THE ARITHMETIC FUNDAMENTAL GROUPS OF CURVES OVER
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ABSTRACT. In the present paper, we study the arithmetic fundamental groups of
curves over local fields from the point of view of anabelian geometry. In particular,
we prove that, under certain technical assumptions, a continuous isomorphism over
the absolute Galois group of the basefield between the tame fundamental groups of
hyperbolic curves over a local field arises from a unique isomorphism between the
given hyperbolic curves over the basefield. This “certain technical assumptions” are
satisfied whenever the basefield of the hyperbolic curves under consideration is a
mixed-characteristic local field. Thus, one may conclude that an arbitrary contin-
uous isomorphism over the absolute Galois group of the basefield between the étale
fundamental groups of hyperbolic curves over a mixed-characteristic local field arises
from a unique isomorphism between the given hyperbolic curves over the basefield.
Moreover, this conclusion, together with a “formal argument” in anabelian geometry,
leads to an alternative proof of a famous anabelian theorem, i.e., for hyperbolic curves
over sub-p-adic fields for some prime number p, proved by Shinichi Mochizuki. Let us
recall that main ingredients of the proof of this anabelian theorem by Mochizuki are
various results in the study of p-adic Hodge theory. In particular, the present paper
yields an alternative proof of this famous anabelian theorem by Mochizuki in which
we never apply such a result in p-adic Hodge theory.
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INTRODUCTION

In the present paper, we study the arithmetic fundamental groups of curves over local
fields from the point of view of anabelian geometry. In the present Introduction, let

e K be a field,
e K a separable closure of K, and
e 7/, Zy hyperbolic curves over K.

Write
def

e G = Gal(K/K) for the absolute Galois group of K determined by the sepa-
rable closure K,

o 11, . Il for the respective tame fundamental groups of Z;, Z,, relative to
suitable choices of basepoints,

o Isomy(Zy, Zy) for the set of isomorphisms Z; = Z, over K,

e Isomg, (I1z,,11z,) for the set of continuous isomorphisms I, — I, over G,
and

e Isomg, (I1z,,Iz,) for the quotient set of Isomg, (Ilz,,1lz,) with respect to
the natural conjugation action of the kernel of the natural continuous outer
homomorphism Iz, = Gg.

Thus, the functoriality of the operation of taking tame fundamental groups determines
a natural map

Isomg (21, Zy) — Isomg, (114,11 4,).

The anabelian Grothendieck conjecture for hyperbolic curves may be formulated as
the bijectivity of this map under suitable choices of (K, Z1,Z;). A (special case of
a) famous theorem proved by Shinichi Mochizuki asserts the bijectivity of the map

under consideration in the case where K is sub-p-adic for some prime number p (cf. [18,
Theorem Al]).

Theorem A. Suppose that K is sub-p-adic for some prime number p, i.e., that K is
isomorphic to a subfield of a finitely generated extension field of the p-adic completion
of the field of rational numbers for some prime number p (cf. [18, Definition 15.4]).
Then the above map

Isomg (2, Zy) — Isomg, (I12,,112,)

is bijective. Put another way, every continuous isomorphism 11z, — Iz, over G arises
from a unique isomorphism Zy — Zy over K.

Let us recall that main ingredients of the proof of this theorem by Mochizuki are
various results in the study of p-adic Hodge theory. One main purpose of the present
paper is to yield an alternative proof of this theorem in which we never apply such a
result in p-adic Hodge theory (cf. Corollary 11.3).
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Next, let us explain the main theorem of the present paper. To this end, in the
remainder of the present Introduction, suppose that

the field K is a complete discrete valuation field.
Write
e R for the valuation ring of K (which is necessarily a complete discrete valuation
ring) and
e [ for the residue field of R.
In the remainder of the present Introduction, suppose, moreover, that
the field k is perfect and of characteristic p > 0.

One may find two properties for continuous isomorphisms between tame fundamental
groups — i.e., LSF-compatibility and Prym-compatibility — and one property of fields
— i.e., x-Kummer-faithfulness — in the statement of Theorem B below, i.e., the main
theorem of the present paper.

e We shall say that a continuous isomorphism ¢: II;, — Iz, over Gg is LSF-
compatible (where the “LSF” stands for “Log Special Fiber”) if, roughly speak-
ing, for suitable open subgroups H C Il of Ilz, the induced isomorphism
H = ¢(H) induces an isomorphism between the “log special fibers” of the re-
spective connected finite étale coverings of Z;, Z, that correspond to H C Il,,,
¢(H) C Ilz,. The precise definition of the notion of LSF-compatibility is given
in Definition 7.4.

e We shall say that a continuous isomorphism ¢: I, = Il , over G is Prym-
compatible if, roughly speaking, for suitable open subgroups H C Il of 11,
the induced isomorphism H — ¢(H) is compatible with certain objects that
are related to the homomorphism “.: Y — G ® K” of (6) that appears in the
definition of objects of the category DD, defined in [6, Chapter III, §2]. The
precise definition of the notion of Prym-compatibility is given in Definition 10.7.

e We shall say that a field F'is x-Kummer-faithful if, for every finite separable
extension field F’ of F' and every semi-abelian variety A over F’, the intersection
M, n - A(F') — where n ranges over the positive integers invertible in F — is
zero (cf. Definition 10.4, (ii)).

The main theorem of the present paper is as follows (cf. Theorem 11.1, Corollary 11.2):

Theorem B. Let ¢: 15, = Iz, be a continuous isomorphism over Gg. Suppose that
the isomorphism ¢ is LSF-compatible. Suppose, moreover, that one of the following
three conditions is satisfied:

(1) The field K is of characteristic zero and X -Kummer-faithful.

(2) The field K is of characteristic zero, and the isomorphism ¢ is Prym-compatible.

(3) The field K is of characteristic p, the hyperbolic curve Zy over K is nonisotrivial
(cf. Definition 5.8, (i)), the field k is algebraic over a finite field, and the
1somorphism ¢ is Prym-compatible.

Then the isomorphism ¢ arises from a unique isomorphism Z; — Zy over K.

Let us observe that if K is a mixed-characteristic local field (i.e., if K is of characteris-
tic zero, and k is finite), then one may verify that the isomorphism ¢ is LSF-compatible
(cf. [17, Theorem 7.2]), and the field K satisfies condition (1) of the statement of The-
orem B (cf. [15, Theorem 7]). In particular, it follows from Theorem B (i.e., in the
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case where condition (1) is satisfied) that Theorem A in the case where K is a mixed-
characteristic local field holds. Moreover, it follows immediately from this conclusion,
together with a “formal argument”, i.e., applied in the proof of [18, Corollary 15.5],
that Theorem A for an arbitrary “K” holds.

Next, let us discuss the strategy of the proof of Theorem B. One important observa-
tion in the proof of Theorem B is the existence of Prym-faithful Galois étale coverings
of stable curves. In order to explain the notion of a Prym-faithful Galois étale covering,
let us fix

e stable curves X, Y over the residue field £ of R and

e a Galois étale covering Y — X over k of degree a prime number invertible in
k.

Now suppose that we are given a stable curve X over R that is smooth over K and an
isomorphism X = X xr k over k, by means of which we identify X with X xz k. Then
it follows immediately from the topological invariance of étale sites that the Galois étale
covering Y — X over k extends uniquely to a Galois étale covering Y — X over R,
where Y is a stable curve over R. In particular,

(a) by considering the restriction to X C X of the log structure on X" associated to
the divisor X C X', one obtains a log structure on X, hence also a log scheme
X' & (whose underlying scheme is X), and,

(b) by considering the “difference”, relative to the resulting covering J — X, be-
tween the Jacobian varieties of X', ), one obtains a polarized abelian scheme
Py,x over R, ie., the generalized Prym scheme Py,y associated to the Ga-
lois étale covering ) — X (cf. Definition 2.1) equipped with the Prym semi-
polarization Py/x — P}, jx — Where we write P, sx for the dual semi-abelian
scheme of Py y over R (cf., e.g., [22, Chapitre IV, Théoreme 7.1, (i)]) — asso-
ciated to the Galois étale covering Y — X (cf. Definition 2.3, (ii)).

Then we shall say that the Galois étale covering Y — X is Prym-faithful if, roughly
speaking, the assignment “X (Xlog,Py/X)” — i.e., the assignment that assigns,
to (the isomorphism class of) X as above, the (isomorphism class of the) pair that
consists of the log scheme of (a) and the polarized abelian scheme of (b) — is injective.
The precise definition of the notion of a Prym-faithful Galois étale covering is given in
Definition 2.5. Then one main technical result of the present paper is as follows (cf.
Theorem 4.5, Lemma 6.10):

Theorem C. There exist

e a positive integer n,

e a finite extension field ky of k,

e for eachi € {0,...,n}, a stable curve Y; over ky,

o for eachi € {1,...,n}, a Galois étale covering Y;_1 — Y; over ky, and
e a Galois étale covering Y, — X over k

such that the Galois étale covering Yy — Y1 over ky is of degree a prime number invert-
ible in k, Prym-faithful, and new-ordinary (cf. Definition 2.2), i.e., and satisfies the
condition that every abelian variety quotient of the (semi-abelian variety over ky ob-
tained by forming the) cokernel of the natural homomorphism over ky from the Jacobian
variety of Y1 to the Jacobian variety of Yy is ordinary.
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Let us recall that Theorem C in the case where the stable curve X is smooth over
k was already essentially proved by Akio Tamagawa. Indeed, Theorem C in the case
where X is smooth over k may be regarded as a formal consequence of [28, Theorem
0.5], [28, Theorem 0.7], [28, Proposition 0.8], and [28, Corollary 5.3]. Observe that the
problem of the existence of Prym-faithful Galois étale coverings of stable curves may
be regarded as the logarithmic infinitesimal version of the “Torelli problem-type result”
for generalized Prym varieties. In the present paper, in order to prove Theorem C, we
apply the theory of the arithmetic compactifications of Shimura varieties of PEL-type
discussed in [13].

Finally, let us explain the strategy of the proof of Theorem B especially in the case
where condition (1) is satisfied. To this end, suppose that the field K satisfies condition
(1) (ie., is of characteristic zero and x-Kummer-faithful), and that we are given a
hyperbolic curve Z over K. Write Il for the étale fundamental group of Z, relative
to a suitable choice of basepoint. Then, roughly speaking, the strategy of the proof
of Theorem B (i.e., to reconstruct the curve Z from the topological group II; group-
theoretically) may be summarized as follows.

For simplicity, suppose that Z is proper over K. Then observe that it follows from
Theorem C, together with the Galois descent argument and some well-known facts
concerning the geometry of stable curves, that, to reconstruct Z from II;, we may
assume without loss of generality, by replacing Z by a suitable connected finite étale
covering of Z, that there exists a commutative diagram of schemes over R

X —— Z — Spec(K)

|

X —— Z —— Spec(R)

— where X is a (necessarily proper) hyperbolic curve over K, X and Z are stable
curves over R, the right-hand vertical arrow is the natural open immersions, the two
squares are cartesian, the left-hand horizontal arrows are Galois étale coverings over R,
and the Galois étale covering

XYy ok —z2¥ 25k

over k determined by the left-hand lower horizontal arrow is of degree a prime number
invertible in k, Prym-faithful, and new-ordinary. Write

e Ay for the étale fundamental group of X xx K, relative to a suitable choice
of basepoint,

e Z'°¢ for the log scheme obtained by equipping Z with the log structure associ-
ated to the divisor Z C Z|

e Z'°¢ for the log scheme obtained by equipping Z with the log structure obtained
by pulling back the log structure of Z'°¢ by the natural closed immersion Z «—
Z?

® Py,z, Py,z for the respective generalized Prym schemes associated to the Ga-
lois étale coverings X — Z, X — Z (cf. Definition 2.1), and

oD x,z for the Raynaud extension of the semi-abelian scheme Py,z over R (cf.,
e.g., [6, Chapter II, §1]).
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(i) First, observe that it follows from the LSF-compatibility assumption in the
statement of Theorem B that one may reconstruct the log special fiber

Zlog
of Z and the Galois étale covering
X—2Z

over k.

(ii) Next, observe that, by considering the generalized Prym scheme associated to
the Galois étale covering X — Z, which was reconstructed in (i), one may
reconstruct the special fiber

P&/gsz/z XRI{?

of the generalized Prym scheme Py,z. Note that it is well-known (cf., e.g., [6,

Chapter II, §1]) that we have a natural identification Px,z Xxgk = Px,z Xg k.
(iii) Next, consider the natural continuous outer action of Gx on Ayx. Then one
may verify from some techniques in combinatorial anabelian geometry that one
may reconstruct, as a suitable Gg-stable subquotient of the maximal pro-p
quotient of the topological abelianization of Ax, the p-adic Tate module

T,(Px)z)

associated to the semi-abelian scheme P x/z equipped with the natural con-
tinuous action of Gk. Thus, since (we have assumed that) the field K is of
characteristic zero, it follows from a classical theorem in the study of p-divisible
groups (cf. [30, Theorem 4]) that one may reconstruct the p-divisible group

JBX/Z [POO]

over R associated to ﬁ){/g.

(iv) Next, recall that we have assumed that the semi-abelian variety Py 1z =Px/zXpg
k (cf. (ii)) over k is ordinary, which thus implies that the p-divisible group over
k associated to this semi-abelian variety may be written as the direct product
of an étale p-divisible group over k and a multiplicative p-divisible group over
k. 1t follows from this ordinariness, together with our assumption that the field
K is of characteristic zero, that one may reconstruct a natural identification
between

e the p-divisible group Py,z[p™] over k associated to the semi-abelian variety
Py z, which was reconstructed in (ii), and
e the special fiber ﬁx/z[poo] x g k of the p-divisible group ﬁ/y/z [p>], which
was reconstructed in (iii).
In particular, it follows from a classical theorem in the study of deformations
of ordinary semi-abelian varieties (cf. [12, Theorem 1.2.1]) that one may recon-
struct the semi-abelian scheme

ﬁX/Z
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over R. We note that this reconstruction step gives rise to one main reason
why one cannot remove the assumption that K is of characteristic zero from
condition (1) of Theorem B (cf. Remark 9.5.1).

(v) Next, recall that we have assumed that the field K is of characteristic zero
and x-Kummer-faithful. In particular, by applying some techniques in com-
binatorial anabelian geometry to the natural continuous outer action of Gg
on Ay, one may reconstruct the object — which consists of six items, and
whose first item is given by the Raynaud extension Py, z reconstructed in (iv)
— of the category DD, defined in [6, Chapter III, §2] that corresponds, rela-
tive to the equivalence Mo : DDy 5 DEG,; of categories of [6, Chapter III,
Corollary 7.2], to the generalized Prym scheme Py,z (i.e., strictly speaking,
equipped with the Prym semi-polarization associated to the Galois étale cov-
ering Y — X — cf. Definition 2.3, (ii)). Thus, by considering the equivalence
Mpe1: DDyt = DEG 0 of categories of [6, Chapter 111, Corollary 7.2], one may
reconstruct the semi-abelian scheme

Py z

over R.

(vi) Finally, observe that since (we have assumed that) the Galois étale covering
X — Z over k is Prym-faithful, one may reconstruct, from the log special fiber
Z'°% of (i) and the generalized Prym scheme Py, z of (v), the stable curve

Z
over R, hence also the hyperbolic curve
Z

over K, as desired.

This completes the rough explanation of the strategy of the proof of Theorem B in the
case where condition (1) is satisfied.

We have the following two remarks concerning the proofs of the main results of the
present paper.

e The proof of Theorem B given in the present paper may be regarded as a
substantial technical refinement of the argument given in the final portion of
(17, §9]. In [17, Theorem 9.7], Mochizuki proved that, roughly speaking, if
the field K is p-adic local for some prime number p, and the Jacobian variety
of Z; has ordinary semistable reduction, then every continuous isomorphism
[z, — Iz, over Gk determines functorially an isomorphism Z; = Z, over K.

e According to Tamagawa, he has already established (but has not written), more
than two decades ago, a special case of Theorem B by similar techniques to the
techniques applied in the proof of Theorem B. As pointed out in the discussion
following Theorem C, Tamagawa essentially gave the proof of Theorem C in the
case where the given stable curve is smooth, which leads to a similar result to
Theorem B in the case where the given hyperbolic curves have good reduction.

Acknowledgments. The authors have reached the main ideas and proofs for the

main results of the present paper around the middle of 2022. The first author was
supported by JSPS KAKENHI Grant Numbers 21K03162 and 24K06668. The second
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1. STABLE CURVES

In the present section, we introduce some notational conventions related to the notion
of a stable curve. In the present section, let

e S be a scheme and
e X a stable curve over S (cf. [4, Definition 1.1]).

Definition 1.1. We shall write

e wy for the dualizing sheaf of X over S (cf. the discussion following [4, Definition
1.1]) and

o Jy = Pic&/s for the Jacobian variety of X over S, which is a semi-abelian
scheme over S (cf. [3, §9.4, Theorem 1]).

Definition 1.2. Suppose that S is the spectrum of a separably closed field. Then we
shall write

e ['y for the dual graph of the stable curve X over S,

e v(I'x) for the set of vertices of the graph I'x (i.e., the set of irreducible com-
ponents of X), and

e ¢(I'x) for the set of edges of the graph I'x (i.e., the set of singular points of
X).

By abuse of notation, we shall regard e(T"x) as a closed subset of X in the evident way.

Definition 1.3. Suppose that S is the spectrum of a field k. Let k& be a separable
closure of k and v € v(I'y, 7) a vertex of 'y . Then we shall write

e [X =, for the irreducible component of X obtained by forming the image in
X of the irreducible component of X xj k that corresponds to v and

° fo = D, for the closed subset of I, obtained by forming the intersection of I,
with the set of singular points of X.

