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Abstract

Let p be a prime number and k either a finite field of characteristic p or a
generalized sub-p-adic field. Let X1 and X2 be hyperbolic curves over k. In the
present paper, we introduce a kind of morphism between X1 and X2 called an al-
most open immersion, and give some group-theoretic characterizations for the set
of almost open immersions between X1 and X2 via their arithmetic fundamental
groups. This result generalizes the Isom-version of Grothendieck’s anabelian con-
jecture for curves over k which has been proven by S. Mochizuki and A. Tamagawa
to the case of almost open immersions.
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Introduction

In the present paper, we study the anabelian geometry of curves. Let p be a prime
number, k a field, k an algebraic closure of k, and Gk the absolute Galois group of k.

Let Xi, i ∈ {1, 2}, be a hyperbolic curve of type (gXi
, nXi

) over k (i.e., Xi is a smooth,
geometrically connected curve over k satisfying 2gXi

+nXi
−2 > 0, where gXi

is the genus
of the smooth compactification Xcpt

i , and nXi
is the cardinality of (Xcpt

i \Xi)(k)) and X i

the curve Xi×k k over k. Then we have the following exact sequence of étale fundamental
groups:

1→ π1(X i, ∗)→ π1(Xi, ∗)
prXi→ Gk → 1,

where ∗ is a suitable geometric point.
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Let Primes be the set of prime numbers, p ∈ Σ1 ⊆ Primes a finite set, and p ̸∈ Σ2 ⊆
Primes a finite set. We set

Σ ∈ {Primes,Primes \ Σ1, tame} if char(k) = p

and
Σ

def
= Primes \ Σ2 if char(k) = 0.

Write ∆Xi
for πΣ

1 (X i, ∗), where πΣ
1 (X i, ∗) denotes the maximal pro-Σ quotient of π1(X i, ∗)

if Σ ∈ {Primes,Primes \ Σ1,Primes \ Σ2} and denotes the tame fundamental group of
X i if Σ = tame. Then the kernel of the natural surjection π1(X i, ∗) ↠ ∆Xi

is a closed
normal subgroup of π1(Xi, ∗). Moreover, we denote by

ΠXi

def
= π1(Xi, ∗)/(Ker(π1(X i, ∗) ↠ ∆Xi

)).

Thus, we obtain the following exact sequence of fundamental groups:

1→ ∆Xi
→ ΠXi

prΣXi→ Gk → 1.

We define
Isompro-gps(−,−) and Homopen

pro-gps(−,−)

to be the set of continuous isomorphisms and the set of open continuous homomorphisms
of profinite groups between the two profinite groups in parentheses, respectively, and
define

IsomGk
(ΠX1 ,ΠX2)

def
= {Φ ∈ Isompro-gps(ΠX1 ,ΠX2) | prΣX1

= prΣX2
◦ Φ},

Homopen
Gk

(ΠX1 ,ΠX2)
def
= {Φ ∈ Homopen

pro-gps(ΠX1 ,ΠX2) | prΣX1
= prΣX2

◦ Φ}.

Thus, by composing with inner automorphisms, we obtain a natural action of ∆X2 on
IsomGk

(ΠX1 ,ΠX2) and a natural action of ∆X2 on Homopen
Gk

(ΠX1 ,ΠX2).
We consider the category Ck of smooth k-curves and dominant k-morphisms. If

char(k) = p, we denote by FCk the localization of Ck at geometric k-Frobenius maps
between curves (cf. [S1, Section 3]). The ultimate aim of Grothendieck’s anabelian
conjectures (or, the Grothendieck conjectures for short) for curves over suitable k is to
reconstruct the curves from their fundamental groups. More precisely, these conjectures
can be formulated as follows:

(Isom-version): The natural maps

Isom-πΣ
1 : IsomCk(X1, X2)→ IsomGk

(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = 0 and

IsomFCk-π
Σ
1 : IsomFCk(X1, X2)→ IsomGk

(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p are bijections.
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Suppose that char(k) = 0. If Σ = Primes and k is a number field, then Isom-version
was proved by H. Nakamura (cf. [N1], [N2]) when the genus of Xi, i ∈ {1, 2}, is 0, and
was proved by A. Tamagawa (cf. [T1]) in the case of arbitrary affine curves. Later, S.
Mochizuki (cf. [M2]) generalized their results to the case where k is a generalized sub-p-
adic field (i.e., a field which can be embedded as a subfield of a finitely generated extension
of the quotient field of the ring of Witt vectors with coefficients in an algebraic closed field
of Fp), Σ is a set which contains p, and Xi, i ∈ {1, 2}, is an arbitrary hyperbolic curve
over k.

Suppose that char(k) = p. If Σ ∈ {Primes, tame} and k is a finite field, then Isom-
version was proved by Tamagawa (cf. [T1]) when Xi, i ∈ {1, 2}, is affine, and was proved
by Mochizuki (cf. [M4]) when Xi, i ∈ {1, 2}, is projective. Recently, M. Säıdi and
Tamagawa (cf. [ST1], [ST3]) generalized their results to the case where p ̸∈ Σ is a
complement of a finite subset of Primes. On the other hand, J. Stix (cf. [S1], [S2]) proved
Isom-version when Σ = tame and k is a field that is finitely generated over Fp.

In fact, by applying p-adic Hodge theory, Mochizuki proved a very general version
when k is a sub-p-adic field (i.e., a field which can be embedded as a subfield of a finitely
generated extension of Qp) as follows (cf. [M1]):

(Hom-version of characteristic 0): Suppose that k is a sub-p-adic field.
Then natural map

Hom-πΣ
1 : HomCk(X1, X2)→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

is a bijection.

