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Abstract. In the present paper, we study the arithmetic fundamental groups of
curves over local fields from the point of view of anabelian geometry. In particular,
we prove that, under certain technical assumptions, a continuous isomorphism over
the absolute Galois group of the basefield between the tame fundamental groups of
hyperbolic curves over a local field arises from a unique isomorphism between the
given hyperbolic curves over the basefield. This “certain technical assumptions” are
satisfied whenever the basefield of the hyperbolic curves under consideration is a
mixed-characteristic local field. Thus, one may conclude that an arbitrary contin-
uous isomorphism over the absolute Galois group of the basefield between the étale
fundamental groups of hyperbolic curves over a mixed-characteristic local field arises
from a unique isomorphism between the given hyperbolic curves over the basefield.
Moreover, this conclusion, together with a “formal argument” in anabelian geometry,
leads to an alternative proof of a famous anabelian theorem, i.e., for hyperbolic curves
over sub-p-adic fields for some prime number p, proved by Shinichi Mochizuki. Let us
recall that main ingredients of the proof of this anabelian theorem by Mochizuki are
various results in the study of p-adic Hodge theory. In particular, the present paper
yields an alternative proof of this famous anabelian theorem by Mochizuki in which
we never apply such a result in p-adic Hodge theory.
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Introduction

In the present paper, we study the arithmetic fundamental groups of curves over local
fields from the point of view of anabelian geometry. In the present Introduction, let

• K be a field,
• K a separable closure of K, and
• Z1, Z2 hyperbolic curves over K.

Write

• GK
def
= Gal(K/K) for the absolute Galois group of K determined by the sepa-

rable closure K,
• ΠZ1 , ΠZ2 for the respective tame fundamental groups of Z1, Z2, relative to
suitable choices of basepoints,

• IsomK(Z1, Z2) for the set of isomorphisms Z1
∼→ Z2 over K,

• IsomGK
(ΠZ1 ,ΠZ2) for the set of continuous isomorphisms ΠZ1

∼→ ΠZ2 over GK ,
and
• IsomGK

(ΠZ1 ,ΠZ2) for the quotient set of IsomGK
(ΠZ1 ,ΠZ2) with respect to

the natural conjugation action of the kernel of the natural continuous outer
homomorphism ΠZ2 → GK .

Thus, the functoriality of the operation of taking tame fundamental groups determines
a natural map

IsomK(Z1, Z2) // IsomGK
(ΠZ1 ,ΠZ2).

The anabelian Grothendieck conjecture for hyperbolic curves may be formulated as
the bijectivity of this map under suitable choices of (K,Z1, Z2). A (special case of
a) famous theorem proved by Shinichi Mochizuki asserts the bijectivity of the map
under consideration in the case where K is sub-p-adic for some prime number p (cf. [18,
Theorem A]).

Theorem A. Suppose that K is sub-p-adic for some prime number p, i.e., that K is
isomorphic to a subfield of a finitely generated extension field of the p-adic completion
of the field of rational numbers for some prime number p (cf. [18, Definition 15.4]).
Then the above map

IsomK(Z1, Z2) // IsomGK
(ΠZ1 ,ΠZ2)

is bijective. Put another way, every continuous isomorphism ΠZ1

∼→ ΠZ2 over GK arises
from a unique isomorphism Z1

∼→ Z2 over K.

Let us recall that main ingredients of the proof of this theorem by Mochizuki are
various results in the study of p-adic Hodge theory. One main purpose of the present
paper is to yield an alternative proof of this theorem in which we never apply such a
result in p-adic Hodge theory (cf. Corollary 11.3).
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Next, let us explain the main theorem of the present paper. To this end, in the
remainder of the present Introduction, suppose that

the field K is a complete discrete valuation field.

Write

• R for the valuation ring of K (which is necessarily a complete discrete valuation
ring) and
• k for the residue field of R.

In the remainder of the present Introduction, suppose, moreover, that

the field k is perfect and of characteristic p > 0.

One may find two properties for continuous isomorphisms between tame fundamental
groups — i.e., LSF-compatibility and Prym-compatibility — and one property of fields
— i.e., ×-Kummer-faithfulness — in the statement of Theorem B below, i.e., the main
theorem of the present paper.

• We shall say that a continuous isomorphism ϕ : ΠZ1

∼→ ΠZ2 over GK is LSF-
compatible (where the “LSF” stands for “Log Special Fiber”) if, roughly speak-
ing, for suitable open subgroups H ⊆ ΠZ1 of ΠZ1 , the induced isomorphism
H

∼→ ϕ(H) induces an isomorphism between the “log special fibers” of the re-
spective connected finite étale coverings of Z1, Z2 that correspond to H ⊆ ΠZ1 ,
ϕ(H) ⊆ ΠZ2 . The precise definition of the notion of LSF-compatibility is given
in Definition 7.4.
• We shall say that a continuous isomorphism ϕ : ΠZ1

∼→ ΠZ2 over GK is Prym-
compatible if, roughly speaking, for suitable open subgroups H ⊆ ΠZ1 of ΠZ1 ,
the induced isomorphism H

∼→ ϕ(H) is compatible with certain objects that

are related to the homomorphism “ι : Y → G̃⊗K” of (6) that appears in the
definition of objects of the category DDpol defined in [6, Chapter III, §2]. The
precise definition of the notion of Prym-compatibility is given in Definition 10.7.
• We shall say that a field F is ×-Kummer-faithful if, for every finite separable
extension field F ′ of F and every semi-abelian variety A over F ′, the intersection⋂

n n · A(F ′) — where n ranges over the positive integers invertible in F — is
zero (cf. Definition 10.4, (ii)).

The main theorem of the present paper is as follows (cf. Theorem 11.1, Corollary 11.2):

Theorem B. Let ϕ : ΠZ1

∼→ ΠZ2 be a continuous isomorphism over GK. Suppose that
the isomorphism ϕ is LSF-compatible. Suppose, moreover, that one of the following
three conditions is satisfied:

(1) The field K is of characteristic zero and ×-Kummer-faithful.
(2) The field K is of characteristic zero, and the isomorphism ϕ is Prym-compatible.
(3) The field K is of characteristic p, the hyperbolic curve Z1 over K is nonisotrivial

(cf. Definition 5.8, (i)), the field k is algebraic over a finite field, and the
isomorphism ϕ is Prym-compatible.

Then the isomorphism ϕ arises from a unique isomorphism Z1
∼→ Z2 over K.

Let us observe that ifK is a mixed-characteristic local field (i.e., ifK is of characteris-
tic zero, and k is finite), then one may verify that the isomorphism ϕ is LSF-compatible
(cf. [17, Theorem 7.2]), and the field K satisfies condition (1) of the statement of The-
orem B (cf. [15, Theorem 7]). In particular, it follows from Theorem B (i.e., in the
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case where condition (1) is satisfied) that Theorem A in the case where K is a mixed-
characteristic local field holds. Moreover, it follows immediately from this conclusion,
together with a “formal argument”, i.e., applied in the proof of [18, Corollary 15.5],
that Theorem A for an arbitrary “K” holds.
Next, let us discuss the strategy of the proof of Theorem B. One important observa-

tion in the proof of Theorem B is the existence of Prym-faithful Galois étale coverings
of stable curves. In order to explain the notion of a Prym-faithful Galois étale covering,
let us fix

• stable curves X, Y over the residue field k of R and
• a Galois étale covering Y → X over k of degree a prime number invertible in
k.

Now suppose that we are given a stable curve X over R that is smooth over K and an
isomorphism X

∼→ X ×R k over k, by means of which we identify X with X ×R k. Then
it follows immediately from the topological invariance of étale sites that the Galois étale
covering Y → X over k extends uniquely to a Galois étale covering Y → X over R,
where Y is a stable curve over R. In particular,

(a) by considering the restriction to X ⊆ X of the log structure on X associated to
the divisor X ⊆ X , one obtains a log structure on X, hence also a log scheme
X log (whose underlying scheme is X), and,

(b) by considering the “difference”, relative to the resulting covering Y → X , be-
tween the Jacobian varieties of X , Y , one obtains a polarized abelian scheme
PY/X over R, i.e., the generalized Prym scheme PY/X associated to the Ga-
lois étale covering Y → X (cf. Definition 2.1) equipped with the Prym semi-
polarization PY/X → P t

Y/X — where we write P t
Y/X for the dual semi-abelian

scheme of PY/X over R (cf., e.g., [22, Chapitre IV, Théorème 7.1, (i)]) — asso-
ciated to the Galois étale covering Y → X (cf. Definition 2.3, (ii)).

Then we shall say that the Galois étale covering Y → X is Prym-faithful if, roughly
speaking, the assignment “X 7→ (X log, PY/X )” — i.e., the assignment that assigns,
to (the isomorphism class of) X as above, the (isomorphism class of the) pair that
consists of the log scheme of (a) and the polarized abelian scheme of (b) — is injective.
The precise definition of the notion of a Prym-faithful Galois étale covering is given in
Definition 2.5. Then one main technical result of the present paper is as follows (cf.
Theorem 4.5, Lemma 6.10):

Theorem C. There exist

• a positive integer n,
• a finite extension field kY of k,
• for each i ∈ {0, . . . , n}, a stable curve Yi over kY ,
• for each i ∈ {1, . . . , n}, a Galois étale covering Yi−1 → Yi over kY , and
• a Galois étale covering Yn → X over k

such that the Galois étale covering Y0 → Y1 over kY is of degree a prime number invert-
ible in k, Prym-faithful, and new-ordinary (cf. Definition 2.2), i.e., and satisfies the
condition that every abelian variety quotient of the (semi-abelian variety over kY ob-
tained by forming the) cokernel of the natural homomorphism over kY from the Jacobian
variety of Y1 to the Jacobian variety of Y0 is ordinary.
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Let us recall that Theorem C in the case where the stable curve X is smooth over
k was already essentially proved by Akio Tamagawa. Indeed, Theorem C in the case
where X is smooth over k may be regarded as a formal consequence of [28, Theorem
0.5], [28, Theorem 0.7], [28, Proposition 0.8], and [28, Corollary 5.3]. Observe that the
problem of the existence of Prym-faithful Galois étale coverings of stable curves may
be regarded as the logarithmic infinitesimal version of the “Torelli problem-type result”
for generalized Prym varieties. In the present paper, in order to prove Theorem C, we
apply the theory of the arithmetic compactifications of Shimura varieties of PEL-type
discussed in [13].

Finally, let us explain the strategy of the proof of Theorem B especially in the case
where condition (1) is satisfied. To this end, suppose that the field K satisfies condition
(1) (i.e., is of characteristic zero and ×-Kummer-faithful), and that we are given a
hyperbolic curve Z over K. Write ΠZ for the étale fundamental group of Z, relative
to a suitable choice of basepoint. Then, roughly speaking, the strategy of the proof
of Theorem B (i.e., to reconstruct the curve Z from the topological group ΠZ group-
theoretically) may be summarized as follows.

For simplicity, suppose that Z is proper over K. Then observe that it follows from
Theorem C, together with the Galois descent argument and some well-known facts
concerning the geometry of stable curves, that, to reconstruct Z from ΠZ , we may
assume without loss of generality, by replacing Z by a suitable connected finite étale
covering of Z, that there exists a commutative diagram of schemes over R

X //
� _

��

Z //
� _

��

Spec(K)
� _

��
X // Z // Spec(R)

— where X is a (necessarily proper) hyperbolic curve over K, X and Z are stable
curves over R, the right-hand vertical arrow is the natural open immersions, the two
squares are cartesian, the left-hand horizontal arrows are Galois étale coverings over R,
and the Galois étale covering

X def
= X ×R k // Z def

= Z ×R k

over k determined by the left-hand lower horizontal arrow is of degree a prime number
invertible in k, Prym-faithful, and new-ordinary. Write

• ∆X for the étale fundamental group of X ×K K, relative to a suitable choice
of basepoint,
• Z log for the log scheme obtained by equipping Z with the log structure associ-
ated to the divisor Z ⊆ Z,
• Z log for the log scheme obtained by equipping Z with the log structure obtained
by pulling back the log structure of Z log by the natural closed immersion Z ↪→
Z,
• PX/Z , PX/Z for the respective generalized Prym schemes associated to the Ga-
lois étale coverings X → Z, X → Z (cf. Definition 2.1), and

• P̃X/Z for the Raynaud extension of the semi-abelian scheme PX/Z over R (cf.,
e.g., [6, Chapter II, §1]).
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(i) First, observe that it follows from the LSF-compatibility assumption in the
statement of Theorem B that one may reconstruct the log special fiber

Z log

of Z and the Galois étale covering

X // Z

over k.
(ii) Next, observe that, by considering the generalized Prym scheme associated to

the Galois étale covering X → Z, which was reconstructed in (i), one may
reconstruct the special fiber

PX/Z = PX/Z ×R k

of the generalized Prym scheme PX/Z . Note that it is well-known (cf., e.g., [6,

Chapter II, §1]) that we have a natural identification PX/Z ×R k = P̃X/Z ×R k.
(iii) Next, consider the natural continuous outer action of GK on ∆X . Then one

may verify from some techniques in combinatorial anabelian geometry that one
may reconstruct, as a suitable GK-stable subquotient of the maximal pro-p
quotient of the topological abelianization of ∆X , the p-adic Tate module

Tp(P̃X/Z)

associated to the semi-abelian scheme P̃X/Z equipped with the natural con-
tinuous action of GK . Thus, since (we have assumed that) the field K is of
characteristic zero, it follows from a classical theorem in the study of p-divisible
groups (cf. [30, Theorem 4]) that one may reconstruct the p-divisible group

P̃X/Z [p
∞]

over R associated to P̃X/Z .

(iv) Next, recall that we have assumed that the semi-abelian variety PX/Z = P̃X/Z×R

k (cf. (ii)) over k is ordinary, which thus implies that the p-divisible group over
k associated to this semi-abelian variety may be written as the direct product
of an étale p-divisible group over k and a multiplicative p-divisible group over
k. It follows from this ordinariness, together with our assumption that the field
K is of characteristic zero, that one may reconstruct a natural identification
between
• the p-divisible group PX/Z [p

∞] over k associated to the semi-abelian variety
PX/Z , which was reconstructed in (ii), and

• the special fiber P̃X/Z [p
∞]×R k of the p-divisible group P̃X/Z [p

∞], which
was reconstructed in (iii).

In particular, it follows from a classical theorem in the study of deformations
of ordinary semi-abelian varieties (cf. [12, Theorem 1.2.1]) that one may recon-
struct the semi-abelian scheme

P̃X/Z
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over R. We note that this reconstruction step gives rise to one main reason
why one cannot remove the assumption that K is of characteristic zero from
condition (1) of Theorem B (cf. Remark 9.5.1).

(v) Next, recall that we have assumed that the field K is of characteristic zero
and ×-Kummer-faithful. In particular, by applying some techniques in com-
binatorial anabelian geometry to the natural continuous outer action of GK

on ∆X , one may reconstruct the object — which consists of six items, and

whose first item is given by the Raynaud extension P̃X/Z reconstructed in (iv)
— of the category DDpol defined in [6, Chapter III, §2] that corresponds, rela-
tive to the equivalence Mpol : DDpol

∼→ DEGpol of categories of [6, Chapter III,
Corollary 7.2], to the generalized Prym scheme PX/Z (i.e., strictly speaking,
equipped with the Prym semi-polarization associated to the Galois étale cov-
ering Y → X — cf. Definition 2.3, (ii)). Thus, by considering the equivalence

Mpol : DDpol
∼→ DEGpol of categories of [6, Chapter III, Corollary 7.2], one may

reconstruct the semi-abelian scheme

PX/Z

over R.
(vi) Finally, observe that since (we have assumed that) the Galois étale covering
X → Z over k is Prym-faithful, one may reconstruct, from the log special fiber
Z log of (i) and the generalized Prym scheme PX/Z of (v), the stable curve

Z
over R, hence also the hyperbolic curve

Z

over K, as desired.

This completes the rough explanation of the strategy of the proof of Theorem B in the
case where condition (1) is satisfied.

We have the following two remarks concerning the proofs of the main results of the
present paper.

• The proof of Theorem B given in the present paper may be regarded as a
substantial technical refinement of the argument given in the final portion of
[17, §9]. In [17, Theorem 9.7], Mochizuki proved that, roughly speaking, if
the field K is p-adic local for some prime number p, and the Jacobian variety
of Z1 has ordinary semistable reduction, then every continuous isomorphism
ΠZ1

∼→ ΠZ2 over GK determines functorially an isomorphism Z1
∼→ Z2 over K.

• According to Tamagawa, he has already established (but has not written), more
than two decades ago, a special case of Theorem B by similar techniques to the
techniques applied in the proof of Theorem B. As pointed out in the discussion
following Theorem C, Tamagawa essentially gave the proof of Theorem C in the
case where the given stable curve is smooth, which leads to a similar result to
Theorem B in the case where the given hyperbolic curves have good reduction.

Acknowledgments. The authors have reached the main ideas and proofs for the
main results of the present paper around the middle of 2022. The first author was
supported by JSPS KAKENHI Grant Numbers 21K03162 and 24K06668. The second



8 YUICHIRO HOSHI AND YU YANG

author was supported by JSPS KAKENHI Grant Number 20K14283. This research
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Joint Usage/Research Center located in Kyoto University.

1. Stable curves

In the present section, we introduce some notational conventions related to the notion
of a stable curve. In the present section, let

• S be a scheme and
• X a stable curve over S (cf. [4, Definition 1.1]).

Definition 1.1. We shall write

• ωX for the dualizing sheaf of X over S (cf. the discussion following [4, Definition
1.1]) and

• JX
def
= Pic0X/S for the Jacobian variety of X over S, which is a semi-abelian

scheme over S (cf. [3, §9.4, Theorem 1]).

Definition 1.2. Suppose that S is the spectrum of a separably closed field. Then we
shall write

• ΓX for the dual graph of the stable curve X over S,
• v(ΓX) for the set of vertices of the graph ΓX (i.e., the set of irreducible com-
ponents of X), and
• e(ΓX) for the set of edges of the graph ΓX (i.e., the set of singular points of
X).

By abuse of notation, we shall regard e(ΓX) as a closed subset of X in the evident way.

Definition 1.3. Suppose that S is the spectrum of a field k. Let k be a separable
closure of k and v ∈ v(ΓX×kk

) a vertex of ΓX×kk
. Then we shall write

• IXv = Iv for the irreducible component of X obtained by forming the image in
X of the irreducible component of X ×k k that corresponds to v and
• DX

v = Dv for the closed subset of Iv obtained by forming the intersection of Iv
with the set of singular points of X.

By abuse of notation, write

• IXv = Iv for the reduced closed subscheme of X whose underlying closed subset
is given by Iv ⊆ X.

Moreover, we shall write

• UX
v = Uv

def
= Iv \ Dv for the open subscheme of Iv obtained by forming the

complement of Dv in Iv,
• Xv for the smooth proper curve over k obtained by forming the smooth com-
pactification of Uv,
• gXv = gv for the genus of the smooth proper curve Xv over k,

• ΩXv

def
= Ω1

Xv/k
for the sheaf of relative differentials of Xv over k, and

• JX
v = Jv

def
= Pic0Xv/k for the Jacobian variety of Xv over k, which is an abelian

variety over k (cf. [3, §9.2, Proposition 3]).