By abuse of notation, write

e [X =], for the reduced closed subscheme of X whose underlying closed subset
is given by I, C X.
Moreover, we shall write

° Uj( = U, def I, \ D, for the open subscheme of I, obtained by forming the

complement of D, in [,
e X, for the smooth proper curve over k obtained by forming the smooth com-
pactification of U,

e gX = g, for the genus of the smooth proper curve X, over k,

def

o Oy = Q&v Ik for the sheaf of relative differentials of X, over k, and

o JX =, o Pic% s for the Jacobian variety of X, over k, which is an abelian

variety over k (cf. [3, §9.2, Proposition 3]).
Observe that one verifies easily that if £ is perfect, then U, is a hyperbolic curve over

k. If k is perfect, then we shall refer to U, as the hyperbolic curve over k associated to
.
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Definition 1.4. Suppose that S is the spectrum of a separably closed field k. Let
v € v(I'x) be a vertex of I'x such that I, is smooth over k. Then observe that one
verifies easily that the natural open immersions U, — [, and U, — X, determine an
identification between I, with X, i.e., I, = X,,. By abuse of notation, write D, for the
reduced divisor on I, = X, whose support is given by the closed subset D, C I, = X,,.

Remark 1.4.1. Let us recall from [14, Chapter 10, Lemma 3.12, (b)] that, in the
situation of Definition 1.4, the natural closed immersion X, — X determines an iso-
morphism of Ox, -modules

wx|x, = Qx,(Dy).

Definition 1.5. Suppose that S is the spectrum of a field k. Let k be a separable
closure of k.

(i) We shall say that the stable curve X over k is sturdy if the inequality g-* ik > 1
holds for every v € v(T'x, 7)-

(ii) We shall say that the stable curve X over k is untangled if I.X *rk i smooth
over k for every v € v(Ux, 7)-
(iii) We shall say that the stable curve X over k is split if the natural action of
Gal(k/k) on the graph I'y, 7 is trivial.
Observe that one verifies easily that each of these conditions does not depend on the
choice of k.

Remark 1.5.1. Suppose that S is the spectrum of a field k£, and that the stable curve
X over k is split. Then one verifies easily that the natural morphism X x; k —
X determines respective bijections from v(I'y, ), e(I'y,,z) to the set of irreducible
components of X, the set of singular points of X.

Lemma 1.6. The natural homomorphism Autg(X) — Auts(Jx) is injective.

Proof. This assertion follows from [4, Theorem 1.13]. O

2. PRYM-FAITHFUL GALOIS ETALE COVERINGS

In the present section, we give the definition of the notion of a Prym-faithful Galois
étale covering of a stable curve (cf. Definition 2.5 below), which will play a central role
in the proof of the main result of the present paper. In the present section, let

e S be a scheme,

e g > 2 an integer,

e X a stable curve of genus g over S,

e Y a stable curve over S,

e [ a prime number invertible on S, and

e /1Y — X a Galois étale covering of degree [ over S (which thus implies that

Y is of genus gy ey (9 — 1)+ 1), whose Galois group we denote by G.

By considering the natural (necessarily faithful — cf. Lemma 1.6) action of G on Jy (cf.
Definition 1.1) (i.e., induced by the action of G on Y'), we shall regard G as a subgroup
of the automorphism group of Jy over S.
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Definition 2.1. We shall write

def
new_l_§ T.

TG

Thus, it follows from [28, Proposition-Definition 4.1], together with the discussion fol-
lowing [28, Proposition-Definition 4.1] in the case where we take the “N” of the discus-
sion to be [, that there exists a unique group subscheme of Jy-

Py;x C Jy

such that

(1) the group scheme Py, x is geometrically connected over S and is an open group
subscheme of the closed group subscheme Ker(l — hyey: Jy — Jy) C Jy (which
thus implies that Py,x is a semi-abelian scheme over S), and, moreover,

(2) the endomorphism hyey of Jy factors as the composite of a surjective smooth
homomorphism .Jy — Py/x over S with the natural inclusion Py x — Jy.

We shall refer to this semi-abelian scheme Py, x over S as the generalized Prym scheme
associated to the Galois étale covering f: Y — X.

Definition 2.2. Suppose that S is the spectrum of a field k of positive characteris-
tic. Then we shall say that the Galois étale covering f: Y — X is new-ordinary if
the generalized Prym scheme associated to the Galois étale covering f: Y — X (cf.
Definition 2.1) is an ordinary semi-abelian variety over k (i.e., satisfies the condition
that every abelian variety quotient is ordinary).

Definition 2.3. Suppose that

e the scheme S is noetherian, normal, and integral, that
e the structure morphism Y — S of Y has a splitting (i.e., a morphism S — Y
over ), and that

e there exists a nonempty open subscheme U C S of § such that the stable curve

Xu ¥« s U over U, hence also the stable curve YU Yy« s U over U, is

smooth.

Write Py/x for the generalized Prym scheme associated to the Galois étale covering

f:Y — X. Observe that it follows from [3, §9.2, Proposition 3| that the semi-abelian

scheme Jy;, = Jy xgU over U, hence also the semi-abelian scheme Py, /x, = Py;x xsU

over U, is an abelian scheme over S. Write Pf// « for the dual semi-abelian scheme of
Py x over S (cf., e.g., [22, Chapitre IV, Théoreme 7.1, (i)]).

(i) Suppose that the stable curve X over S, hence also the stable curve Y over S,

is smooth. Then we shall refer to the polarization Py/x — Py/X on Pyx that

arises from the restriction to Py/x C Jy of the (necessarily ample) invertible
sheaf on Jy determined by the theta divisor on Pic%;l and some splitting of
the structure morphism Y — S as the Prym polarization associated to the
Galois étale covering f: Y — X. Observe that one verifies easily that this
polarization does not depend on the choice of such a splitting of the structure
morphism Y — S.

(ii) Observe that it follows from [6, Chapter I, Proposition 2.7] that the Prym
polarization Py, x, = Px/y xs U — Pﬁtfu/XU = )t(/y x ¢ U associated to
the Galois étale covering Y, — Xy determined by f extends uniquely to a
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homomorphism Py, x — P} /x over S. Moreover, observe that one also verifies
easily that this extension Py, x — P{,/ + does not depend on the choice of U.
We shall refer to this extension Py x — Pf// « as the Prym semi-polarization
associated to the Galois étale covering f: Y — X.

Remark 2.3.1. Suppose that we are in the situation of Definition 2.3, (i). Suppose,
moreover, that S is the spectrum of a field. Then observe that one verifies easily that the
equality h2, = lhyey holds. Thus, it follows immediately from the discussion preceding
[2, Theorem 5.3.2], together with condition (2) of Definition 2.1 and the primitivity
of the norm-endomorphisms associated to nontrivial abelian subvarieties proved in [2,
Norm-endomorphism Criterion 5.3.4], that the exponent (cf. the discussion preceding
2, Lemma 5.3.1]) in Jy of the generalized Prym scheme Py, x associated to the Galois
étale covering f: Y — X divides [ (which thus implies that the Prym polarization
Py;x — P}t//x associated to the Galois étale covering f: Y — X is of degree a power
of [). In particular, the kernel of the Prym polarization Py x — Pf,/ « is a finite étale

commutative group scheme of rank a power of [ over S.

Definition 2.4. Suppose that S is the spectrum of a field k. Let R be a noetherian
complete local domain whose residue field is given by k£ and X" a stable curve (necessarily
of genus g) over R whose special fiber X X gk is given by X. Then it follows immediately
from [7, Exposé X, Théoréme 2.1] that there exist

e a unique, up to isomorphism over X', stable curve ) (necessarily of genus gy)
over R and
e a unique Galois étale covering ®: ) — X of degree [ over R

that fit into a commutative diagram of schemes over R

Yo~y

s

X——X

— where the upper horizontal arrow is a morphism that determines an isomorphism
Y 5 Y xp k over k, and the lower horizontal arrow is the natural closed immersion.
Then we shall say that the Galois étale covering ®: )Y — X over R is the deformation
of the Galois étale covering f: Y — X associated to the stable curve X over R.

Definition 2.5. Suppose that S is the spectrum of a separably closed field k. Then
we shall say that the Galois étale covering f: Y — X is Prym-faithful if the following
condition is satisfied: Let R be a complete discrete valuation ring whose residue field is
given by k. For each i € {1,2}, let &; be a stable curve (necessarily of genus g) over R
that is generically smooth over R and ¢;: X; x gk — X an isomorphism over S. Then if
the following two conditions are satisfied, then the composite ¢ You: Xy xpk 5 Xy x gk
lifts to an isomorphism X; = X, over R:
(1) Write
e Spec(R)"8 for the log scheme obtained by equipping Spec(R) with the log
structure associated to the divisor with normal crossings determined by
the closed point of Spec(R) and
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e S for the log scheme obtained by equipping S with the log structure
obtained by pulling back the log structure of Spec(R)'°® by the natural
surjective homomorphism R — k.

Moreover, for each i € {1,2}, write

° Xilog for the log scheme over Spec(R)'® obtained by equipping &; with the
log structure associated to the divisor X; Xz k C &; and

o (X; xp k)8 for the log scheme over S'°¢ obtained by equipping X; xp k
with the log structure obtained by pulling back the log structure of X%

by the natural closed immersion X; X k — AX;.
Then the composite 1, 0110 X xg k — Xy Xg k induces an isomorphism
(X, X g k)8 5 (X, x g k)% of log schemes over S'°¢.
(2) For each i € {1,2}, write
e f; for the Galois étale covering (necessarily of degree ) of X; x g k obtained
by pulling back f: Y — X by the isomorphism ¢;: X; xp k = X over S
and
e )V, — A, for the deformation of the Galois étale covering f; associated to
the stable curve &; over R (cf. Definition 2.4).
Then the isomorphism Py, /v, X k = Py, x, X k (cf. Definition 2.1) of semi-
abelian schemes over S determined by the composite L2_1 ov1: Xyxpk = Xox gk
lifts to an isomorphism Py, v, — Py,/x, of semi-abelian schemes over R that
is compatible with the respective Prym semi-polarizations associated to the
Galois étale coverings V) — X, Vo — Ay (cf. Definition 2.3, (ii)).

3. A SUFFICIENT CONDITION TO BE PRYM-FAITHFUL

In the present section, we establish a sufficient condition for a Galois étale covering
of a stable curve to be Prym-faithful (cf. Theorem 3.4 below). In the present section,
suppose that we are in the situation at the beginning of the preceding §2. Suppose,
moreover, that the scheme S is given by the spectrum of a separably closed field k of
characteristic p > 0. Write

e [ for the set of prime numbers invertible in &,

o 7" for the pro-prime-to-[J completion of Z,

e Zwy € Q for the localization of Z by the multiplicatively closed subset of Z
generated by the elements of [, and

e O for the Z)-algebra obtained by forming

k it p=0,
W(k) ifp>0

— where we write W (k) for the ring of Witt vectors with coefficients in k.

Definition 3.1. We shall write
° Mg for the moduli stack over O that parametrizes stable curves of genus g over

O (cf. [4, §5]),

e M, for the open substack of Mg that parametrizes smooth stable curves of genus
g over O,

e Ry for the completion of a strict henselization of Mg at the geometric point
obtained by forming the classifying morphism of the stable curve X of genus g
over k,
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e Ky for the field of fractions (cf. Remark 3.1.1, (i), below) of Ry (necessarily

of characteristic zero),

o« MY Spec(Rx) — M, for the natural morphism over O,

def
o I, =

by the natural open immersion My — Mg,

e M8 for the log scheme obtained by equipping 9t with the log structure asso-
ciated to the divisor 9t \ M, with normal crossings (cf. [4, Theorem 5.2]),

e X for the stable curve of genus g over 91 that corresponds to the natural
morphism 9 — Mg,

o fx: X — M for the structure morphism of the stable curve X over 9,

e X, for the (necessarily smooth) stable curve of genus g over 91, that corresponds
to the morphism 9, — M,

e §: 9 — X for the Galois étale covering (necessarily of degree [) obtained by
forming the deformation (cf. Definition 2.4) of the Galois étale covering f: Y —

X associated to the stable curve X over 9 (cf. Remark 3.1.1, (i), below),

o fy of fxof:Y = X — M for the structure morphism of the stable curve )

over N,
e 9), for the (necessarily smooth) stable curve over 91, obtained by forming the

base-change of fy: Q) — 9 by the natural open immersion M, — N,

o B Y Pyx, Bo & Py, jx. (cf. Definition 2.1),

o P’ P! for the respective dual semi-abelian schemes of B, P, over M, M, (cf.,
e.g., [22, Chapitre IV, Théoreme 7.1, (i)]),

e Lie(Jx), Lie(Jy), Lie(P), Lie(P’) for the Rx-modules obtained by forming the
tangent spaces of the semi-abelian schemes Jx, Jy (cf. Definition 1.1), P, P
over I, respectively,

e Lie"(Jx), Lie"(Jy), Lie" (), Lie"(P") for the Ry-modules obtained by form-
ing the Rx-duals of the Ry-modules Lie(.Jy), Lie(.Jy), Lie(), Lie(P*), respec-
tively,

e )\, : B, — P! for the Prym polarization associated to the Galois étale covering
2, — X, determined by f (cf. Definition 2.3, (i)), and

e \: P — P’ for the Prym semi-polarization associated to the Galois étale cov-
ering f: 9 — X (cf. Definition 2.3, (ii)).

Remark 3.1.1.

(i) Since the moduli stack M, is smooth over O (cf. [4, Theorem 5.2]), the com-
pletion Rx is a noetherian complete local regular domain.

(ii) It follows from [3, §9.2, Proposition 3] that the semi-abelian scheme Jy, over
M., hence also the semi-abelian scheme B, over M., is an abelian scheme over
M.

Definition 3.2. Observe that one verifies easily that there exist a subfield F' of K,
an field embedding F' < C, and a polarized abelian variety (Ag, Ap) over F' such
that the polarized abelian variety (Po, \o) Xr, Kx over Kx determined by (o, Ao)
and the natural inclusion Rx — Kx is isomorphic to the polarized abelian variety
(Ap, A\r) Xr Kx over Kx determined by (Ag, Ar) and the natural inclusion F — K.
In the remainder of present Definition 3.2, we shall identify (o, A\o) Xg, Kx with
(Ap, Ar) Xr Kx by means of some fixed isomorphism. Then we shall write

M Xz, Mg = M, for the base-change of the natural morphism 9t — Mg



14 YUICHIRO HOSHI AND YU YANG

e (Be, \c) for the polarized abelian variety over C obtained by forming the base-
change of (Ap, Ar) by the natural inclusion F' — C,

o L= (L,{(,),h) for the PEL-type Z-lattice (cf. [13, Definition 1.2.1.3]) — i.e.,
in the case where we take the “(B,*,O)” of [13, §1.2.1] to be (Q,idg,Z) —
that arises from the polarized Hodge structure of weight —1 associated to the
polarized abelian variety (Bc, Ac) over C, and

e G for the affine group scheme defined in [13, Definition 1.2.1.6] — i.e., in the
case where we take the “(L, (-,-), h)” of [13, Definition 1.2.1.6] to be L.

Observe that one verifies easily that the reflex field (cf. [13, Definition 1.2.5.4]) of
(L®z R, (-,-),h) is given by Q. Moreover, it follows from Remark 2.3.1 that the triple
(Bo, Ao, Z — Endyy, (Bs)) forms a triple as in [13, Definition 1.3.6.1] — i.e., in the case
where we take the “((L, (-,-),h),d)" of [13, §1.3.6] to be (L,0). Moreover, we shall
write

e a = {a;} for the level-G(Z") structure of (Po, Ao, Z — Enday, (Bs)) of type
(L ®z 7", (,)) (cf. [13, Definition 1.3.7.6]) — i.e., in the case where we take
the “H” of [13, Definition 1.3.7.6] to be G(Z") — that consists of the evident
identification ay between L/L = {0} and Bc(C)[1] = {0}.

Note that one verifies easily that, by considering the natural identifications L/nL =
PBc(C)[n], where n ranges over the positive integers prime to p, one may conclude that
the evident identification oy between L/L = {0} and B¢ (C)[1] = {0} forms a principal
level-1 structure of (Po, Ao, Z — Enday, (Bo)) of type (L®zZ", (-,-)) (cf. [13, Definition
1.3.6.2]). Thus, one verifies easily that the tuple (Bo, Ao, Z — Endoy, (Bs), o) forms an
object of the category M0, (9M,) defined in [13, Definition 1.4.1.4], which thus implies
that the tuple (P, \,Z — Endn(B),a) forms a degenerating family of type Mo

over M (cf. [13, Definition 5.3.2.1]). Let X be a compatible choice of admissible smooth
rational polyhedral cone decomposition data for Mg 30, (cf. [13, Definition 6.3.3.4], [13,

Proposition 6.3.3.5]). Then we shall write
° Mtgo(rZD) 5. for the proper smooth algebraic stack over Zg) discussed in [13, The-
orem 6.4.1.1].