Moreover, we have the following commutative diagram:

IsomCk(X1, X2)
Isom-πΣ

1−−−−→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomCk(X1, X2)
Hom-πΣ

1−−−−→ Homopen
Gk

(ΠX1 ,ΠX2)/Inn(∆X2),

when char(k) = 0. Since all the vertical arrows appeared in the commutative diagrams
above are injections, we have that

Hom-version of characteristic 0⇒ Isom-version of characteristic 0.

On the other hand, since the method used in [M1] can not work well in the case of
generalized sub-p-adic fields, we do not know whether Hom-version of characteristic 0
above holds or not if k is a generalized sub-p-adic field.

Similar like in the case of characteristic 0, we may consider certain Hom-versions of
the Grothendieck conjectures for curves in positive characteristic (=Hom-version of
positive characteristic) which is one of the main open problems in anabelian geometry.
Essentially, Hom-version of positive characteristic is a kind of problems concerning the
following fundamental anabelian style questions:

• Can we find out all of the continuous homomorphisms contained in Homopen
Gk

(ΠX1 ,ΠX2)
which can be induced by morphisms of X1 and X2?
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• Can we give a purely group-theoretic characterization of morphisms of curves in
terms of ΠX1 and ΠX2 as simple as possible?

Moreover, an optimistic expectation for Hom-version of positive characteristic is the fol-
lowing ultimate goal:

The natural map

HomFCk-π
Σ
1 : HomFCk(X1, X2)→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

is a bijection.

Hom-version of positive characteristic is a much more difficult problem than Isom-version
of positive characteristic. Since Tamagawa proved the Isom-version of the Grothendieck
conjecture for affine curves over finite fields in the 1990s, at the time of writing, except
some obvious cases (e.g. X1 → X2 is a finite étale morphism, ΠX1 ⊆ ΠX2 is an open
normal subgroup), no published results concerning the Grothendieck conjecture for curves
in positive characteristic for non-isomorphisms are known even the following case:

Suppose that k is a finite field, that Σ = Primes, and that gX1 = gX2 and
nX1 ≥ nX2 . Which elements contained in Homopen

Gk
(ΠX1 ,ΠX2) can be induced

by morphisms from X1 to X2? How to give a purely group-theoretic character-
ization of elements of HomFCk(X1, X2) in terms of étale fundamental groups
of X1 and X2?

Note that, if (gX1 , nX1) = (gX2 , nX2), then all of the elements of Homopen
Gk

(ΠX1 ,ΠX2) are
surjections, and all of the morphisms betweenX1 andX2 are compositions of isomorphisms
and Frobenius twists. Since ΠXi

, i ∈ {1, 2}, is not topologically finitely generated, we do
not known whether or not a surjection ΠX1 ↠ ΠX2 is an isomorphism in general. Thus,
we do not known whether or not the surjection of profinite groups arises from geometry
in general.

On the other hand, we would like to mention that Säıdi and Tamagawa obtained a
birational version of Hom-version of positive characteristic for function fields of curves
over finite fields under certain conditions (cf. [ST2]).

In the present paper, we prove a certain type of Grothendieck’s anabelian conjecture
for a kind of non-isomorphisms called almost open immersions. This result generalizes
the Isom-version of the Grothendieck conjecture for curves over either a finite field or a
generalized sub-p-adic field which has been proven by Mochizuki and Tamagawa.

Before we explain our main theorem of the present paper, let us introduce some nota-
tion. Let f ∈ HomCk(X1, X2) be a separable k-morphism. We shall say that f : X1 → X2

is separable Σ-almost open immersion if f is a composition of an open immersion and a
finite étale morphism such that the Galois group of the Galois closure of the finite étale
morphism is a finite quotient of ΠX2 . Suppose that char(k) = p. Let ϕ ∈ HomFCk(X1, X2).
We shall say that ϕ : X1 → X2 is a Σ-almost open immersion if ϕ can be represented by
the following k-morphisms

X1
∼=k Y (m1)← Y → Y (m2)→ X2
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such that Y (m2)→ X2 is a separable Σ-almost open immersion, where Y (m1) and Y (m2)
denote the mth

1 -Frobenius twist and mth
2 -Frobenius twist of Y , respectively, and ∼=k is a

k-isomorphism. Then we define

HomΣ-al-op-im
Ck (X1, X2) ⊆ HomCk(X1, X2)

if char(k) = 0 and
HomΣ-al-op-im

FCk (X1, X2) ⊆ HomFCk(X1, X2)

if char(k) = p to be the sets of all the Σ-almost open immersions between X1 and X2.
On the other hand, we introduce a purely group-theoretic condition (Σ-gnc) concerning
genus (cf. cf. Section 1 and Proposition 1.2). We denote by

Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)

for the elements of Homopen
Gk

(ΠX1 ,ΠX2) satisfying the condition (Σ-gnc). Then the natural
maps Hom-πΣ

1 and HomFCk-π
Σ
1 induce the following natural maps:

Hom-πΣ-gnc
1 : HomΣ-al-op-im

Ck (X1, X2)→ Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = 0 and

HomFCk-π
Σ-gnc
1 : HomΣ-al-op-im

FCk (X1, X2)→ Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p which fit into the following commutative diagrams:

IsomCk(X1, X2)
Isom-πΣ

1−−−−→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomΣ-al-op-im
Ck (X1, X2)

Hom-πΣ-gnc
1−−−−−−−→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomCk(X1, X2)
Hom-πΣ

1−−−−→ Homopen
Gk

(ΠX1 ,ΠX2)/Inn(∆X2),

and

IsomFCk(X1, X2)
IsomFCk -π

Σ
1−−−−−−−→ IsomGk

(ΠX1 ,ΠX2)/Inn(∆X2)y y
HomΣ-al-op-im

FCk (X1, X2)
HomFCk -π

Σ-gnc
1−−−−−−−−−→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomFCk(X1, X2)
HomFCk -π

Σ
1−−−−−−−→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2),

respectively. Here, all the vertical arrows appeared in the commutative diagrams above
are injections. Now, our main theorem of the present paper is as follows (cf. Theorem 4.2
and Theorem 4.3).
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Theorem 0.1. Suppose that k is either a finite field of characteristic p or a generalized
sub-p-adic field. Then the natural maps

Hom-πΣ-gnc
1 : HomΣ-al-op-im

Ck (X1, X2)
∼→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = 0 and

HomFCk-π
Σ-gnc
1 : HomΣ-al-op-im

FCk (X1, X2)
∼→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p are bijections.