Observe that one verifies easily that if k is perfect, then Uv is a hyperbolic curve over
k. If k is perfect, then we shall refer to Uv as the hyperbolic curve over k associated to
v.
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Definition 1.4. Suppose that S is the spectrum of a separably closed field k. Let
v ∈ v(ΓX) be a vertex of ΓX such that Iv is smooth over k. Then observe that one
verifies easily that the natural open immersions Uv ↪→ Iv and Uv ↪→ Xv determine an
identification between Iv with Xv, i.e., Iv = Xv. By abuse of notation, write Dv for the
reduced divisor on Iv = Xv whose support is given by the closed subset Dv ⊆ Iv = Xv.

Remark 1.4.1. Let us recall from [14, Chapter 10, Lemma 3.12, (b)] that, in the
situation of Definition 1.4, the natural closed immersion Xv ↪→ X determines an iso-
morphism of OXv -modules

ωX |Xv
∼= ΩXv(Dv).

Definition 1.5. Suppose that S is the spectrum of a field k. Let k be a separable
closure of k.

(i) We shall say that the stable curve X over k is sturdy if the inequality gX×kk
v > 1

holds for every v ∈ v(ΓX×kk
).

(ii) We shall say that the stable curve X over k is untangled if IX×kk
v is smooth

over k for every v ∈ v(ΓX×kk
).

(iii) We shall say that the stable curve X over k is split if the natural action of
Gal(k/k) on the graph ΓX×kk

is trivial.

Observe that one verifies easily that each of these conditions does not depend on the
choice of k.

Remark 1.5.1. Suppose that S is the spectrum of a field k, and that the stable curve
X over k is split. Then one verifies easily that the natural morphism X ×k k →
X determines respective bijections from v(ΓX×kk

), e(ΓX×kk
) to the set of irreducible

components of X, the set of singular points of X.

Lemma 1.6. The natural homomorphism AutS(X)→ AutS(JX) is injective.

Proof. This assertion follows from [4, Theorem 1.13]. □

2. Prym-faithful Galois étale coverings

In the present section, we give the definition of the notion of a Prym-faithful Galois
étale covering of a stable curve (cf. Definition 2.5 below), which will play a central role
in the proof of the main result of the present paper. In the present section, let

• S be a scheme,
• g ≥ 2 an integer,
• X a stable curve of genus g over S,
• Y a stable curve over S,
• l a prime number invertible on S, and
• f : Y → X a Galois étale covering of degree l over S (which thus implies that

Y is of genus gY
def
= l(g − 1) + 1), whose Galois group we denote by G.

By considering the natural (necessarily faithful — cf. Lemma 1.6) action of G on JY (cf.
Definition 1.1) (i.e., induced by the action of G on Y ), we shall regard G as a subgroup
of the automorphism group of JY over S.
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Definition 2.1. We shall write

hnew
def
= l −

∑
τ∈G

τ.

Thus, it follows from [28, Proposition-Definition 4.1], together with the discussion fol-
lowing [28, Proposition-Definition 4.1] in the case where we take the “N” of the discus-
sion to be l, that there exists a unique group subscheme of JY

PY/X ⊆ JY

such that

(1) the group scheme PY/X is geometrically connected over S and is an open group
subscheme of the closed group subscheme Ker(l−hnew : JY → JY ) ⊆ JY (which
thus implies that PY/X is a semi-abelian scheme over S), and, moreover,

(2) the endomorphism hnew of JY factors as the composite of a surjective smooth
homomorphism JY ↠ PY/X over S with the natural inclusion PY/X ↪→ JY .

We shall refer to this semi-abelian scheme PY/X over S as the generalized Prym scheme
associated to the Galois étale covering f : Y → X.

Definition 2.2. Suppose that S is the spectrum of a field k of positive characteris-
tic. Then we shall say that the Galois étale covering f : Y → X is new-ordinary if
the generalized Prym scheme associated to the Galois étale covering f : Y → X (cf.
Definition 2.1) is an ordinary semi-abelian variety over k (i.e., satisfies the condition
that every abelian variety quotient is ordinary).

Definition 2.3. Suppose that

• the scheme S is noetherian, normal, and integral, that
• the structure morphism Y → S of Y has a splitting (i.e., a morphism S → Y
over S), and that
• there exists a nonempty open subscheme U ⊆ S of S such that the stable curve

XU
def
= X ×S U over U , hence also the stable curve YU

def
= Y ×S U over U , is

smooth.

Write PY/X for the generalized Prym scheme associated to the Galois étale covering
f : Y → X. Observe that it follows from [3, §9.2, Proposition 3] that the semi-abelian
scheme JYU

= JY ×SU over U , hence also the semi-abelian scheme PYU/XU
= PY/X×SU

over U , is an abelian scheme over S. Write P t
Y/X for the dual semi-abelian scheme of

PY/X over S (cf., e.g., [22, Chapitre IV, Théorème 7.1, (i)]).

(i) Suppose that the stable curve X over S, hence also the stable curve Y over S,
is smooth. Then we shall refer to the polarization PY/X → P t

Y/X on PY/X that

arises from the restriction to PY/X ⊆ JY of the (necessarily ample) invertible

sheaf on JY determined by the theta divisor on PicgY −1
Y/S and some splitting of

the structure morphism Y → S as the Prym polarization associated to the
Galois étale covering f : Y → X. Observe that one verifies easily that this
polarization does not depend on the choice of such a splitting of the structure
morphism Y → S.

(ii) Observe that it follows from [6, Chapter I, Proposition 2.7] that the Prym
polarization PYU/XU

= PX/Y ×S U → P t
YU/XU

= P t
X/Y ×S U associated to

the Galois étale covering YU → XU determined by f extends uniquely to a
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homomorphism PY/X → P t
Y/X over S. Moreover, observe that one also verifies

easily that this extension PY/X → P t
Y/X does not depend on the choice of U .

We shall refer to this extension PY/X → P t
Y/X as the Prym semi-polarization

associated to the Galois étale covering f : Y → X.

Remark 2.3.1. Suppose that we are in the situation of Definition 2.3, (i). Suppose,
moreover, that S is the spectrum of a field. Then observe that one verifies easily that the
equality h2

new = lhnew holds. Thus, it follows immediately from the discussion preceding
[2, Theorem 5.3.2], together with condition (2) of Definition 2.1 and the primitivity
of the norm-endomorphisms associated to nontrivial abelian subvarieties proved in [2,
Norm-endomorphism Criterion 5.3.4], that the exponent (cf. the discussion preceding
[2, Lemma 5.3.1]) in JY of the generalized Prym scheme PY/X associated to the Galois
étale covering f : Y → X divides l (which thus implies that the Prym polarization
PY/X → P t

Y/X associated to the Galois étale covering f : Y → X is of degree a power

of l). In particular, the kernel of the Prym polarization PY/X → P t
Y/X is a finite étale

commutative group scheme of rank a power of l over S.

Definition 2.4. Suppose that S is the spectrum of a field k. Let R be a noetherian
complete local domain whose residue field is given by k and X a stable curve (necessarily
of genus g) over R whose special fiber X×Rk is given by X. Then it follows immediately
from [7, Exposé X, Théorème 2.1] that there exist

• a unique, up to isomorphism over X , stable curve Y (necessarily of genus gY )
over R and
• a unique Galois étale covering Φ: Y → X of degree l over R

that fit into a commutative diagram of schemes over R

Y �
� //

f

��

Y
Φ
��

X �
� // X

— where the upper horizontal arrow is a morphism that determines an isomorphism
Y

∼→ Y ×R k over k, and the lower horizontal arrow is the natural closed immersion.
Then we shall say that the Galois étale covering Φ: Y → X over R is the deformation
of the Galois étale covering f : Y → X associated to the stable curve X over R.

Definition 2.5. Suppose that S is the spectrum of a separably closed field k. Then
we shall say that the Galois étale covering f : Y → X is Prym-faithful if the following
condition is satisfied: Let R be a complete discrete valuation ring whose residue field is
given by k. For each i ∈ {1, 2}, let Xi be a stable curve (necessarily of genus g) over R

that is generically smooth over R and ιi : Xi×R k
∼→ X an isomorphism over S. Then if

the following two conditions are satisfied, then the composite ι−1
2 ◦ι1 : X1×Rk

∼→ X2×Rk
lifts to an isomorphism X1

∼→ X2 over R:

(1) Write
• Spec(R)log for the log scheme obtained by equipping Spec(R) with the log
structure associated to the divisor with normal crossings determined by
the closed point of Spec(R) and
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• Slog for the log scheme obtained by equipping S with the log structure
obtained by pulling back the log structure of Spec(R)log by the natural
surjective homomorphism R ↠ k.

Moreover, for each i ∈ {1, 2}, write
• X log

i for the log scheme over Spec(R)log obtained by equipping Xi with the
log structure associated to the divisor Xi ×R k ⊆ Xi and
• (Xi ×R k)log for the log scheme over Slog obtained by equipping Xi ×R k

with the log structure obtained by pulling back the log structure of X log
i

by the natural closed immersion Xi ×R k ↪→ Xi.
Then the composite ι−1

2 ◦ ι1 : X1 ×R k
∼→ X2 ×R k induces an isomorphism

(X1 ×R k)log
∼→ (X2 ×R k)log of log schemes over Slog.

(2) For each i ∈ {1, 2}, write
• fi for the Galois étale covering (necessarily of degree l) of Xi×R k obtained

by pulling back f : Y → X by the isomorphism ιi : Xi ×R k
∼→ X over S

and
• Yi → Xi for the deformation of the Galois étale covering fi associated to
the stable curve Xi over R (cf. Definition 2.4).

Then the isomorphism PY1/X1 ×R k
∼→ PY2/X2 ×R k (cf. Definition 2.1) of semi-

abelian schemes over S determined by the composite ι−1
2 ◦ι1 : X1×Rk

∼→ X2×Rk
lifts to an isomorphism PY1/X1

∼→ PY2/X2 of semi-abelian schemes over R that
is compatible with the respective Prym semi-polarizations associated to the
Galois étale coverings Y1 → X1, Y2 → X2 (cf. Definition 2.3, (ii)).

3. A sufficient condition to be Prym-faithful

In the present section, we establish a sufficient condition for a Galois étale covering
of a stable curve to be Prym-faithful (cf. Theorem 3.4 below). In the present section,
suppose that we are in the situation at the beginning of the preceding §2. Suppose,
moreover, that the scheme S is given by the spectrum of a separably closed field k of
characteristic p ≥ 0. Write

• □ for the set of prime numbers invertible in k,

• Ẑ□ for the pro-prime-to-□ completion of Z,
• Z(□) ⊆ Q for the localization of Z by the multiplicatively closed subset of Z
generated by the elements of □, and
• O for the Z(□)-algebra obtained by forming{

k if p = 0,
W (k) if p > 0

— where we write W (k) for the ring of Witt vectors with coefficients in k.

Definition 3.1. We shall write

• Mg for the moduli stack over O that parametrizes stable curves of genus g over
O (cf. [4, §5]),
• Mg for the open substack ofMg that parametrizes smooth stable curves of genus
g over O,
• RX for the completion of a strict henselization of Mg at the geometric point
obtained by forming the classifying morphism of the stable curve X of genus g
over k,
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• KX for the field of fractions (cf. Remark 3.1.1, (i), below) of RX (necessarily
of characteristic zero),

• M
def
= Spec(RX)→ Mg for the natural morphism over O,

• M◦
def
= M×Mg

Mg → Mg for the base-change of the natural morphism M→ Mg

by the natural open immersion Mg ↪→ Mg,
• Mlog for the log scheme obtained by equipping M with the log structure asso-
ciated to the divisor M \M◦ with normal crossings (cf. [4, Theorem 5.2]),
• X for the stable curve of genus g over M that corresponds to the natural
morphism M→ Mg,
• fX : X→M for the structure morphism of the stable curve X over M,
• X◦ for the (necessarily smooth) stable curve of genus g overM◦ that corresponds
to the morphism M◦ → Mg,
• f : Y → X for the Galois étale covering (necessarily of degree l) obtained by
forming the deformation (cf. Definition 2.4) of the Galois étale covering f : Y →
X associated to the stable curve X over M (cf. Remark 3.1.1, (i), below),

• fY
def
= fX ◦ f : Y → X → M for the structure morphism of the stable curve Y

over M,
• Y◦ for the (necessarily smooth) stable curve over M◦ obtained by forming the
base-change of fY : Y→M by the natural open immersion M◦ ↪→M,

• P
def
= PY/X, P◦

def
= PY◦/X◦ (cf. Definition 2.1),

• Pt, Pt
◦ for the respective dual semi-abelian schemes of P, P◦ over M, M◦ (cf.,

e.g., [22, Chapitre IV, Théorème 7.1, (i)]),
• Lie(JX), Lie(JY), Lie(P), Lie(Pt) for the RX-modules obtained by forming the
tangent spaces of the semi-abelian schemes JX, JY (cf. Definition 1.1), P, Pt

over M, respectively,
• Lie∨(JX), Lie

∨(JY), Lie
∨(P), Lie∨(Pt) for the RX-modules obtained by form-

ing the RX-duals of the RX-modules Lie(JX), Lie(JY), Lie(P), Lie(Pt), respec-
tively,
• λ◦ : P◦ → Pt

◦ for the Prym polarization associated to the Galois étale covering
Y◦ → X◦ determined by f (cf. Definition 2.3, (i)), and
• λ : P → Pt for the Prym semi-polarization associated to the Galois étale cov-
ering f : Y→ X (cf. Definition 2.3, (ii)).

Remark 3.1.1.

(i) Since the moduli stack Mg is smooth over O (cf. [4, Theorem 5.2]), the com-
pletion RX is a noetherian complete local regular domain.

(ii) It follows from [3, §9.2, Proposition 3] that the semi-abelian scheme JY◦ over
M◦, hence also the semi-abelian scheme P◦ over M◦, is an abelian scheme over
M◦.

Definition 3.2. Observe that one verifies easily that there exist a subfield F of KX ,
an field embedding F ↪→ C, and a polarized abelian variety (AF , λF ) over F such
that the polarized abelian variety (P◦, λ◦) ×RX

KX over KX determined by (P◦, λ◦)
and the natural inclusion RX ↪→ KX is isomorphic to the polarized abelian variety
(AF , λF )×F KX over KX determined by (AF , λF ) and the natural inclusion F ↪→ KX .
In the remainder of present Definition 3.2, we shall identify (P◦, λ◦) ×RX

KX with
(AF , λF )×F KX by means of some fixed isomorphism. Then we shall write



14 YUICHIRO HOSHI AND YU YANG

• (PC, λC) for the polarized abelian variety over C obtained by forming the base-
change of (AF , λF ) by the natural inclusion F ↪→ C,
• L = (L, ⟨·, ·⟩, h) for the PEL-type Z-lattice (cf. [13, Definition 1.2.1.3]) — i.e.,
in the case where we take the “(B, ⋆,O)” of [13, §1.2.1] to be (Q, idQ,Z) —
that arises from the polarized Hodge structure of weight −1 associated to the
polarized abelian variety (PC, λC) over C, and
• G for the affine group scheme defined in [13, Definition 1.2.1.6] — i.e., in the
case where we take the “(L, ⟨·, ·⟩, h)” of [13, Definition 1.2.1.6] to be L.

Observe that one verifies easily that the reflex field (cf. [13, Definition 1.2.5.4]) of
(L⊗Z R, ⟨·, ·⟩, h) is given by Q. Moreover, it follows from Remark 2.3.1 that the triple
(P◦, λ◦,Z ↪→ EndM◦(P◦)) forms a triple as in [13, Definition 1.3.6.1] — i.e., in the case
where we take the “((L, ⟨·, ·⟩, h),□)” of [13, §1.3.6] to be (L,□). Moreover, we shall
write

• α = {α1} for the level-G(Ẑ□) structure of (P◦, λ◦,Z ↪→ EndM◦(P◦)) of type

(L ⊗Z Ẑ□, ⟨·, ·⟩) (cf. [13, Definition 1.3.7.6]) — i.e., in the case where we take

the “H” of [13, Definition 1.3.7.6] to be G(Ẑ□) — that consists of the evident
identification α1 between L/L = {0} and PC(C)[1] = {0}.

Note that one verifies easily that, by considering the natural identifications L/nL =
PC(C)[n], where n ranges over the positive integers prime to p, one may conclude that
the evident identification α1 between L/L = {0} and PC(C)[1] = {0} forms a principal

level-1 structure of (P◦, λ◦,Z ↪→ EndM◦(P◦)) of type (L⊗Z Ẑ□, ⟨·, ·⟩) (cf. [13, Definition
1.3.6.2]). Thus, one verifies easily that the tuple (P◦, λ◦,Z ↪→ EndM◦(P◦), α) forms an
object of the category MG(Ẑ□)(M◦) defined in [13, Definition 1.4.1.4], which thus implies

that the tuple (P, λ,Z ↪→ EndM(P), α) forms a degenerating family of type MG(Ẑ□)

over M (cf. [13, Definition 5.3.2.1]). Let Σ be a compatible choice of admissible smooth
rational polyhedral cone decomposition data for MG(Ẑ□) (cf. [13, Definition 6.3.3.4], [13,

Proposition 6.3.3.5]). Then we shall write

• Mtor
G(Ẑ□),Σ

for the proper smooth algebraic stack over Z(□) discussed in [13, The-

orem 6.4.1.1].

Now observe that one verifies immediately (cf. also Remark 3.1.1, (i); [1, Chapter II,
Corollary 4.9, (i)]) that one may replace Σ by a suitable compatible choice of admissible
smooth rational polyhedral cone decomposition data forMG(Ẑ□) so that the degenerating

family (P, λ,Z ↪→ EndM(P), α) of type MG(Ẑ□) over M satisfies the condition discussed

in [13, Theorem 6.4.1.1.6]), which thus implies that we have a classifying morphism
M → Mtor

G(Ẑ□),Σ
×Z(□)

O of the degenerating family (P, λ,Z ↪→ EndM(P), α) of type

MG(Ẑ□) over M. Then we shall write

• RP for the completion of a strict henselization ofMtor
G(Ẑ□),Σ

×Z(□)
O at the geomet-

ric point obtained by forming the composite of the natural closed immersion
Spec(k) ↪→ M and the classifying morphism M → Mtor

G(Ẑ□),Σ
×Z(□)

O of the

degenerating family (P, λ,Z ↪→ EndM(P), α) of type MG(Ẑ□) over M,

• N
def
= Spec(RP )→ Mtor

G(Ẑ□),Σ
×Z(□)

O for the natural morphism over O,
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• N◦
def
= N ×(Mtor

G(Ẑ□),Σ
×Z(□)

O) (MG(Ẑ□) ×Z(□)
O) for the base-change of the natural

morphism N → Mtor
G(Ẑ□),Σ

×Z(□)
O by the natural open immersion MG(Ẑ□) ×Z(□)

O ↪→ Mtor
G(Ẑ□),Σ

×Z(□)
O (cf. the statement of [13, Theorem 6.4.1.1]),

• Nlog for the log scheme obtained by equipping N with the log structure associ-
ated to the divisor N\N◦ with normal crossings relative to O (cf. [13, Theorem
6.4.1.1.3]),
• t : M → N for the morphism over O induced by the classifying morphism
M → Mtor

G(Ẑ□),Σ
×Z(□)

O of the degenerating family (P, λ,Z ↪→ EndM(P), α) of

type MG(Ẑ□) over M, and

• tlog : Mlog → Nlog for the morphism of log schemes determined by the morphism
t : M→ N (cf. Remark 3.1.1, (ii)).