Now observe that one verifies immediately (cf. also Remark 3.1.1, (i); [1, Chapter II,
Corollary 4.9, (i)]) that one may replace 3 by a suitable compatible choice of admissible
smooth rational polyhedral cone decomposition data for M, (#0) SO that the degenerating
family (P, A\, Z — Endg (), «) of type Mg 7o) over 9 satisfies the condition discussed
in [13, Theorem 6.4.1.1.6]), which thus implies that we have a classifying morphism
m — MZ,O&DLE Xz, O of the degenerating family (B, A, Z — Endn(*B),«) of type
Mg(ZD) over 9. Then we shall write

e Rp for the completion of a strict henselization of Mtgo(rZD)’Z

ric point obtained by forming the composite of the natural closed immersion

Spec(k) < 9 and the classifying morphism 9 — Mtgo(rz[]m X70 O of the

degenerating family (B, \, Z — Endgyn(P), o) of type Mg o) over D,

def or
e 0N = Spec(Rp) — Mtg@u%

Xz, O at the geomet-

s« Xz, O for the natural morphism over O,
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[ ] m dﬁf m X(Mtor

Caliad(a)
tor . .
morphism 9 — Mg(zﬂ),z Xz, O by the natural open immersion Mg(ZD) Xz,

O — Mtgo(rzg)jz X7, O (cf. the statement of [13, Theorem 6.4.1.1]),

e N for the log scheme obtained by equipping O with the log structure associ-
ated to the divisor 91\ M, with normal crossings relative to O (cf. [13, Theorem
6.4.1.1.3)),

o t: MM — N for the morphism over O induced by the classifying morphism
m — l\/ltgo(rz,])’E Xz, O of the degenerating family (B, A, Z — Endn (%), ) of

type MQ(ZD) over N, and

0) (Mggo) Xz, O) for the base-change of the natural

o tiog: Mloe s s for the morphism of log schemes determined by the morphism
t: 9 — N (cf. Remark 3.1.1, (ii)).

Lemma 3.3. Let L be an invertible sheaf on X that is of order | and trivialized by the
Galois étale covering f: ) — X. By considering the natural (necessarily faithful — cf.
Lemma 1.6) action of G on Lie(Jy) (i.e., induced by the action of G on Q)), we shall
regard G as a subgroup of the automorphism group of the Rx-module Lie(Jy). Write

def def ;1
new—l—ET ho =17 'ET
TEG TEG

(cf. Definition 2.1). In the remainder of present Lemma 3.3, we shall identify Lie(Jy)
with @i;(l) HY (X, L®) by means of the composite

-1 -1
oyt (:{7@£®i) o~ @Hl(%, £
i=0 i=0

— where the first arrow is the isomorphism of [3, §8.4, Theorem 1, (a)], the second
arrow s the isomorphism determined by the Galois étale covering f: Y — X, the third
arrow is the isomorphism induced by a trivialization of L, and the fourth arrow is the
natural isomorphism. Then the following assertions hold:

(i) The diagram of Rx-modules

Lie(Jy) —2 Lie(Jy)

|

Lie(Jx) —= H'(X, Ox)

— where the lower horizontal arrow is the isomorphism of [3, §8.4, Theorem
1, (a)], the left-hand vertical arrow is the homomorphism induced by the Ga-
lois étale covering §: Y — X, and the right-hand vertical arrow is the natural
incluston — commutes.

(ii) The factorization of hyew

Lie(.Jy) —> Lie(9)— Lie(.Jy)
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(cf. condition (2) of Definition 2.1) determines an isomorphism of Rx-modules

-1

Lie(P) —~ P H' (X, L™).

=1

(iii) The diagram of Rx-modules

Lie” () ®r, Lie” (P)

|

(F(%a wx ®ox L) @py D(X, wx o, £®j))

i

S, (F(ae, wx ®oy L) ®py D(X, wx @0y £®(l_i))>

' |

[asry

l—

i,j=1

T (D, £ Qo )

=1
DX, wg?)

— where

F(Qﬁ, Qilmlog/(9>

the upper horizontal arrow is the homomorphism determined by the ex-
tended Kodaira-Spencer map discussed in [13, Theorem 6.4.1.1.4] (cf. also
[13, Definition 6.3.1]) and the isomorphism Lie(B) — Lie(B') induced by
the homomorphism \: B — B (cf. Remark 2.5.1),

the lower horizontal arrow is the isomorphism that arises from the Kodaira-
Spencer homomorphism with respect to the stable curve X — 9N,

the left-hand upper vertical arrow is the isomorphism determined by the
isomorphism of (i),

the left-hand middle vertical arrow is the natural projection homomor-
phism,

the left-hand lower vertical arrow is the natural homomorphism determined
by a trivialization of L%, and

the right-hand vertical arrow is the homomorphism induced by the mor-
phism £9°8: OMlos — loe

— commutes up to multiplication by an element of R%.
(iv) Suppose that the natural homomorphism determined by a trivialization of L|%

T'(X,wy ®o, Llx) @ T(X, wy ®o, L]5) —= (X, w$?)

is surjective. Then the morphism £9°8: Me — N8 45 log formally unramified
(cf. [23, Chapter IV, Definition 3.1.1]).

Proof. Assertion (i) follows immediately from the various definitions involved. Assertion
(ii) follows from assertion (i), together with the equality 1 = hg + 7' hyey. Next, we
verify assertion (iii). Let us first observe that one verifies immediately that every Rx-
modules that appear in the diagram of assertion (iii) are free Rx-modules of finite rank.
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In particular, to verify assertion (iii), it suffices to verify that the diagram of K x-vector
spaces obtained by applying “(—) ®r, Kx” to the diagram of assertion (iii) commutes
up to multiplication by an element of RY. On the other hand, since the stable curve
X Xpy Kx over Kx is smooth, this commutativity follows immediately from a similar
argument to the argument that was applied in the proofs of [24, Theorem 2.6] and [28,
Theorem 4.6]. This completes the proof of assertion (iii).

Finally, we verify assertion (iv). Let us first observe that it follows from [23, Chapter
IV, Proposition 2.3.1] and [23, Chapter IV, Proposition 3.1.3] that, to verify assertion
(iv), it suffices to verify that the right-hand vertical arrow of the diagram of assertion
(iii) is surjective. In particular, since (one verifies immediately that) every Rx-modules
that appear in the diagram of assertion (iii) are free Ryx-modules of finite rank, it
follows from assertion (iii) that, to verify assertion (iv), it suffices to verify that the
homomorphism of k-vector spaces obtained by applying “(—) ®g, k” to the left-hand
lower vertical arrow of the diagram of assertion (iii) is surjective. On the other hand, this
surjectivity follows from our assumption (i.e., that appears in the statement of assertion
(iv)). This completes the proof of assertion (iv), hence also of Lemma 3.3. O

The main result of the present section is as follows.

Theorem 3.4. Let

e k be a separably closed field,

e X, Y stable curves over k,

e [ a prime number invertible in k,

e /Y — X a Galois étale covering of degree |l over k, and

e L an invertible sheaf on X that is of order | and trivialized by the Galois étale
covering f: Y — X.

Suppose that the natural homomorphism determined by a trivialization of L%
(X, wx ®oy L) @5 T(X,wx @0y L2VY) —= (X, w§?)

is surjective. Then the Galois étale covering f:Y — X over k is Prym-faithful (cf.
Definition 2.5).

Proof. Let n be a positive integer and R a complete discrete valuation ring whose

residue field is given by k. Write m C R for the maximal ideal of R and ,R o R/m™.

For each i € {1,2}, let &; be a stable curve over R that is generically smooth over
R and ¢;: X; xg k = X an isomorphism over k. Suppose that conditions (1), (2) of
Definition 2.5 are satisfied. For each i € {1,2}, write, moreover,
e Spec(,R)® for the log scheme obtained by equipping Spec(,R) with the log
structure obtained by pulling back the log structure of Spec(R)*°8 (cf. condition
(1) of Definition 2.5) by the natural surjective homomorphism R — , R,
e s;: Spec(R) — M for the classifying morphism of the stable curve X; over R,
e ,5;: Spec(, R) — 9 for the composite of the natural closed immersion Spec(,, R) <
Spec(R) with s;,
ot o si: Spec(R) — M — N for the composite of s; and t, and
e ,t;: Spec(, R) — M for the composite of the natural closed immersion Spec(,, R) <
Spec(R) with ¢;.
Now observe that since (we have assumed that) &}, X, are generically smooth over R,
the morphisms s, s: Spec(R) — 9 uniquely determine morphisms s\, s Spec(R)"¢ —
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. . log def 1 log def 1
gM°e of log schemes, respectively. Write t1% = t°8 058, t,% = t°8055%: Spec(R)® —
gles — 91l°8 . Write, moreover,

log log . lo lo log log . lo lo
nS1 0y nSs o Spec(, R)® ——= M8 7%, t5 % Spec(, R)%® —— I8

for the respective composites of the natural strict closed immersion Spec(,R)"°8 —
Spec(R)8 with s\*8 5%, ¢°% 18 Then observe that it follows immediately from
condition (1) of Definition 2.5, together with [11, Theorem 4.1], that the equality

log log
151 = 159

holds. Also, observe that it follows immediately from condition (2) of Definition 2.5
(cf. also the uniqueness discussed in [13, Theorem 6.4.1.1.6]) that the equality ¢; = to,
%8 — %8 holds, which thus implies the equality

hence also the equality tll
W% = e,
In particular, by considering the commutative diagram of log schemes over Spec(R)!®

Spec(R/m)"8— Spec(R/m™)'e

log

nSy
log lo, lo, lo,
187 g:1s2g g ntl g:nt2g
nSg
M RO
tlog ’

we conclude from Lemma 3.3, (iv), that the equality ,s°% = ,s2% holds. In particular,
it follows formally that the equality s = si®. hence also the equality s; = s5, holds,
as desired. This completes the proof of Theorem 3.4. U

4. EXISTENCE OF PRYM-FAITHFUL NEW-ORDINARY COVERINGS

In the present section, we prove the existence of a Prym-faithful new-ordinary Ga-
lois étale covering of a suitable stable curve over a separably closed field of positive
characteristic (cf. Theorem 4.5 below). In the present section, let

e k be a separably closed field,

e X a stable curve over k that is sturdy (cf. Definition 1.5, (i)) and untangled
(cf. Definition 1.5, (ii)), and

e L an invertible sheaf on X.

Write
£ < Homo, (L, 0x).
Also, for each vertex v € v(I'x) of I'x, write

L, ¥ rlx, LY Homoy (L,,Ox,).

Definition 4.1. Let d be a positive integer. Then we shall write
r=4(X,£) CT(X, L)
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for the subspace obtained by forming the pull-back of the subspace

@ F(vaﬁv(_de))g @ F<Xv7£v)

’UGU(FX) ’L)G’L)(Fx)

by the natural homomorphism

I(X,L)— P T(X., L)

vev(lx)

Lemma 4.2. Let d be a positive integer. Then the natural homomorphism

NX,L)— P T(X,, L)

vev(lx)

restricts to an isomorphism of subspaces

(X, L) —= 5 TI(X,,L,(-dD,)).

vev(lx)
Proof. This assertion is immediate. U

Lemma 4.3. Suppose that the invertible sheaf L, on X, is nontrivial and of nonnegative
degree for each v € v(I'x). Then the following assertions hold:

(i) The natural homomorphism

D(X,wx ®oy L) —= P wx @ L @ k(z)

.Z’ee(rx)

18 surjective.
(ii) The k-vector space T'(X,wx Qo L) /T X, wx R0, L) is of dimension #e(Tx).
(iii) Suppose that T'(X,, LI (D,)) = {0} for each v € v(I'x). (For example, this
will be the case if the inequality deg(L,) > deg(D,) holds for each v € v(I'x).)
Then the k-vector space I ( X, wx ®oy L)/T22(X,wx Qo L) is of dimension
2- #G(FX)

Proof. First, we verify assertion (i). Write 7x: X — X for the normalization of X

and Qg for the sheaf of relative differentials of X over k. Then it follows immediately

from the existence of the exact sequence of invertible sheaves on X (cf. [14, Chapter
10, Lemma 3.12, (a)])

0 — (7x):5 ®oyx L —=wx G0y L— P wx & L& k(z) —=0
z€e(Tx)

that, to verify assertion (i), it suffices to verify that I'(X,, £)/) = {0} for each v € v(I'x).
On the other hand, this assertion follows from our assumption that the invertible sheaf
L, on X, is nontrivial and of nonnegative degree for each v € v(I'y). This completes
the proof of assertion (i). Assertion (ii) is a formal consequence of assertion (i).
Finally, we verify assertion (iii). Observe that it follows from Lemma 4.2 (cf. also Re-
mark 1.4.1) that the k-vector space I'ZH (X, wx ®o, L)/T2*(X,wx ®p, L) is isomorphic
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to the k-vector space
P (X 0x oy, £))/( D T(Xe xR0y, Lo(-D))).
veu(Tx) vev(Tx)

On the other hand, for each v € v(I'x), since (we have assumed that) the invertible sheaf
L, on X, is nontrivial and of nonnegative degree, it follows that dimy(H(X,, Qx, Roy,
L,)) = dimg(I'(X,, £))) = 0, which thus implies that

dlmk (F(XU, QXU ®0Xv EU)) =gy — 1+ deg(ﬁv)
Moreover, for each v € v(I'yx), since (we have assumed that) 0 = dimg(I'(X,, £/ (D,))) =
dim, (H'(X,,Qx, ®oy, Ls(—D,))), it follows that
dimy (F(Xv, Qx, @oy, Lo~ Dv))> = g, — 1+ deg(L,) — deg(D,).
Thus, assertion (iii) follows from the easily verified equality
2-#e(l'y) Z deg(D
vev(Tx)
This completes the proof of assertion (iii), hence also Lemma 4.3. O

Lemma 4.4. Suppose that, for each vertex v € v(I'y) of I'x, the following three con-
ditions are satisfied:

(1) The natural map
KXy, L0 F(va? QXv ®Oxv ‘C’U) Ok F(va QX'U ®Oxv ‘Cz\;/) - F(Xv’ Q?}%)

18 surjective.
(2) The invertible sheaf L, on X, is nontrivial and of degree zero.
(3) The equality T'(X,, LY(D,)) = {0} holds.
Then the natural map
;LX7£Z F(X, wx ®(9X E) ®k F(X, wx ®@X £V) E—— F(X, W??Q)

18 surjective.

Proof. Let us first observe that, for each v € v(I'x), we have a commutative diagram
of k-vector spaces

nXx,c

=YX, wy ®o, L) @, T2 X, wy @0, LY) =%(X, w$?)

| |

F(va QXU ®0Xu Lv) ®k F(Xv; QXU ®0Xv Ev) F(Xvu Q?ﬁ)

HXy,Lo

— where the vertical arrows are the homomorphism induced by the natural closed im-
mersion X, — X (cf. also Remark 1.4.1 and Lemma 4.2). Thus, it follows immediately
from Lemma 4.2, together with condition (1), that the homomorphism

le(X, Wx ®(9X ,C) Rk FZI(X, wx ®OX £V> —_— F22<X, w?f)
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determined by the homomorphism px ¢ is surjective. In particular, to verify Lemma 4.4,
it suffices to verify that the composite

BX,C

F(Xa wx ®OX ‘C) Xk F(Xa wx ®Ox Ev) - F(X7 w;@é?)

— (X, W) /T2 (X, wi)

— where the second arrow is the natural surjective homomorphism — is surjective.

Next, observe that it follows from Lemma 4.3, (i), together with condition (2), that
there exists an element a € I'(X,wy ®o, £¥) whose image in wx Ro, LY Q4 k(z) is
nonzero for each x € e(I'x). Write ¢, for the composite

(X, wx ®oy L) —[(X,w$?) —=[(X,w?)/T22(X, wF?)

— where the first arrow is the homomorphism given by mapping s — ux (s ® a),
and the second arrows is the natural surjective homomorphism. Observe that it follows
immediately from our choice of a € I'(X,wx ®o, L") that the equality Ker(¢,) =
'2%(X,wx ®oy L) holds. In particular, the homomorphism ¢, determines an injective
homomorphism

F(Xv wWx Doy ‘C)/FZQ(X? Wx oy E)C_> F<X7 w?éZ)/FzZ(X? w;eéz)'

On the other hand, it follows from Lemma 4.3, (ii), (iii), together with conditions (2),
(3) (cf. also Remark 1.4.1), that both the domain and the codomain of this injective
homomorphism are of dimension 3 - #e(I'x). In particular, this injective homomor-
phism is an isomorphism, which thus implies that the composite under consideration is
surjective, as desired. This completes the proof of Lemma 4.4. O

The main result of the present section is as follows.

Theorem 4.5. Let
e k be a separably closed field and
e X a stable curve over k that is untangled (cf. Definition 1.5, (ii)).
Suppose that, for each vertexv € v(I'x) of 'y, the following two conditions are satisfied:

(a) The inequality deg(D,) < g, holds, which thus implies that the stable curve X
over k is sturdy (cf. Definition 1.5, (i)).

(b) The smooth proper curve X, over k is of gonality > 5, i.e., every finite mor-
phism from X, onto the projective line over k is of degree > 5.

Then there exist

e a stable curve Y over k,
e a prime number | invertible in k, and
e a Galois étale covering f: Y — X of degree | over k

such that the following three conditions are satisfied:

(1) For each vertex v € v(I'x) of T'x, the inverse image f~'X, CY is irreducible.

(2) The Galois étale covering f:Y — X is Prym-faithful (cf. Definition 2.5).

(3) If, moreover, the field k is of positive characteristic, then the Galois étale cov-
ering f:Y — X is new-ordinary (cf. Definition 2.2).

