi

∼→ Γ′
qi
, where Γ′

qi
∈ Sub(Γq) is a sub-semi-graph of

Γq (Definition 1.1 (e)) such that αsg
q1
(e1) = αsg

q2
(e2) = e ∈ ecl(Γq).

(ii) If we regard Γqi as a sub-semi-graph of Γq via the isomorphism αsg
qi

(i.e., we identify Γqi

with Γ′
qi
), then the following conditions hold: v(Γq1)∪v(Γq2) = v(Γq), (e

op(Γq1)∪eop(Γq2))\{e} =
eop(Γq), e

cl(Γq1) ∪ ecl(Γq2) ∪ {e} = ecl(Γq), v(Γq1) ∩ v(Γq2) = ∅, ecl(Γq1) ∩ ecl(Γq2) = ∅, and
eop(Γq1) ∩ eop(Γq2) = {e}.

Example 4.2. Let Γqi , i ∈ {1, 2}, be the following semi-graph:

v1 e1e0Γq1 :

e2
v2 e3Γq2 :

Then Γq is as follows, which is glued by Γq1 and Γq2 along e1 and e2:

v1
e

e0 v2 e3Γq:
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4.2.3. Now, let us define a clutching map for Π
ord

g,n corresponding to α̃g1,g2,R,S. First, we note
that oΠqi

induces a bijection

oqi : e
op(Γqi)

∼→ {1, . . . , ni + 1}.

Then we write eni+1
def
= o−1

qi
(ni + 1).

We put

αgp
g1,g2,R,S : Π

ord

g1,n1+1 × Π
ord

g2,n2+1 → Π
ord

g,n, ([(Πqi , oΠqi
)])i∈{1,2} 7→ [(Πq, oΠq)],

where [(Πqi , oΠqi
)] and [(Πq, oΠq)] satisfy the following conditions:

(i) Γq is glued by Γq1 and Γq2 along en1+1 and en2+1.

(ii) There exists an isomorphism of profinite groups αqi : Πqi
∼→ ΠΓ̂′

qi

, where Γ′
qi

is the

sub-semi-graph of Γq defined in 4.2.2.
(iii) Theorem 3.11 implies that the isomorphism αqi determines group-theoretically an iso-

morphism of semi-graphs Γqi
∼→ Γ′

qi
. Then this isomorphism coincides with the isomorphism

αsg
qi

defined in 4.2.2.

(iv) The bijections oq1 ⊔ oq2 and eop(Γq1) \ {en1+1} ⊔ eop(Γq2) \ {en2+1}
∼→ eop(Γq) induced by

αsg
q1
⊔ αsg

q2
determine a bijection

oq : e
op(Γq)

∼→ {1, . . . , n}
which fits into the following commutative diagram

eop(Γq1) \ {en1+1} ⊔ eop(Γq2) \ {en2+1}
oq1 |eop(Γq1 )\{en1+1}⊔oq2 |eop(Γq2 )\{en2+1}−−−−−−−−−−−−−−−−−−−−−−−−→ {1, . . . , n1} ⊔ {1, . . . , n2}y y

eop(Γq)
oq−−−→ {1, . . . , n},

where the vertical arrow on the right-hand side is the bijection

{1, . . . , n1} ⊔ {1, . . . , n2}
∼→ {1, . . . , n}, a, b 7→ ra, sb.

(v) The bijection eop(Γq)
∼→ {1, . . . , n} induced by oΠq coincides with oq defined in (iv).

4.2.4. [M1, Appendix] (or [M2, Section 2] for a more general theory) implies that αgp
g1,g2,R,S is

well-defined. Moreover, by applying Theorem 3.11 and Corollary 3.12, we see that αgp
g1,g2,R,S

can be mono-anabelian reconstructed from Πg,n. We obtain the following result:

Theorem 4.3. There exists a map

αgp
g1,g2,R,S : Π

ord

g1,n1+1 × Π
ord

g2,n2+1 → Π
ord

g,n, ([(Πqi , oΠqi
)])i∈{1,2} 7→ [(Πq, oΠq)]

which fits into the following diagram

M
ord

g1,n1+1 ×M
ord

g2,n2+1

α̃g1,g2,R,S−−−−−−→ M
ord

g,n

π̃adm,ord
g1,n1+1×π̃adm,ord

g2,n2+1

y π̃adm,ord
g,n

y
Π

ord

g1,n1+1 × Π
ord

g2,n2+1

αgp
g1,g2,R,S−−−−−−→ Π

ord

g,n.

Moreover, Π
ord

g1,n1+1, Π
ord

g2,n2+1, and αgp
g1,g2,R,S can be mono-anabelian reconstructed from Πg,n.

4.3. Clutching maps II. We maintain the notation introduced in 4.1.
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4.3.1. Recall that we have the following clutching morphism for moduli stacks ([K, Definition
3.8]):

β′ :Mord

g−1,n+2 →M
ord

g,n.

We see that β′ induces the following continuous map of topological spaces:

β̃ : M
ord

g−1,n+2 →M
ord

g,n.

4.3.2. Let [(Πq0 , oΠq0
)] ∈ Π

ord

g−1,n+2 and [(Πq, oΠq)] ∈ Π
ord

g,n. Moreover, let Γq0 and Γq be the dual
semi-graphs associated to q0 and q, respectively.