Remark 0.1.1. We maintain the notation introduced in Theorem 0.1. Suppose that
gX1 = gX2 ≥ 1 and nX1 ≥ nX2 . Then all of the morphisms contained in HomFCk(X1, X2)
(resp. HomCk(X1, X2)) are Σ-almost open immersions. Thus, we obtain a group-theoretic
characterization of HomFCk(X1, X2) (resp. HomCk(X1, X2)) in terms of ΠX1 and ΠX2 .

Our method of proving Theorem 0.1 is as follows. The main difficult is proving the
surjectivity of Hom-πΣ-gnc

1 and HomFCk-π
Σ-gnc
1 . Let Φ ∈ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2). To verify

that the image of Φ in Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2) comes from a morphism of
curves, it is easy to see that we may assume that Φ is a surjection. First, we assume
that Σ ̸= Primes when char(k) = p. By using the condition (Σ-gnc), we prove that the
kernel of the surjection ∆X1 ↠ ∆X2 induced by Φ is generated by inertia subgroups of
∆X1 associated to cups of X1 (cf. Theorem 2.6 (i)). Then we can reduce Theorem 0.1 to
the Isom-version of the Grothendieck conjecture for curves over k which has been proven
by Mochizuki when k is a generalized sub-p-adic field (cf. [M2]), and Säıdi-Tamagawa
when k is a finite field (cf. [ST3]).

Next, we assume that char(k) = p and Σ = Primes. In this case, the proof of
Theorem 0.1 is more complicated than the prime-to-p (or tame) case explained above.
We introduce a purely group-theoretic condition (Σ-prc) concerning p-rank (cf. Section 1
and Proposition 1.2), and by (Σ-gnc) and (Σ-prc), we can also prove that the kernel of the
surjection ∆X1 ↠ ∆X2 induced by Φ is generated by inertia subgroups of ∆X1 associated
to cups of X1 (cf. Theorem 2.4 (ii)). By applying the prime-to-p version of Theorem
0.1, then we can reduce Theorem 0.1 to a result concerning Hopfian and weakly Hopfian
properties of fundamental groups of curves in positive characteristic (cf. Section 3).

The present paper is organized as follows. In Section 1, we review some well-known
facts concerning the Isom-version of the Grothendieck conjecture for curves, introduce
two purely group-theoretic conditions (Σ-gnc) and (Σ-prc), and give a group-theoretic
characterization of the sets of cusps of hyperbolic curves. In Section 2, we study the
kernels of surjections of geometric fundamental groups, and prove that the kernels are
generated by inertia subgroups under the conditions (Σ-gnc) and (Σ-prc). In Section 3,
by applying a finiteness theorem concerning étale coverings with restricted ramification of
a variety over a finite field obtained by T. Hiranouchi, we study the Hopfian and weakly
Hopfian properites of fundamental groups of curves in positive characteristic. In Section
4, by applying the Isom-version of the Grothendieck conjecture for curves and the results
obtained in Section 2 and Section 3, we prove our main theorems.
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1 Preliminaries

Let p > 0 be a prime number, Fp a finite field of characteristic p, and Fp an algebraic
closure of Fp. We shall say that a field is generalized sub-p-adic if the field may be
embedded as a subfield of a finitely generated extension of the quotient field of W (Fp)
(i.e., the ring of Witt vectors of Fp). Let k be either a finite field of characteristic p or
a generalized sub-p-adic field and k an algebraic closure of k. We shall say that Xi,
i ∈ {1, 2}, is a hyperbolic curve of type (gXi

, nXi
) over k if Xi is a smooth, geometrically

connected curve over k satisfying 2gXi
+nXi

−2 > 0, where gXi
is the genus of the smooth

compactification Xcpt
i , and nXi

is the cardinality of (Xcpt
i \ Xi)(k). Then we have the

following fundamental exact sequence of étale fundamental groups:

1→ π1(X i, ∗)→ π1(Xi, ∗)
prXi→ Gk → 1,

where X i denotes the curve Xi×k k, Gk denotes the absolute Galois group Gal(k/k) of k,
and ∗ is a suitable geometric point. For simplicity, we omit ∗ and denote by π1(Xi) and
π1(X i) the étale fundamental groups π1(Xi, ∗) and π1(X i, ∗), respectively.

Let Primes be the set of prime numbers, p ∈ Σ1 ⊆ Primes a finite set, and p ̸∈ Σ2 ⊆
Primes a finite set. We put

Σ ∈ {Primes,Primes \ Σ1, tame} if char(k) = p

and
Σ

def
= Primes \ Σ2 if char(k) = 0.

Write ∆Xi
for πΣ

1 (X i), where πΣ
1 (X i) denotes the maximal pro-Σ quotient of π1(X i) if

Σ ∈ {Primes,Primes \ Σ1,Primes \ Σ2} and denotes the tame fundamental group of X i

if Σ = tame. Note that
Ker(π1(X i) ↠ ∆Xi

)

is also a normal closed subgroup of π1(Xi). Then we denote by

ΠXi

def
= π1(Xi)/(Ker(π1(X i) ↠ ∆Xi

)).