Lemma 3.3. Let L be an invertible sheaf on X that is of order l and trivialized by the
Galois étale covering f : Y→ X. By considering the natural (necessarily faithful — cf.
Lemma 1.6) action of G on Lie(JY) (i.e., induced by the action of G on Y), we shall
regard G as a subgroup of the automorphism group of the RX-module Lie(JY). Write

hnew
def
= l −

∑
τ∈G

τ, h0
def
= l−1 ·

∑
τ∈G

τ

(cf. Definition 2.1). In the remainder of present Lemma 3.3, we shall identify Lie(JY)

with
⊕l−1

i=0H
1(X,L⊗i) by means of the composite

Lie(JY)
∼ // H1(Y,OY)

∼ // H1(X, f∗OY)

∼ // H1
(
X,

l−1⊕
i=0

L⊗i
)

∼ //
l−1⊕
i=0

H1(X,L⊗i)

— where the first arrow is the isomorphism of [3, §8.4, Theorem 1, (a)], the second
arrow is the isomorphism determined by the Galois étale covering f : Y→ X, the third
arrow is the isomorphism induced by a trivialization of f∗L, and the fourth arrow is the
natural isomorphism. Then the following assertions hold:

(i) The diagram of RX-modules

Lie(JY)
h0 //

����

Lie(JY)

Lie(JX) ∼
// H1(X,OX)

?�

OO

— where the lower horizontal arrow is the isomorphism of [3, §8.4, Theorem
1, (a)], the left-hand vertical arrow is the homomorphism induced by the Ga-
lois étale covering f : Y → X, and the right-hand vertical arrow is the natural
inclusion — commutes.

(ii) The factorization of hnew

Lie(JY) // // Lie(P) �
� // Lie(JY)
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(cf. condition (2) of Definition 2.1) determines an isomorphism of RX-modules

Lie(P)
∼ //

l−1⊕
i=1

H1(X,L⊗i).

(iii) The diagram of RX-modules

Lie∨(P)⊗RX
Lie∨(P)

≀
��

// // Γ(M, t∗Ω1
Nlog/O)

��

l−1⊕
i,j=1

(
Γ(X, ωX ⊗OX

L⊗i)⊗RX
Γ(X, ωX ⊗OX

L⊗j)
)

����
l−1⊕
i=1

(
Γ(X, ωX ⊗OX

L⊗i)⊗RX
Γ(X, ωX ⊗OX

L⊗(l−i))
)

��

Γ(X, ω⊗2
X ) ∼

// Γ(M,Ω1
Mlog/O)

— where
• the upper horizontal arrow is the homomorphism determined by the ex-
tended Kodaira-Spencer map discussed in [13, Theorem 6.4.1.1.4] (cf. also

[13, Definition 6.3.1]) and the isomorphism Lie(P)
∼→ Lie(Pt) induced by

the homomorphism λ : P→ Pt (cf. Remark 2.3.1),
• the lower horizontal arrow is the isomorphism that arises from the Kodaira-
Spencer homomorphism with respect to the stable curve X→M,
• the left-hand upper vertical arrow is the isomorphism determined by the
isomorphism of (ii),
• the left-hand middle vertical arrow is the natural projection homomor-
phism,
• the left-hand lower vertical arrow is the natural homomorphism determined
by a trivialization of L⊗l, and
• the right-hand vertical arrow is the homomorphism induced by the mor-
phism tlog : Mlog → Nlog

— commutes up to multiplication by an element of R×
X .

(iv) Suppose that the natural homomorphism determined by a trivialization of L|⊗l
X

Γ(X,ωX ⊗OX
L|X)⊗k Γ(X,ωX ⊗OX

L|⊗(l−1)
X ) // Γ(X,ω⊗2

X )

is surjective. Then the morphism tlog : Mlog → Nlog is log formally unramified
(cf. [23, Chapter IV, Definition 3.1.1]).

Proof. Assertion (i) follows immediately from the various definitions involved. Assertion
(ii) follows from assertion (i), together with the equality 1 = h0 + l−1 · hnew. Next, we
verify assertion (iii). Let us first observe that one verifies immediately that every RX-
modules that appear in the diagram of assertion (iii) are free RX-modules of finite rank.
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In particular, to verify assertion (iii), it suffices to verify that the diagram of KX-vector
spaces obtained by applying “(−)⊗RX

KX” to the diagram of assertion (iii) commutes
up to multiplication by an element of R×

X . On the other hand, since the stable curve
X×RX

KX over KX is smooth, this commutativity follows immediately from a similar
argument to the argument that was applied in the proofs of [24, Theorem 2.6] and [28,
Theorem 4.6]. This completes the proof of assertion (iii).

Finally, we verify assertion (iv). Let us first observe that it follows from [23, Chapter
IV, Proposition 2.3.1] and [23, Chapter IV, Proposition 3.1.3] that, to verify assertion
(iv), it suffices to verify that the right-hand vertical arrow of the diagram of assertion
(iii) is surjective. In particular, since (one verifies immediately that) every RX-modules
that appear in the diagram of assertion (iii) are free RX-modules of finite rank, it
follows from assertion (iii) that, to verify assertion (iv), it suffices to verify that the
homomorphism of k-vector spaces obtained by applying “(−) ⊗RX

k” to the left-hand
lower vertical arrow of the diagram of assertion (iii) is surjective. On the other hand, this
surjectivity follows from our assumption (i.e., that appears in the statement of assertion
(iv)). This completes the proof of assertion (iv), hence also of Lemma 3.3. □

The main result of the present section is as follows.

Theorem 3.4. Let

• k be a separably closed field,
• X, Y stable curves over k,
• l a prime number invertible in k,
• f : Y → X a Galois étale covering of degree l over k, and
• L an invertible sheaf on X that is of order l and trivialized by the Galois étale
covering f : Y → X.

Suppose that the natural homomorphism determined by a trivialization of L⊗l

Γ(X,ωX ⊗OX
L)⊗k Γ(X,ωX ⊗OX

L⊗(l−1)) // Γ(X,ω⊗2
X )

is surjective. Then the Galois étale covering f : Y → X over k is Prym-faithful (cf.
Definition 2.5).

Proof. Let n be a positive integer and R a complete discrete valuation ring whose

residue field is given by k. Write m ⊆ R for the maximal ideal of R and nR
def
= R/mn.

For each i ∈ {1, 2}, let Xi be a stable curve over R that is generically smooth over

R and ιi : Xi ×R k
∼→ X an isomorphism over k. Suppose that conditions (1), (2) of

Definition 2.5 are satisfied. For each i ∈ {1, 2}, write, moreover,

• Spec(nR)log for the log scheme obtained by equipping Spec(nR) with the log
structure obtained by pulling back the log structure of Spec(R)log (cf. condition
(1) of Definition 2.5) by the natural surjective homomorphism R ↠ nR,
• si : Spec(R)→M for the classifying morphism of the stable curve Xi over R,
• nsi : Spec(nR)→M for the composite of the natural closed immersion Spec(nR) ↪→
Spec(R) with si,

• ti
def
= t ◦ si : Spec(R)→M→ N for the composite of si and t, and

• nti : Spec(nR)→ N for the composite of the natural closed immersion Spec(nR) ↪→
Spec(R) with ti.

Now observe that since (we have assumed that) X1, X2 are generically smooth over R,

the morphisms s1, s2 : Spec(R)→M uniquely determine morphisms slog1 , slog2 : Spec(R)log →
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Mlog of log schemes, respectively. Write tlog1
def
= tlog ◦ slog1 , tlog2

def
= tlog ◦ slog2 : Spec(R)log →

Mlog → Nlog. Write, moreover,

ns
log
1 , ns

log
2 : Spec(nR)log //Mlog, nt

log
1 , nt

log
2 : Spec(nR)log // Nlog

for the respective composites of the natural strict closed immersion Spec(nR)log ↪→
Spec(R)log with slog1 , slog2 , tlog1 , tlog2 . Then observe that it follows immediately from
condition (1) of Definition 2.5, together with [11, Theorem 4.1], that the equality

1s
log
1 = 1s

log
2

holds. Also, observe that it follows immediately from condition (2) of Definition 2.5
(cf. also the uniqueness discussed in [13, Theorem 6.4.1.1.6]) that the equality t1 = t2,

hence also the equality tlog1 = tlog2 , holds, which thus implies the equality

nt
log
1 = nt

log
2 .

In particular, by considering the commutative diagram of log schemes over Spec(R)log

Spec(R/m)log �
� //

1s
log
1 =1s

log
2

��

Spec(R/mn)log

nt
log
1 =nt

log
2

��
ns

log
2

{{

ns
log
1

{{

Mlog

tlog
// Nlog,

we conclude from Lemma 3.3, (iv), that the equality ns
log
1 = ns

log
2 holds. In particular,

it follows formally that the equality slog1 = slog2 , hence also the equality s1 = s2, holds,
as desired. This completes the proof of Theorem 3.4. □

4. Existence of Prym-faithful new-ordinary coverings

In the present section, we prove the existence of a Prym-faithful new-ordinary Ga-
lois étale covering of a suitable stable curve over a separably closed field of positive
characteristic (cf. Theorem 4.5 below). In the present section, let

• k be a separably closed field,
• X a stable curve over k that is sturdy (cf. Definition 1.5, (i)) and untangled
(cf. Definition 1.5, (ii)), and
• L an invertible sheaf on X.

Write

L∨ def
= HomOX

(L,OX).

Also, for each vertex v ∈ v(ΓX) of ΓX , write

Lv
def
= L|Xv , L∨

v
def
= HomOXv

(Lv,OXv).

Definition 4.1. Let d be a positive integer. Then we shall write

Γ≥d(X,L) ⊆ Γ(X,L)
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for the subspace obtained by forming the pull-back of the subspace⊕
v∈v(ΓX)

Γ
(
Xv,Lv(−dDv)

)
⊆

⊕
v∈v(ΓX)

Γ(Xv,Lv)

by the natural homomorphism

Γ(X,L) //
⊕

v∈v(ΓX)

Γ(Xv,Lv).

Lemma 4.2. Let d be a positive integer. Then the natural homomorphism

Γ(X,L) //
⊕

v∈v(ΓX)

Γ(Xv,Lv)

restricts to an isomorphism of subspaces

Γ≥d(X,L) ∼ //
⊕

v∈v(ΓX)

Γ
(
Xv,Lv(−dDv)

)
.

Proof. This assertion is immediate. □

Lemma 4.3. Suppose that the invertible sheaf Lv on Xv is nontrivial and of nonnegative
degree for each v ∈ v(ΓX). Then the following assertions hold:

(i) The natural homomorphism

Γ(X,ωX ⊗OX
L) //

⊕
x∈e(ΓX)

ωX ⊗k L ⊗k k(x)

is surjective.
(ii) The k-vector space Γ(X,ωX⊗OX

L)/Γ≥1(X,ωX⊗OX
L) is of dimension #e(ΓX).

(iii) Suppose that Γ(Xv,L∨
v (Dv)) = {0} for each v ∈ v(ΓX). (For example, this

will be the case if the inequality deg(Lv) > deg(Dv) holds for each v ∈ v(ΓX).)
Then the k-vector space Γ≥1(X,ωX ⊗OX

L)/Γ≥2(X,ωX ⊗OX
L) is of dimension

2 ·#e(ΓX).

Proof. First, we verify assertion (i). Write πX : X̃ → X for the normalization of X

and ΩX̃ for the sheaf of relative differentials of X̃ over k. Then it follows immediately
from the existence of the exact sequence of invertible sheaves on X (cf. [14, Chapter
10, Lemma 3.12, (a)])

0 // (πX)∗ΩX̃ ⊗OX
L // ωX ⊗OX

L //
⊕

x∈e(ΓX)

ωX ⊗k L ⊗k k(x) // 0

that, to verify assertion (i), it suffices to verify that Γ(Xv,L∨
v ) = {0} for each v ∈ v(ΓX).

On the other hand, this assertion follows from our assumption that the invertible sheaf
Lv on Xv is nontrivial and of nonnegative degree for each v ∈ v(ΓX). This completes
the proof of assertion (i). Assertion (ii) is a formal consequence of assertion (i).

Finally, we verify assertion (iii). Observe that it follows from Lemma 4.2 (cf. also Re-
mark 1.4.1) that the k-vector space Γ≥1(X,ωX⊗OX

L)/Γ≥2(X,ωX⊗OX
L) is isomorphic
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to the k-vector space( ⊕
v∈v(ΓX)

Γ(Xv,ΩXv ⊗OXv
Lv)

)
/
( ⊕

v∈v(ΓX)

Γ
(
Xv,ΩXv ⊗OXv

Lv(−Dv)
))

.

On the other hand, for each v ∈ v(ΓX), since (we have assumed that) the invertible sheaf
Lv on Xv is nontrivial and of nonnegative degree, it follows that dimk(H

1(Xv,ΩXv⊗OXv

Lv)) = dimk(Γ(Xv,L∨
v )) = 0, which thus implies that

dimk

(
Γ(Xv,ΩXv ⊗OXv

Lv)
)
= gv − 1 + deg(Lv).

Moreover, for each v ∈ v(ΓX), since (we have assumed that) 0 = dimk(Γ(Xv,L∨
v (Dv))) =

dimk(H
1(Xv,ΩXv ⊗OXv

Lv(−Dv))), it follows that

dimk

(
Γ
(
Xv,ΩXv ⊗OXv

Lv(−Dv)
))

= gv − 1 + deg(Lv)− deg(Dv).

Thus, assertion (iii) follows from the easily verified equality

2 ·#e(ΓX) =
∑

v∈v(ΓX)

deg(Dv).

This completes the proof of assertion (iii), hence also Lemma 4.3. □

Lemma 4.4. Suppose that, for each vertex v ∈ v(ΓX) of ΓX , the following three con-
ditions are satisfied:

(1) The natural map

µXv ,Lv : Γ(Xv,ΩXv ⊗OXv
Lv)⊗k Γ(Xv,ΩXv ⊗OXv

L∨
v ) // Γ(Xv,Ω

⊗2
Xv
)

is surjective.
(2) The invertible sheaf Lv on Xv is nontrivial and of degree zero.
(3) The equality Γ(Xv,L∨

v (Dv)) = {0} holds.
Then the natural map

µX,L : Γ(X,ωX ⊗OX
L)⊗k Γ(X,ωX ⊗OX

L∨) // Γ(X,ω⊗2
X )

is surjective.

Proof. Let us first observe that, for each v ∈ v(ΓX), we have a commutative diagram
of k-vector spaces

Γ≥1(X,ωX ⊗OX
L)⊗k Γ

≥1(X,ωX ⊗OX
L∨)

µX,L //

��

Γ≥2(X,ω⊗2
X )

��

Γ(Xv,ΩXv ⊗OXv
Lv)⊗k Γ(Xv,ΩXv ⊗OXv

Lv) µXv,Lv

// Γ(Xv,Ω
⊗2
Xv
)

— where the vertical arrows are the homomorphism induced by the natural closed im-
mersion Xv ↪→ X (cf. also Remark 1.4.1 and Lemma 4.2). Thus, it follows immediately
from Lemma 4.2, together with condition (1), that the homomorphism

Γ≥1(X,ωX ⊗OX
L)⊗k Γ

≥1(X,ωX ⊗OX
L∨) // Γ≥2(X,ω⊗2

X )
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determined by the homomorphism µX,L is surjective. In particular, to verify Lemma 4.4,
it suffices to verify that the composite

Γ(X,ωX ⊗OX
L)⊗k Γ(X,ωX ⊗OX

L∨)
µX,L // Γ(X,ω⊗2

X )

// // Γ(X,ω⊗2
X )/Γ≥2(X,ω⊗2

X )

— where the second arrow is the natural surjective homomorphism — is surjective.
Next, observe that it follows from Lemma 4.3, (i), together with condition (2), that

there exists an element a ∈ Γ(X,ωX ⊗OX
L∨) whose image in ωX ⊗OX

L∨ ⊗k k(x) is
nonzero for each x ∈ e(ΓX). Write ϕa for the composite

Γ(X,ωX ⊗OX
L) // Γ(X,ω⊗2

X ) // // Γ(X,ω⊗2
X )/Γ≥2(X,ω⊗2

X )

— where the first arrow is the homomorphism given by mapping s 7→ µX,L(s ⊗ a),
and the second arrows is the natural surjective homomorphism. Observe that it follows
immediately from our choice of a ∈ Γ(X,ωX ⊗OX

L∨) that the equality Ker(ϕa) =
Γ≥2(X,ωX ⊗OX

L) holds. In particular, the homomorphism ϕa determines an injective
homomorphism

Γ(X,ωX ⊗OX
L)/Γ≥2(X,ωX ⊗OX

L) � � // Γ(X,ω⊗2
X )/Γ≥2(X,ω⊗2

X ).

On the other hand, it follows from Lemma 4.3, (ii), (iii), together with conditions (2),
(3) (cf. also Remark 1.4.1), that both the domain and the codomain of this injective
homomorphism are of dimension 3 · #e(ΓX). In particular, this injective homomor-
phism is an isomorphism, which thus implies that the composite under consideration is
surjective, as desired. This completes the proof of Lemma 4.4. □

The main result of the present section is as follows.

Theorem 4.5. Let

• k be a separably closed field and
• X a stable curve over k that is untangled (cf. Definition 1.5, (ii)).

Suppose that, for each vertex v ∈ v(ΓX) of ΓX , the following two conditions are satisfied:

(a) The inequality deg(Dv) < gv holds, which thus implies that the stable curve X
over k is sturdy (cf. Definition 1.5, (i)).

(b) The smooth proper curve Xv over k is of gonality ≥ 5, i.e., every finite mor-
phism from Xv onto the projective line over k is of degree ≥ 5.

Then there exist

• a stable curve Y over k,
• a prime number l invertible in k, and
• a Galois étale covering f : Y → X of degree l over k

such that the following three conditions are satisfied:

(1) For each vertex v ∈ v(ΓX) of ΓX , the inverse image f−1Xv ⊆ Y is irreducible.
(2) The Galois étale covering f : Y → X is Prym-faithful (cf. Definition 2.5).
(3) If, moreover, the field k is of positive characteristic, then the Galois étale cov-

ering f : Y → X is new-ordinary (cf. Definition 2.2).

Proof. Let v ∈ v(ΓX) be a vertex of ΓX . Let us first observe that it follows immediately
from condition (a) (cf., e.g., [28, Lemma 1.2, (ii)] and [28, Remark 1.7]) that
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(†1) there exists a nonempty open subscheme U ⊆ Jv of Jv such that, for each
j ∈ U(k), the invertible sheaf Ev on Xv of degree zero that corresponds to
j ∈ U(k) satisfies the following condition: The equality Γ(Xv, E∨v (Dv)) = {0}
holds.

Thus, it follows from (†1), together with [28, Lemma 3.9], that

(†2) there exists a positive integer c such that, for each prime number l invertible
in k, the set that consists of isomorphism classes of invertible sheaves Ev on Xv

of order l that satisfy the following condition is of cardinality > l2gv−2(l2 − c):
The equality Γ(Xv, E∨v (Dv)) = {0} holds.

In particular, we conclude immediately from (†2), [28, Corollary 3.10] (cf. also condition
(b)), and [28, Corollary 5.3] (cf. also [25, Théorème 4.3.1]) that

(†3) there exists a prime number lv such that, for each prime number l ≥ lv, there
exists an invertible sheaf Ev on Xv of order l that satisfies the following three
conditions:
• The natural map

Γ(Xv,ΩXv ⊗OXv
Ev)⊗k Γ(Xv,ΩXv ⊗OXv

E∨v ) // Γ(Xv,Ω
⊗2
Xv
)

is surjective.
• The equality Γ(Xv, E∨v (Dv)) = {0} holds.
• If the field k is of positive characteristic, then the Galois étale covering of
Xv of degree l that trivializes Ev is new-ordinary.