Proof. Let v € v(I'x) be a vertex of I'x. Let us first observe that it follows immediately
from condition (a) (cf., e.g., [28, Lemma 1.2, (ii)] and [28, Remark 1.7]) that
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(t,) there exists a nonempty open subscheme U C J, of J, such that, for each
j € U(k), the invertible sheaf &, on X, of degree zero that corresponds to
j € U(k) satisfies the following condition: The equality I'(X,, &/ (D,)) = {0}
holds.
Thus, it follows from (t,), together with [28, Lemma 3.9], that

(t5) there exists a positive integer ¢ such that, for each prime number [ invertible
in k, the set that consists of isomorphism classes of invertible sheaves &, on X,
of order [ that satisfy the following condition is of cardinality > 1?9 72(I? — ¢):
The equality I'(X,, &) (D,)) = {0} holds.
In particular, we conclude immediately from (f,), [28, Corollary 3.10] (cf. also condition
(b)), and [28, Corollary 5.3] (cf. also [25, Théoreme 4.3.1]) that

(t3) there exists a prime number [, such that, for each prime number | > [,, there
exists an invertible sheaf &, on X, of order [ that satisfies the following three
conditions:

e The natural map

F(in QXU ®OXU gv) ®k F(Xvu QXU ®0XU g:) - F(Xln Q?}i)

is surjective.

e The equality I'(X,, &) (D,)) = {0} holds.

e If the field k is of positive characteristic, then the Galois étale covering of
X, of degree [ that trivializes &, is new-ordinary.

Thus, it follows from (}5) (cf. also [3, §9.2, Example 8]) that there exist a prime number
[ and an invertible sheaf £ on X of degree [ such that, for each vertex v € v(I'x) of
['x, the restriction of £ to X, C X satisfies the three conditions that appear in (f5).
Then it follows from Theorem 3.4 and Lemma 4.4 (cf. also [3, §9.2, Example 8]) that
the Galois étale covering of X of degree [ that trivializes £ satisfies conditions (1), (2),
(3) in the statement of Theorem 4.5. This completes the proof of Theorem 4.5. U

5. CYCLOTOMES ASSOCIATED TO HYPERBOLIC CURVES

In the present section, we introduce some notational conventions related to the notion
of a hyperbolic curve and the notion of a cyclotome. Moreover, we prove some basic
facts concerning these notions. In the present section, let

e 1R be a complete discrete valuation ring whose field of fractions we denote by
K, and whose residue field we denote by k,

e K a separable closure of K, and

e / a hyperbolic curve over K.

Suppose that
e the field k is perfect and of characteristic p > 0.

Definition 5.1. We shall write

o KW C Kim C K for the maximal unramified, tamely ramified extension fields
of K in K, respectively,
e k for the algebraic closure of k obtained by forming the residue field of the

normalization of R in K,

o Ox “ Gal(K/K) - G & Gal(K™/K) — Gt “ Gal(K*/K) % Gal(R/k),

and
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o P Y Ker(Gxg —» G¥) C Ik = Ker(Gxg — GY) for the wild inertia, inertia
subgroups of G, respectively.

Definition 5.2. We shall write

o 7, for the profinite (respectively, pro-prime-to-char(K)) completion of the
module Z whenever char(K) = 0 (respectively, char(K) # 0) and
e Ay for the Tate module of the multiplicative group scheme G,, x over K.

For a topological module M, we shall write

o« P Hom (M, A%) for the topological module of continuous homomorphisms

Remark 5.2.1. One verifies easily that the module Ay has a natural structure of free

Zx—module of rank one. In particular, if M is a free zx—module of finite rank, then we
have a natural identification M = (MP)P.

Definition 5.3. We shall write

e 77T for the smooth compactification of the hyperbolic curve Z over K,

.7d§fZXKFg7+d:efZ+ XK?7

e II,, Ay for the respective tame fundamental groups of (Z+, Z+\ Z), (Z*+,ZF\
7) (i.e., the respective fundamental groups associated to the Galois categories
of finite flat coverings of Z+, Z* that are at most tamely ramified along Z*+\ Z,
7%\ Z), relative to suitable choices of basepoints, and

o I1,+, Ay for the respective étale fundamental groups of Z+, Z7, relative to
suitable choices of basepoints.

Thus, the natural morphisms Z < Z* — Spec(K) determine a commutative diagram
of topological groups

1 AZ HZ GK 1
1 Az I+ Gk 1

— where the horizontal sequences are exact, and the vertical arrows are surjective.

Remark 5.3.1. Let W — Z* be a connected finite flat covering of Z* that is at most
tamely ramified along Z*\ Z. Write W C W for the open subscheme of W obtained
by forming the inverse image of the open subscheme Z C Z*. Then one verifies easily
from the various definitions involved that the scheme W is a hyperbolic curve over the
algebraic closure of K in the function field of W.

Definition 5.4. If the smooth proper curve Z* over K is of genus > 1, then we shall
write Ay & Homs (H?*(Az+,Zy), Zy).

Remark 5.4.1. If the smooth proper curve Zt over K is of genus > 1, then it is
well-known (cf., e.g., [16, Chapter VI, Theorem 11.1, (a)]) that

(i) the module A has a natural structure of free Z,-module of rank one, and that
(ii) there exists a natural Gg-equivariant isomorphism Ay = Ax.
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Definition 5.5. Let Z;, Zy be hyperbolic curves over K and ¢, : Il 5 Iz, (cf.
Definition 5.3) a continuous isomorphism over Gx. Then we shall say that the iso-

morphism ¢r, is compactification-compatible if the following condition is satisfied: Let

H, C IIz be an open subgroup of II;,. Write H, def ¢n,(Hy) C Iz, For each

i € {1,2}, write W;" — Z" for the finite flat covering of Z; that corresponds to the
open subgroup H; C I, which thus implies that we have an identification H; = Ily,
(cf. Definition 5.3), where we write W; for the open subscheme of W;" obtained by form-
ing the inverse image of Z; C Z;" (cf. Remark 5.3.1). Then the continuous isomorphism
Iy, = Iy, determined by the isomorphism ¢, fits into a commutative diagram of
topological groups

1_IVV1 HWT

|
My, —= HW;
(cf. Definition 5.3) — where the horizontal arrows are the continuous outer surjective

homomorphisms that arise from the open immersions Wy < W, Wy — Wy, respec-
tively, and the right-hand vertical arrow is a continuous isomorphism.

Lemma 5.6. Let Zy, Zy be hyperbolic curves over K and ¢, : Il = My, (cf Def-
inition 5.3) a continuous isomorphism over Gg. Suppose that the l-adic cyclotomic
character Gx — Z; on G for some prime number | invertible in K is an open homo-
morphism. (For example, this will be the case if either the field k is finite, or the field
K is of characteristic zero.) Then the isomorphism ¢, is compactification-compatible.

Proof. This assertion follows from [21, Corollary 2.7, (i)]. O

Definition 5.7. Let Z;, Z, be hyperbolic curves over K and ¢r, : 17, — Iz, (cf. Defi-
nition 5.3) a continuous isomorphism over G. Then we shall say that the isomorphism
on, is cyclotomically compatible if the isomorphism ¢y, is compactification-compatible,

and, moreover, the following condition is satisfied: Let H; C Il be an open subgroup

of Tz, Write Hy % ¢p, (Hy) C T4, For each i € {1,2}, write W;" — Z for the

finite flat covering of Z;" that corresponds to the open subgroup H; C Iz, which thus
implies that we have an identification H; = Iy, (cf. Definition 5.3), where we write
W; for the open subscheme of Wt obtained by forming the inverse image of Z; C Z;°
(cf. Remark 5.3.1). Suppose that the smooth proper curve W' is of genus > 1. Then
the smooth proper curve W, is of genus > 1. Moreover, the diagram of topological

modules
Aw, = Aw,
Ag

(cf. Definition 5.4) — where the horizontal arrow is the isomorphism induced by the
right-hand vertical arrow of the diagram of Definition 5.5, and the two diagonal arrows
are the respective natural isomorphisms of Remark 5.4.1, (ii) — commutes.

Definition 5.8. Let C be a smooth curve over K.
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(i) We shall say that the smooth curve C over K is isotrivial if there exist a smooth
curve Cy over the separable closure K in K of the minimal subfield of K and
an isomorphism C' x x K = Cy X%, K over K.

(ii) We shall say that the smooth curve C' over K has a good model (respectively,
nonsmooth stable model; nonsmooth sturdy stable model) if there exist a stable
curve C over R and an isomorphism C x z K = C over K such that the stable
curve C X gk over k is smooth (respectively, not smooth; sturdy and not smooth)
over k.

Remark 5.8.1. Let C be a smooth curve over K. Suppose that C has either a good
model or a nonsmooth stable model. Then it is immediate that the smooth curve C'is
a proper hyperbolic curve over K.

Lemma 5.9. The following assertions hold:

(i) For each integer go, there exists a connected finite flat covering W+ — ZT of
Z7T that is at most tamely ramified along Z* \ Z such that the smooth proper
curve W+ is of genus > gp.

(i) Suppose that the smooth curve Z (respectively, the smooth proper curve Z%)
over K is nonisotrivial. Let W+ — ZT be a connected finite flat covering
of ZT that is at most tamely ramified along Z+t \ Z. Write W for the open
subscheme of W obtained by forming the inverse image of Z C Z*. Then the
smooth curve W (respectively, the smooth proper curve W) is nonisotrivial.

(iii) Suppose that the smooth proper curve Z* over K has a nonsmooth stable model.
Let Wt — Z% be a connected finite flat covering of Z* that is at most tamely
ramified along Z* \ Z. Then the smooth proper curve W does not have any
good model.

(iv) Suppose that the smooth curve Z over K is nonisotrivial. Then there exists a
connected finite flat covering W+ — Z+ of Z* that is at most tamely ramified
along Z* \ Z such that the smooth proper curve W+ is nonisotrivial.

Proof. Assertion (i) follows immediately from the well-known Riemann-Hurwitz for-
mula, together with the well-known structure of the maximal pro-I quotient of the étale
fundamental group of a hyperbolic curve over an algebraically closed field of charac-
teristic # [ (cf., e.g., [26, Proposition 1.1, (i), (ii)]). Assertion (ii) follows immediately
from [27, Lemma 1.32]. Assertion (iii) follows immediately from [19, Corollary 7.4].

Next, we verify assertion (iv). Let us first observe that it follows from assertions
(i), (ii) that, to verify assertion (iv), we may assume without loss of generality, by
replacing Z by the inverse image of Z C Z* by a suitable finite flat covering of ZT,
that the smooth proper curve Z* is of genus > 2. Let W — Z* be a Galois finite
flat covering of Z* that is at most tamely ramified along Z* \ Z whose branch locus is
given by Z*\ Z. (Observe that it follow immediately from the well-known structure of
the maximal pro-I quotient of the étale fundamental group of a hyperbolic curve over
an algebraically closed field of characteristic # [ — cf., e.g., [26, Proposition 1.1, (i),
(ii)] — that such a covering always exists.) Write W C W for the open subscheme
of W+ obtained by forming the inverse image of Z C Z* and L C K for the algebraic
closure of K in the function field of W.

Assume that the smooth proper curve W over L is isotrivial, i.e., that there exist a
smooth curve W over the separable closure Ly in K of the minimal subfield of L and an
isomorphism W+ x, K = W, XZOK over K. Then observe that it follows immediately



26 YUICHIRO HOSHI AND YU YANG

from [4, Theorem 1.11] that the natural action of Gal(W* x; K /Z* xx K) on W+ x K
over K descends uniquely, relative to a fixed isomorphism W+ x, K = W XT, K as
above, to an action on W™ over Ly. Write Z; for the quotient of the resulting action
of Gal(W+ xp K/Z* xi K) on Wy and Zy C Z for the étale locus of the natural
(necessarily finite flat) morphism W, — Z. Then one verifies 1mmedlately from the
various definitions involved that there exists an isomorphism Z xx K = Zy X1, To K
over K. In particular, the smooth curve Z over K is isotrivial, in contradiction to our
assumption that the smooth curve Z over K is nonisotrivial. In particular, the smooth
proper curve W+ over L is nonisotrivial. This completes the proof of assertion (iv),
hence also of Lemma 5.9. O

6. THE LOG FUNDAMENTAL GROUPS OF LOG SPECIAL FIBERS

In the present section, we discuss some fundamental facts concerning the log funda-
mental groups of the log special fibers of stable curves over complete discrete valuation
rings. In the present section, suppose that we are in the situation at the beginning of
the preceding §5. Moreover, let

e X be a stable curve over R.
Suppose that
e the structure morphism X — Spec(R) is generically smooth, i.e., that the
generic fiber X ©x x r K is smooth over K.

Definition 6.1. We shall write

e XL X K, XY X xph, X X xik,

e X8 for the log scheme obtained by equipping X with the log structure associ-
ated to the divisor X C X,

e X8 for the log scheme obtained by equipping X with the log structure obtained
by pulling back the log structure of X'°¢ by the natural closed immersion X <
X,

e Spec(R)"e for the log scheme obtained by equipping Spec(R) with the log
structure associated to the divisor with normal crossings determined by the
closed point of Spec(R), and

e Spec(k)°8 for the log scheme obtained by equipping Spec(k) with the log struc-
ture obtained by pulling back the log structure of Spec(R)°® by the natural
surjective homomorphism R — k.

Lemma 6.2. The natural immersions X — X <= X determine a sequence of finite
(cf. [4, Theorem 1.11]) groups

AutK(X) = AutR(X)% Autk(i)
— where the first arrow is an isomorphism, and the second arrow is injective.

Proof. The bijectivity of the first arrow is immediate. The injectivity of the second
arrow follows from [4, Theorem 1.11]. O
Definition 6.3. We shall write

e Iy, Ay for the respective étale fundamental groups of X, X, relative to suitable
choices of basepoints,
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° Hlf,g for the log fundamental group of X'°® relative to a suitable choice of

basepoint, and
o AY™ o Ker(Hlig — GY).
Thus, the natural commutative diagram of schemes

X —= X —— Spec(K)

X —— Spec(R)

t

X —— X — Spec(k)

determines (cf. also Remark 6.3.1 below) a commutative diagram of topological groups

1 AX HX GK 1
1 A Hlf Gl 1

— where the horizontal sequences are exact, and the vertical arrows are surjective. We
shall write

® spy: IlIx — Hlf for the middle vertical continuous surjective homomorphism
of this diagram.

We shall refer to this homomorphism sp,: IlIx — Hlég as the specialization homomor-
phism associated to the stable curve X over R.

Remark 6.3.1. Let us recall from [8, Corollary 1] and [8, Proposition B.7] that the
natural open immersion X — X induces a continuous outer isomorphism of the tame
fundamental group of (X, X) (i.e., the fundamental group associated to the Galois
category of finite flat coverings of X that are at most tamely ramified along X’) with
TI28.

Lemma 6.4. Suppose that one of the following two conditions is satisfied:

(1) The field K is of characteristic zero.
(2) The smooth proper curve X over K is nonisotrivial, and the field k is algebraic
over a finite field.

Then there exists a Galois étale coveringY — X of X such that if one writes L C K
for the algebraic closure of K in the function field of Y, then the smooth proper curve
Y over L has a nonsmooth stable model.

Proof. Let us first observe that it is immediate that, to verify Lemma 6.4, we may as-
sume without loss of generality that X is smooth over k. Next, observe that it follows
immediately from [26, Lemma 5.5] (cf. also Remark 6.3.1 and [4, Corollary 2.7]) that,
to verify Lemma 6.4, it suffices to verify that the continuous surjective homomorphism
Ax —» A?m determined by the specialization homomorphism sp,: [Ix — Hlf associ-
ated to the stable curve X over R is not an isomorphism. If condition (1) is satisfied,
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then this assertion follows from [26, Proposition 1.1, (i), (ii)]. If condition (2) is sat-
isfied, then this assertion follows from [28, Theorem 0.3]. This completes the proof of
Lemma 6.4. U

Lemma 6.5. Let H C Ilx be an open subgroup of llx. Write Xy — X for the finite
étale covering of X that corresponds to H, Ky C K for the finite extension field of K
that corresponds to the image of H in Gg, and Ry C Ky for the normalization of R
i Kg. Then the following assertions hold:

(i) Suppose that the kernel of the specialization homomorphism spy: IIx — Hlf
associated to the stable curve X over R s contained in H C Ilx. Then the
following four conditions are satisfied:

(1) The inclusion Ky C K™ holds.

(2) There ezist a stable curve Xy over Ry and an isomorphism Xy X r,, Ky 5
Xp over Ky. In the remainder of the present (i), we shall identify Xy X r,,
Ky with Xg by means of such a fized isomorphism Xy X g, Kn 5 Xy In
particular, it follows from [19, Corollary 7.4] that the finite étale covering
Xy — X eatends uniquely to a proper surjective morphism Xy — X.

(3) The resulting morphism Xy — X of (2) is finite.

(4) Let v € v(I'g) (cf. Definition 1.2) be a vertex of I'y and w € v(I'z, ) (cf.
Definition 1.2, Definition 6.1) a verter of I'y, that lies over v € v(I'z).
Then the induced morphism (X ), — X, (cf. Definition 1.3) restricts to a
finite étale covering UXn — U (cf. Definition 1.3) and is at most tamely
ramified along DX C X, (cf. Definition 1.3).

(ii) Suppose, moreover, that the open subgroup H C Ilx of Ilx is normal. Then
the kernel of the specialization homomorphism spy: Iy — Hl/f;g associated to
the stable curve X over R is contained in H C Iy if and only if (1), (2), (3)
of (i) are satisfied, and, moreover, the following condition is satisfied:

(5) In the situation of (2) of (i), for each vertex v € v(I'y, ) of I'z, , the sub-
group of the Galois group Gal(X /X)) (cf. Definition 6.1) that consists of
elements that stabilize the closed subscheme I C Xy (cf. Definition 1.3)
and induce the identity automorphism of the function field of I%# is of or-
der prime to p.