Moreover, we obtain a commutative diagram as follows:

1 −−−→ π1(X i) −−−→ π1(Xi)
prXi−−−→ Gk −−−→ 1y y ∥∥∥

1 −−−→ ∆Xi
−−−→ ΠXi

prΣXi−−−→ Gk −−−→ 1,

7



where all the vertical arrows are surjections.
We define

Isompro-gps(−,−) and Homopen
pro-gps(−,−)

to be the set of continuous isomorphisms and the set of open continuous homomorphisms
of profinite groups between the two profinite groups in parentheses, respectively, and
define

IsomGk
(ΠX1 ,ΠX2)

def
= {Φ ∈ Isompro-gps(ΠX1 ,ΠX2) | prΣX1

= prΣX2
◦ Φ},

Homopen
Gk

(ΠX1 ,ΠX2)
def
= {Φ ∈ Homopen

pro-gps(ΠX1 ,ΠX2) | prΣX1
= prΣX2

◦ Φ}.

Thus, by composing with inner automorphisms, we obtain a natural action of ∆X2 on
IsomGk

(ΠX1 ,ΠX2) and a natural action of ∆X2 on Homopen
Gk

(ΠX1 ,ΠX2).
We consider the category Ck of smooth k-curves and dominant k-morphisms. If

char(k) = p, we denote by FCk the localization of Ck at geometric k-Frobenius maps
between curves. Then we obtain the following commutative diagrams:

IsomCk(X1, X2)
Isom-πΣ

1−−−−→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomCk(X1, X2)
Hom-πΣ

1−−−−→ Homopen
Gk

(ΠX1 ,ΠX2)/Inn(∆X2),

if char(k) = 0 and

IsomFCk(X1, X2)
IsomFCk -π

Σ
1−−−−−−−→ IsomGk

(ΠX1 ,ΠX2)/Inn(∆X2)y y
HomFCk(X1, X2)

HomFCk -π
Σ
1−−−−−−−→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p, where all the vertical arrows are injections. Moreover, the following Isom-
version of the Grothendieck conjecture for hyperbolic curves over k has been known (cf.
[M2, Theorem 4.12], [T1, Theorem 0.5 and Theorem 0.6], and [ST3, Theorem 4.22]):

Theorem 1.1. The natural maps

Isom-πΣ
1 : IsomCk(X1, X2)

∼→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = 0 and

IsomFCk-π
Σ
1 : IsomFCk(X1, X2)

∼→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p are bijections.

Let F be a geometric object and ΠF a profinite group associated to the geometric
object F . Given an invariant InvF depending on the isomorphism class of F (in a certain
category), we shall say that InvF can be reconstructed group-theoretically from
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ΠF if ΠF1
∼= ΠF2 (as profinite groups) implies that InvF1 = InvF2 for two such geometric

objects F1 and F2. Moreover, suppose that we are given an additional structure AddF
(e.g., a family of subgroups) on the profinite group ΠF depending functorially on F ; then
we shall say that AddF can be reconstructed group-theoretically from ΠF if all
isomorphisms ΠF1

∼= ΠF2 (as profinite groups) preserve the structures AddF1 and AddF2 .
Let Φ ∈ Homopen

pro-gps(∆X1 ,∆X2). We denote by

∆Φ
def
= Im(Φ) ⊆ ∆X2

the image of Φ. We introduce a condition concerning genus as follows:

(Σ-gnc): For each open subgroup H2 ⊆ ∆Φ, write H1 for the inverse image

Φ
−1
(H2). We denote by gH1

and gH2
the genera of the curves over k corre-

sponding to H1 and H2, respectively. We shall say that Φ satisfies (Σ-gnc) if
gH1

= gH2
for each open subgroup H2 ⊆ ∆Φ.

Let C be a smooth curve over k and Ccpt the smooth compactification of C. If char(k) = p,
we define the p-rank of C to be

σC
def
= dimFp(H

1
ét(C

cpt,Fp)).

Next, we introduce a condition concerning p-rank as follows:

(Σ-prc): Suppose that char(k) = p and Σ ∈ {Primes, tame}. For each open

subgroup H2 ⊆ ∆Φ, write H1 for the inverse image Φ
−1
(H2). We denote by

σH1
and σH2

the p-rank of the curves over k corresponding to H1 and H2,

respectively. We shall say that Φ satisfies (Σ-prc) if σH1
= σH2

for each open

subgroup H2 ⊆ ∆Φ.

Note that if Φ satisfies (Σ-gnc) (resp. (Σ-prc)), then, for each open subgroup Q2 ⊆ ∆X2 ,

the homomorphism Φ
−1
(Q2)→ Q2 induced by Φ also satisfies (Σ-gnc) (resp. (Σ-prc)).

Proposition 1.2. (i) Suppose that char(k) = p, and that Σ is either Primes or tame.
Then (Σ-gnc) and (Σ-prc) are group-theoretic properties.

(ii) Let Φ ∈ Homopen
Gk

(ΠX1 ,ΠX2). Write Φ : ∆X1 → ∆X2 for the morphism induced by
Φ. Then (Σ-gnc) is a group-theoretical property.

Proof. For each H1 ⊆ ∆Φ and H2
def
= Φ

−1
(H1), we shall write XHi

, i ∈ {1, 2}, for the

hyperbolic curve of genus gHi
over k corresponding to H i.

First, we prove (i). Suppose that Σ = tame. Then we see immediately that σHi
=

dimFp(H
ab

i ⊗Fp), where (−)ab denotes the abelianization of (−). Then (Σ-prc) is a group-

theoretical property. If Σ = Primes, then [T2, Corollary 1.7] implies that Φ satisfies
(Σ-prc) group-theoretically. Moreover, if Σ = Primes (resp. Σ = tame), by [T2, Theorem
1.9] (resp. [T4, Theorem 0.5]), (Σ-gnc) is a group-theoretical property.