Thus, it follows from (†3) (cf. also [3, §9.2, Example 8]) that there exist a prime number
l and an invertible sheaf E on X of degree l such that, for each vertex v ∈ v(ΓX) of
ΓX , the restriction of E to Xv ⊆ X satisfies the three conditions that appear in (†3).
Then it follows from Theorem 3.4 and Lemma 4.4 (cf. also [3, §9.2, Example 8]) that
the Galois étale covering of X of degree l that trivializes E satisfies conditions (1), (2),
(3) in the statement of Theorem 4.5. This completes the proof of Theorem 4.5. □

5. Cyclotomes associated to hyperbolic curves

In the present section, we introduce some notational conventions related to the notion
of a hyperbolic curve and the notion of a cyclotome. Moreover, we prove some basic
facts concerning these notions. In the present section, let

• R be a complete discrete valuation ring whose field of fractions we denote by
K, and whose residue field we denote by k,
• K a separable closure of K, and
• Z a hyperbolic curve over K.

Suppose that

• the field k is perfect and of characteristic p > 0.

Definition 5.1. We shall write

• Kur ⊆ Ktm ⊆ K for the maximal unramified, tamely ramified extension fields
of K in K, respectively,
• k for the algebraic closure of k obtained by forming the residue field of the
normalization of R in Kur,

• GK
def
= Gal(K/K) ↠ Gtm

K
def
= Gal(Ktm/K) ↠ Gur

K
def
= Gal(Kur/K)

∼→ Gal(k/k),
and
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• PK
def
= Ker(GK ↠ Gtm

K ) ⊆ IK
def
= Ker(GK ↠ Gur

K) for the wild inertia, inertia
subgroups of GK , respectively.

Definition 5.2. We shall write

• Ẑ× for the profinite (respectively, pro-prime-to-char(K)) completion of the
module Z whenever char(K) = 0 (respectively, char(K) ̸= 0) and
• ΛK for the Tate module of the multiplicative group scheme Gm,K over K.

For a topological module M , we shall write

• MD def
= Hom(M,ΛK) for the topological module of continuous homomorphisms

M → ΛK .

Remark 5.2.1. One verifies easily that the module ΛK has a natural structure of free

Ẑ×-module of rank one. In particular, if M is a free Ẑ×-module of finite rank, then we
have a natural identification M = (MD)D.

Definition 5.3. We shall write

• Z+ for the smooth compactification of the hyperbolic curve Z over K,

• Z
def
= Z ×K K ⊆ Z+ def

= Z+ ×K K,
• ΠZ , ∆Z for the respective tame fundamental groups of (Z+, Z+ \Z), (Z+, Z+ \
Z) (i.e., the respective fundamental groups associated to the Galois categories
of finite flat coverings of Z+, Z+ that are at most tamely ramified along Z+\Z,
Z+ \ Z), relative to suitable choices of basepoints, and
• ΠZ+ , ∆Z+ for the respective étale fundamental groups of Z+, Z+, relative to
suitable choices of basepoints.

Thus, the natural morphisms Z ↪→ Z+ → Spec(K) determine a commutative diagram
of topological groups

1 // ∆Z
//

����

ΠZ
//

����

GK
// 1

1 // ∆Z+ // ΠZ+ // GK
// 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

Remark 5.3.1. Let W+ → Z+ be a connected finite flat covering of Z+ that is at most
tamely ramified along Z+ \Z. Write W ⊆ W+ for the open subscheme of W+ obtained
by forming the inverse image of the open subscheme Z ⊆ Z+. Then one verifies easily
from the various definitions involved that the scheme W is a hyperbolic curve over the
algebraic closure of K in the function field of W .

Definition 5.4. If the smooth proper curve Z+ over K is of genus ≥ 1, then we shall

write ΛZ
def
= HomẐ(H

2(∆Z+ , Ẑ×), Ẑ×).

Remark 5.4.1. If the smooth proper curve Z+ over K is of genus ≥ 1, then it is
well-known (cf., e.g., [16, Chapter VI, Theorem 11.1, (a)]) that

(i) the module ΛZ has a natural structure of free Ẑ×-module of rank one, and that

(ii) there exists a natural GK-equivariant isomorphism ΛZ
∼→ ΛK .
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Definition 5.5. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf.
Definition 5.3) a continuous isomorphism over GK . Then we shall say that the iso-
morphism ϕΠZ

is compactification-compatible if the following condition is satisfied: Let

H1 ⊆ ΠZ1 be an open subgroup of ΠZ1 . Write H2
def
= ϕΠZ

(H1) ⊆ ΠZ2 . For each
i ∈ {1, 2}, write W+

i → Z+
i for the finite flat covering of Z+

i that corresponds to the
open subgroup Hi ⊆ ΠZi

, which thus implies that we have an identification Hi = ΠWi

(cf. Definition 5.3), where we write Wi for the open subscheme of W+
i obtained by form-

ing the inverse image of Zi ⊆ Z+
i (cf. Remark 5.3.1). Then the continuous isomorphism

ΠW1

∼→ ΠW2 determined by the isomorphism ϕΠZ
fits into a commutative diagram of

topological groups

ΠW1
// //

≀
��

ΠW+
1

≀
��

ΠW2
// // ΠW+

2

(cf. Definition 5.3) — where the horizontal arrows are the continuous outer surjective
homomorphisms that arise from the open immersions W1 ↪→ W+

1 , W2 ↪→ W+
2 , respec-

tively, and the right-hand vertical arrow is a continuous isomorphism.

Lemma 5.6. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Def-
inition 5.3) a continuous isomorphism over GK. Suppose that the l-adic cyclotomic
character GK → Z×

l on GK for some prime number l invertible in K is an open homo-
morphism. (For example, this will be the case if either the field k is finite, or the field
K is of characteristic zero.) Then the isomorphism ϕΠZ

is compactification-compatible.

Proof. This assertion follows from [21, Corollary 2.7, (i)]. □

Definition 5.7. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Defi-
nition 5.3) a continuous isomorphism over GK . Then we shall say that the isomorphism
ϕΠZ

is cyclotomically compatible if the isomorphism ϕΠZ
is compactification-compatible,

and, moreover, the following condition is satisfied: Let H1 ⊆ ΠZ1 be an open subgroup

of ΠZ1 . Write H2
def
= ϕΠZ

(H1) ⊆ ΠZ2 . For each i ∈ {1, 2}, write W+
i → Z+

i for the
finite flat covering of Z+

i that corresponds to the open subgroup Hi ⊆ ΠZi
, which thus

implies that we have an identification Hi = ΠWi
(cf. Definition 5.3), where we write

Wi for the open subscheme of W+
i obtained by forming the inverse image of Zi ⊆ Z+

i

(cf. Remark 5.3.1). Suppose that the smooth proper curve W+
1 is of genus ≥ 1. Then

the smooth proper curve W+
2 is of genus ≥ 1. Moreover, the diagram of topological

modules

ΛW1

∼ //

∼
!!

ΛW2

∼
}}

ΛK

(cf. Definition 5.4) — where the horizontal arrow is the isomorphism induced by the
right-hand vertical arrow of the diagram of Definition 5.5, and the two diagonal arrows
are the respective natural isomorphisms of Remark 5.4.1, (ii) — commutes.

Definition 5.8. Let C be a smooth curve over K.
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(i) We shall say that the smooth curve C over K is isotrivial if there exist a smooth
curve C0 over the separable closure K0 in K of the minimal subfield of K and
an isomorphism C ×K K

∼→ C0 ×K0
K over K.

(ii) We shall say that the smooth curve C over K has a good model (respectively,
nonsmooth stable model; nonsmooth sturdy stable model) if there exist a stable

curve C over R and an isomorphism C ×R K
∼→ C over K such that the stable

curve C×Rk over k is smooth (respectively, not smooth; sturdy and not smooth)
over k.

Remark 5.8.1. Let C be a smooth curve over K. Suppose that C has either a good
model or a nonsmooth stable model. Then it is immediate that the smooth curve C is
a proper hyperbolic curve over K.

Lemma 5.9. The following assertions hold:

(i) For each integer g0, there exists a connected finite flat covering W+ → Z+ of
Z+ that is at most tamely ramified along Z+ \ Z such that the smooth proper
curve W+ is of genus ≥ g0.

(ii) Suppose that the smooth curve Z (respectively, the smooth proper curve Z+)
over K is nonisotrivial. Let W+ → Z+ be a connected finite flat covering
of Z+ that is at most tamely ramified along Z+ \ Z. Write W for the open
subscheme of W+ obtained by forming the inverse image of Z ⊆ Z+. Then the
smooth curve W (respectively, the smooth proper curve W+) is nonisotrivial.

(iii) Suppose that the smooth proper curve Z+ over K has a nonsmooth stable model.
Let W+ → Z+ be a connected finite flat covering of Z+ that is at most tamely
ramified along Z+ \ Z. Then the smooth proper curve W+ does not have any
good model.

(iv) Suppose that the smooth curve Z over K is nonisotrivial. Then there exists a
connected finite flat covering W+ → Z+ of Z+ that is at most tamely ramified
along Z+ \ Z such that the smooth proper curve W+ is nonisotrivial.

Proof. Assertion (i) follows immediately from the well-known Riemann-Hurwitz for-
mula, together with the well-known structure of the maximal pro-l quotient of the étale
fundamental group of a hyperbolic curve over an algebraically closed field of charac-
teristic ̸= l (cf., e.g., [26, Proposition 1.1, (i), (ii)]). Assertion (ii) follows immediately
from [27, Lemma 1.32]. Assertion (iii) follows immediately from [19, Corollary 7.4].

Next, we verify assertion (iv). Let us first observe that it follows from assertions
(i), (ii) that, to verify assertion (iv), we may assume without loss of generality, by
replacing Z by the inverse image of Z ⊆ Z+ by a suitable finite flat covering of Z+,
that the smooth proper curve Z+ is of genus ≥ 2. Let W+ → Z+ be a Galois finite
flat covering of Z+ that is at most tamely ramified along Z+ \Z whose branch locus is
given by Z+ \Z. (Observe that it follow immediately from the well-known structure of
the maximal pro-l quotient of the étale fundamental group of a hyperbolic curve over
an algebraically closed field of characteristic ̸= l — cf., e.g., [26, Proposition 1.1, (i),
(ii)] — that such a covering always exists.) Write W ⊆ W+ for the open subscheme
of W+ obtained by forming the inverse image of Z ⊆ Z+ and L ⊆ K for the algebraic
closure of K in the function field of W .
Assume that the smooth proper curve W+ over L is isotrivial, i.e., that there exist a

smooth curveW+
0 over the separable closure L0 inK of the minimal subfield of L and an

isomorphism W+×LK
∼→ W+

0 ×L0
K over K. Then observe that it follows immediately
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from [4, Theorem 1.11] that the natural action of Gal(W+×LK/Z+×KK) on W+×LK

over K descends uniquely, relative to a fixed isomorphism W+ ×L K
∼→ W+

0 ×L0
K as

above, to an action on W+
0 over L0. Write Z+

0 for the quotient of the resulting action
of Gal(W+ ×L K/Z+ ×K K) on W+

0 and Z0 ⊆ Z+
0 for the étale locus of the natural

(necessarily finite flat) morphism W+
0 → Z+

0 . Then one verifies immediately from the

various definitions involved that there exists an isomorphism Z ×K K
∼→ Z0 ×L0

K

over K. In particular, the smooth curve Z over K is isotrivial, in contradiction to our
assumption that the smooth curve Z over K is nonisotrivial. In particular, the smooth
proper curve W+ over L is nonisotrivial. This completes the proof of assertion (iv),
hence also of Lemma 5.9. □

6. The log fundamental groups of log special fibers

In the present section, we discuss some fundamental facts concerning the log funda-
mental groups of the log special fibers of stable curves over complete discrete valuation
rings. In the present section, suppose that we are in the situation at the beginning of
the preceding §5. Moreover, let

• X be a stable curve over R.

Suppose that

• the structure morphism X → Spec(R) is generically smooth, i.e., that the

generic fiber X
def
= X ×R K is smooth over K.

Definition 6.1. We shall write

• X
def
= X ×R K, X def

= X ×R k, X def
= X ×R k,

• X log for the log scheme obtained by equipping X with the log structure associ-
ated to the divisor X ⊆ X ,
• X log for the log scheme obtained by equipping X with the log structure obtained
by pulling back the log structure of X log by the natural closed immersion X ↪→
X ,
• Spec(R)log for the log scheme obtained by equipping Spec(R) with the log
structure associated to the divisor with normal crossings determined by the
closed point of Spec(R), and
• Spec(k)log for the log scheme obtained by equipping Spec(k) with the log struc-
ture obtained by pulling back the log structure of Spec(R)log by the natural
surjective homomorphism R ↠ k.

Lemma 6.2. The natural immersions X ↪→ X ←↩ X determine a sequence of finite
(cf. [4, Theorem 1.11]) groups

AutK(X) AutR(X ) �
� //∼oo Autk(X )

— where the first arrow is an isomorphism, and the second arrow is injective.

Proof. The bijectivity of the first arrow is immediate. The injectivity of the second
arrow follows from [4, Theorem 1.11]. □

Definition 6.3. We shall write

• ΠX , ∆X for the respective étale fundamental groups ofX,X, relative to suitable
choices of basepoints,
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• Πlog
X for the log fundamental group of X log, relative to a suitable choice of

basepoint, and

• ∆adm
X

def
= Ker(Πlog

X ↠ Gtm
K ).

Thus, the natural commutative diagram of schemes

X // X //
� _

��

Spec(K)
� _

��
X // Spec(R)

X // X //
� ?

OO

Spec(k)
� ?

OO

determines (cf. also Remark 6.3.1 below) a commutative diagram of topological groups

1 // ∆X
//

����

ΠX
//

����

GK
//

����

1

1 // ∆adm
X

// Πlog
X

// Gtm
K

// 1

— where the horizontal sequences are exact, and the vertical arrows are surjective. We
shall write

• spX : ΠX ↠ Πlog
X for the middle vertical continuous surjective homomorphism

of this diagram.

We shall refer to this homomorphism spX : ΠX ↠ Πlog
X as the specialization homomor-

phism associated to the stable curve X over R.

Remark 6.3.1. Let us recall from [8, Corollary 1] and [8, Proposition B.7] that the
natural open immersion X ↪→ X induces a continuous outer isomorphism of the tame
fundamental group of (X ,X ) (i.e., the fundamental group associated to the Galois
category of finite flat coverings of X that are at most tamely ramified along X ) with

Πlog
X .

Lemma 6.4. Suppose that one of the following two conditions is satisfied:

(1) The field K is of characteristic zero.
(2) The smooth proper curve X over K is nonisotrivial, and the field k is algebraic

over a finite field.

Then there exists a Galois étale covering Y → X of X such that if one writes L ⊆ K
for the algebraic closure of K in the function field of Y , then the smooth proper curve
Y over L has a nonsmooth stable model.

Proof. Let us first observe that it is immediate that, to verify Lemma 6.4, we may as-
sume without loss of generality that X is smooth over k. Next, observe that it follows
immediately from [26, Lemma 5.5] (cf. also Remark 6.3.1 and [4, Corollary 2.7]) that,
to verify Lemma 6.4, it suffices to verify that the continuous surjective homomorphism
∆X ↠ ∆adm

X determined by the specialization homomorphism spX : ΠX ↠ Πlog
X associ-

ated to the stable curve X over R is not an isomorphism. If condition (1) is satisfied,
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then this assertion follows from [26, Proposition 1.1, (i), (ii)]. If condition (2) is sat-
isfied, then this assertion follows from [28, Theorem 0.3]. This completes the proof of
Lemma 6.4. □

Lemma 6.5. Let H ⊆ ΠX be an open subgroup of ΠX . Write XH → X for the finite
étale covering of X that corresponds to H, KH ⊆ K for the finite extension field of K
that corresponds to the image of H in GK, and RH ⊆ KH for the normalization of R
in KH . Then the following assertions hold:

(i) Suppose that the kernel of the specialization homomorphism spX : ΠX ↠ Πlog
X

associated to the stable curve X over R is contained in H ⊆ ΠX . Then the
following four conditions are satisfied:
(1) The inclusion KH ⊆ Ktm holds.

(2) There exist a stable curve XH over RH and an isomorphism XH×RH
KH

∼→
XH over KH . In the remainder of the present (i), we shall identify XH×RH

KH with XH by means of such a fixed isomorphism XH×RH
KH

∼→ XH . In
particular, it follows from [19, Corollary 7.4] that the finite étale covering
XH → X extends uniquely to a proper surjective morphism XH → X .

(3) The resulting morphism XH → X of (2) is finite.
(4) Let v ∈ v(ΓX ) (cf. Definition 1.2) be a vertex of ΓX and w ∈ v(ΓXH

) (cf.
Definition 1.2, Definition 6.1) a vertex of ΓXH

that lies over v ∈ v(ΓX ).

Then the induced morphism (XH)w → X v (cf. Definition 1.3) restricts to a

finite étale covering UXH
w → UX

v (cf. Definition 1.3) and is at most tamely

ramified along DX
v ⊆ X v (cf. Definition 1.3).

(ii) Suppose, moreover, that the open subgroup H ⊆ ΠX of ΠX is normal. Then

the kernel of the specialization homomorphism spX : ΠX ↠ Πlog
X associated to

the stable curve X over R is contained in H ⊆ ΠX if and only if (1), (2), (3)
of (i) are satisfied, and, moreover, the following condition is satisfied:
(5) In the situation of (2) of (i), for each vertex v ∈ v(ΓXH

) of ΓXH
, the sub-

group of the Galois group Gal(XH/X) (cf. Definition 6.1) that consists of

elements that stabilize the closed subscheme IXH
v ⊆ XH (cf. Definition 1.3)

and induce the identity automorphism of the function field of IXH
v is of or-

der prime to p.

Proof. First, we verify assertion (i). The assertion that conditions (1), (2), (3) are
satisfied is a formal consequence of Remark 6.3.1. Moreover, the assertion that condition
(4) is satisfied is well-known (cf., e.g., [29, Proposition 2.2, (ii)]). This completes the
proof of assertion (i). Assertion (ii) follows immediately from Abhyankar’s lemma (cf.,
e.g., [7, Exposé XIII, Proposition 5.5]) and the Zariski-Nagata purity theorem (cf., e.g.,
[7, Exposé X, Théorème 3.1]), together with Remark 6.3.1. This completes the proof
of Lemma 6.5. □

Definition 6.6. Let l be a prime number. Then we shall write

• ∆l-ab
X for the topological abelianization of the maximal pro-l quotient of ∆X .

For each vertex v ∈ v(ΓX ) of ΓX , we shall write

• ∆l-ab

U
X
v

, ∆l-ab
X v

for the respective topological abelianizations of the maximal pro-l

quotients of the étale fundamental groups of the smooth curves UX
v , X v (cf.

Definition 1.3) over k, relative to suitable choices of basepoints, and
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• D∆
v ⊆ ∆l-ab

X for the decomposition subgroup of ∆l-ab
X associated to v ∈ v(ΓX ).

For each edge e ∈ e(ΓX ) (cf. Definition 1.2) of ΓX , we shall write

• D∆
e ⊆ ∆l-ab

X for the decomposition subgroup of ∆l-ab
X associated to e ∈ e(ΓX ).