Proof. First, we verify assertion (i). The assertion that conditions (1), (2), (3) are
satisfied is a formal consequence of Remark 6.3.1. Moreover, the assertion that condition
(4) is satisfied is well-known (cf., e.g., [29, Proposition 2.2, (ii)]). This completes the
proof of assertion (i). Assertion (ii) follows immediately from Abhyankar’s lemma (cf.,
e.g., |7, Exposé XIII, Proposition 5.5]) and the Zariski-Nagata purity theorem (cf., e.g.,
[7, Exposé X, Théoreme 3.1]), together with Remark 6.3.1. This completes the proof
of Lemma 6.5. U

Definition 6.6. Let [ be a prime number. Then we shall write

o AL for the topological abelianization of the maximal pro-I quotient of Ax.
For each vertex v € v(I'g) of I'y, we shall write

o Al[} P, AP for the respective topological abelianizations of the maximal pro-/

quotients of the étale fundamental groups of the smooth curves UUE, X, (cf.
Definition 1.3) over k, relative to suitable choices of basepoints, and
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e D5 C AP for the decomposition subgroup of AP associated to v € v(I').

For each edge e € e(I'y) (cf. Definition 1.2) of I', we shall write

o D2 C ALY for the decomposition subgroup of AP associated to e € e(I's).

Lemma 6.7. Let | be a prime number invertible in R. Then the following assertions
hold:

(i) Let v € v(I'z) be a vertex of I'ys. Then the kernel of the natural continuous
surjective homomorphism Al[}azb —» D2 induced by the natural open immersion

UX < X (cf condition (4) of Lemma 6.5, (i) is contained in the kernel of
the continuous (necessarily surjective) homomorphism AZ azb —» A%ab iduced

v

by the natural open immersion UUX > X,, ie.,

Ker(Al b DY) C Ker(Al[}j; — ALD).

(ii) Suppose that the stable curve X over k is sturdy. Let v, w € v(I'y) be vertices
of T5. Then the equality v = w holds if and only if the equality D> = D%
holds.

(iii) Suppose that the graph I'y is 2-connected (i.e., that, for each vertex of I's, the
subgraph of I'ss obtained by removing the vertex from [y is connected). Letv e
v(['z) be a vertex of I'z. Then the natural continuous surjective homomorphism

Al b @y, By — D2 @z, Fy induced by the natural open immersion UX — X (cf.

condztzon (4) of Lemma 6.5, (i)) is an isomorphism.

Proof. Assertions (i), (ii) follow immediately from [9, Lemma 1.4]. Assertion (iii) follows
from [31, Corollary 3.5] (cf. also [29, Proposition 3.4]). O

Lemma 6.8. Let Y — X be a finite étale covering of X. Write Ky C K for the
algebraic closure of K in the function field of Y and Ry C Ky for the normalization of
R in Ky . Suppose that the open subgroup 11y C Ilx of Ilx that corresponds to the finite
¢tale covering Y — X of X contains the kernel of the specialization homomorphism
spy: Iy — Hl;g associated to the stable curve X over R. In particular, it follows from
condition (2) of Lemma 6.5, (i), that there exist a stable curve Y over Ry and an
isomorphism Y X g, Ky =Y over Ky. In the remainder of the present Lemma 6.8, we
shall identify Y X g, Ky with Y by means of such a fived isomorphism Y x g, Ky — Y.
Then the following assertions hold:

(1) Suppose that the stable curve X over k is sturdy. Then the stable curve Y (cf.
Definition 6.1) over k is sturdy.
(ii) Suppose that the stable curve X over k untangled. Then the stable curve ) over
k is untangled.
(iii) Let v € v(I'y) be a verter of I'y and w € v(I'y;) (¢f. Definition 1.2, Defini-

tion 6.1) a vertex of 'y that lies over v € v(T ) Suppose that the mequalzty

deg(DX) < gX (c¢f. Definition 1.3) holds. Then the inequality deg(D%) < gy
(cf. Definition 1.3) holds.
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Proof. Assertions (i), (ii) are immediate. Assertion (iii) follows immediately from the
well-known Riemann-Hurwitz formula, together with condition (4) of Lemma 6.5, (i).
U

Definition 6.9.

(i) We shall say that a subgroup H of a group G is subnormal if there exist a
positive integer n and a sequence H = HyC H; C ... C H, 1 € H, = G of
subgroups of G such that, for each i € {1,...,n}, the subgroup H;_; is normal
n HZ

(ii) We shall define a sub-Galois étale covering of a scheme to be a (necessarily con-
nected) finite étale covering of the scheme obtained by forming the composite
of finitely many Galois étale coverings.

Lemma 6.10. There exists a sub-Galois étale covering Y — X of X such that if one
writes Ky C K for the algebraic closure of K in the function field of Y and Ry C Ky
for the normalization of R in Ky, then the following four conditions are satisfied:

(1) The open subgroup 11y C Ilx of Ilx that corresponds to the finite étale cov-
ering Y — X of X contains the kernel of the specialization homomorphism
spy: lx — Hl;g associated to the stable curve X over R. In particular, it
follows from condition (2) of Lemma 6.5, (i), that there exist a stable curve Y
over Ry and an isomorphism Y X g, Ky =Y over Ky. In the remainder of
the present Lemma 6.10, we shall identify Y X r, Ky with Y by means of such
a fized isomorphism Y X, Ky =Y.

(2) The stable curve Y (cf. Definition 6.1) over k is untangled.

(3) For each vertex v € v(I'5;) (cf. Definition 1.2, Definition 6.1) of I'y;, the in-

equality deg(DUy) < g?,}: (cf. Definition 1.3) holds (which thus implies that the
stable curve Y over k is sturdy).
(4) For each vertezv € U(Fi) of 'y, the smooth proper curve Y, (cf. Definition 1.3)

over k is of gonality > 5, i.e., every finite morphism from zv onto the projective
line over k is of degree > 5.

Proof. Let us first observe that it follows immediately from [21, Remark 1.1.5] and [32,
Lemma 3.2], together with Lemma 6.8, (i), (ii), that, to verify Lemma 6.10, we may
assume without loss of generality, by replacing X by a suitable sub-Galois étale covering
of X, that

(a) the stable curve X over k is sturdy and untangled, that,

(b) for each vertex of I'y, there exist at least two edges of 'y that abut to the

vertex, and that -

(c) the graph I'y is 2-connected.

Let us fix a vertex vy € v(I'y) of I's. Let [y be an odd prime number invertible in
R. Then it follows immediately from (a), (b), (c¢), and Lemma 6.7, (iii), together with
the well-known structure of the maximal pro-I quotient of the admissible fundamental
group of a stable curve over an algebraically closed field of characteristic # [ (cf., e.g.,
26, Proposition 1.1, (i), (ii)], [9, Lemma 1.4]), that there exists a continuous surjective
homomorphism A'C* — Ty such that,

e for each v € v(I'y), the image by this continuous surjective homomorphism of
D5 C Al)o('ab is nontrivial, and, moreover,
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e for each e € e(I'y) that abuts to vy, the image by this continuous surjective
homomorphism of D C A" is nontrivial.

In particular, one concludes from Lemma 6.8, (ii), and the well-known Riemann-Hurwitz

formula, together with condition (4) of Lemma 6.5, (i) (cf. also our assumption that

lo > 2, and that the stable curve X over k is sturdy), that there exists a Galois

étale covering Y — X of X such that conditions (1), (2) of the statement of the

present Lemma 6.10 are satisfied, and, moreover, a similar inequality to the inequality

“deg(Dy) < g¥” for each vertex of 'y that lies over vy € v(I'y) is satisfied. Thus, by
considering a connected component of the fiber product of these “°Y” over X — where
vo ranges over the vertices of ['y — one verifies immediately from Lemma 6.8, (ii), (iii),
that there exists a sub-Galois étale covering of X such that conditions (1), (2), (3) of the
statement of the present Lemma 6.10 are satisfied. In particular, it follows immediately
from [28, Theorem 0.7] and [28, Proposition 0.8, (i), (ii)], together with Lemma 6.8,
(i), (iii) (cf. also [9, Lemma 1.4]), that there exists a sub-Galois étale covering of X
such that conditions (1), (2), (3), (4) of the statement of the present Lemma 6.10 are
satisfied, as desired. This completes the proof of Lemma 6.10. U

7. RECONSTRUCTION OF LOG SPECIAL FIBERS

In the present section, we show how the log special fiber of a stable curve can be
recovered from the étale fundamental group (cf. Lemma 7.3, (iv), below). In the present
section, suppose that we are in the situation at the beginning of the preceding §6.

Lemma 7.1. Suppose that the equality k = k holds, and that the stable curve X over k
15 sturdy. Let [ be a prime number invertible in R and H C Ilx a normal open subgroup
of llx. Write Xy — X for the Galois étale covering that corresponds to H, Ky C K
for the finite Galois extension field of K that corresponds to the image of H in Gk, and
Ry C Ky for the normalization of R in Ky. Then the following assertions hold:

(i) Condition (1) of Lemma 6.5, (i), is satisfied if and only if the image of H in
Gk contains the subgroup Px C Gg.

(ii) Condition (2) of Lemma 6.5, (i), is satisfied if and only if there exists a sub-
Zy-module M C AP (c¢f. Definition 6.6) of AE> such that the conjugation
action of H on Aé‘{f determines the respective trivial actions of H on M and

l ab/M

(iii) Suppose that condition (2) of Lemma 6.5, (i), is satisfied. Thus, there exist a
stable curve Xy over Ry and an isomorphism Xy X g, Ky 5 Xy over Ky
Here, we shall identify Xy X, Ky with Xy by means of such a fized isomor-
phism Xy X, Ky — Xg. Then condition (3) of Lemma 6.5, (i), is satisfied
if and only if, for each vertex v € v(I'z, ) (cf. Definition 1.2, Definition 6.1)
of I'z,,, the image of D5 C Ak i‘; (cf. Deﬁmtwn 6.6) by the natural continuous
homomorphism Al)}i‘; — AL has a natural structure of free Zy-module of rank
> 4.

(iv) Suppose that condition (2) of Lemma 6.5, (i), is satisfied. Thus, there exist
a stable curve Xy over Ry and an isomorphism Xy Xpg, Kg 5 Xy over
Ky. Here, we shall identify Xy X g, Ky with Xy by means of such a fized
isomorphism Xg Xp, Ky — Xg. Then condition (5) of Lemma 6.5, (ii),
is satisfied if and only if, for each vertex v € v(I'z,) of I'g,, the subgroup
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of Ax/Ax, (cf. Definition 6.3) that consists of v € Ax/Ax, such that the
congugation action of v on Al)ﬁ’ stabilizes the closed subgroup D C Al)}i’ and
induces the identity automorphism of D is of order prime to p.

Proof. Assertion (i) is immediate. Assertion (ii) follows from the well-known stable
reduction criterion (cf., e.g., [3, §7.4, Theorem 6]), together with [4, Theorem 2.4].
Assertion (iii) follows immediately from Lemma 6.7, (i), together with the well-known
structure of the maximal pro-l quotient of the étale fundamental group of a hyperbolic
curve over an algebraically closed field of characteristic # [ (cf., e.g., [26, Proposition
1.1, (i), (ii)]). Assertion (iv) follows immediately from Lemma 1.6 and Lemma 7.2, (i),
below, together with Lemma 6.7, (i), (ii). O

Lemma 7.2. Let A be an abelian variety over K and [ an odd prime number invertible
in K. Then the following assertions hold:

(i) Write A[l] C A for the group subscheme of A obtained by forming the ker-
nel of the endomorphism of A given by multiplication by [. Then the natural
homomorphism Autg(A) — Aut(A[l](K)) is injective.

(ii) Let B be an abelian variety over K. Write T;(A), T,(B) for the respective l-adic
Tate modules of A, B. Then the natural map Homg (A, B) — Homs(T;(A), Ty(B))
18 injective.

Proof. Assertion (i) follows from [5, Lemme 5.17]. Assertion (ii) follows from the (easily
verified) fact that the subset of the underlying topological space of A that consists of
torsion points of A of [-power order is dense. O

Lemma 7.3. Let X}, Xy be stable curves over R such that the generic fibers X o

X, xgp K, Xs o Xy xg K are smooth over K, respectively, and ¢n, : lx, — Ix, (cf.

Definition 6.3) a continuous isomorphism over Gg. Suppose that the stable curve X,
(cf. Definition 6.1) over k is sturdy. Then the following assertions hold:

(i) Let | be a prime number. Then, for each vi € v(I'y,) (cf. Definition 1.2,

Definition 6.1), there exists a unique vertex vy € v(I'y,) such that the image of

Dy C AP (¢f. Definition 6.6) by the isomorphismiAl)‘ab = AP induced by
the isomorphism ¢, 1s given by DUA2 C Al)gb. Moreover, for each e, € e(I'g,)
(c¢f. Definition 1.2), there exists a(n) (not necessarily unique) edge ey € e(I'z,)
such that the image of DeA1 C Al)ﬁb (cf. Definition 6.6) by the isomorphism
Al)‘(?b = Al)‘gb induced by the isomorphism ¢, is given by Dé C Al)gb.

(ii) The isomorphism ¢n, fits into a commutative diagram of topological groups

.

driy |2 ¢n1£°g 2 G?{n

/

SPx; lo
o g
HX 1 HK1

log
ITx, b, 11 X,
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(cf. Definition 5.1, Definition 6.1, Definition 6.3) — where the diagonal arrows
are the natural continuous surjective homomorphisms, and the vertical arrows
are continuous isomorphisms.

(iii) Suppose, moreover, that the field k is finite, and that Xy is not smooth over R.
Then there exists an isomorphism ¢x: X1 — Xy of schemes (not necessarily
over k). Moreover, the assignment ‘¢, — ¢x” is functorial.

(iv) Suppose, moreover, that the field k is finite, that Xy is not smooth over R, and
that the isomorphism ¢, s cyclotomically compatible. Then the isomorphism

~

Prpos - Hlﬁ — Hlﬁ of (ii) arises from an isomorphism ¢ yios: X8 S XYE (of.

Definition 6.1) over Spec(k)"s.

Proof. Assertion (i) follows immediately — in light of Lemma 6.7, (ii), Lemma 6.8, (i),
and [4, Corollary 2.7] — by applying [21, Corollary 2.7, (iii)] to the various isomorphisms
between the respective maximal pro-q quotients of suitable open subgroups of Ay, , Ax,
for some prime number ¢ invertible in R. Assertion (ii) follows from Lemma 6.5, (ii),
and Lemma 7.1, together with assertion (i).

Next, we verify assertions (iii), (iv). We begin by observing that, to verify assertions
(iii), (iv), by applying Lemma 5.9, (iii), and Lemma 6.8, (i), together with Galois
descent, we may pass to a suitable Galois étale covering of &;. In particular, it follows
from Lemma 6.10, together with Lemma 6.8, (ii), that, to verify assertions (iii), (iv),
we may assume without loss of generality that each of the stable curves X';, X5 over k
is sturdy, untangled, and split. Then assertion (iii) follows immediately from a similar
argument to the argument applied in the discussion given in [17, pp.600-602]. Moreover,
assertion (iv) follows immediately from a similar argument to the argument applied in
the proof of [17, Theorem 7.2] (cf. also the discussion preceding [17, Theorem 7.2]).
This completes the proofs of assertions (iii), (iv), hence also of Lemma 7.3. O

Definition 7.4. Let Z;, Z5 be hyperbolic curves over K and ¢y, : Il 5 Ty, (cf.
Definition 5.3) a continuous isomorphism over G. Then we shall say that the iso-
morphism ¢y, is LSF-compatible (where the “LSF” stands for “Log Special Fiber”) if
the isomorphism ¢y, is compactification-compatible (cf. Definition 5.5), and, moreover,
the following condition is satisfied: Let H; C IIz, be an open subgroup of II;,. Write

Ho def ¢, (Hy) Cllg, L C K for the finite extension field of K that corresponds to the
image of H; (i.e., of Hy) in Gg, Ry C L for the normalization of R in L, and kj, for the
residue field of Ry. Moreover, for each i € {1,2}, write W,;* — Z for the finite flat cov-
ering of Z;" that corresponds to the open subgroup H; C IIz,, which thus implies that
we have an identification H; = Iy, (cf. Definition 5.3), where we write W; for the open
subscheme of W obtained by forming the inverse image of Z; C Z;" (cf. Remark 5.3.1).
Suppose that there exist a stable curve Wy over Ry such that W; (cf. Definition 6.1)
is sturdy and not smooth over kz, and an isomorphism W; xg, L — W, over L. Then
there exist a stable curve W, over R; and an isomorphism W, X g, L 5 VV2+ over L.
Moreover, if we identify W; xx, L with W;" by means of such a fixed isomorphism
W; xg, L = W' for each i € {1,2}, then the isomorphism gbnl‘;g: Hlﬁgl = Hlﬁi (cf.

Definition 6.1, Definition 6.3) induced by ¢, (cf. Lemma 7.3, (ii); our assumption
that the isomorphism ¢, is compactification-compatible) arises from an isomorphism
W2 5 Wi (cf. Definition 6.1) over Spec(kp)'%¢ (cf. Definition 6.1).
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Lemma 7.5. Let Zy, Zy be hyperbolic curves over K and ¢, : 1z 5 I, (cf. Defi-
nition 5.3) a continuous isomorphism over Gk . Suppose that the field k is finite, and
that the isomorphism ¢, is cyclotomically compatible (cf. Definition 5.7). Then the
isomorphism ¢, is LSF-compatible.