Next, we prove (ii). Suppose that char(k) = 0. To verify the proposition, we may
reduce immediately to the case where k is finite over the quotient field of W (Fp). Then
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the genera gH1
and gH2

are equal to the dimensions of the weight 0 parts of the Hodge-

Tate decompositions of the abelianizations of the maximal pro-p quotients of H1 and H2

(cf. [Ta, Section 4, Remark]), respectively. Suppose that char(k) = p. Let ℓ be a prime
number distinct from p. Then the genera gH1

and gH2
are equal to 1/2 the dimensions of

the Frobenius weight 1 parts of the abelianizations of the maximal pro-ℓ quotients of H1

and H2, respectively. This completes the proof of the proposition.

Remark 1.2.1. Let Φ ∈ Homopen
pro-gps(∆X1 ,∆X2). The proposition means that we can

determine whether Φ satisfies (Σ-gnc) (resp. (Σ-prc)) or not group-theoretically from
∆X1 and ∆X2 .

In the remainder of this section, let X be a hyperbolic curve of type (gX , nX) over
k. Write Xcpt for the smooth compactification of X over k. We define a pointed smooth
stable curve

X• def
= (Xcpt, DX

def
= Xcpt \X)

over k. Here, Xcpt denotes the underlying curve of X•, and DX denotes the set of marked
points of X•. By choosing a suitable geometric point, we denote by π1(X) the étale
fundamental group of X.

Let KX be the function field of X. We define KΣ
X to be the maximal pro-Σ (resp. the

maximal tame if Σ = tame) Galois extension of KX in a fixed separable closure of KX ,
unramified overX (resp. unramified overX, and at most tamely ramified overDX). Then
we may identify the maximal pro-Σ quotient ∆X of π1(X) (resp. the tame fundamental
group of X if Σ = tame) with Gal(KΣ

X/KX). We put

X•,Σ def
= (XΣ, DXΣ),

where XΣ denotes the normalization of Xcpt in KΣ
X , and DXΣ denotes the inverse image

of DX in XΣ. For each eΣ ∈ DXΣ , we denote by IeΣ the inertia subgroup of ∆X associated
to eΣ (i.e., the stabilizer of eΣ). Let C∆X

be a cofinal system of open subgroups of ∆X .

For each H ∈ C∆X
, we write X•

H
def
= (XH , DXH

) for the smooth pointed stable curve
corresponding to H and eH ∈ DXH

for the image of eΣ in X•
H . Write EC∆X

for the system
(eH)H∈C∆X

, and note that EC∆X
admits a natural action of ∆X . Then we may identify

the inertia subgroup IeΣ associated to eΣ with the stabilizer of EC∆X
.

Definition 1.3. Let f • : Y • def
= (Y,DY ) → X• be a morphism of smooth pointed stable

curves over k. We shall say that f • is a Galois tame covering (resp. Galois étale covering)
if f • induces a Galois covering of underlying curves which is at most tamely ramified over
DX (resp. f • induces a Galois covering of underlying curves which is étale). Moreover,
we put

Ramf•
def
= {e ∈ DX | f • is ramified over e}.

In the remainder of this section, we suppose that gX ≥ 2, and that nX > 0. We define

(ℓ, d, f • : Y • def
= (Y,DY )→ X•)

to be a triple associated to X satisfying the following conditions:
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(a) ℓ, d are prime numbers distinct from each other and from p such that
ℓ ≡ 1 (mod d); then all dth roots of unity are contained in Fℓ; Moreover, we
assume that ℓ, d ∈ Σ if Σ ̸= tame.

(b) f • : Y • → X• is a Galois étale covering (i.e., the morphism of underlying
curves induced by f • is a Galois étale covering) over k whose Galois group is
equipped with an isomorphism with Gd, where Gd ⊆ F×

ℓ denotes the subgroup
of dth roots of unity.

Write M ét
Y • and MY • for H1

ét(Y,Fℓ) and Hom(∆Y ,Fℓ), respectively, where ∆Y denotes
the maximal pro-Σ quotient of the étale fundamental group of Y \ DY (resp. the tame
fundamental group of Y \DY if Σ = tame). Note that there is a natural injection

M ét
Y • ↪→MY •

induced by the natural surjection ∆Y ↠ ∆ét
Y , where ∆ét

Y denotes the étale fundamental
group of Y . Then we obtain an exact sequence

0→M ét
Y • →MY • →M ra

Y •
def
= coker(M ét

Y • ↪→MY •)→ 0

with a natural action of Gd.
Let

M ra
Y •,Gd

⊆M ra
Y •

be the subset of elements on which Gd acts via the natural character Gd ↪→ F×
ℓ induced

by the inclusion Gd ⊆ Fℓ and
U∗
Y • ⊆MY •

the subset of elements that map to nonzero elements of M ra
Y •,Gd

. For each α ∈ U∗
Y • , write

g•α : Y •
α

def
= (Yα, DYα)→ Y •

for the Galois tame covering over k of degree ℓ corresponding to α. Then we obtain a
map

ϵ : U∗
Y • → Z, α 7→ #DYα ,

where #(−) denotes the cardinality of (−).
We define a subset of U∗

Y • to be

Ump
Y •

def
= {α ∈ U∗

Y • | #Ramg•α = d} = {α ∈ U∗
Y • | ϵ(α) = ℓ(dnX − d) + d}.