Lemma 6.7. Let l be a prime number invertible in R. Then the following assertions
hold:

(i) Let v ∈ v(ΓX ) be a vertex of ΓX . Then the kernel of the natural continuous

surjective homomorphism ∆l-ab

U
X
v

↠ D∆
v induced by the natural open immersion

UX
v ↪→ X (cf. condition (4) of Lemma 6.5, (i)) is contained in the kernel of

the continuous (necessarily surjective) homomorphism ∆l-ab

U
X
v

↠ ∆l-ab
X v

induced

by the natural open immersion UX
v ↪→ X v, i.e.,

Ker(∆l-ab

U
X
v

↠ D∆
v ) ⊆ Ker(∆l-ab

U
X
v

↠ ∆l-ab
X v

).

(ii) Suppose that the stable curve X over k is sturdy. Let v, w ∈ v(ΓX ) be vertices

of ΓX . Then the equality v = w holds if and only if the equality D∆
v = D∆

w

holds.
(iii) Suppose that the graph ΓX is 2-connected (i.e., that, for each vertex of ΓX , the

subgraph of ΓX obtained by removing the vertex from ΓX is connected). Let v ∈
v(ΓX ) be a vertex of ΓX . Then the natural continuous surjective homomorphism

∆l-ab

U
X
v

⊗Zl
Fl ↠ D∆

v ⊗Zl
Fl induced by the natural open immersion UX

v ↪→ X (cf.

condition (4) of Lemma 6.5, (i)) is an isomorphism.

Proof. Assertions (i), (ii) follow immediately from [9, Lemma 1.4]. Assertion (iii) follows
from [31, Corollary 3.5] (cf. also [29, Proposition 3.4]). □

Lemma 6.8. Let Y → X be a finite étale covering of X. Write KY ⊆ K for the
algebraic closure of K in the function field of Y and RY ⊆ KY for the normalization of
R in KY . Suppose that the open subgroup ΠY ⊆ ΠX of ΠX that corresponds to the finite
étale covering Y → X of X contains the kernel of the specialization homomorphism
spX : ΠX ↠ Πlog

X associated to the stable curve X over R. In particular, it follows from

condition (2) of Lemma 6.5, (i), that there exist a stable curve Y over RY and an

isomorphism Y ×RY
KY

∼→ Y over KY . In the remainder of the present Lemma 6.8, we

shall identify Y ×RY
KY with Y by means of such a fixed isomorphism Y ×RY

KY
∼→ Y .

Then the following assertions hold:

(i) Suppose that the stable curve X over k is sturdy. Then the stable curve Y (cf.
Definition 6.1) over k is sturdy.

(ii) Suppose that the stable curve X over k untangled. Then the stable curve Y over
k is untangled.

(iii) Let v ∈ v(ΓX ) be a vertex of ΓX and w ∈ v(ΓY) (cf. Definition 1.2, Defini-

tion 6.1) a vertex of ΓY that lies over v ∈ v(ΓX ). Suppose that the inequality

deg(DX
v ) < gXv (cf. Definition 1.3) holds. Then the inequality deg(D

Y
w) < g

Y
w

(cf. Definition 1.3) holds.
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Proof. Assertions (i), (ii) are immediate. Assertion (iii) follows immediately from the
well-known Riemann-Hurwitz formula, together with condition (4) of Lemma 6.5, (i).

□

Definition 6.9.

(i) We shall say that a subgroup H of a group G is subnormal if there exist a
positive integer n and a sequence H = H0 ⊆ H1 ⊆ . . . ⊆ Hn−1 ⊆ Hn = G of
subgroups of G such that, for each i ∈ {1, . . . , n}, the subgroup Hi−1 is normal
in Hi.

(ii) We shall define a sub-Galois étale covering of a scheme to be a (necessarily con-
nected) finite étale covering of the scheme obtained by forming the composite
of finitely many Galois étale coverings.

Lemma 6.10. There exists a sub-Galois étale covering Y → X of X such that if one
writes KY ⊆ K for the algebraic closure of K in the function field of Y and RY ⊆ KY

for the normalization of R in KY , then the following four conditions are satisfied:

(1) The open subgroup ΠY ⊆ ΠX of ΠX that corresponds to the finite étale cov-
ering Y → X of X contains the kernel of the specialization homomorphism
spX : ΠX ↠ Πlog

X associated to the stable curve X over R. In particular, it

follows from condition (2) of Lemma 6.5, (i), that there exist a stable curve Y
over RY and an isomorphism Y ×RY

KY
∼→ Y over KY . In the remainder of

the present Lemma 6.10, we shall identify Y ×RY
KY with Y by means of such

a fixed isomorphism Y ×RY
KY

∼→ Y .
(2) The stable curve Y (cf. Definition 6.1) over k is untangled.
(3) For each vertex v ∈ v(ΓY) (cf. Definition 1.2, Definition 6.1) of ΓY , the in-

equality deg(D
Y
v ) < g

Y
v (cf. Definition 1.3) holds (which thus implies that the

stable curve Y over k is sturdy).

(4) For each vertex v ∈ v(ΓY) of ΓY , the smooth proper curve Yv (cf. Definition 1.3)

over k is of gonality ≥ 5, i.e., every finite morphism from Yv onto the projective

line over k is of degree ≥ 5.

Proof. Let us first observe that it follows immediately from [21, Remark 1.1.5] and [32,
Lemma 3.2], together with Lemma 6.8, (i), (ii), that, to verify Lemma 6.10, we may
assume without loss of generality, by replacing X by a suitable sub-Galois étale covering
of X, that

(a) the stable curve X over k is sturdy and untangled, that,
(b) for each vertex of ΓX , there exist at least two edges of ΓX that abut to the

vertex, and that
(c) the graph ΓX is 2-connected.

Let us fix a vertex v0 ∈ v(ΓX ) of ΓX . Let l0 be an odd prime number invertible in
R. Then it follows immediately from (a), (b), (c), and Lemma 6.7, (iii), together with
the well-known structure of the maximal pro-l quotient of the admissible fundamental
group of a stable curve over an algebraically closed field of characteristic ̸= l (cf., e.g.,
[26, Proposition 1.1, (i), (ii)], [9, Lemma 1.4]), that there exists a continuous surjective
homomorphism ∆l0-ab

X ↠ Fl0 such that,

• for each v ∈ v(ΓX ), the image by this continuous surjective homomorphism of

D∆
v ⊆ ∆l0-ab

X is nontrivial, and, moreover,
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• for each e ∈ e(ΓX ) that abuts to v0, the image by this continuous surjective

homomorphism of D∆
e ⊆ ∆l0-ab

X is nontrivial.

In particular, one concludes from Lemma 6.8, (ii), and the well-known Riemann-Hurwitz
formula, together with condition (4) of Lemma 6.5, (i) (cf. also our assumption that
l0 > 2, and that the stable curve X over k is sturdy), that there exists a Galois
étale covering v0Y → X of X such that conditions (1), (2) of the statement of the
present Lemma 6.10 are satisfied, and, moreover, a similar inequality to the inequality

“deg(D
Y
v ) < g

Y
v ” for each vertex of ΓY that lies over v0 ∈ v(ΓX ) is satisfied. Thus, by

considering a connected component of the fiber product of these “v0Y ” over X — where
v0 ranges over the vertices of ΓX — one verifies immediately from Lemma 6.8, (ii), (iii),
that there exists a sub-Galois étale covering of X such that conditions (1), (2), (3) of the
statement of the present Lemma 6.10 are satisfied. In particular, it follows immediately
from [28, Theorem 0.7] and [28, Proposition 0.8, (i), (ii)], together with Lemma 6.8,
(ii), (iii) (cf. also [9, Lemma 1.4]), that there exists a sub-Galois étale covering of X
such that conditions (1), (2), (3), (4) of the statement of the present Lemma 6.10 are
satisfied, as desired. This completes the proof of Lemma 6.10. □

7. Reconstruction of log special fibers

In the present section, we show how the log special fiber of a stable curve can be
recovered from the étale fundamental group (cf. Lemma 7.3, (iv), below). In the present
section, suppose that we are in the situation at the beginning of the preceding §6.

Lemma 7.1. Suppose that the equality k = k holds, and that the stable curve X over k
is sturdy. Let l be a prime number invertible in R and H ⊆ ΠX a normal open subgroup
of ΠX . Write XH → X for the Galois étale covering that corresponds to H, KH ⊆ K
for the finite Galois extension field of K that corresponds to the image of H in GK, and
RH ⊆ KH for the normalization of R in KH . Then the following assertions hold:

(i) Condition (1) of Lemma 6.5, (i), is satisfied if and only if the image of H in
GK contains the subgroup PK ⊆ GK.

(ii) Condition (2) of Lemma 6.5, (i), is satisfied if and only if there exists a sub-
Zl-module M ⊆ ∆l-ab

XH
(cf. Definition 6.6) of ∆l-ab

XH
such that the conjugation

action of H on ∆l-ab
XH

determines the respective trivial actions of H on M and

∆l-ab
XH

/M .
(iii) Suppose that condition (2) of Lemma 6.5, (i), is satisfied. Thus, there exist a

stable curve XH over RH and an isomorphism XH ×RH
KH

∼→ XH over KH .
Here, we shall identify XH ×RH

KH with XH by means of such a fixed isomor-

phism XH ×RH
KH

∼→ XH . Then condition (3) of Lemma 6.5, (i), is satisfied
if and only if, for each vertex v ∈ v(ΓXH

) (cf. Definition 1.2, Definition 6.1)

of ΓXH
, the image of D∆

v ⊆ ∆l-ab
XH

(cf. Definition 6.6) by the natural continuous

homomorphism ∆l-ab
XH
→ ∆l-ab

X has a natural structure of free Zl-module of rank
≥ 4.

(iv) Suppose that condition (2) of Lemma 6.5, (i), is satisfied. Thus, there exist

a stable curve XH over RH and an isomorphism XH ×RH
KH

∼→ XH over
KH . Here, we shall identify XH ×RH

KH with XH by means of such a fixed

isomorphism XH ×RH
KH

∼→ XH . Then condition (5) of Lemma 6.5, (ii),
is satisfied if and only if, for each vertex v ∈ v(ΓXH

) of ΓXH
, the subgroup
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of ∆X/∆XH
(cf. Definition 6.3) that consists of γ ∈ ∆X/∆XH

such that the
conjugation action of γ on ∆l-ab

XH
stabilizes the closed subgroup D∆

v ⊆ ∆l-ab
XH

and

induces the identity automorphism of D∆
v is of order prime to p.

Proof. Assertion (i) is immediate. Assertion (ii) follows from the well-known stable
reduction criterion (cf., e.g., [3, §7.4, Theorem 6]), together with [4, Theorem 2.4].
Assertion (iii) follows immediately from Lemma 6.7, (i), together with the well-known
structure of the maximal pro-l quotient of the étale fundamental group of a hyperbolic
curve over an algebraically closed field of characteristic ̸= l (cf., e.g., [26, Proposition
1.1, (i), (ii)]). Assertion (iv) follows immediately from Lemma 1.6 and Lemma 7.2, (i),
below, together with Lemma 6.7, (i), (ii). □

Lemma 7.2. Let A be an abelian variety over K and l an odd prime number invertible
in K. Then the following assertions hold:

(i) Write A[l] ⊆ A for the group subscheme of A obtained by forming the ker-
nel of the endomorphism of A given by multiplication by l. Then the natural
homomorphism AutK(A)→ Aut(A[l](K)) is injective.

(ii) Let B be an abelian variety over K. Write Tl(A), Tl(B) for the respective l-adic
Tate modules of A, B. Then the natural map HomK(A,B)→ HomẐ(Tl(A),Tl(B))
is injective.

Proof. Assertion (i) follows from [5, Lemme 5.17]. Assertion (ii) follows from the (easily
verified) fact that the subset of the underlying topological space of A that consists of
torsion points of A of l-power order is dense. □

Lemma 7.3. Let X1, X2 be stable curves over R such that the generic fibers X1
def
=

X1 ×R K, X2
def
= X2 ×R K are smooth over K, respectively, and ϕΠX

: ΠX1

∼→ ΠX2 (cf.
Definition 6.3) a continuous isomorphism over GK. Suppose that the stable curve X 1

(cf. Definition 6.1) over k is sturdy. Then the following assertions hold:

(i) Let l be a prime number. Then, for each v1 ∈ v(ΓX 1
) (cf. Definition 1.2,

Definition 6.1), there exists a unique vertex v2 ∈ v(ΓX 2
) such that the image of

D∆
v1
⊆ ∆l-ab

X1
(cf. Definition 6.6) by the isomorphism ∆l-ab

X1

∼→ ∆l-ab
X2

induced by

the isomorphism ϕΠX
is given by D∆

v2
⊆ ∆l-ab

X2
. Moreover, for each e1 ∈ e(ΓX 1

)
(cf. Definition 1.2), there exists a(n) (not necessarily unique) edge e2 ∈ e(ΓX 2

)

such that the image of D∆
e1
⊆ ∆l-ab

X1
(cf. Definition 6.6) by the isomorphism

∆l-ab
X1

∼→ ∆l-ab
X2

induced by the isomorphism ϕΠX
is given by D∆

e2
⊆ ∆l-ab

X2
.

(ii) The isomorphism ϕΠX
fits into a commutative diagram of topological groups

ΠX1

spX1 // //

≀ϕΠX

��

Πlog
X 1

!! !!
≀ϕ

Π
log
X

��

Gtm
K

ΠX2 spX2

// // Πlog
X 2

== ==
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(cf. Definition 5.1, Definition 6.1, Definition 6.3) — where the diagonal arrows
are the natural continuous surjective homomorphisms, and the vertical arrows
are continuous isomorphisms.

(iii) Suppose, moreover, that the field k is finite, and that X1 is not smooth over R.

Then there exists an isomorphism ϕX : X 1
∼→ X 2 of schemes (not necessarily

over k). Moreover, the assignment “ϕΠX
7→ ϕX” is functorial.

(iv) Suppose, moreover, that the field k is finite, that X1 is not smooth over R, and
that the isomorphism ϕΠX

is cyclotomically compatible. Then the isomorphism

ϕΠlog
X
: Πlog

X 1

∼→ Πlog
X 2

of (ii) arises from an isomorphism ϕX log : X log
1

∼→ X log
2 (cf.

Definition 6.1) over Spec(k)log.

Proof. Assertion (i) follows immediately — in light of Lemma 6.7, (ii), Lemma 6.8, (i),
and [4, Corollary 2.7] — by applying [21, Corollary 2.7, (iii)] to the various isomorphisms
between the respective maximal pro-q quotients of suitable open subgroups of ∆X1 , ∆X2

for some prime number q invertible in R. Assertion (ii) follows from Lemma 6.5, (ii),
and Lemma 7.1, together with assertion (i).

Next, we verify assertions (iii), (iv). We begin by observing that, to verify assertions
(iii), (iv), by applying Lemma 5.9, (iii), and Lemma 6.8, (i), together with Galois
descent, we may pass to a suitable Galois étale covering of X1. In particular, it follows
from Lemma 6.10, together with Lemma 6.8, (ii), that, to verify assertions (iii), (iv),
we may assume without loss of generality that each of the stable curves X 1, X 2 over k
is sturdy, untangled, and split. Then assertion (iii) follows immediately from a similar
argument to the argument applied in the discussion given in [17, pp.600-602]. Moreover,
assertion (iv) follows immediately from a similar argument to the argument applied in
the proof of [17, Theorem 7.2] (cf. also the discussion preceding [17, Theorem 7.2]).
This completes the proofs of assertions (iii), (iv), hence also of Lemma 7.3. □

Definition 7.4. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf.
Definition 5.3) a continuous isomorphism over GK . Then we shall say that the iso-
morphism ϕΠZ

is LSF-compatible (where the “LSF” stands for “Log Special Fiber”) if
the isomorphism ϕΠZ

is compactification-compatible (cf. Definition 5.5), and, moreover,
the following condition is satisfied: Let H1 ⊆ ΠZ1 be an open subgroup of ΠZ1 . Write

H2
def
= ϕΠZ

(H1) ⊆ ΠZ2 , L ⊆ K for the finite extension field of K that corresponds to the
image of H1 (i.e., of H2) in GK , RL ⊆ L for the normalization of R in L, and kL for the
residue field of RL. Moreover, for each i ∈ {1, 2}, write W+

i → Z+
i for the finite flat cov-

ering of Z+
i that corresponds to the open subgroup Hi ⊆ ΠZi

, which thus implies that
we have an identification Hi = ΠWi

(cf. Definition 5.3), where we write Wi for the open
subscheme of W+

i obtained by forming the inverse image of Zi ⊆ Z+
i (cf. Remark 5.3.1).

Suppose that there exist a stable curve W1 over RL such that W1 (cf. Definition 6.1)

is sturdy and not smooth over kL and an isomorphism W1 ×RL
L

∼→ W+
1 over L. Then

there exist a stable curve W2 over RL and an isomorphism W2 ×RL
L

∼→ W+
2 over L.

Moreover, if we identify Wi ×RL
L with W+

i by means of such a fixed isomorphism

Wi ×RL
L

∼→ W+
i for each i ∈ {1, 2}, then the isomorphism ϕΠlog

Z
: Πlog

W1

∼→ Πlog
W2

(cf.

Definition 6.1, Definition 6.3) induced by ϕΠZ
(cf. Lemma 7.3, (ii); our assumption

that the isomorphism ϕΠZ
is compactification-compatible) arises from an isomorphism

W log
1

∼→W log
2 (cf. Definition 6.1) over Spec(kL)

log (cf. Definition 6.1).
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Lemma 7.5. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Defi-
nition 5.3) a continuous isomorphism over GK. Suppose that the field k is finite, and
that the isomorphism ϕΠX

is cyclotomically compatible (cf. Definition 5.7). Then the
isomorphism ϕΠZ

is LSF-compatible.

Proof. This assertion follows immediately from Lemma 7.3, (iv) (cf. also Lemma 5.6).
□

Definition 7.6. Suppose that the field K is of characteristic p. Let n be a nonnegative
integer. Then we shall write

• FrK(n) for the absolute pn-th power Frobenius endomorphism of Spec(K),
• Z(n) for the hyperbolic curve over K obtained by pulling back the hyperbolic
curve Z over K by FrK(n), and
• FrZ/K(n) : Z → Z(n) for the relative pn-th power Frobenius morphism over K
(i.e., the morphism determined by the absolute pn-th power Frobenius endo-
morphism of Z).

Remark 7.6.1. One verifies easily that, in the situation of Definition 7.6, the contin-
uous outer homomorphism ΠZ → ΠZ(n) (cf. Definition 5.3) induced by the morphism
FrZ/K(n) : Z → Z(n) is a continuous outer isomorphism.

Lemma 7.7. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Defini-
tion 5.3) a continuous isomorphism over GK. Suppose that the field k is finite. Then
the following assertions hold:

(i) Suppose that the field K is of characteristic zero. Then the isomorphism ϕΠZ

is cyclotomically compatible.
(ii) Suppose that the field K is of characteristic p, and that the hyperbolic curve

Z1 over K is nonisotrivial. Then there exists a uniquely determined integer n
that satisfies the following condition: If n is nonnegative, then the composite
ΠZ1

∼→ ΠZ2(n) (cf. Definition 5.3, Definition 7.6) of the given isomorphism

ϕΠZ
: ΠZ1

∼→ ΠZ2 with the continuous isomorphism ΠZ2

∼→ ΠZ2(n) induced by
FrZ2/K(n) (cf. Remark 7.6.1) is cyclotomically compatible. If n is negative,

then the composite ΠZ1(n)
∼→ ΠZ2 of the inverse of the continuous isomorphism

ΠZ1

∼→ ΠZ1(n) induced by FrZ1/K(n) with the given isomorphism ϕΠZ
: ΠZ1

∼→
ΠZ2 is cyclotomically compatible.