Proof. This assertion follows immediately from Lemma 7.3, (iv) (cf. also Lemma 5.6).
U

Definition 7.6. Suppose that the field K is of characteristic p. Let n be a nonnegative
integer. Then we shall write

e Fry(n) for the absolute p™-th power Frobenius endomorphism of Spec(K),

e Z(n) for the hyperbolic curve over K obtained by pulling back the hyperbolic
curve Z over K by Frg(n), and

o Fry/(n): Z — Z(n) for the relative p"-th power Frobenius morphism over K
(i.e., the morphism determined by the absolute p"-th power Frobenius endo-
morphism of 7).

Remark 7.6.1. One verifies easily that, in the situation of Definition 7.6, the contin-
uous outer homomorphism II; — Ilz(,) (cf. Definition 5.3) induced by the morphism
Fry/k(n): Z — Z(n) is a continuous outer isomorphism.

Lemma 7.7. Let Zy, Zy be hyperbolic curves over K and ¢, : Il > [z, (cf. Defini-
tion 5.3) a continuous isomorphism over Gr. Suppose that the field k is finite. Then
the following assertions hold:

(i) Suppose that the field K is of characteristic zero. Then the isomorphism ¢,
1s cyclotomically compatible.

(ii) Suppose that the field K is of characteristic p, and that the hyperbolic curve
Zy over K is nonisotrivial. Then there exists a uniquely determined integer n
that satisfies the following condition: If n is nonnegative, then the composite
Iy, = Ugz,m) (¢f. Definition 5.3, Definition 7.6) of the given isomorphism
¢u,: Mz = Iz, with the continuous isomorphism Wz, = 1z, induced by
Frz,/k(n) (cf. Remark 7.6.1) is cyclotomically compatible. If n is negative,
then the composite Iz, () = Ty, of the inverse of the continuous isomorphism
Iy, = Iz induced by Frz, i (n) with the given isomorphism ¢n,: 7 —
Iy, is cyclotomically compatible.

Proof. Observe that it follows from [16, Chapter VI, Theorem 11.1, (a)], together with
Lemma 5.9, (ii), that, to verify Lemma 7.7, we may pass to a suitable finite étale
covering of Z;. In particular, it follows from Lemma 6.4 and Lemma 6.10, together
with Lemma 5.9, (iii), that we may assume without loss of generality that Z;", hence
also Z; (cf. Lemma 7.3, (iv)), has a nonsmooth sturdy stable model. Then, by applying
a similar argument to the argument applied in the discussion given in [17, pp.601-603]
(or, alternatively, by applying [10, Lemma 5.2, (ii)]), one concludes that the diagram
of topological modules

AZfr — AZ;

| |

Ag—Ag
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— where the vertical arrows are the respective natural isomorphisms of Remark 5.4.1,
(i), the upper horizontal arrow is the isomorphism induced by ¢, (cf. Lemma 5.6), and
the lower horizontal arrow is the isomorphism obtained by multiplying 1 (respectively, a
power of p) if K is of characteristic zero (respectively, of characteristic p) — commutes.
Thus, the desired assertion follows immediately from the definition of the relative p"-
th power Frobenius morphism defined in Definition 7.6. This completes the proof of
Lemma 7.7. Il

8. TATE MODULES OF RAYNAUD EXTENSIONS OF GENERALIZED PRYM SCHEMES

In the present section, we introduce some notational conventions related to the notion
of the generalized Prym scheme of a finite étale covering of a stable curve and the notion
of the Raynaud extension of the generalized Prym scheme. Moreover, we prove some
basic facts concerning these notions. In the present section, suppose that we are in the
situation at the beginning of §6. Moreover, let

e YV be a stable curve over R such that the generic fiber Y o Y xg K is smooth
over K,
e [ a prime number invertible in R, and
e )V — X a Galois étale covering of degree [ over R, whose Galois group we
denote by G.
By considering the natural (necessarily faithful — cf. Lemma 1.6, Lemma 6.2) action
of G on the Jacobian variety .Jy (cf. Definition 1.1) of the stable curve Y = Y x gk (cf.
Definition 6.1) over k (i.e., induced by the action of G on ) over R), we shall regard G
as a subgroup of the automorphism group of .Jy, over k. Suppose, moreover, that

e the structure morphism ) — Spec(R) of ) has a splitting, and that
e the stable curve ) over k is split.

Definition 8.1. We shall write

o Jy, P} /x for the respective dual semi-abelian schemes (cf., e.g., [22, Chapitre

IV, Théoreme 7.1, (i)]) of the Jacobian variety Jy of J over R, the general-
ized Prym scheme Pj,» associated to the Galois étale covering Y — & (cf.
Definition 2.1), N

e ) — T(Jy) — Jy — A(Jy) — O, 0— T(Py/,y) — Py/)( — A(Py/,y) — O,
0—T(Jy) = J) = A(JYy) = 0,0 — T(Pg,/x) — Pg,/x — A(Pg,/x) — 0 for
the respecrtive Raynaud extensions associated to Jy, Py, x, Ji,, Pf, Jx (cf., e.g.,
[6, Chapter 11, §1]), B B B B

¢ Tx({y), TX(PJZ/X)LTX(%): Ty (}ﬁ;/x% TX(T(J)?)): TXA(/J)J): Tx(A(L]y)), TX(T(fy/X))a
T (Pyja), Tx(A(Pyyx)), Tx(T(J3)); Tx(J3) Tx(A(5)), Tx(T(Py2)), T (Py)2),
T« (A(P5,y)) for the respective full profinite (respectively, pro—prime—to—chai([( )-
adic) Tate modules of (the generic fibers of) Jy, Py/x, Jy,, Py 0, T(Jy),
‘]37’ A(J)/)7 T(Py/X)7 Py/Xv A(PQV/X)’ T(‘]éi)’ Jtyv A(‘]Si)’ T(PS}/X)7 PS}/;\(?

A(P3,/y) whenever char(K) = 0 (respectively, char(K) # 0), and

e C(Jy), C(ﬁy/;g), C’(jg,), C’(ﬁé,/x) for the respective character groups of the

tori T'(Jy), T(Pyx), T(J4), T(P%,, ;) over R.
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Remark 8.1.1.

(i)

(i)

It is well-known (cf., e.g., [6], Chapter II, §1) that we have a natural identi-
fication Jy = Jy Xpg k, which thus determines a natural identification of the

connected component of Ker(l — hyew: Jy — Jy) with ]Sy/;( X g k (cf. Defini-
tion 2.1).

It is well-known (cf., e.g., [6], Chapter I, §1; [6], Chapter III, Corollary 7.4)
that there exist natural commutative diagrams of topological modules

0 —= Ty (Py/x) — Tx(Pyjx) —= C(P y/X)®ZZ —0

|

C(JY) @z 2 — 0,

0—>TX(jy> TX(JJ))

0 —— T, (J}) —— T, (J) C(Jy) ®z Zy —0

| | |

0 T (Ply) —= Tu(PY) — C(Pyy) 05 B — 0

— where the horizontal sequences are exact, and the vertical arrows of the first
diagram are injective.

It is well-known (cf., e.g., [6], Chapter H,~§2) that the abelian scheme A(Pg,/x)
over R is the dual abelian scheme of A(Py/x).

It is immediate that we have natural identifications Ty (T'(Jy)) = C(J y)D (cf.
Definition 5.2), T (T(Py/)()) C(Py/x) , T (T(Jy)) C(Jt )P, Ty (T(sz/x))
C (PS, y 2P

It follows from (iii), (iv) (cf. also Remark 5.2.1) that, by applying “(—)"” to the
natural exact sequences 0 — T, (T(Py/x)) = Tx(Py/x) = Tx(A(Py/x)) —
0, 0 = Tu(T(PL,,.) = Tx(PL,,) — TX(A(PS,/X)) — 0, we obtain exact

y/x y/x
sequences of topological modules

0 — T, (A(P}))) —= Tu(Pyyx)” —= C(Pyx) @z L —=0,

O_>TX<A(ﬁy/X>>_>T (Py/x) —C(P y/x) ®ZZ —0.

Definition 8.2. We shall write
e My for the topological abelianization of (respectively, the topological abelian-

ization of the maximal pro-prime-to-char(K’) quotient of) Ay whenever char(K) =
0 (respectively, char(K) # 0) and

o M}™™ C My for the image of the endomorphism of the topological group My

determined by Apey-

Remark 8.2.1. It follows from the well-known theory of Jacobian varieties of curves
that the morphism Y — Jy (cf. Definition 1.1) determined by a splitting of the structure
morphism of Y over R determines a Gx-equivariant continuous isomorphism

My —— Ty (Jy).
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Moreover, this isomorphism does not depend on the choice of a splitting of the structure

morphism of ) over R.

Lemma 8.3. The isomorphism My — T, (Jy) of Remark 8.2.1 fits into a commutative

diagram of topological modules

P
Myrym % MY

o

Ty (Py/X)C_> T (Jy)

— where the horizontal arrows are the natural inclusions (cf. also Remark 8.1.1, (1)),

and the vertical arrows are continuous isomorphisms.
Proof. This assertion follows immediately from the various definitions involved.

Definition 8.4. We shall write

g

o M™ for the topological quotient of My determined by the quotient A%,dm (cf.

Definition 6.3) of Ay,

. M{,v " for the topological quotient of M2¥™ by the closed subgroup of M
topologically generated by the images of the decomposition subgroups of A%,dm

associated to the elements of v(I'5;) (cf. Definition 1.2, Definition 6.1),

e My* C My for the kernel of the natural continuous surjective homomorphism

My — M},

Prym-vr def { P P . : P :
o M,V = MY N MY C ML,Y™ for the intersection of My Y™ with My,

o ((M{/V NP preprym C (MyY™)P for the image by the natural homomorphism

M2 — (ME™™)2 of the closed subgroup (ML™)P C M2,

o (ML) prym C (MEY™)P for the kernel of the natural homomorphism from

(My™™)? onto

(™27 (ME)P) ) €2,

o MM C MYMY™ for the image of the submodule TX(T(f’y/X)) C T« (Py/x)
(cf. Remark 8.1.1, (ii)) by the inverse of the left-hand vertical arrow of the

diagram of Lemma 8.3,

o M}P/rym'(/ nd) def MYY™ /ML for the quotient of M™™ by the submodule

P -nd P P
M nd C M o MPY™ and

o ((M/Ynd)D )prym C (My™)P for the kernel of the natural homomorphisms from

(My™>™)? onto
(7™ (™" 9)P) @7

— where we regard (Mirym_(/ nd))D

continuous injective homomorphism (M?ym_(/ mND (MyY™)P,

Lemma 8.5. The following assertions hold:

as a subgroup of (My¥™)P by the natural
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(i) The isomorphism My = T (Jy) of Remark 8.2.1 fits into a commutative dia-
gram of topological modules

Mffrym—ndc Ml;rym—vrc M}Pirymc MY

b
TX(T(ﬁym));)Tx(ﬁy/x)‘%Tx(iy/X);)Tx(lJy)

— where the horizontal arrows are the natural inclusions (cf. also Remark 8.1.1,
(i1)), and the vertical arrows are continuous isomorphisms.
(ii) The diagram of (i) determines a commutative diagram of topological modules

Prym-vr Prym-vr Prym-nd
M, — M, /M

! :
T (Py/x) Ty (A(Py/x))

— where the horizontal arrows are the natural surjective homomorphisms, and
the vertical arrows are continuous isomorphisms.

(iii) The isomorphism Ty (J5,) = My determined by the isomorphism of Remark 8.2.1
fits into a commutative diagram of topological modules

T (T(PS)/X));) T (PS)/X)(—> T (Pati/x) ~— T« (J)ti)

(M5")?) ey = (MF)P),, > (MFP™)P ~—— MY

— where the horizontal arrows are the natural homomorphisms (cf. also Re-
mark 8.1.1, (i1)), and the vertical arrows are continuous isomorphisms.
(iv) The diagram of (iii) determines a commutative diagram of topological modules

T (P T (A(PS/x))

(MDY o —= (D) (M) P)

— where the horizontal arrows are the natural surjective homomorphisms, and
the vertical arrows are continuous isomorphisms.
(v) The natural identification MYY™ = (MY™)PYP (¢f. Remark 5.2.1) determines

an identification of the quotients of My ™™
MG M (V7)) gy )
which fits into the decomposition
D ~ Prym Prym-vr vr
TX(P)//X)/TX<P32/X) <_Myy /Myy - (((M{/ )D)Prym>D

A\ (T(ﬁg,/x))D —_ C(ﬁg,/x) ®g Lo
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— where the first arrow is the isomorphism determined by the diagram of (i),
the second arrow is the isomorphism determined by the left-hand vertical arrow
of the diagram of (iii), and the second equality is the equality determined by the
equality TX(T(ﬁg,/X)) = C(ﬁé,/X)D that appears in Remark 8.1.1, (iv) — of

the natural identification ']I'X(Py/x)/']rx(lgy/x) = C’(ﬁg,/x) ®z Ly that appears
in the upper horizontal sequence of the first diagram of Remark 8.1.1, (ii).

Proof. These assertions follow immediately from [3, §9.2, Example 8] (cf. also [6, Chap-
ter 111, Corollary 8.2]). O

Lemma 8.6. Let

o X, Xy be stable curves over R such that, for each i € {1,2},

— the generic fiber X; o X; xr K 1s smooth over K, and that

— the stable curve X; (cf. Definition 6.1) over k is sturdy,
o Vi, Vs, stable curves over R such that, for each i € {1,2},
— the generic fiber Y; o Vi Xr K s smooth over K, that
— the structure morphism ); — Spec(R) has a splitting, and that
— the stable curve Y; (cf. Definition 6.1) over k is split, and
o Vi — X1, Vo — Xy Galois étale coverings of degree | over R.

Let ¢ny: My, = Ilx, (cf- Definition 6.3) be a continuous isomorphism over Gr that
restricts to an isomorphism Iy, = Iy, (cf. Definition 6.3) necessarily over Gg. Then
the following assertions hold:

(i) The isomorphism My, — My, (cf. Definition 8.2) determined by the isomor-
phism ¢, fits into a commutative diagram of topological groups

Prym-vr Prym
MY1 — IMIY1 — MY1
o
Prym-vr Prym
MYQ — MYz — MY2

(cf. Definition 8.4) — where the horizontal arrows are the natural inclusions,
and the vertical arrows are continuous isomorphisms.

(ii) The isomorphism M{, — My determined by the isomorphism ¢, fits into a
commutative diagram of topological groups

Yo

N

()P (V)P M2

Y1

(cf. Definition 8.4) — where the horizontal arrows are the natural homomor-
phisms, and the vertical arrows are continuous isomorphisms.

Proof. These assertions follow from Lemma 7.3, (i), (ii), together with the various
definitions involved (cf. also Lemma 6.8, (i)). O
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9. RECONSTRUCTION OF RAYNAUD EXTENSIONS OF GENERALIZED PRYM SCHEMES

In the present section, we show how the Raynaud extension of the generalized Prym
scheme of a finite étale covering in a certain situation can be recovered from the étale
fundamental group (cf. Lemma 9.3 below). In the present section, suppose that we are
in the situation at the beginning of the preceding §8.

Definition 9.1. Suppose that the field K is of characteristic zero. Then we shall write
) ﬁy/;([poo] for the p-divisible group over R determined by the semi-abelian

scheme Py, x,

o £y/x for the p-divisible group over R whose p-adic Tate module is given (cf.
[30, Theorem 4]; Lemma 8.5, (i)) by the G x-module obtained by forming the
maximal G'g-stable torsion-free quotient of My Y™ ®3 Z, on which the natural
action of I (cf. Definition 5.1) is trivial, and

e Ty, x for the p-divisible group over R whose p-adic Tate module is given (cf.
30, Theorem 4]; Lemma 8.5, (i)) by the G g-module ((My*™")P) )P -7,
where we write (M) P)x C (ML™™ )P for the submodule of (M;Y™")P
of Ix-invariants.

Remark 9.1.1. It is immediate that if the field K is of characteristic zero, then the
p-divisible group Py, x[p™] over R is the p-divisible group over R whose p-adic Tate
module is given (cf. [30, Theorem 4]) by the Gx-module Ty (Py,/x) ®5 Zy.

Lemma 9.2. Suppose that the field K is of characteristic zero, and that the Ga-
lois étale covering Y — X is new-ordinary (cf. Definition 2.2). Then the isomor-
phism MY 5 T« (Py/x) that appears in Lemma 8.5, (i), determines (cf. also
Remark 9.1.1, [30, Theorem 4]) an isomorphism of p-divisible groups over k

(Eyyx X Tysx) Xk —= Pyx[p™] xg k.

Proof. Let us first recall that since (we have assumed that) the field k is perfect, every
p-divisible group over k£ may be decomposed into the product of an étale p-divisible
group over k and a connected p-divisible group over k. Moreover, one verifies easily
that an arbitrary homomorphism over k from an étale (respectively, a connected) p-
divisible group over k to a connected (respectively, an étale) p-divisible group over k is
trivial. Now let us recall that we have assumed that the Galois étale covering Y — X
is new-ordinary. Thus, the desired assertion follows immediately from the well-known
structure of the p-adic Tate module of the p-divisible group over R that arises from an
extension by a torus over R of an abelian scheme over R whose special fiber over k is
ordinary. This completes the proof of Lemma 9.2. U

Lemma 9.3. Let
o X, Xy be stable curves over R such that, for each i € {1,2},

— the generic fiber X; def X; xr K 1s smooth over K, and that
— the stable curve X; (cf. Definition 6.1) over k is sturdy and not smooth
over k,

e Vi, YV, stable curves over R such that, for each i € {1,2},

— the generic fiber Y; def Y; xg K 1is smooth over K, that

— the structure morphism Y; — Spec(R) has a splitting, and that
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— the stable curve Y; (cf. Definition 6.1) over k is split, and
o V) = X1, Vo — Xy Galois étale coverings of degree | over R.