For each α ∈ Ump
Y • , since the image of α is contained in M ra

Y •,Gd
, we obtain that the action

of Gd on the set Ramg•α ⊆ DY • is transitive. Thus, there exists a unique marked point eα
of X• such that f •(y) = eα for each y ∈ Ramg•α . Moreover, we define a pre-equivalence
relation ∼ on Ump

Y • as follows:

Let α, β ∈ Ump
Y • . Then α ∼ β if, for each λ, µ ∈ F×

ℓ for which λα + µβ ∈ U∗
Y • ,

we have λα+ µβ ∈ Ump
Y • .

11



On the other hand, for each e ∈ DX , we define

Ump
Y •,e

def
= {α ∈ Ump

Y • | g•α is ramified over (f •)−1(e)}.

Then, for any two marked points e, e′ ∈ DX distinct from each other, we have

Ump
Y •,e ∩ Ump

Y •,e′ = ∅.

Moreover, we have

Ump
Y • =

∪
e∈DX

Ump
Y •,e.

Write (gY , nY ) for the type of Y •. Then the structure of the maximal pro-ℓ quotients of
tame fundamental groups implies that

∆ab
Y ⊗ Fℓ

∼= ⟨a1, . . . , agY , b1, . . . , bgY , {ce′}e′∈DY
|

gY∏
i=1

[ai, bi]
∏

e′∈DY

ce′ = 1⟩ab ⊗ Fℓ,

where {ce′}e′∈DY
denotes a set of generators of inertia subgroups associated to marked

points. Next, let us explain the set Ump
Y •,e more precisely. Let α ∈ Ump

Y •,e and e′′ ∈
(f •)−1(e) ⊆ DY . The construction of Ump

Y •,e implies that α(ce′′) = a for some a ∈ F×
ℓ , that

α(cτ(e′′)) = τa for each τ ∈ Gd, and that α(ce′) = 0 for each e′ ∈ DY \ (f •)−1(e). Note
that

α(
∏

e′∈DY

ce′) = a
∑
τ∈Gd

τ = 0

holds in Fℓ.

Proposition 1.4. (i) The pre-equivalence relation ∼ on Ump
Y • is an equivalence relation,

and there exists a natural bijection

ϑ : Ump
Y • / ∼→ DX .

Moreover, let
(ℓ∗, d∗, f •,∗ : Y •,∗ → X•)

be an arbitrary triple associated to X. Hence we obtain a resulting set Ump
Y •,∗/ ∼ and a

natural bijection
ϑ∗ : Ump

Y •,∗/ ∼→ DX .

Then there exists a natural bijection

Ump
Y •,∗/ ∼∼= Ump

Y • / ∼

which is compatible with the bijections ϑ and ϑ∗ (i.e., the set Ump
Y • / ∼ does not depend on

the choices of ℓ, d, and the étale covering f • : Y • → X•).
(ii) Write gY for the genus of Y •. We have, for each e ∈ DX ,

#Ump
Y •,e = ℓ2gY +1 − ℓ2gY and Ump

Y • = nX(ℓ
2gY +1 − ℓ2gY ).
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Proof. First, let us prove (i). Let β, γ ∈ Ump
Y • . If Ramg•β

= Ramg•γ , then, for each λ, µ ∈ F×
ℓ

for which λβ + µγ ̸= 0, we have Ramg•λβ+µγ
= Ramg•β

= Ramg•γ . Thus, β ∼ γ. On the
other hand, if β ∼ γ, we have Ramg•β

= Ramg•γ . Otherwise, we have #Ramg•β+γ
= 2d.

Thus, β ∼ γ if and only if Ramg•β
= Ramg•γ . Then ∼ is an equivalence relation on Ump

Y • .
Let

ϑ : Ump
Y • / ∼→ DX

be a map defined by α 7→ eα. We prove that ϑ is a bijection. It is easy to see that ϑ is
an injection. On the other hand, for each e ∈ DX , the explanation of Ump

Y •,e mentioned in
front of the proposition implies that we may construct a connected Galois tame covering
of h• : Z• → Y • such that the element corresponding to h• is contained in Ump

Y • . Then ϑ
is a surjection.

Next, we prove the “moreover” part. First, we suppose that ℓ ̸= ℓ∗, and that d ̸= d∗.
Then there exists a natural bijection

Ump
Y •,∗/ ∼∼= Ump

Y • / ∼

which compatible with the bijections ϑ and ϑ∗ as follows. Let α ∈ Ump
Y • and α∗ ∈ Ump

Y •,∗ .
Write Y •

α → Y • and Y •∗
α∗ → Y •,∗ for the tame coverings corresponding to α and α∗,

respectively. Let us consider
Y • ×X• Y •,∗.

Thus, we have a connected Galois tame covering Y • ×X• Y •,∗ → X• of degree dd∗ℓℓ∗.
Then it is easy to check that α and α∗ correspond to same marked point if and only if the
cardinality of the set of marked points of Y •×X• Y •,∗ is equal to dd∗(ℓℓ∗(nX − 1)+ 1). In
general case, for any two given triples (ℓ, d, f • : Y • → X•) and (ℓ∗, d∗, f •,∗ : Y •,∗ → X•),
we may choose a triple

(ℓ∗∗, d∗∗, f •,∗∗ : Y •,∗∗ → X•)

associated to X such that ℓ∗∗ ̸= ℓ, ℓ∗∗ ̸= ℓ∗, d∗∗ ̸= d, and d∗∗ ≠ d∗. Hence we obtain a
resulting set Ump

Y •,∗∗/ ∼ and a natural bijection ϑ∗∗ : Ump
Y •,∗∗/ ∼→ DX . Then we obtain

two natural bijections Ump
Y •,∗∗/ ∼∼= Ump

Y • / ∼ and Ump
Y •,∗∗/ ∼∼= Ump

Y •,∗/ ∼. Thus, we have
Ump
Y •,∗/ ∼∼= Ump

Y • / ∼. This completes the proof of (i).
Next, let us prove (ii). Write Ee ⊆ DY for the set (f •)−1(e). Then Ump

Y •,e can be
naturally regarded as a subset of H1

ét(Y \Ee,Fℓ) via the natural open immersion Y \Ee ↪→
Y. Write Le for the Fℓ-vector space generated by Ump

Y •,e in H1
ét(Y \ Ee,Fℓ). Then we have

Ump
Y •,e = Le \ H1

ét(Y,Fℓ).