Proof. Observe that it follows from [16, Chapter VI, Theorem 11.1, (a)], together with
Lemma 5.9, (ii), that, to verify Lemma 7.7, we may pass to a suitable finite étale
covering of Z1. In particular, it follows from Lemma 6.4 and Lemma 6.10, together
with Lemma 5.9, (iii), that we may assume without loss of generality that Z+

1 , hence
also Z+

2 (cf. Lemma 7.3, (iv)), has a nonsmooth sturdy stable model. Then, by applying
a similar argument to the argument applied in the discussion given in [17, pp.601-603]
(or, alternatively, by applying [10, Lemma 5.2, (ii)]), one concludes that the diagram
of topological modules

ΛZ+
1

∼ //

≀
��

ΛZ+
2

≀
��

ΛK ∼
// ΛK
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— where the vertical arrows are the respective natural isomorphisms of Remark 5.4.1,
(ii), the upper horizontal arrow is the isomorphism induced by ϕΠZ

(cf. Lemma 5.6), and
the lower horizontal arrow is the isomorphism obtained by multiplying 1 (respectively, a
power of p) if K is of characteristic zero (respectively, of characteristic p) — commutes.
Thus, the desired assertion follows immediately from the definition of the relative pn-
th power Frobenius morphism defined in Definition 7.6. This completes the proof of
Lemma 7.7. □

8. Tate modules of Raynaud extensions of generalized Prym schemes

In the present section, we introduce some notational conventions related to the notion
of the generalized Prym scheme of a finite étale covering of a stable curve and the notion
of the Raynaud extension of the generalized Prym scheme. Moreover, we prove some
basic facts concerning these notions. In the present section, suppose that we are in the
situation at the beginning of §6. Moreover, let

• Y be a stable curve over R such that the generic fiber Y
def
= Y ×R K is smooth

over K,
• l a prime number invertible in R, and
• Y → X a Galois étale covering of degree l over R, whose Galois group we
denote by G.

By considering the natural (necessarily faithful — cf. Lemma 1.6, Lemma 6.2) action
of G on the Jacobian variety JY (cf. Definition 1.1) of the stable curve Y = Y ×R k (cf.
Definition 6.1) over k (i.e., induced by the action of G on Y over R), we shall regard G
as a subgroup of the automorphism group of JY over k. Suppose, moreover, that

• the structure morphism Y → Spec(R) of Y has a splitting, and that
• the stable curve Y over k is split.

Definition 8.1. We shall write

• J t
Y , P

t
Y/X for the respective dual semi-abelian schemes (cf., e.g., [22, Chapitre

IV, Théorème 7.1, (i)]) of the Jacobian variety JY of Y over R, the general-
ized Prym scheme PY/X associated to the Galois étale covering Y → X (cf.
Definition 2.1),

• 0 → T (J̃Y) → J̃Y → A(J̃Y) → 0, 0 → T (P̃Y/X ) → P̃Y/X → A(P̃Y/X ) → 0,

0 → T (J̃ t
Y) → J̃ t

Y → A(J̃ t
Y) → 0, 0 → T (P̃ t

Y/X ) → P̃ t
Y/X → A(P̃ t

Y/X ) → 0 for

the respecrtive Raynaud extensions associated to JY , PY/X , J
t
Y , P

t
Y/X (cf., e.g.,

[6, Chapter II, §1]),
• T×(JY), T×(PY/X ), T×(J

t
Y), T×(P

t
Y/X ), T×(T (J̃Y)), T×(J̃Y), T×(A(J̃Y)), T×(T (P̃Y/X )),

T×(P̃Y/X ), T×(A(P̃Y/X )), T×(T (J̃
t
Y)), T×(J̃

t
Y), T×(A(J̃

t
Y)), T×(T (P̃

t
Y/X )), T×(P̃

t
Y/X ),

T×(A(P̃
t
Y/X )) for the respective full profinite (respectively, pro-prime-to-char(K)-

adic) Tate modules of (the generic fibers of) JY , PY/X , J t
Y , P t

Y/X , T (J̃Y),

J̃Y , A(J̃Y), T (P̃Y/X ), P̃Y/X , A(P̃Y/X ), T (J̃ t
Y), J̃ t

Y , A(J̃ t
Y), T (P̃ t

Y/X ), P̃ t
Y/X ,

A(P̃ t
Y/X ) whenever char(K) = 0 (respectively, char(K) ̸= 0), and

• C(J̃Y), C(P̃Y/X ), C(J̃ t
Y), C(P̃ t

Y/X ) for the respective character groups of the

tori T (J̃Y), T (P̃Y/X ), T (J̃
t
Y), T (P̃

t
Y/X ) over R.
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Remark 8.1.1.

(i) It is well-known (cf., e.g., [6], Chapter II, §1) that we have a natural identi-

fication JY = J̃Y ×R k, which thus determines a natural identification of the

connected component of Ker(l − hnew : JY → JY) with P̃Y/X ×R k (cf. Defini-
tion 2.1).

(ii) It is well-known (cf., e.g., [6], Chapter I, §1; [6], Chapter III, Corollary 7.4)
that there exist natural commutative diagrams of topological modules

0 // T×(P̃Y/X ) //
� _

��

T×(PY/X ) //
� _

��

C(P̃ t
Y/X )⊗Z Ẑ× //

� _

��

0

0 // T×(J̃Y) // T×(JY) // C(J̃ t
Y)⊗Z Ẑ× // 0,

0 // T×(J̃
t
Y) //

��

T×(J
t
Y) //

��

C(J̃Y)⊗Z Ẑ× //

��

0

0 // T×(P̃
t
Y/X ) // T×(P

t
Y/X ) // C(P̃Y/X )⊗Z Ẑ× // 0

— where the horizontal sequences are exact, and the vertical arrows of the first
diagram are injective.

(iii) It is well-known (cf., e.g., [6], Chapter II, §2) that the abelian scheme A(P̃ t
Y/X )

over R is the dual abelian scheme of A(P̃Y/X ).

(iv) It is immediate that we have natural identifications T×(T (J̃Y)) = C(J̃Y)
D (cf.

Definition 5.2), T×(T (P̃Y/X )) = C(P̃Y/X )
D, T×(T (J̃

t
Y)) = C(J̃ t

Y)
D, T×(T (P̃

t
Y/X )) =

C(P̃ t
Y/X )

D.

(v) It follows from (iii), (iv) (cf. also Remark 5.2.1) that, by applying “(−)D” to the
natural exact sequences 0 → T×(T (P̃Y/X )) → T×(P̃Y/X ) → T×(A(P̃Y/X )) →
0, 0 → T×(T (P̃

t
Y/X )) → T×(P̃

t
Y/X ) → T×(A(P̃

t
Y/X )) → 0, we obtain exact

sequences of topological modules

0 // T×(A(P̃
t
Y/X )) // T×(P̃Y/X )

D // C(P̃Y/X )⊗Z Ẑ× // 0,

0 // T×(A(P̃Y/X )) // T×(P̃
t
Y/X )

D // C(P̃ t
Y/X )⊗Z Ẑ× // 0.

Definition 8.2. We shall write

• MY for the topological abelianization of (respectively, the topological abelian-
ization of the maximal pro-prime-to-char(K) quotient of) ∆Y whenever char(K) =
0 (respectively, char(K) ̸= 0) and

• MPrym
Y ⊆ MY for the image of the endomorphism of the topological group MY

determined by hnew.

Remark 8.2.1. It follows from the well-known theory of Jacobian varieties of curves
that the morphism Y → JY (cf. Definition 1.1) determined by a splitting of the structure
morphism of Y over R determines a GK-equivariant continuous isomorphism

MY
∼ // T×(JY).
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Moreover, this isomorphism does not depend on the choice of a splitting of the structure
morphism of Y over R.

Lemma 8.3. The isomorphism MY
∼→ T×(JY) of Remark 8.2.1 fits into a commutative

diagram of topological modules

MPrym
Y

� � //

≀
��

MY

≀
��

T×(PY/X )
� � // T×(JY)

— where the horizontal arrows are the natural inclusions (cf. also Remark 8.1.1, (ii)),
and the vertical arrows are continuous isomorphisms.

Proof. This assertion follows immediately from the various definitions involved. □

Definition 8.4. We shall write

• Madm
Y for the topological quotient of MY determined by the quotient ∆adm

Y (cf.

Definition 6.3) of ∆Y ,

• M/vr
Y for the topological quotient of Madm

Y by the closed subgroup of Madm
Y

topologically generated by the images of the decomposition subgroups of ∆adm
Y

associated to the elements of v(ΓY) (cf. Definition 1.2, Definition 6.1),

• Mvr
Y ⊆ MY for the kernel of the natural continuous surjective homomorphism

MY ↠ M/vr
Y ,

• MPrym-vr
Y

def
= MPrym

Y ∩Mvr
Y ⊆MPrym

Y for the intersection of MPrym
Y with Mvr

Y ,

• ((M/vr
Y )D)pre-Prym ⊆ (MPrym

Y )D for the image by the natural homomorphism

MD
Y → (MPrym

Y )D of the closed subgroup (M/vr
Y )D ⊆MD

Y ,

• ((M/vr
Y )D)Prym ⊆ (MPrym

Y )D for the kernel of the natural homomorphism from

(MPrym
Y )D onto (

(MPrym
Y )D/

(
(M/vr

Y )D
)
pre-Prym

)
⊗Z Q,

• MPrym-nd
Y ⊆ MPrym

Y for the image of the submodule T×(T (P̃Y/X )) ⊆ T×(PY/X )
(cf. Remark 8.1.1, (ii)) by the inverse of the left-hand vertical arrow of the
diagram of Lemma 8.3,

• MPrym-(/nd)
Y

def
= MPrym

Y /MPrym-nd
Y for the quotient of MPrym

Y by the submodule

MPrym-nd
Y ⊆MPrym

Y of MPrym
Y , and

• ((M/nd
Y )D)Prym ⊆ (MPrym

Y )D for the kernel of the natural homomorphisms from

(MPrym
Y )D onto (

(MPrym
Y )D/(MPrym-(/nd)

Y )D
)
⊗Z Q

— where we regard (MPrym-(/nd)
Y )D as a subgroup of (MPrym

Y )D by the natural

continuous injective homomorphism (MPrym-(/nd)
Y )D ↪→ (MPrym

Y )D.

Lemma 8.5. The following assertions hold:
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(i) The isomorphism MY
∼→ T×(JY) of Remark 8.2.1 fits into a commutative dia-

gram of topological modules

MPrym-nd
Y

� � //

≀
��

MPrym-vr
Y

� � //

≀
��

MPrym
Y

� � //

≀
��

MY

≀
��

T×
(
T (P̃Y/X )

)
� � // T×(P̃Y/X )

� � // T×(PY/X )
� � // T×(JY)

— where the horizontal arrows are the natural inclusions (cf. also Remark 8.1.1,
(ii)), and the vertical arrows are continuous isomorphisms.

(ii) The diagram of (i) determines a commutative diagram of topological modules

MPrym-vr
Y

// //

≀
��

MPrym-vr
Y /MPrym-nd

Y

≀
��

T×(P̃Y/X ) // // T×
(
A(P̃Y/X )

)
— where the horizontal arrows are the natural surjective homomorphisms, and
the vertical arrows are continuous isomorphisms.

(iii) The isomorphism T×(J
t
Y)

∼→MD
Y determined by the isomorphism of Remark 8.2.1

fits into a commutative diagram of topological modules

T×
(
T (P̃ t

Y/X )
)
� � //

≀
��

T×(P̃
t
Y/X )

� � //

≀
��

T×(P
t
Y/X )

≀
��

T×(J
t
Y)oo

≀
��(

(M/vr
Y )D

)
Prym

� � //
(
(M/nd

Y )D
)
Prym

� � // (MPrym
Y )D MD

Y
oo

— where the horizontal arrows are the natural homomorphisms (cf. also Re-
mark 8.1.1, (ii)), and the vertical arrows are continuous isomorphisms.

(iv) The diagram of (iii) determines a commutative diagram of topological modules

T×(P̃
t
Y/X ) // //

≀
��

T×
(
A(P̃ t

Y/X )
)

≀
��(

(M/nd
Y )D

)
Prym

// //
(
(M/nd

Y )D
)
Prym

/
(
(M/vr

Y )D
)
Prym

— where the horizontal arrows are the natural surjective homomorphisms, and
the vertical arrows are continuous isomorphisms.

(v) The natural identification MPrym
Y = ((MPrym

Y )D)D (cf. Remark 5.2.1) determines

an identification of the quotients of MPrym
Y

MPrym
Y /MPrym-vr

Y

((
(M/vr

Y )D
)
Prym

)
D,

which fits into the decomposition

T×(PY/X )/T×(P̃Y/X ) MPrym
Y /MPrym-vr

Y
∼oo

((
(M/vr

Y )D
)
Prym

)
D

∼ // T×
(
T (P̃ t

Y/X )
)
D C(P̃ t

Y/X )⊗Z Ẑ×
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— where the first arrow is the isomorphism determined by the diagram of (i),
the second arrow is the isomorphism determined by the left-hand vertical arrow
of the diagram of (iii), and the second equality is the equality determined by the

equality T×(T (P̃
t
Y/X )) = C(P̃ t

Y/X )
D that appears in Remark 8.1.1, (iv) — of

the natural identification T×(PY/X )/T×(P̃Y/X ) = C(P̃ t
Y/X )⊗Z Ẑ× that appears

in the upper horizontal sequence of the first diagram of Remark 8.1.1, (ii).

Proof. These assertions follow immediately from [3, §9.2, Example 8] (cf. also [6, Chap-
ter III, Corollary 8.2]). □

Lemma 8.6. Let

• X1, X2 be stable curves over R such that, for each i ∈ {1, 2},
– the generic fiber Xi

def
= Xi ×R K is smooth over K, and that

– the stable curve X i (cf. Definition 6.1) over k is sturdy,
• Y1, Y2 stable curves over R such that, for each i ∈ {1, 2},

– the generic fiber Yi
def
= Yi ×R K is smooth over K, that

– the structure morphism Yi → Spec(R) has a splitting, and that
– the stable curve Y i (cf. Definition 6.1) over k is split, and

• Y1 → X1, Y2 → X2 Galois étale coverings of degree l over R.

Let ϕΠX
: ΠX1

∼→ ΠX2 (cf. Definition 6.3) be a continuous isomorphism over GK that

restricts to an isomorphism ΠY1

∼→ ΠY2 (cf. Definition 6.3) necessarily over GK. Then
the following assertions hold:

(i) The isomorphism MY1

∼→ MY2 (cf. Definition 8.2) determined by the isomor-
phism ϕΠX

fits into a commutative diagram of topological groups

MPrym-vr
Y1

� � //

≀
��

MPrym
Y1

� � //

≀
��

MY1

≀
��

MPrym-vr
Y2

� � // MPrym
Y2

� � // MY2

(cf. Definition 8.4) — where the horizontal arrows are the natural inclusions,
and the vertical arrows are continuous isomorphisms.

(ii) The isomorphism MD
Y2

∼→ MD
Y1

determined by the isomorphism ϕΠX
fits into a

commutative diagram of topological groups(
(M/vr

Y2
)D

)
Prym

≀
��

� � // (MPrym
Y2

)D

≀
��

MD
Y2

≀
��

oo

(
(M/vr

Y1
)D

)
Prym

� � // (MPrym
Y1

)D MD
Y1

oo

(cf. Definition 8.4) — where the horizontal arrows are the natural homomor-
phisms, and the vertical arrows are continuous isomorphisms.

Proof. These assertions follow from Lemma 7.3, (i), (ii), together with the various
definitions involved (cf. also Lemma 6.8, (i)). □
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9. Reconstruction of Raynaud extensions of generalized Prym schemes

In the present section, we show how the Raynaud extension of the generalized Prym
scheme of a finite étale covering in a certain situation can be recovered from the étale
fundamental group (cf. Lemma 9.3 below). In the present section, suppose that we are
in the situation at the beginning of the preceding §8.

Definition 9.1. Suppose that the field K is of characteristic zero. Then we shall write

• P̃Y/X [p
∞] for the p-divisible group over R determined by the semi-abelian

scheme P̃Y/X ,
• EY/X for the p-divisible group over R whose p-adic Tate module is given (cf.
[30, Theorem 4]; Lemma 8.5, (i)) by the GK-module obtained by forming the

maximal GK-stable torsion-free quotient of MPrym-vr
Y ⊗ẐZp on which the natural

action of IK (cf. Definition 5.1) is trivial, and
• T Y/X for the p-divisible group over R whose p-adic Tate module is given (cf.

[30, Theorem 4]; Lemma 8.5, (i)) by the GK-module (((MPrym-vr
Y )D)IK )D⊗Ẑ Zp,

where we write ((MPrym-vr
Y )D)IK ⊆ (MPrym-vr

Y )D for the submodule of (MPrym-vr
Y )D

of IK-invariants.

Remark 9.1.1. It is immediate that if the field K is of characteristic zero, then the

p-divisible group P̃Y/X [p
∞] over R is the p-divisible group over R whose p-adic Tate

module is given (cf. [30, Theorem 4]) by the GK-module T×(P̃Y/X )⊗Ẑ Zp.

Lemma 9.2. Suppose that the field K is of characteristic zero, and that the Ga-
lois étale covering Y → X is new-ordinary (cf. Definition 2.2). Then the isomor-

phism MPrym-vr
Y

∼→ T×(P̃Y/X ) that appears in Lemma 8.5, (i), determines (cf. also
Remark 9.1.1, [30, Theorem 4]) an isomorphism of p-divisible groups over k

(EY/X × T Y/X)×R k
∼ // P̃Y/X [p

∞]×R k.

Proof. Let us first recall that since (we have assumed that) the field k is perfect, every
p-divisible group over k may be decomposed into the product of an étale p-divisible
group over k and a connected p-divisible group over k. Moreover, one verifies easily
that an arbitrary homomorphism over k from an étale (respectively, a connected) p-
divisible group over k to a connected (respectively, an étale) p-divisible group over k is
trivial. Now let us recall that we have assumed that the Galois étale covering Y → X
is new-ordinary. Thus, the desired assertion follows immediately from the well-known
structure of the p-adic Tate module of the p-divisible group over R that arises from an
extension by a torus over R of an abelian scheme over R whose special fiber over k is
ordinary. This completes the proof of Lemma 9.2. □

Lemma 9.3. Let

• X1, X2 be stable curves over R such that, for each i ∈ {1, 2},
– the generic fiber Xi

def
= Xi ×R K is smooth over K, and that

– the stable curve X i (cf. Definition 6.1) over k is sturdy and not smooth
over k,

• Y1, Y2 stable curves over R such that, for each i ∈ {1, 2},
– the generic fiber Yi

def
= Yi ×R K is smooth over K, that

– the structure morphism Yi → Spec(R) has a splitting, and that
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– the stable curve Y i (cf. Definition 6.1) over k is split, and
• Y1 → X1, Y2 → X2 Galois étale coverings of degree l over R.