Let ¢n1,. : Ux, = I, (cf. Definition 6.3) be a continuous isomorphism over G that re-
stricts to an isomorphism Iy, = Iy, (cf. Definition 6.3) necessarily over Gy . Suppose
that the following three conditions are satisfied:

o The field K is of characteristic zero.
o The Galois étale covering Y1 — X is new-ordinary.
e The isomorphism ¢n, is LSF-compatible (cf. Definition 7.4).

Then the isomorphism M;rym'vr = ngm'vr (cf. Definition 8.4) determined by ¢,
(cf. Lemma 8.6, (i)) arises — relative to the second vertical arrow of the diagram of

Lemma 8.5, (i) — from an isomorphism ﬁyl/;ﬁ = ]53,2/;(2 (cf. Definition 8.1) of semi-
abelian schemes over R (cf. Remark 9.3.1 below).

Proof. Let us first observe that since (we have assumed that) the isomorphism ¢y, is
LSF-compatible, the isomorphism Hlﬁf = Hll‘ff (cf. Definition 6.3) induced by ¢, (cf.

Lemma 7.3, (ii)) arises (cf. also Lemma 5.9, (iii)) from an isomorphism Y& 5 Y8 (cf.

Definition 6.1) over Spec(k)'°8 (cf. Definition 6.1), which determines (cf. Remark 8.1.1,

(1)) an isomorphism Py, /x, Xg k = Py,/x, Xg k over k. In particular, since (we
have assumed that) the field K is of characteristic zero, and the Galois étale covering
Y1 — X1, hence also the Galois étale covering Yy — X, is new-ordinary, one concludes

immediately from Lemma 9.2 that the isomorphism 153;1/;(1 [p>°] x gk = 153;2/;(2 [p®] X rk
(cf. Definition 9.1) induced by the above isomorphism Py, v, Xg k = Py,/x, Xg k
coincides with the isomorphism Py, /x, [p™] Xr k = Py, x,[p™] X g k induced by the

isomorphism Py, s ] = Py, /x,[p™°] determined (cf. Remark 9.1.1, [30, Theorem 4])
by the composite

D ~ Prym-vr  ~ Prym-vr  ~ D
T><<Pyl//\’1) <_MY1y _>MY2y —>T><(Py2/x2)

(cf. Definition 8.1) — where the first and third arrows are the second vertical arrow of
the diagram of Lemma 8.5, (i), and the second arrow is the isomorphism determined
by ¢m,. Thus, it follows immediately from [12, Theorem 1.2.1] that the isomorphism
My Y™ 5 MyP™ ™ determined by ¢, arises — relative to the second vertical arrow
of the diagram of Lemma 8.5, (i) — from an isomorphism Py, v, — Py, x, of semi-
abelian schemes over R, as desired. This completes the proof of Lemma 9.3. U

Remark 9.3.1. Suppose that, in the situation of Lemma 9.3, we are given an iso-
morphism Py, /x, — Py,/x, of semi-abelian schemes over R. Then observe that one

verifies easily that this isomorphism Py, x, — Py, x, of semi-abelian schemes over R
determines a commutative diagram of semi-abelian schemes over R

0 ——T(Py,/x,) — Py, jx, — A(Py,jx,) —=0

) ) )

0—>T<ﬁy2//y2) —>ﬁy2//\’2 —>A<ﬁLV2/X2) —0
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(cf. Definition 8.1) — where the horizontal sequences are exact, the vertical arrows are
isomorphisms, and the left-hand vertical arrow determines an isomorphism of modules

C(ﬁyl/?ﬁ) — C(ﬁyﬂ/\ﬁ)
(cf. Definition 8.1).

Definition 9.4. Let Z;, Z5 be hyperbolic curves over K and ¢, : Il 5 Iz, (cf.
Definition 5.3) a continuous isomorphism over Gx. Then we shall say that the isomor-
phism ¢, is REP-compatible (where the “REP” stands for “Raynaud Extension of the
generalized Prym scheme”) if the isomorphism ¢r, is compactification-compatible (cf.
Definition 5.5), and, moreover, the following condition is satisfied: Let H; C Hy C Iy,

be open subgroups of Il such that the image of H{ in G coincides with the image

of Hy in Gk. Write H) o ¢n,(Hy) C H, oo ¢, (H,) C Tz, L C K for the finite

extension field of K that corresponds to the image of H; (i.e., of Hy) in Gg, Ry C L
for the normalization of R in L, and kj, for the residue field of Ry. Moreover, for each
i € {1,2}, write V." — W;" — Z (cf. Definition 5.3) for the finite flat coverings of
Z} that correspond to the open subgroups H; C H; C Ilz,, respectively. Suppose that
there exist

e a prime number ¢ invertible in R,
e stable curves Vi, Wy, Vo, Wh over Ry, and
e isomorphisms V; xg, L = Vi", Wi xg, L = Wi Vaxp, L = Vot Woxg, L=
W, over L, by means of which we identify V; xp, L, Wi Xg, L, Vo Xg, L,
Ws x g, L with Vi" W V,5 W, respectively,
such that

e cach of the stable curves Vi, Wy, Vo, Ws (cf. Definition 6.1) over kj, is sturdy,
split, and not smooth over ky, that

e cach of the morphisms V; — W;, Vo — W, induced by the finite flat coverings
Vit — Wi Vot — Wi (cf. [19, Corollary 7.4]), respectively, is a Galois étale
covering of degree ¢ and new-ordinary, and, moreover, that

e cach of the structure morphisms V; — Spec(Ry), Vo — Spec(Ry) has a split-
ting.

Then the isomorphism Mpry = Mprym'vr (cf. Definition 8.4) determined by ¢, (cf.

our assumption that the 1somorphlsm gbn , 1s compactification-compatible; Lemma 8.6,
(i) arises — relative to the second vertical arrow of the diagram of Lemma 8.5, (i )
— from an isomorphism Py, sy, — Py, w, (cf. Definition 8.1) of semi-abelian schemes
over Rj,.

Lemma 9.5. Let Zy, Z be hyperbolic curves over K and én,: Iz, — Iz, (cf. Defi-
nition 5.3) a continuous isomorphism over Gr. Suppose that the field K is of charac-

teristic zero, and that the isomorphism ¢, is LSF-compatible. Then the isomorphism
¢n, s REP-compatible.

Proof. This assertion follows from Lemma 9.3. U

Remark 9.5.1. One main difficulty to work with basefields of positive characteristic in
the present paper is as follows. Suppose that the Galois étale covering Y — X is new-
ordinary. As discussed in Lemma 9.2, in the case where the field K is of characteristic
zero, one may relate the p-divisible group Py x[p™] associated to the semi-abelian
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scheme ﬁy sx with the étale fundamental group Ilx of the generic fiber X of X. On
the other hand, in the case where the field K is of positive characteristic, since every
nontrivial multiplicative p-divisible group over K is not étale, at the time of writing, the
authors of the present paper are not able to relate Py, »[p™] with IIx. In particular, at
the time of writing, the authors of the present paper are not able to prove Lemma 9.5
without assuming that K is of characteristic zero.

10. RECONSTRUCTION OF GENERALIZED PRYM SCHEMES

In the present section, we show how the generalized Prym scheme of a finite étale
covering in a certain situation can be recovered from the étale fundamental group (cf.
Lemma 10.6, (iii), below). In the present section, suppose that we are in the situation
at the beginning of §8.

Definition 10.1. We shall write

o \y:Jy & J}, for the isomorphism over R obtained by forming the uniquely
determined extension of the principal polarization on .Jy determined by the
theta divisor on Pic%;, where we write gy for the genus of the curve Y over
K, and some splitting of the structure morphism ) — Spec(R),

° )\5 a0 Pyx — Pf, Jx for the Prym semi-polarization associated to the Galois
étale covering Y — X (cf. Definition 2.3, (ii)),

® A/ v A(Pyjx) — A(PS,) ) for the polarization on A(Py,x) (cf. Remark 8.1.1,
(iii)) induced by A} Pyjax — P 4,

o )§ x: C (ﬁg, x) = C (Py sx) for the homomorphism determined by the homo-

morphism T'(Py/x) — T(ﬁg,/x) induced by )‘5/)(: Pyjx — P} 5, and
o Tu(Ay): Tu(Jy) = Tx(J5) = Tu(Jy)?, Tx(Ay/ ) Tx(Pysa) = Tu(P5)5)

Y
T (Pyjx)”, Tx(Ax): Tx(A(Pyx)) = Tx(A(PY)2)) = Tx(A(Pyyx))? (cf
Definition 5.2) for the continuous homomorphisms induced by Ay, )\5 /X )\§ /200
respectively.

Lemma 10.2. The following assertions hold:
(i) The cup pairing

Homs (My,MP) = H'(Ay,Z.) ©5_ H'(Ay, Ay)
determines a continuous isomorphism
MED/ s My ®ZX HOIHZX (Ay, Af)

ii) The isomorphism My = MEP @5 Homs (A=, Ay) determined by the isomor-
( ) Yy Y7, Ty K )
phism of (i) fits into a commutative diagram of topological modules

My = My ®; Homs (Ag, Ay) ——— My
T (Jy) - T« (Jy) === Tx(Jy)"”

Tx (Ay)
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— where the vertical arrows are the isomorphisms determined by the isomor-
phism of Remark 8.2.1, and the right-hand upper horizontal arrow is the iso-
morphism determined by the isomorphism

zx — HOIII%>< (Ay, AF)

given by the natural isomorphism Ay = Az of Remark 5.4.1, (ii) (cf. also
Remark 5.2.1; Remark 5.4.1, (i)).

(iii) The composite My — ML of the upper horizontal arrows of the diagram of (ii)
fits into a commutative diagram of topological modules

M}P/rym-ndc Mgrym-vrc Mgrym C MY

| | |

((MET)P) = (MPDP) | (M) P M

— where the upper sequence is the upper sequence of the diagram of Lemma 8.5,
(i), and the lower sequence is the lower sequence of the diagram of Lemma 8.5,

(iii).

(iv) We have a commutative diagram of topological modules

Msrym-vr /Mirym-nd ( (M{/nd)D> Prym/ ((M{,Vr)D) prom

zl I

Ty (A(Pyx)) T (A(ﬁ&/x>)

Tx (A5, x)

— where the upper horizontal arrow is the homomorphism determined by the
diagram of (iii), and the left-hand, right-hand vertical arrows are the right-hand
vertical arrows of the diagrams of Lemma 8.5, (ii), (iv), respectively.

(v) We have a commutative diagram of topological modules

— (04",

z I

T (T(ﬁy//‘f)) - C(ﬁy/X)D C(ﬁﬁz/x)D =Tk (T(ﬁgi/x))

(cf. Remark 8.1.1, (iv)) — where the upper horizontal arrow is the left-hand
vertical arrow of the diagram of (iii), the lower horizontal arrow is the homo-
morphism induced by )\S/X, and the left-hand, right-hand vertical arrows are the

right-hand vertical arrows of the diagrams of Lemma 8.5, (i), (iii), respectively.

Proof. These assertions follow immediately from the well-known theory of Jacobian
varieties of curves, together with the various definitions involved. O
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Lemma 10.3. Consider the diagram

(Mirym-nd>D <((M§/vr)D) Prym> D

z |

C(}Njy/)() Kz 2>< 0(153;/;() Kz Zx

C
AV x

obtained by applying “(—)P” to the diagram of Lemma 10.2, (v) (cf. also Remark 5.2.1).
In the remainder of Lemma 10.3, we identify (My™™ ™2 (ML) prym )P with C(Py)x)®z
Ly, C’(PS,/X) ®z Zyw by means of the left-hand, right-hand vertical arrows of this dia-

gram, respectively. Let C C (ML™)2)prym)? be a submodule of ((ML™)P)prym)? and
fo: C = C(Pyx) a homomorphism of modules. Then the following two conditions are
equivalent:

(1) The equality (C, fc) = (C(f)gz/)c)?)‘g/x) holds.

(2) The inclusion C' — (((M{/VT)D)Prym)D determines an isomorphism C &y, Ly, =
(((M{,W)D)prym)[), and, moreover, the homomorphism (((Méfvr)D)prym)D — (MY P
determined by this resulting isomorphism and the homomorphism fo: C' —

C(ﬁy/x) under consideration coincides with the upper horizontal arrow (((I\\/JI{/W)D)prym)D —
(MY ™D of the above diagram.

Proof. This assertion follows immediately from the (easily verified) fact that the mod-

ules C' (ﬁy/ x), C (?3, /x) are finitely generated and free, and, moreover, the homomor-

phism A§, X C(ﬁ& x) = C’(}Njy/;() is an injective homomorphism whose cokernel is
(finite and) of order a power of [ (cf. Remark 2.3.1), hence also prime to p. O

Definition 10.4. Let F be a field and F a separable closure of F.

(i) Let A be a semi-abelian variety over F. Then we shall refer to the homomor-
phism A(F) — HY(Gal(F/F),Ty(A)) — where we write T, (A) for the full
profinite (respectively, pro-prime-to-char(K')-adic) Tate module of A whenever
char(K) = 0 (respectively, char(K) # 0) — induced by the various Kummer
exact sequences associated to A as the x-Kummer homomorphism associated
to the semi-abelian variety A over F'.

(ii) We shall say that the field F' is x-Kummer-faithful if, for every finite extension
field F' of F contained in F and every semi-abelian variety A over F’, the x-
Kummer homomorphism A(F") — H'(Gal(F/F"), T, (A)) associated to A is
injective. Observe that one verifies easily that this condition does not depend
on the choice of F.

Definition 10.5. We shall refer to the homomorphisms
C(PYy)x) —= A(Pyx)(K),  C(Pyx) — Pyu(K)

discussed in [6, Chapter II, Theorem 6.2, (3)], [6, Chapter 1I, Theorem 6.2, (5)] associ-
ated to the semi-abelian scheme Py, x over R, equipped with the Prym semi-polarization
associated to the Galois étale covering ) — X, as the dual-extension-homomorphism,
the Prym-period-homomorphism associated to the Galois étale covering JV — X', re-
spectively.
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Remark 10.5.1. Suppose that the field K is x-Kummer-faithful. Then one verifies
immediately from the various definitions involved (respectively, from [6, Chapter III,

Corollary 7.3]) that the dual-extension-homomorphism C(F, ;) — A(Py/x)(K) (re-
spectively, the Prym-period-homomorphism C(P3, ) — Py,x(K)) associated to the
Galois étale covering J — X is a uniquely determined homomorphism C’(]BS, x) =
A(ﬁy/x)(K) (respectively, C(ﬁg)/x) — ﬁy/x(K)) such that the image of ¢ € C(ﬁfjj/x)
by the composite of the homomorphism C’(Pg,/x) — A(Py,x)(K) (respectively, C’(Pty/x) —
Py x(K)) under consideration with the x-Kummer homomorphism A(Py,x)(K) —
Hl(GK,TX(A(ﬁy/X))) (respectively, ﬁy/;{(K) — Hl(GK,TX(ﬁy/X))) associated to
A(ﬁy/)() x p X (respectively, ﬁy/)( x g K) is given by the Gk-torsor under T (A(ﬁy//y))
(respectively, Tx(ﬁy/)()) obtained by forming the fiber of c® 1 € C(ﬁg,/x) ®z, Ly by

the third arrow of the second exact sequence of Remark 8.1.1, (v) (respectively, the
third arrow of the upper horizontal sequence of the first diagram of Remark 8.1.1, (ii)).

Lemma 10.6. Let

o X, Xy be stable curves over R such that, for each i € {1,2},
— the generic fiber X; def X; xr K 1s smooth over K, and that
— the stable curve X; (cf. Definition 6.1) over k is sturdy,
o Vi, Vs, stable curves over R such that, for each i € {1,2},
— the generic fiber Y; o Vi xr K 1is smooth over K, that
— the structure morphism ); — Spec(R) has a splitting, and that
— the stable curve Y; (cf. Definition 6.1) over k is split, and
o Vi — X1, Vo — Xy Galois étale coverings of degree | over R.

Let ¢n1,. : Ux, = I, (cf. Definition 6.3) be a continuous isomorphism over Gx that re-
stricts to an isomorphism Iy, = Ily, (cf. Definition 6.3) necessarily over Gy . Suppose
that the following two conditions are satisfied:

(a) The isomorphism ¢, is cyclotomically compatible (cf. Definition 5.7).

(b) The isomorphism Mifym‘” = ngm_w (cf. Definition 8.4) determined by ¢,
(cf. Lemma 8.6, (i)) arises — relative to the second vertical arrow of the dia-
gram of Lemma 8.5, (i) — from an isomorphism Py, ;x, — Py, x, (cf. Defini-

tion 8.1) of semi-abelian schemes over R.