Let e1, e2 ∈ eop(Γq0). We shall say that Γq is glued by Γq0 along e1 and e2 if there exists a
closed edge e ∈ ecl(Γq) such that Γq \ {e} is a semi-graph associated to Γq and {e}, and that
there exists an isomorphism

βsg,◦
q0

: Γq0 \ {e1, e2}
∼→ Γq \ {e}.

Example 4.4. Let Γq0 be the following semi-graph:

v

e2

e1

e0Γq0 :

Then Γq is as follows, which is glued by Γq0 along e1 and e2:

v1 ee0Γq:

4.3.3. Now, let us define a clutching map for Π
ord

g,n corresponding to β̃. First, we note that oΠq0

induces a bijection

oq0 : e
op(Γq0)

∼→ {1, . . . , n+ 1, n+ 2}.

Then we write en+i
def
= o−1

q0
(n+ i), i ∈ {1, 2}.

We put

βgp : Π
ord

g−1,n+2 → Π
ord

g,n, [(Πq0 , oΠq0
)] 7→ [(Πq, oΠq)],

where [(Πq0 , oΠq0
)] and [(Πq, oΠq)] satisfy the following conditions:

(i) There exists a closed edge e ∈ ecl(Γq) such that Γq is glued by Γq0 along en+1 and en+2.

(ii) There exists an isomorphism of profinite groups βq0 : Πq0
∼→ Π ̂Γq0\{e}

.

(iii) Write Γq\e for the dual semi-graph of X•
Γq\{e} (1.2.4). Theorem 3.11 implies that βq0

induces group-theoretically an isomorphism of semi-graphs Γq0
∼→ Γq\e. Then the restriction of

this isomorphism to Γq0\{en+1, en+2} coincides with the isomorphism βsg,◦
q0

: Γq0\{en+1, en+2}
∼→

Γq \ {e} defined in 4.3.2.
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(iv) The bijections oq0 and eop(Γq0) \ {en+1, en+2}
∼→ eop(Γq) induced by βsg,◦

q0
determine a

bijection

oq : e
op(Γq)

∼→ {1, . . . , n}
which fits into the following commutative diagram:

eop(Γq0) \ {en+1, en+2}
oq0 |eop(Γq0 )\{en+1,en+2}−−−−−−−−−−−−−−→ {1, . . . , n}y ∥∥∥

eop(Γq)
oq−−−→ {1, . . . , n}

(v) The bijection eop(Γq)
∼→ {1, . . . , n} induced by oΠq coincides with oq defined in (iv).

4.3.4. [M1, Appendix] (or [M2, Section 2] for a more general theory) implies that βgp is well-
defined. Moreover, by applying Theorem 3.11 and Corollary 3.12, we see that βgp can be
mono-anabelian reconstructed from Πg,n. We obtain the following result:

Theorem 4.5. There exists a map

βgp : Π
ord

g−1,n+2 → Π
ord

g,n, [(Πq0 , oΠq0
)] 7→ [(Πq, oΠq)],

which fits into the following diagram

M
ord

g−1,n+2

β−−−→ M
ord

g,n

π̃adm,ord
g−1,n+2

y π̃adm,ord
g,n

y
Π

ord

g−1,n+2

βgp

−−−→ Π
ord

g,n.

Moreover, Π
ord

g−1,n+2 and βgp can be mono-anabelian reconstructed from Πg,n.

References

[AP1] J. Achter, R. Pries, Monodromy of the p-rank strata of the moduli space of curves. Int. Math. Res.
Not. 2008, no. 15, 25 pp.

[AP2] J. Achter, R. Pries, The p-rank strata of the moduli space of hyperelliptic curves. Adv. Math. 227
(2011), 1846-1872.

[FvdG] C. Faber, G. van der Geer, Complete subvarieties of moduli spaces and the Prym map, J. Reine
Angew. Math. 573 (2004), 117–137.

[G] A. Grothendieck, Letter to G. Faltings (translation into English). Geometric Galois actions. 1.
Around Grothendieck’s “Esquisse d’un programme”. Edited by Leila Schneps and Pierre Lochak.
London Mathematical Society Lecture Note Series, 242. Cambridge University Press, Cambridge,
1997. iv+293 pp.

[HM] Y. Hoshi, S. Mochizuki, On the combinatorial anabelian geometry of nodally nondegenerate outer
representations, Hiroshima Math. J. 41 (2011), 275–342.

[HMM] Y. Hoshi, A. Minamide, S. Mochizuki,Group-theoreticity of numerical invariants and distinguished
subgroups of configuration space groups, RIMS Preprint 1870.

[HI] Y. Hoshi, Y. Iijima, A pro-ℓ version of the congruence subgroup problem for mapping class groups
of genus one, J. Algebra 520 (2019), 1–31.

[K] F. Knudsen, The projectivity of the moduli space of stable curves, II: The stacks Mg,n, Math.
Scand., 52 (1983), 161-199.

[M1] S. Mochizuki, The absolute anabelian geometry of hyperbolic curves. Galois theory and modular
forms, 77-122, Dev. Math., 11, Kluwer Acad. Publ., Boston, MA, 2004.

[M2] S. Mochizuki, Semi-graphs of anabelioids. Publ. Res. Inst. Math. Sci. 42 (2006), 221–322.
[M3] S. Mochizuki, On the combinatorial cuspidalization of hyperbolic curves. Osaka J. Math. 47 (2010),

651–715.



41

[M4] S. Mochizuki, Topics in Absolute Anabelian Geometry III: Global Reconstruction Algorithms, J.
Math. Sci. Univ. Tokyo 22 (2015), 939–1156.
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