Let ϕΠX
: ΠX1

∼→ ΠX2 (cf. Definition 6.3) be a continuous isomorphism over GK that re-

stricts to an isomorphism ΠY1

∼→ ΠY2 (cf. Definition 6.3) necessarily over GK. Suppose
that the following three conditions are satisfied:

• The field K is of characteristic zero.
• The Galois étale covering Y1 → X 1 is new-ordinary.
• The isomorphism ϕΠX

is LSF-compatible (cf. Definition 7.4).

Then the isomorphism MPrym-vr
Y1

∼→ MPrym-vr
Y2

(cf. Definition 8.4) determined by ϕΠX

(cf. Lemma 8.6, (i)) arises — relative to the second vertical arrow of the diagram of

Lemma 8.5, (i) — from an isomorphism P̃Y1/X1

∼→ P̃Y2/X2 (cf. Definition 8.1) of semi-
abelian schemes over R (cf. Remark 9.3.1 below).

Proof. Let us first observe that since (we have assumed that) the isomorphism ϕΠX
is

LSF-compatible, the isomorphism Πlog
Y1

∼→ Πlog
Y2

(cf. Definition 6.3) induced by ϕΠX
(cf.

Lemma 7.3, (ii)) arises (cf. also Lemma 5.9, (iii)) from an isomorphism Y log
1

∼→ Y log
2 (cf.

Definition 6.1) over Spec(k)log (cf. Definition 6.1), which determines (cf. Remark 8.1.1,

(i)) an isomorphism P̃Y1/X1 ×R k
∼→ P̃Y2/X2 ×R k over k. In particular, since (we

have assumed that) the field K is of characteristic zero, and the Galois étale covering
Y1 → X 1, hence also the Galois étale covering Y2 → X 2, is new-ordinary, one concludes

immediately from Lemma 9.2 that the isomorphism P̃Y1/X1 [p
∞]×Rk

∼→ P̃Y2/X2 [p
∞]×Rk

(cf. Definition 9.1) induced by the above isomorphism P̃Y1/X1 ×R k
∼→ P̃Y2/X2 ×R k

coincides with the isomorphism P̃Y1/X1 [p
∞] ×R k

∼→ P̃Y2/X2 [p
∞] ×R k induced by the

isomorphism P̃Y1/X1 [p
∞]

∼→ P̃Y2/X2 [p
∞] determined (cf. Remark 9.1.1, [30, Theorem 4])

by the composite

T×(P̃Y1/X1) MPrym-vr
Y1

∼oo ∼ // MPrym-vr
Y2

∼ // T×(P̃Y2/X2)

(cf. Definition 8.1) — where the first and third arrows are the second vertical arrow of
the diagram of Lemma 8.5, (i), and the second arrow is the isomorphism determined
by ϕΠX

. Thus, it follows immediately from [12, Theorem 1.2.1] that the isomorphism

MPrym-vr
Y1

∼→MPrym-vr
Y2

determined by ϕΠX
arises — relative to the second vertical arrow

of the diagram of Lemma 8.5, (i) — from an isomorphism P̃Y1/X1

∼→ P̃Y2/X2 of semi-
abelian schemes over R, as desired. This completes the proof of Lemma 9.3. □

Remark 9.3.1. Suppose that, in the situation of Lemma 9.3, we are given an iso-

morphism P̃Y1/X1

∼→ P̃Y2/X2 of semi-abelian schemes over R. Then observe that one

verifies easily that this isomorphism P̃Y1/X1

∼→ P̃Y2/X2 of semi-abelian schemes over R
determines a commutative diagram of semi-abelian schemes over R

0 // T (P̃Y1/X1) //

≀
��

P̃Y1/X1
//

≀
��

A(P̃Y1/X1) //

≀
��

0

0 // T (P̃Y2/X2) // P̃Y2/X2
// A(P̃Y2/X2) // 0
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(cf. Definition 8.1) — where the horizontal sequences are exact, the vertical arrows are
isomorphisms, and the left-hand vertical arrow determines an isomorphism of modules

C(P̃Y1/X1)
∼ // C(P̃Y2/X2)

(cf. Definition 8.1).

Definition 9.4. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf.
Definition 5.3) a continuous isomorphism over GK . Then we shall say that the isomor-
phism ϕΠZ

is REP-compatible (where the “REP” stands for “Raynaud Extension of the
generalized Prym scheme”) if the isomorphism ϕΠZ

is compactification-compatible (cf.
Definition 5.5), and, moreover, the following condition is satisfied: Let H ′

1 ⊆ H1 ⊆ ΠZ1

be open subgroups of ΠZ1 such that the image of H ′
1 in GK coincides with the image

of H1 in GK . Write H ′
2

def
= ϕΠZ

(H ′
1) ⊆ H2

def
= ϕΠZ

(H1) ⊆ ΠZ2 , L ⊆ K for the finite
extension field of K that corresponds to the image of H1 (i.e., of H2) in GK , RL ⊆ L
for the normalization of R in L, and kL for the residue field of RL. Moreover, for each
i ∈ {1, 2}, write V +

i → W+
i → Z+

i (cf. Definition 5.3) for the finite flat coverings of
Z+

i that correspond to the open subgroups H ′
i ⊆ Hi ⊆ ΠZi

, respectively. Suppose that
there exist

• a prime number q invertible in R,
• stable curves V1, W1, V2, W2 over RL, and
• isomorphisms V1×RL

L
∼→ V +

1 ,W1×RL
L

∼→ W+
1 , V2×RL

L
∼→ V +

2 ,W2×RL
L

∼→
W+

2 over L, by means of which we identify V1 ×RL
L, W1 ×RL

L, V2 ×RL
L,

W2 ×RL
L with V +

1 , W+
1 , V +

2 , W+
2 , respectively,

such that

• each of the stable curves V1, W1, V2, W2 (cf. Definition 6.1) over kL is sturdy,
split, and not smooth over kL, that
• each of the morphisms V1 →W1, V2 →W2 induced by the finite flat coverings
V +
1 → W+

1 , V +
2 → W+

2 (cf. [19, Corollary 7.4]), respectively, is a Galois étale
covering of degree q and new-ordinary, and, moreover, that
• each of the structure morphisms V1 → Spec(RL), V2 → Spec(RL) has a split-
ting.

Then the isomorphism MPrym-vr

V +
1

∼→MPrym-vr

V +
2

(cf. Definition 8.4) determined by ϕΠZ
(cf.

our assumption that the isomorphism ϕΠZ
is compactification-compatible; Lemma 8.6,

(i)) arises — relative to the second vertical arrow of the diagram of Lemma 8.5, (i)

— from an isomorphism P̃ V1/W1

∼→ P̃ V2/W2 (cf. Definition 8.1) of semi-abelian schemes
over RL.

Lemma 9.5. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Defi-
nition 5.3) a continuous isomorphism over GK. Suppose that the field K is of charac-
teristic zero, and that the isomorphism ϕΠX

is LSF-compatible. Then the isomorphism
ϕΠZ

is REP-compatible.

Proof. This assertion follows from Lemma 9.3. □

Remark 9.5.1. One main difficulty to work with basefields of positive characteristic in
the present paper is as follows. Suppose that the Galois étale covering Y → X is new-
ordinary. As discussed in Lemma 9.2, in the case where the field K is of characteristic

zero, one may relate the p-divisible group P̃Y/X [p
∞] associated to the semi-abelian
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scheme P̃Y/X with the étale fundamental group ΠX of the generic fiber X of X . On
the other hand, in the case where the field K is of positive characteristic, since every
nontrivial multiplicative p-divisible group over K is not étale, at the time of writing, the

authors of the present paper are not able to relate P̃Y/X [p
∞] with ΠX . In particular, at

the time of writing, the authors of the present paper are not able to prove Lemma 9.5
without assuming that K is of characteristic zero.

10. Reconstruction of generalized Prym schemes

In the present section, we show how the generalized Prym scheme of a finite étale
covering in a certain situation can be recovered from the étale fundamental group (cf.
Lemma 10.6, (iii), below). In the present section, suppose that we are in the situation
at the beginning of §8.
Definition 10.1. We shall write

• λY : JY
∼→ J t

Y for the isomorphism over R obtained by forming the uniquely
determined extension of the principal polarization on JY determined by the
theta divisor on PicgY −1

Y/K , where we write gY for the genus of the curve Y over

K, and some splitting of the structure morphism Y → Spec(R),
• λP

Y/X : PY/X → P t
Y/X for the Prym semi-polarization associated to the Galois

étale covering Y → X (cf. Definition 2.3, (ii)),

• λA
Y/X : A(P̃Y/X )→ A(P̃ t

Y/X ) for the polarization on A(P̃Y/X ) (cf. Remark 8.1.1,

(iii)) induced by λP
Y/X : PY/X → P t

Y/X ,

• λC
Y/X : C(P̃ t

Y/X ) → C(P̃Y/X ) for the homomorphism determined by the homo-

morphism T (P̃Y/X )→ T (P̃ t
Y/X ) induced by λP

Y/X : PY/X → P t
Y/X , and

• T×(λY) : T×(JY)
∼→ T×(J

t
Y) = T×(JY)

D, T×(λ
P
Y/X ) : T×(PY/X ) → T×(P

t
Y/X ) =

T×(PY/X )
D, T×(λ

A
Y/X ) : T×(A(P̃Y/X )) → T×(A(P̃

t
Y/X )) = T×(A(P̃Y/X ))

D (cf.

Definition 5.2) for the continuous homomorphisms induced by λY , λ
P
Y/X , λ

A
Y/X ,

respectively.

Lemma 10.2. The following assertions hold:

(i) The cup pairing

HomẐ×
(MY ,MD

Y ) = H1(∆Y , Ẑ×)⊗Ẑ×
H1(∆Y ,ΛK)

// H2(∆Y ,ΛK) = HomẐ×
(ΛY ,ΛK)

determines a continuous isomorphism

MD
Y

∼ // MY ⊗Ẑ×
HomẐ×

(ΛY ,ΛK).

(ii) The isomorphism MY
∼→ MD

Y ⊗Ẑ×
HomẐ×

(ΛK ,ΛY ) determined by the isomor-

phism of (i) fits into a commutative diagram of topological modules

MY
∼ //

≀
��

MD
Y ⊗Ẑ×

HomẐ×
(ΛK ,ΛY )

∼ // MD
Y

T×(JY)
∼

T×(λY )
// T×(J

t
Y) T×(JY)

D

≀

OO
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— where the vertical arrows are the isomorphisms determined by the isomor-
phism of Remark 8.2.1, and the right-hand upper horizontal arrow is the iso-
morphism determined by the isomorphism

Ẑ×
∼ // HomẐ×

(ΛY ,ΛK)

given by the natural isomorphism ΛY
∼→ ΛK of Remark 5.4.1, (ii) (cf. also

Remark 5.2.1; Remark 5.4.1, (i)).

(iii) The composite MY
∼→MD

Y of the upper horizontal arrows of the diagram of (ii)
fits into a commutative diagram of topological modules

MPrym-nd
Y

� � //

��

MPrym-vr
Y

� � //

��

MPrym
Y

� � //

��

MY

≀
��(

(M/vr
Y )D

)
Prym

� � //
(
(M/nd

Y )D
)
Prym

� � // (MPrym
Y )D MD

Y
oo

— where the upper sequence is the upper sequence of the diagram of Lemma 8.5,
(i), and the lower sequence is the lower sequence of the diagram of Lemma 8.5,
(iii).

(iv) We have a commutative diagram of topological modules

MPrym-vr
Y /MPrym-nd

Y
//

≀
��

(
(M/nd

Y )D
)
Prym

/
(
(M/vr

Y )D
)
Prym

T×
(
A(P̃Y/X )

)
T×(λA

Y/X )

// T×
(
A(P̃ t

Y/X )
)≀

OO

— where the upper horizontal arrow is the homomorphism determined by the
diagram of (iii), and the left-hand, right-hand vertical arrows are the right-hand
vertical arrows of the diagrams of Lemma 8.5, (ii), (iv), respectively.

(v) We have a commutative diagram of topological modules

MPrym-nd
Y

//

≀
��

(
(M/vr

Y )D
)
Prym

T×
(
T (P̃Y/X )

)
C(P̃Y/X )

D // C(P̃ t
Y/X )

D T×
(
T (P̃ t

Y/X )
)≀

OO

(cf. Remark 8.1.1, (iv)) — where the upper horizontal arrow is the left-hand
vertical arrow of the diagram of (iii), the lower horizontal arrow is the homo-
morphism induced by λC

Y/X , and the left-hand, right-hand vertical arrows are the

right-hand vertical arrows of the diagrams of Lemma 8.5, (i), (iii), respectively.

Proof. These assertions follow immediately from the well-known theory of Jacobian
varieties of curves, together with the various definitions involved. □
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Lemma 10.3. Consider the diagram

(MPrym-nd
Y )D

((
(M/vr

Y )D
)
Prym

)
Doo

≀
��

C(P̃Y/X )⊗Z Ẑ×

≀

OO

C(P̃ t
Y/X )⊗Z Ẑ×

λC
Y/X

oo

obtained by applying “(−)D” to the diagram of Lemma 10.2, (v) (cf. also Remark 5.2.1).

In the remainder of Lemma 10.3, we identify (MPrym-nd
Y )D, (((M/vr

Y )D)Prym)
D with C(P̃Y/X )⊗Z

Ẑ×, C(P̃ t
Y/X ) ⊗Z Ẑ× by means of the left-hand, right-hand vertical arrows of this dia-

gram, respectively. Let C ⊆ (((M/vr
Y )D)Prym)

D be a submodule of (((M/vr
Y )D)Prym)

D and

fC : C → C(P̃Y/X ) a homomorphism of modules. Then the following two conditions are
equivalent:

(1) The equality (C, fC) = (C(P̃ t
Y/X ), λ

C
Y/X ) holds.

(2) The inclusion C ↪→ (((M/vr
Y )D)Prym)

D determines an isomorphism C ⊗Z Ẑ×
∼→

(((M/vr
Y )D)Prym)

D, and, moreover, the homomorphism (((M/vr
Y )D)Prym)

D → (MPrym-nd
Y )D

determined by this resulting isomorphism and the homomorphism fC : C →
C(P̃Y/X ) under consideration coincides with the upper horizontal arrow (((M/vr

Y )D)Prym)
D →

(MPrym-nd
Y )D of the above diagram.

Proof. This assertion follows immediately from the (easily verified) fact that the mod-

ules C(P̃Y/X ), C(P̃ t
Y/X ) are finitely generated and free, and, moreover, the homomor-

phism λC
Y/X : C(P̃ t

Y/X ) → C(P̃Y/X ) is an injective homomorphism whose cokernel is

(finite and) of order a power of l (cf. Remark 2.3.1), hence also prime to p. □

Definition 10.4. Let F be a field and F a separable closure of F .

(i) Let A be a semi-abelian variety over F . Then we shall refer to the homomor-
phism A(F ) → H1(Gal(F/F ),T×(A)) — where we write T×(A) for the full
profinite (respectively, pro-prime-to-char(K)-adic) Tate module of A whenever
char(K) = 0 (respectively, char(K) ̸= 0) — induced by the various Kummer
exact sequences associated to A as the ×-Kummer homomorphism associated
to the semi-abelian variety A over F .

(ii) We shall say that the field F is ×-Kummer-faithful if, for every finite extension
field F ′ of F contained in F and every semi-abelian variety A over F ′, the ×-
Kummer homomorphism A(F ′) → H1(Gal(F/F ′),T×(A)) associated to A is
injective. Observe that one verifies easily that this condition does not depend
on the choice of F .

Definition 10.5. We shall refer to the homomorphisms

C(P̃ t
Y/X ) // A(P̃Y/X )(K), C(P̃ t

Y/X ) // P̃Y/X (K)

discussed in [6, Chapter II, Theorem 6.2, (3)], [6, Chapter II, Theorem 6.2, (5)] associ-
ated to the semi-abelian scheme PY/X over R, equipped with the Prym semi-polarization
associated to the Galois étale covering Y → X , as the dual-extension-homomorphism,
the Prym-period-homomorphism associated to the Galois étale covering Y → X , re-
spectively.
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Remark 10.5.1. Suppose that the field K is ×-Kummer-faithful. Then one verifies
immediately from the various definitions involved (respectively, from [6, Chapter III,

Corollary 7.3]) that the dual-extension-homomorphism C(P̃ t
Y/X ) → A(P̃Y/X )(K) (re-

spectively, the Prym-period-homomorphism C(P̃ t
Y/X ) → P̃Y/X (K)) associated to the

Galois étale covering Y → X is a uniquely determined homomorphism C(P̃ t
Y/X ) →

A(P̃Y/X )(K) (respectively, C(P̃ t
Y/X )→ P̃Y/X (K)) such that the image of c ∈ C(P̃ t

Y/X )

by the composite of the homomorphism C(P̃ t
Y/X )→ A(P̃Y/X )(K) (respectively, C(P̃ t

Y/X )→
P̃Y/X (K)) under consideration with the ×-Kummer homomorphism A(P̃Y/X )(K) →
H1(GK ,T×(A(P̃Y/X ))) (respectively, P̃Y/X (K) → H1(GK ,T×(P̃Y/X ))) associated to

A(P̃Y/X )×RK (respectively, P̃Y/X×RK) is given by the GK-torsor under T×(A(P̃Y/X ))

(respectively, T×(P̃Y/X )) obtained by forming the fiber of c ⊗ 1 ∈ C(P̃ t
Y/X ) ⊗Z Ẑ× by

the third arrow of the second exact sequence of Remark 8.1.1, (v) (respectively, the
third arrow of the upper horizontal sequence of the first diagram of Remark 8.1.1, (ii)).

Lemma 10.6. Let

• X1, X2 be stable curves over R such that, for each i ∈ {1, 2},
– the generic fiber Xi

def
= Xi ×R K is smooth over K, and that

– the stable curve X i (cf. Definition 6.1) over k is sturdy,
• Y1, Y2 stable curves over R such that, for each i ∈ {1, 2},

– the generic fiber Yi
def
= Yi ×R K is smooth over K, that

– the structure morphism Yi → Spec(R) has a splitting, and that
– the stable curve Y i (cf. Definition 6.1) over k is split, and

• Y1 → X1, Y2 → X2 Galois étale coverings of degree l over R.

Let ϕΠX
: ΠX1

∼→ ΠX2 (cf. Definition 6.3) be a continuous isomorphism over GK that re-

stricts to an isomorphism ΠY1

∼→ ΠY2 (cf. Definition 6.3) necessarily over GK. Suppose
that the following two conditions are satisfied:

(a) The isomorphism ϕΠX
is cyclotomically compatible (cf. Definition 5.7).

(b) The isomorphism MPrym-vr
Y1

∼→ MPrym-vr
Y2

(cf. Definition 8.4) determined by ϕΠX

(cf. Lemma 8.6, (i)) arises — relative to the second vertical arrow of the dia-

gram of Lemma 8.5, (i) — from an isomorphism P̃Y1/X1

∼→ P̃Y2/X2 (cf. Defini-
tion 8.1) of semi-abelian schemes over R.

Then the following assertions hold:

(i) The isomorphism (((M/vr
Y1

)D)Prym)
D ∼→ (((M/vr

Y2
)D)Prym)

D (cf. Definition 8.4)
determined by ϕΠX

(cf. Lemma 8.6, (ii)) arises — relative to the right-hand ver-

tical arrow of the diagram of Lemma 10.3 — from an isomorphism C(P̃ t
Y1/X1

)
∼→

C(P̃ t
Y2/X2

) (cf. Definition 8.1) of modules. Moreover, the resulting isomorphism
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C(P̃ t
Y1/X1

)
∼→ C(P̃ t

Y2/X2
) fits into a commutative diagram of modules

C(P̃ t
Y1/X1

)

≀
��

λC
Y1/X1 // C(P̃Y1/X1)

≀
��

C(P̃ t
Y2/X2

)
λC
Y2/X2

// C(P̃Y2/X2)

(cf. Definition 8.1) — where the right-hand vertical arrow is the isomorphism
induced by the isomorphism of (b) (cf. also Remark 9.3.1).