Then the following assertions hold:

(i) The isomorphism ((My")P)prym)? = (M4 prym)? (cf. Definition 8.4)
determined by ¢m, (cf. Lemma 8.6, (ii)) arises — relative to the right-hand ver-

~

tical arrow of the diagram of Lemma 10.3 — from an isomorphism C(ﬁg,l/)ﬁ) —

0(153,2/)(2) (cf. Definition 8.1) of modules. Moreover, the resulting isomorphism
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C<§S/1/X1) = C(§3,2/X2) fits into a commutative diagram of modules
)\C
C(Py ) — = C(Pyyyx)
zL lz
C(PS)2/X2) \C C(P)/2/X2)
Vo /X2

(cf. Definition 8.1) — where the right-hand vertical arrow is the isomorphism
induced by the isomorphism of (b) (cf. also Remark 9.3.1).
(i) If the field K is x-Kummer-faithful, then the diagrams of groups

A
C(ﬁ;t)}z/?fz) _>A<ﬁy2/x2)(K)7 C(ﬁ;t)}Q/Xz) _>]5y2/X2(K>
(cf. Definition 8.1) — where the first and third vertical arrows are the iso-

morphism obtained by (i), the second and fourth vertical arrows are the iso-
morphisms induced by the isomorphism Py, ;x, — Py,/x, of condition (b)
(cf. Remark 9.5.1), the left-hand upper, lower horizontal arrows are the dual-
extension-homomorphisms associated to the Galois étale coverings Y, — X,
Yy — Xy, respectively, and the right-hand upper, lower horizontal arrows are the
Prym-period-homomorphisms associated to the Galois étale coverings YV, — X1,
Yy — Xy, respectively — commute.

(iil) Suppose that the two diagrams of (ii) commute. Then the isomorphism ngm =
ngm (cf. Definition 8.4) determined by ¢n, (cf. Lemma 8.6, (i)) arises —
relative to the third vertical arrow of the diagram of Lemma 8.5, (i) — from an
isomorphism Py, jx, — Py, x, (cf. Definition 8.1) of semi-abelian schemes over

R that s compatible with the respective Prym semi-polarizations associated to
the Galois étale coverings Yy — Xy, Yo — Xo (cf. Definition 2.5, (ii)).

Proof. First, we verify assertion (i). Observe that it follows from condition (a) that we
obtain a commutative diagram of topological modules

((VM)P) pyyy ) ” — (2P

(M) ) P — (M)

— where the horizontal arrows are the upper horizontal arrow of the diagram of
Lemma 10.3, and the vertical arrows are continuous isomorphisms determined by the
isomorphism ¢y, (cf. Lemma 8.6, (ii); condition (b); Remark 9.3.1). Moreover, observe
that it follows from condition (b) (cf. also Remark 9.3.1) that the right-hand vertical
arrow of this diagram restricts — relative to the left-hand vertical arrow of the diagram
of Lemma 10.3 — to an isomorphism C(Py,/x,) = C(Py,/x,) of submodules. In par-
ticular, assertion (i) follows from Lemma 10.3. This completes the proof of assertion
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(). Assertion (ii) follows immediately form Lemma 8.5, (i), (ii), (v), and Lemma 8.6,
(i), together with assertion (i) and Remark 10.5.1.

Next, we verify assertion (iii). Let us first observe that it follows from condition (b),
together with Remark 9.3.1, that we have

(1) a commutative diagram of semi-abelian schemes over R

0_>T(Py1/?(1) _>P371/X1 _>A(Py1/?(1) —0

| | |
00— T<P372/X2) - Pyz/Xz - A(Pyz//\’z) —0
— where the horizontal sequences are exact, the vertical arrows are isomor-
phisms, and the middle vertical arrow is the isomorphism of condition (b).

Next, recall that it follows from assertion (i) that we have

(2) an isomorphism of modules

Next, recall that it follows from our assumption that we have

(3) a commutative diagram of groups

C(PY, ) —= APy, /a) (K)

| o
C(PS;Z/XQ) —>A(Pyz/x2)(K)

— where the left-hand vertical arrow is the isomorphism of (2), the right-hand
vertical arrow is the isomorphism determined by the right-hand vertical arrow
of the diagram of (1), and the upper, lower horizontal arrows are the dual-
extension-homomorphisms associated to the Galois étale coverings ), — A7,
Yo — X, respectively.

Next, observe that it follows from Lemma 8.5, (ii), (iv); Lemma 8.6, (i), (ii); Lemma 10.2,
(iv), together with Lemma 7.2, (ii), and condition (a), that we have

(4) a commutative diagram of abelian schemes over R

)\A
= Yi/X1 =
A(Pyl/xl) A(Pg)l/.)ﬁ)
ZL l?
A(PyZ/X2) )\A A(PSJQ/XQ)
Yo /X2

— where the left-hand vertical arrow is the right-hand vertical arrow of the
diagram of (1), and the right-hand vertical arrow is the isomorphism determined
by the left-hand vertical arrow (cf. also Remark 8.1.1, (iii)).

Next, recall that it follows from assertion (i) that we have
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(5) a commutative diagram of modules

~ XS /% ~
C(P:tyl/.)ﬁ) ' C(Pyl/Xl)
ll l?
C(PS/Z/XQ) )\5 Jx C(‘PyQ/XQ)
2/2

— where the left-hand vertical arrow is the isomorphism of (2), and the right-
hand vertical arrow is the isomorphism induced by the left-hand vertical arrow
of the diagram of (1).

Next, recall that it follows from our assumption that we have

(6) a commutative diagram of groups

O(ﬁ:tyl//"(l) - ﬁyl/xl (K)

ZL jl
C(ﬁgfz/.)(g) - ﬁyQ/XQ(K)

— where the left-hand vertical arrow is the isomorphism of (2), the right-hand
vertical arrow is the isomorphism determined by the middle vertical arrow of
the diagram of (1), and the upper, lower horizontal arrows are the respective
Prym-period-homomorphisms associated to the Galois étale coverings Y; — A7,
yg — XQ.

Thus, one concludes immediately from the equivalence Mo : DD, 5 DEG, of cat-
egories of [6, Chapter III, Corollary 7.2] that the isomorphism Mifym = M}ngm deter-
mined by ¢, arises — relative to the third vertical arrow of the diagram of Lemma 8.5,
(i) — from an isomorphism Py, /x, — Py, x, of semi-abelian schemes over R that is
compatible with the respective Prym semi-polarizations associated to the Galois étale
coverings YV — Xy, Vo — Xy, as desired. This completes the proof of assertion (iii),

hence also of Lemma 10.6. O

Definition 10.7. Let Z;, Z be hyperbolic curves over K and ¢, : 17, — Iz, (cf.
Definition 5.3) a continuous isomorphism over G. Then we shall say that the iso-
morphism ¢y, is Prym-compatible if the isomorphism ¢y, is cyclotomically compatible
and REP-compatible, and, moreover, in the situation discussed in Definition 9.4, the
diagrams of groups

C(PY ) —= A(Pyyw)(L)  C(Py, ) —= Py (L)
C(ﬁ%/m@) - A(§V2/W2)<L)7 C(ﬁﬁzz/wg) - ﬁv2/WQ(L)

(cf. Definition 8.1) — where the first and third vertical arrows are the isomorphisms
obtained by Lemma 10.6, (i) (cf. our assumption that the isomorphism ¢y, is cyclotom-
ically compatible and REP-compatible), the second and fourth vertical arrows are the

isomorphisms induced by the isomorphism Py, y, — va /w, (cf. Remark 9.3.1), the
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left-hand upper, lower horizontal arrows are the dual-extension-homomorphisms associ-
ated to the Galois étale coverings Vi — Wy, Vo — Wi, respectively, and the right-hand
upper, lower horizontal arrows are the Prym-period-homomorphisms associated to the
Galois étale coverings V; — Wy, Vo — Wi, respectively — commute.

Lemma 10.8. Let Zy, Zs be hyperbolic curves over K and ¢, : 11z, = Mg, (cf. Defi-
nition 5.3) a continuous isomorphism over Gk . Suppose that the field K is of charac-
teristic zero and x-Kummer-faithful, and that the isomorphism ¢, is LSF-compatible.
Then the isomorphism ¢, is Prym-compatible.

Proof. This assertion follows from Lemma 7.7, (i); Lemma 9.5; Lemma 10.6, (ii), (ii).
U

11. ANABELIAN CONSEQUENCES

In the present section, we give proofs of the main results of the present paper (cf.
Theorem 11.1, Corollary 11.2; Corollary 11.3 below).

Theorem 11.1. Let

e R be a complete discrete valuation ring whose field of fractions we denote by
K, and whose residue field we denote by k,

e K a separable closure of K, and

e /1, Zy hyperbolic curves over K.

Let ¢n,: Wz, — My, (cf Definition 5.3) be a continuous isomorphism over Gy (cf.
Definition 5.1). Suppose that the following three conditions are satisfied.

(a) The field k is perfect and of characteristic p > 0.

(b) The isomorphism ¢n,, is LSF-compatible (cf. Definition 7.4) and Prym-compatible
(cf. Definition 10.7).

(¢) If K is of characteristic p, then the hyperbolic curve Zy over K is nonisotrivial

(cf. Definition 5.8, (i)), and the field k is algebraic over a finite field.

Then the isomorphism ¢, arises from a unique isomorphism Zy — Zy over K.

Proof. The uniqueness portion of Theorem 11.1 follows immediately from a similar
argument to the argument applied in the first paragraph of the proof of [18, Theorem
14.1], together wth Lemma 7.7, (ii).

Next, to verify the existence portion of Theorem 11.1, let H; C Il be a subnormal

(cf. Definition 6.9, (i)) open subgroup of IIz,. Write Ho o ¢, (H,) CHy,, L C K for
the finite extension field of K that corresponds to the image of H; (i.e., of Hy) in G,
Ry C L for the normalization of R in L, and kj, for the residue field of R;. Moreover,
for each i € {1,2}, write W," — Z (cf. Definition 5.3) for the finite flat covering of Z;"
that corresponds to the open subgroup H; C Ilz,, which thus implies that we have an
identification H; = Iy, (cf. Definition 5.3), where we write W; for the open subscheme
of W obtained by forming the inverse image of Z; C Z;" (cf. Remark 5.3.1). Then it
follows from [4, Corollary 2.7] (cf. also Lemma 5.9, (i)), together with the well-known
structure of the maximal pro-/ quotient of the étale fundamental group of a hyperbolic
curve over an algebraically closed field of characteristic # [ (cf., e.g., [26, Proposition
1.1, (i), (ii)]), that we may take “H;” so that,
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(1) for each i € {1,2}, there exist a stable curve W; over R;, and an isomorphism
W; xgr, L = W' over L, by means of which we identify W; xp, L with W
and, moreover,

(2) for each i € {1,2}, the branch locus of the finite flat covering W, — Z} is
given by Z\ Z;.

Next, observe that it follows from Lemma 6.4, together with Lemma 5.9, (ii), (iv),
that we may take “H;” so that ;" has a nonsmooth stable model. Thus, it follows
from Lemma 6.10, together with Lemma 5.9, (iii), that we may take “H;” so that

(3) the stable curve Wy (cf. Definition 6.1) over ky, is untangled and not smooth
over ky,

(4) for each vertex w € v(I'yy,) (cf. Definition 1.2, Definition 6.1) of I'yy , the
inequality deg(DX1) < g2 (cf. Definition 1.3) holds (which thus implies that
the stable curve Wi over kj, is sturdy), and, moreover,

(5) for each vertex w € v(I'yy,) of I'yy,, the smooth proper curve (W;),, (cf. Defi-

nition 1.3) over k is of gonality > 5.

In particular, it follows from Theorem 4.5 that we may assume without loss of generality,
after possibly replacing L by a suitable finite extension field of L in K, that there exist

e a stable curve V, over Ry,
e a prime number [ invertible in R, and
e a Galois étale covering V| — W), of degree [ over Ry,

such that

(6) the induced Galois étale covering V; — W, (cf. Definition 6.1) over k is Prym-
faithful and new-ordinary.

Write H] C H; for the open subgroup of H; that corresponds to the induced Galois
étale covering V;" 'y Xg, L — Wi, H) o b, (H;) C Ho, Vot — Wi for the finite
flat covering of W, that corresponds to the open subgroup Hy C H,. Then it follows
from condition (2) of Lemma 6.5, (i), and Lemma 7.3, (ii) (cf. also (4); Lemma 5.6),
that there exist a stable curve Vy over Ry, and an isomorphism V, xz, L = V" over L,
by means of which we identify Vo X g, L with V,".

Next, observe that since (we have assumed that) the isomorphism ¢r, is LSF-
compatible (cf. also (3); (4); Lemma 6.8, (i)),

(7) the commutative diagram of topological groups

log log
HZl Hﬂ1

| |
Hlog Hlog
Vo Wo
(cf. Definition 6.1, Definition 6.3) — where the horizontal arrows are the nat-

ural homomorphisms, and the vertical arrows are continuous isomorphisms —
induced by ¢, (cf. Lemma 5.6; Lemma 7.3, (ii)) arises from a commutative
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diagram of log schemes over Spec(kz)'¢ (cf. Definition 6.1)

1 1
Vit —= Wr*

| |
ZlQog leog

(cf. Definition 6.1) — where the horizontal arrows are the natural morphisms,
and the vertical arrows are isomorphisms.

In particular, one concludes from (4), (6) that

(8) the stable curve Wy over ky, is sturdy, and, moreover, B
(9) the induced Galois étale covering Vo — W, (cf. Definition 6.1) over k is Prym-
faithful and new-ordinary.

Moreover, it is immediate that we may assume without loss of generality, after possibly
replacing L by a suitable finite extension field of L in K, that

(10) each of the stable curves Vi, Wy, Vo, W over kp, is split, and, moreover,
(11) each of the structure morphisms V; — Spec(Ry), Vo — Spec(Ry) has a split-
ting.
Next, observe that since (we have assumed that) the isomorphism ¢, is Prym-
compatible, it follows from Lemma 10.6, (iii) (cf. also (4), (6), (8), (9), (10), (11)),
that

(12) the isomorphism M‘ljrfm — Mf;ﬂym (cf. Definition 8.4) determined by ¢r, (cf.
1 2

Lemma 8.6, (1)) arises — relative to the third vertical arrow of the diagram of
Lemma 8.5, (i) — from an isomorphism Py, , — Py, w, (cf. Definition 8.1)
of semi-abelian schemes over R that is compatible with the respective Prym

semi-polarizations associated to the Galois étale coverings Vi — Wy, Vo — W,
(cf. Definition 2.3, (ii)).

In particular, it follows immediately from (6), (7), (9) that the isomorphism W; = W,
determined by the isomorphism W = W% that appears in (7) lifts uniquely (cf.
Lemma 6.2) to an isomorphism W; — W, over Ry, which restricts to an isomorphism
Wt 5 Wy over L.

Next, observe that since (we have assumed that) the open subgroup H; C Iz of
Iz is subnormal, for each i € {1,2}, the finite flat covering W;" — Z:" may be
written as the composite of finitely many Galois finite flat coverings. In particular, by
applying Galois descent inductively, one concludes immediately that this isomorphism
Wt 5 Wy fits into a commutative diagram of schemes over K

Wi ——Z7

zl lz
Wy — 7
— where the horizontal arrows are the natural finite flat coverings, and the vertical

arrows are isomorphisms. In particular, it follows from (2) that the lower horizontal
arrow restricts to an isomorphism fz: Z; = Z over K.
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Finally, observe that one verifies immediately from the various definitions involved
that the assignment “¢r, — f2” is functorial, i.e., with respect to isomorphisms. Thus,
one concludes formally, by applying the assignment “¢r, — fz” to the restrictions of
¢m, to the various normal open subgroups of Il , that the isomorphism ¢y, arises
from the isomorphism f;. This completes the proof of Theorem 11.1. O

Corollary 11.2. Let

e R be a complete discrete valuation ring whose field of fractions we denote by K
and whose residue field we denote by k,

e K a separable closure of K, and

e /1, Zy hyperbolic curves over K.

Suppose that the field k is perfect and of characteristic p > 0. Let ¢, : 7, = 1lz, (cf.
Definition 5.3) be a continuous isomorphism over Gy (cf. Definition 5.1). Suppose,
moreover, that the field K is of characteristic zero and x-Kummer-faithful (cf. Defini-
tion 10.4, (ii)), and that the isomorphism ¢n, is LSF-compatible (cf. Definition 7.4).
Then the isomorphism ¢r1, arises from a unique isomorphism Zy — Zy over K.

Proof. Observe that since (we have assumed that) the field K is of characteristic zero
and x-Kummer-faithful, and the isomorphism ¢y, is LSF-compatible, it follows from
Lemma 10.8 that the isomorphism ¢y, is Prym-compatible. Thus, Corollary 11.2 fol-
lows from Theorem 11.1. This completes the proof of Corollary 11.2. U

Corollary 11.3. Let p be a prime number, K a sub-p-adic field (cf. [18, Definition
15.4]), K an algebraic closure of K, and Zy, Zy hyperbolic curves over K. Then every
continuous isomorphism Iz, — Tl (cf. Definition 5.3) over G (cf. Definition 5.1)
arises from a unique isomorphism Z; = Zy over K. Put another way, if one writes
Isomy (Z1, Zo) for the set of isomorphisms Zy — Zy over K, Isomg, (I z,,1z,) for the
set of continuous isomorphisms Iy, — Iz, over Gy, and Isomg, (Iz,,1y,) for the
quotient set of Isome,. (Ilz,, I1z,) with respect to the natural conjugation action of the
kernel of the natural continuous outer homomorphism 11z, — G, then the natural map

Isomg (2, Zy) — Isomg, (I12,,112,)
15 bijective.
Proof. If K is a p-adic local field, then this assertion follows from Corollary 11.2, to-
gether with Lemma 7.5; Lemma 7.7, (i); [15, Theorem 7]. The general case follows

then immediately from this case, together with a “formal argument”, i.e., applied in
the proof of [18, Corollary 15.5]. O
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