Write He for the quotient Le/H
1
ét(Y,Fℓ). We have an exact sequence as follows:

0→ H1
ét(Y,Fℓ)→ Le → He → 0.

The explanation of Ump
Y •,e mentioned in front of the proposition implies that

dimFℓ
(He) = 1.

On the other hand, since dimFℓ
(H1

ét(Y,Fℓ)) = 2gY , we obtain

#Ump
Y •,e = ℓ2gY +1 − ℓ2gY .
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Thus, we have
#Ump

Y • = nX(ℓ
2gY +1 − ℓ2gY ).

This completes the proof of the lemma.

Remark 1.4.1. The proof of the “moreover” part of Proposition 1.4 (i) implies that,
if the cardinality of the sets of marked points of smooth pointed stable curves can be
reconstructed group-theoretically, then the bijection

Ump
Y •,∗/ ∼∼= Ump

Y • / ∼

can be determined group-theoretically.

2 The kernels of surjections of geometric fundamen-

tal groups

We maintain the notation introduced in Section 1. Let X
cpt

i , i ∈ {1, 2}, be the smooth
compactification of X i over k. We define a pointed smooth stable curve over k to be

X
•
i

def
= (X

cpt

i , DXi

def
= X

cpt \X i), i ∈ {1, 2}.

Let Φ ∈ Homopen
pro-gps(∆X1 ,∆X2). In this section, we suppose that nX2 > 0, that Φ is

a surjective homomorphism, and that Φ satisfies (Σ-gnc). First, we have the following
lemma.

Lemma 2.1. Suppose that gX2 ≥ 2. For each i ∈ {1, 2}, we write ∆ét
Xi

for the étale

fundamental group of X
cpt

i and ∆ét,p′

Xi
for the maximal pro-Σ \ {p} quotient of ∆Xi

(resp.

maximal prime-to-p quotient of ∆Xi
if Σ = tame). Then Φ induces an isomorphism

∆ét,p′

X1

∼→ ∆ét,p′

X2
.

Proof. Let N2 ⊆ ∆X2 be an arbitrary open subgroup such that the Galois covering XN2 →
X2 corresponding to N2 is étale, and that (#(∆X2/N2), p) = 1. Write N1 ⊆ ∆X1 for the

inverse image Φ
−1
(N2). Then the condition (Σ-gcn) and the Riemann-Hurwitz formula

imply that the covering XN1 → X1 corresponding to N1 is étale. Note that #(∆X1/N1) =
#(∆X2/N2) is prime to p. Thus, Φ induces a surjection

∆ét,p′

X1
↠ ∆ét,p′

X2
.

On the other hand, since gX1 = gX2 , ∆
ét,p′

X1
is isomorphic to ∆ét,p′

X2
as abstract profinite

groups. Moreover, we have ∆ét,p′

Xi
, i ∈ {1, 2}, is topologically finitely generated. Then

the surjection ∆ét,p′

X1
↠ ∆ét,p′

X2
obtained above is an isomorphism (cf. [FJ, Proposition

16.10.6]). This completes the proof of the lemma.
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Suppose that gX2 ≥ 2. Let

(ℓ, d, f •
2 : Y •

2
def
= (Y2, DY2)→ X

•
2)

be a triple associated to X2 (cf. Section 1). Lemma 2.1 implies that the triple (ℓ, d, f •
2 :

Y •
2 → X

•
2) associated to X2 induces a triple

(ℓ, d, f •
1 : Y •

1
def
= (Y1, DY1)→ X

•
1)

associated to X1, where the Galois étale covering f •
1 is induced by f •

2 via the isomorphism

H1
ét(X

cpt

2 ,Fd)
∼→ H1

ét(X
cpt

1 ,Fd) induced by ∆ét,p′

X1
↠ ∆ét,p′

X2
.

Write ∆Y •
1
⊆ ∆X1 and ∆Y •

2
⊆ ∆X2 for open normal subgroups corresponding to Y •

1

and Y •
2 , respectively. Write MY •

1
, M ét

Y •
1
, M ra

Y •
1
, MY •

2
, M ét

Y •
2
, and M ra

Y •
2
for Hom(∆Y •

1
,Fℓ),

H1
ét(Y1,Fℓ), MY •

1
/M ét

Y •
1
, Hom(∆Y •

2
,Fℓ), H

1
ét(Y2,Fℓ), and MY •

2
/M ét

Y •
2
, respectively. Write ΦY

for Φ|∆Y1
. Then ΦY induces a homomorphism

Ψ
ab

Y,ℓ : MY •
2
→MY •

1
.

By replacing Φ by ΦY , the claim implies that ΦY induces the following commutative
diagram:

0 −−−→ M ét
Y •
1
−−−→ MY •

1
−−−→ M ra

Y •
1
−−−→ 0x Ψ

ab
Y,ℓ

x x
0 −−−→ M ét

Y •
2
−−−→ MY •

2
−−−→ M ra

Y •
2
−−−→ 0,

where the vertical arrows on the right-hand side and the middle side are injections, and
the vertical arrow on the left-hand side is an isomorphism. Write U∗

Y •
1
and U∗

Y •
2
for the

subsets of MY •
1
and MY •

2
defined as in Section 1, respectively. Since the actions of Gd

on the exact sequences are compatible with the morphisms appeared in the commutative
diagram above, we have

Ψ
ab

Y,ℓ(U
∗
Y •
2
) ⊆ U∗

Y •
1
.