(ii) If the field K is ×-Kummer-faithful, then the diagrams of groups

C(P̃ t
Y1/X1

)

≀
��

// A(P̃Y1/X1)(K)

≀
��

C(P̃ t
Y1/X1

)

≀
��

// P̃Y1/X1(K)

≀
��

C(P̃ t
Y2/X2

) // A(P̃Y2/X2)(K), C(P̃ t
Y2/X2

) // P̃Y2/X2(K)

(cf. Definition 8.1) — where the first and third vertical arrows are the iso-
morphism obtained by (i), the second and fourth vertical arrows are the iso-

morphisms induced by the isomorphism P̃Y1/X1

∼→ P̃Y2/X2 of condition (b)
(cf. Remark 9.3.1), the left-hand upper, lower horizontal arrows are the dual-
extension-homomorphisms associated to the Galois étale coverings Y1 → X1,
Y2 → X2, respectively, and the right-hand upper, lower horizontal arrows are the
Prym-period-homomorphisms associated to the Galois étale coverings Y1 → X1,
Y2 → X2, respectively — commute.

(iii) Suppose that the two diagrams of (ii) commute. Then the isomorphismMPrym
Y1

∼→
MPrym

Y2
(cf. Definition 8.4) determined by ϕΠX

(cf. Lemma 8.6, (i)) arises —
relative to the third vertical arrow of the diagram of Lemma 8.5, (i) — from an

isomorphism PY1/X1

∼→ PY2/X2 (cf. Definition 8.1) of semi-abelian schemes over
R that is compatible with the respective Prym semi-polarizations associated to
the Galois étale coverings Y1 → X1, Y2 → X2 (cf. Definition 2.3, (ii)).

Proof. First, we verify assertion (i). Observe that it follows from condition (a) that we
obtain a commutative diagram of topological modules((

(M/vr
Y1

)D
)
Prym

)
D //

≀
��

(MPrym-nd
Y1

)D

≀
��((

(M/vr
Y2

)D
)
Prym

)
D // (MPrym-nd

Y2
)D

— where the horizontal arrows are the upper horizontal arrow of the diagram of
Lemma 10.3, and the vertical arrows are continuous isomorphisms determined by the
isomorphism ϕΠX

(cf. Lemma 8.6, (ii); condition (b); Remark 9.3.1). Moreover, observe
that it follows from condition (b) (cf. also Remark 9.3.1) that the right-hand vertical
arrow of this diagram restricts — relative to the left-hand vertical arrow of the diagram

of Lemma 10.3 — to an isomorphism C(P̃Y1/X1)
∼→ C(P̃Y2/X2) of submodules. In par-

ticular, assertion (i) follows from Lemma 10.3. This completes the proof of assertion
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(i). Assertion (ii) follows immediately form Lemma 8.5, (i), (ii), (v), and Lemma 8.6,
(i), together with assertion (i) and Remark 10.5.1.

Next, we verify assertion (iii). Let us first observe that it follows from condition (b),
together with Remark 9.3.1, that we have

(1) a commutative diagram of semi-abelian schemes over R

0 // T (P̃Y1/X1) //

≀
��

P̃Y1/X1
//

≀
��

A(P̃Y1/X1) //

≀
��

0

0 // T (P̃Y2/X2) // P̃Y2/X2
// A(P̃Y2/X2) // 0

— where the horizontal sequences are exact, the vertical arrows are isomor-
phisms, and the middle vertical arrow is the isomorphism of condition (b).

Next, recall that it follows from assertion (i) that we have

(2) an isomorphism of modules

C(P̃ t
Y1/X1

)
∼ // C(P̃ t

Y2/X2
).

Next, recall that it follows from our assumption that we have

(3) a commutative diagram of groups

C(P̃ t
Y1/X1

)

≀
��

// A(P̃Y1/X1)(K)

≀
��

C(P̃ t
Y2/X2

) // A(P̃Y2/X2)(K)

— where the left-hand vertical arrow is the isomorphism of (2), the right-hand
vertical arrow is the isomorphism determined by the right-hand vertical arrow
of the diagram of (1), and the upper, lower horizontal arrows are the dual-
extension-homomorphisms associated to the Galois étale coverings Y1 → X1,
Y2 → X2, respectively.

Next, observe that it follows from Lemma 8.5, (ii), (iv); Lemma 8.6, (i), (ii); Lemma 10.2,
(iv), together with Lemma 7.2, (ii), and condition (a), that we have

(4) a commutative diagram of abelian schemes over R

A(P̃Y1/X1)

≀
��

λA
Y1/X1 // A(P̃ t

Y1/X1
)

≀
��

A(P̃Y2/X2)
λA
Y2/X2

// A(P̃ t
Y2/X2

).

— where the left-hand vertical arrow is the right-hand vertical arrow of the
diagram of (1), and the right-hand vertical arrow is the isomorphism determined
by the left-hand vertical arrow (cf. also Remark 8.1.1, (iii)).

Next, recall that it follows from assertion (i) that we have
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(5) a commutative diagram of modules

C(P̃ t
Y1/X1

)

≀
��

λC
Y1/X1 // C(P̃Y1/X1)

≀
��

C(P̃ t
Y2/X2

)
λC
Y2/X2

// C(P̃Y2/X2)

— where the left-hand vertical arrow is the isomorphism of (2), and the right-
hand vertical arrow is the isomorphism induced by the left-hand vertical arrow
of the diagram of (1).

Next, recall that it follows from our assumption that we have

(6) a commutative diagram of groups

C(P̃ t
Y1/X1

)

≀
��

// P̃Y1/X1(K)

≀
��

C(P̃ t
Y2/X2

) // P̃Y2/X2(K)

— where the left-hand vertical arrow is the isomorphism of (2), the right-hand
vertical arrow is the isomorphism determined by the middle vertical arrow of
the diagram of (1), and the upper, lower horizontal arrows are the respective
Prym-period-homomorphisms associated to the Galois étale coverings Y1 → X1,
Y2 → X2.

Thus, one concludes immediately from the equivalence Mpol : DDpol
∼→ DEGpol of cat-

egories of [6, Chapter III, Corollary 7.2] that the isomorphism MPrym
Y1

∼→ MPrym
Y2

deter-
mined by ϕΠX

arises — relative to the third vertical arrow of the diagram of Lemma 8.5,

(i) — from an isomorphism PY1/X1

∼→ PY2/X2 of semi-abelian schemes over R that is
compatible with the respective Prym semi-polarizations associated to the Galois étale
coverings Y1 → X1, Y2 → X2, as desired. This completes the proof of assertion (iii),
hence also of Lemma 10.6. □

Definition 10.7. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf.
Definition 5.3) a continuous isomorphism over GK . Then we shall say that the iso-
morphism ϕΠZ

is Prym-compatible if the isomorphism ϕΠZ
is cyclotomically compatible

and REP-compatible, and, moreover, in the situation discussed in Definition 9.4, the
diagrams of groups

C(P̃ t
V1/W1

)

≀
��

// A(P̃ V1/W1)(L)

≀
��

C(P̃ t
V1/W1

)

≀
��

// P̃ V1/W1(L)

≀
��

C(P̃ t
V2/W2

) // A(P̃ V2/W2)(L), C(P̃ t
V2/W2

) // P̃ V2/W2(L)

(cf. Definition 8.1) — where the first and third vertical arrows are the isomorphisms
obtained by Lemma 10.6, (i) (cf. our assumption that the isomorphism ϕΠZ

is cyclotom-
ically compatible and REP-compatible), the second and fourth vertical arrows are the

isomorphisms induced by the isomorphism P̃ V1/W1

∼→ P̃ V2/W2 (cf. Remark 9.3.1), the
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left-hand upper, lower horizontal arrows are the dual-extension-homomorphisms associ-
ated to the Galois étale coverings V1 →W1, V2 →W2, respectively, and the right-hand
upper, lower horizontal arrows are the Prym-period-homomorphisms associated to the
Galois étale coverings V1 →W1, V2 →W2, respectively — commute.

Lemma 10.8. Let Z1, Z2 be hyperbolic curves over K and ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Defi-
nition 5.3) a continuous isomorphism over GK. Suppose that the field K is of charac-
teristic zero and ×-Kummer-faithful, and that the isomorphism ϕΠX

is LSF-compatible.
Then the isomorphism ϕΠZ

is Prym-compatible.

Proof. This assertion follows from Lemma 7.7, (i); Lemma 9.5; Lemma 10.6, (ii), (ii).
□

11. Anabelian consequences

In the present section, we give proofs of the main results of the present paper (cf.
Theorem 11.1, Corollary 11.2, Corollary 11.3 below).

Theorem 11.1. Let

• R be a complete discrete valuation ring whose field of fractions we denote by
K, and whose residue field we denote by k,
• K a separable closure of K, and
• Z1, Z2 hyperbolic curves over K.

Let ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf. Definition 5.3) be a continuous isomorphism over GK (cf.
Definition 5.1). Suppose that the following three conditions are satisfied.

(a) The field k is perfect and of characteristic p > 0.
(b) The isomorphism ϕΠZ

is LSF-compatible (cf. Definition 7.4) and Prym-compatible
(cf. Definition 10.7).

(c) If K is of characteristic p, then the hyperbolic curve Z1 over K is nonisotrivial
(cf. Definition 5.8, (i)), and the field k is algebraic over a finite field.

Then the isomorphism ϕΠZ
arises from a unique isomorphism Z1

∼→ Z2 over K.

Proof. The uniqueness portion of Theorem 11.1 follows immediately from a similar
argument to the argument applied in the first paragraph of the proof of [18, Theorem
14.1], together wth Lemma 7.7, (ii).

Next, to verify the existence portion of Theorem 11.1, let H1 ⊆ ΠZ1 be a subnormal

(cf. Definition 6.9, (i)) open subgroup of ΠZ1 . Write H2
def
= ϕΠZ

(H1) ⊆ ΠZ2 , L ⊆ K for
the finite extension field of K that corresponds to the image of H1 (i.e., of H2) in GK ,
RL ⊆ L for the normalization of R in L, and kL for the residue field of RL. Moreover,
for each i ∈ {1, 2}, write W+

i → Z+
i (cf. Definition 5.3) for the finite flat covering of Z+

i

that corresponds to the open subgroup Hi ⊆ ΠZi
, which thus implies that we have an

identification Hi = ΠWi
(cf. Definition 5.3), where we write Wi for the open subscheme

of W+
i obtained by forming the inverse image of Zi ⊆ Z+

i (cf. Remark 5.3.1). Then it
follows from [4, Corollary 2.7] (cf. also Lemma 5.9, (i)), together with the well-known
structure of the maximal pro-l quotient of the étale fundamental group of a hyperbolic
curve over an algebraically closed field of characteristic ̸= l (cf., e.g., [26, Proposition
1.1, (i), (ii)]), that we may take “H1” so that,
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(1) for each i ∈ {1, 2}, there exist a stable curve Wi over RL and an isomorphism

Wi ×RL
L

∼→ W+
i over L, by means of which we identify Wi ×RL

L with W+
i ,

and, moreover,
(2) for each i ∈ {1, 2}, the branch locus of the finite flat covering W+

i → Z+
i is

given by Z+
i \ Zi.

Next, observe that it follows from Lemma 6.4, together with Lemma 5.9, (ii), (iv),
that we may take “H1” so that W+

1 has a nonsmooth stable model. Thus, it follows
from Lemma 6.10, together with Lemma 5.9, (iii), that we may take “H1” so that

(3) the stable curve W1 (cf. Definition 6.1) over kL is untangled and not smooth
over kL,

(4) for each vertex w ∈ v(ΓW1
) (cf. Definition 1.2, Definition 6.1) of ΓW1

, the

inequality deg(DW1
w ) < gW1

w (cf. Definition 1.3) holds (which thus implies that
the stable curve W1 over kL is sturdy), and, moreover,

(5) for each vertex w ∈ v(ΓW1
) of ΓW1

, the smooth proper curve (W1)w (cf. Defi-

nition 1.3) over k is of gonality ≥ 5.

In particular, it follows from Theorem 4.5 that we may assume without loss of generality,
after possibly replacing L by a suitable finite extension field of L in K, that there exist

• a stable curve V1 over RL,
• a prime number l invertible in R, and
• a Galois étale covering V1 →W1 of degree l over RL

such that

(6) the induced Galois étale covering V1 →W1 (cf. Definition 6.1) over k is Prym-
faithful and new-ordinary.

Write H ′
1 ⊆ H1 for the open subgroup of H1 that corresponds to the induced Galois

étale covering V +
1

def
= V1 ×RL

L → W+
1 , H ′

2
def
= ϕΠZ

(H ′
1) ⊆ H2, V

+
2 → W+

2 for the finite
flat covering of W+

2 that corresponds to the open subgroup H ′
2 ⊆ H2. Then it follows

from condition (2) of Lemma 6.5, (i), and Lemma 7.3, (ii) (cf. also (4); Lemma 5.6),

that there exist a stable curve V2 over RL and an isomorphism V2×RL
L

∼→ V +
2 over L,

by means of which we identify V2 ×RL
L with V +

2 .
Next, observe that since (we have assumed that) the isomorphism ϕΠZ

is LSF-
compatible (cf. also (3); (4); Lemma 6.8, (i)),

(7) the commutative diagram of topological groups

Πlog
V1

//

≀
��

Πlog
W1

≀
��

Πlog
V2

// Πlog
W2

(cf. Definition 6.1, Definition 6.3) — where the horizontal arrows are the nat-
ural homomorphisms, and the vertical arrows are continuous isomorphisms —
induced by ϕΠZ

(cf. Lemma 5.6; Lemma 7.3, (ii)) arises from a commutative
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diagram of log schemes over Spec(kL)
log (cf. Definition 6.1)

V log
1

//

≀
��

W log
1

≀
��

V log
2

//W log
2

(cf. Definition 6.1) — where the horizontal arrows are the natural morphisms,
and the vertical arrows are isomorphisms.

In particular, one concludes from (4), (6) that

(8) the stable curve W2 over kL is sturdy, and, moreover,
(9) the induced Galois étale covering V2 →W2 (cf. Definition 6.1) over k is Prym-

faithful and new-ordinary.

Moreover, it is immediate that we may assume without loss of generality, after possibly
replacing L by a suitable finite extension field of L in K, that

(10) each of the stable curves V1, W1, V2, W2 over kL is split, and, moreover,
(11) each of the structure morphisms V1 → Spec(RL), V2 → Spec(RL) has a split-

ting.

Next, observe that since (we have assumed that) the isomorphism ϕΠZ
is Prym-

compatible, it follows from Lemma 10.6, (iii) (cf. also (4), (6), (8), (9), (10), (11)),
that

(12) the isomorphism MPrym

V +
1

∼→ MPrym

V +
2

(cf. Definition 8.4) determined by ϕΠZ
(cf.

Lemma 8.6, (i)) arises — relative to the third vertical arrow of the diagram of

Lemma 8.5, (i) — from an isomorphism PV1/W1

∼→ PV2/W2 (cf. Definition 8.1)
of semi-abelian schemes over RL that is compatible with the respective Prym
semi-polarizations associated to the Galois étale coverings V1 →W1, V2 →W2

(cf. Definition 2.3, (ii)).

In particular, it follows immediately from (6), (7), (9) that the isomorphismW1
∼→W2

determined by the isomorphism W log
1

∼→ W log
2 that appears in (7) lifts uniquely (cf.

Lemma 6.2) to an isomorphism W1
∼→W2 over RL, which restricts to an isomorphism

W+
1

∼→ W+
2 over L.

Next, observe that since (we have assumed that) the open subgroup H1 ⊆ ΠZ1 of
ΠZ1 is subnormal, for each i ∈ {1, 2}, the finite flat covering W+

i → Z+
i may be

written as the composite of finitely many Galois finite flat coverings. In particular, by
applying Galois descent inductively, one concludes immediately that this isomorphism
W+

1
∼→ W+

2 fits into a commutative diagram of schemes over K

W+
1

//

≀
��

Z+
1

≀
��

W+
2

// Z+
2

— where the horizontal arrows are the natural finite flat coverings, and the vertical
arrows are isomorphisms. In particular, it follows from (2) that the lower horizontal

arrow restricts to an isomorphism fZ : Z1
∼→ Z2 over K.
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Finally, observe that one verifies immediately from the various definitions involved
that the assignment “ϕΠZ

7→ fZ” is functorial, i.e., with respect to isomorphisms. Thus,
one concludes formally, by applying the assignment “ϕΠZ

7→ fZ” to the restrictions of
ϕΠZ

to the various normal open subgroups of ΠZ1 , that the isomorphism ϕΠZ
arises

from the isomorphism fZ . This completes the proof of Theorem 11.1. □

Corollary 11.2. Let

• R be a complete discrete valuation ring whose field of fractions we denote by K
and whose residue field we denote by k,
• K a separable closure of K, and
• Z1, Z2 hyperbolic curves over K.

Suppose that the field k is perfect and of characteristic p > 0. Let ϕΠZ
: ΠZ1

∼→ ΠZ2 (cf.
Definition 5.3) be a continuous isomorphism over GK (cf. Definition 5.1). Suppose,
moreover, that the field K is of characteristic zero and ×-Kummer-faithful (cf. Defini-
tion 10.4, (ii)), and that the isomorphism ϕΠX

is LSF-compatible (cf. Definition 7.4).

Then the isomorphism ϕΠZ
arises from a unique isomorphism Z1

∼→ Z2 over K.

Proof. Observe that since (we have assumed that) the field K is of characteristic zero
and ×-Kummer-faithful, and the isomorphism ϕΠX

is LSF-compatible, it follows from
Lemma 10.8 that the isomorphism ϕΠZ

is Prym-compatible. Thus, Corollary 11.2 fol-
lows from Theorem 11.1. This completes the proof of Corollary 11.2. □

Corollary 11.3. Let p be a prime number, K a sub-p-adic field (cf. [18, Definition
15.4]), K an algebraic closure of K, and Z1, Z2 hyperbolic curves over K. Then every

continuous isomorphism ΠZ1

∼→ ΠZ2 (cf. Definition 5.3) over GK (cf. Definition 5.1)

arises from a unique isomorphism Z1
∼→ Z2 over K. Put another way, if one writes

IsomK(Z1, Z2) for the set of isomorphisms Z1
∼→ Z2 over K, IsomGK

(ΠZ1 ,ΠZ2) for the

set of continuous isomorphisms ΠZ1

∼→ ΠZ2 over GK, and IsomGK
(ΠZ1 ,ΠZ2) for the

quotient set of IsomGK
(ΠZ1 ,ΠZ2) with respect to the natural conjugation action of the

kernel of the natural continuous outer homomorphism ΠZ2 → GK, then the natural map

IsomK(Z1, Z2) // IsomGK
(ΠZ1 ,ΠZ2)

is bijective.

Proof. If K is a p-adic local field, then this assertion follows from Corollary 11.2, to-
gether with Lemma 7.5; Lemma 7.7, (i); [15, Theorem 7]. The general case follows
then immediately from this case, together with a “formal argument”, i.e., applied in
the proof of [18, Corollary 15.5]. □
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