Let e2 ∈ DX2
, α2 ∈ Ump

Y •
2 ,e2

, and g•α2
: Y •

α2
→ Y •

2 the Galois tame covering of degree ℓ

over k corresponding to α2. Write

g•α1
: Y •

α1
→ Y •

1

for the tame covering of degree ℓ over k corresponding to α1
def
= Ψ

ab

Y,ℓ(α2). Write gYα1

and gYα2
for the genera of Y •

α1
and Y •

α2
, respectively. Then the condition (Σ-gnc) and the

Riemann-Hurwitz formula imply that

gYα1
− gYα2

=
1

2
(d−#Ramg•α1

)(ℓ− 1) = 0.

Then we have d = #Ramg•α1
. This means that α1 ∈ Ump

Y •
1
. Moreover, there exists e1 ∈ DX1

such that α1 ∈ Ump
Y •
1 ,e1

.

15



Let α′
2 ∈ Ump

Y •
2 ,e2

distinct from α2. Since, for each aα2+ bα′
2 ̸= 0, a, b ∈ F×

ℓ , aα2+ bα′
2 ∈

Ump
Y •
2 ,e2

, we have Ψ
ab

Y,ℓ(aα2+ bα′
2) ∈ Ump

Y •
1
. Moreover, we have Ψ

ab

Y,ℓ(aα2+ bα′
2) ∈ Ump

Y •
1 ,e1

. This

implies that Ψ
ab

Y,ℓ(α
′
2) ∈ Ump

Y •
1 ,e1

. Thus, we obtain

Ψ
ab

Y,ℓ(U
mp
Y •
2 ,e2

) ⊆ Ump
Y •
1 ,e1

.

On the other hand, Proposition 1.4 (ii) implies that #Ump
Y •
1 ,e1

= #Ump
Y •
2 ,e2

. We have

Ψ
ab

Y,ℓ(U
mp
Y •
2 ,e2

) = Ump
Y •
1 ,e1

.

Then Proposition 1.4 (i) implies that Ψ
ab

Y,ℓ induces an injection

λΦ,Y,ℓ : U
mp
Y •
2
/ ∼↪→ Ump

Y •
1
/ ∼ .

On the other hand, let (ℓ∗, d∗, f ∗,•
2 : Y ∗,•

2
def
= (Y ∗

2 , DY ∗
2
) → X

•
2) be an arbitrary triple

associated to X2. Then by similar arguments to the arguments given above imply that

Ψ
ab

Y,ℓ induces an injection

λΦ,Y ∗,ℓ∗ : U
mp

Y ∗,•
2

/ ∼↪→ Ump

Y ∗,•
1

/ ∼ .

Since Φ satisfies (Σ-gnc), we have nH1
= nH2

for each open normal subgroup H2 ⊆ ∆X2 ,

where H1 denotes the inverse image Φ
−1
(H2), and nHi

, i ∈ {1, 2}, denotes the cardinality
of the marked points of the curves over k corresponding to H i. Then Remark 1.4.1 implies
that the following commutative diagram holds:

Ump

Y ∗,•
2

/ ∼
λΦ,Y ∗,ℓ∗−−−−−→ Ump

Y ∗,•
1

/ ∼y y
Ump
Y •
2
/ ∼

λΦ,Y,ℓ−−−→ Ump
Y •
1
/ ∼,

where the vertical arrows are the bijection constructed in the proof of Proposition 1.4
(i). Moreover, Proposition 1.4 (i) implies that we may identify DXi

with Ump
Y •
i
/ ∼ for

i ∈ {1, 2}. Then we obtain the following result.

Lemma 2.2. Suppose that gX2 ≥ 2. Then the surjective Φ induces a map

λΦ : DX2
↪→ DX1

.

Moreover, λΦ is an injection.

Let P2 ⊆ ∆X2 be an arbitrary open subgroup and P1 ⊆ ∆X1 the inverse image Φ
−1
(P2)

of P2. Write

Z•
i

def
= (Zi, DZi

) i ∈ {1, 2},
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for the pointed smooth stable curves of over k corresponding to Pi. The surjection Φ
induces a surjection

ΦZ
def
= Φ|P1 : P1 ↠ P2.

Then Lemma 2.2 implies an injective map

λΦZ
: DZ2 ↪→ DZ1 .

On the other hand, Pi, i ∈ {1, 2}, determines a morphism f •
Pi

: Z•
i → X

•
i of smooth

pointed stable curves over k. Moreover, f •
Pi

induces a surjective map of the sets of marked
points

γfPi
: DZi

↠ DXi

of Z•
i and X

•
i . Furthermore, we have the following lemma.

Lemma 2.3. Suppose that gX2 ≥ 2. Then the natural diagram

DZ2

λΦZ−−−→ DZ1

γfP2

y γfP1

y
DX2

λΦ−−−→ DX1

is commutative.

Proof. Let eZ2 ∈ DZ2 , eZ1

def
= λΦZ

(eZ2) ∈ DZ1 , e2
def
= γfP2

(eZ2) ∈ DX2
, e1

def
= (γfP1

◦
λΦZ

)(eZ2) ∈ DX2
, and e′1

def
= λΦ(e2) ∈ DX1

. Let us prove that e1 = e′1. Write SZ1 and SZ2

for the sets (γfP1
)−1(e′1) and (γfP2

)−1(e2), respectively. Note that eZ2 ∈ SZ2 . To verify
e1 = e′1, it is sufficient to prove that eZ1 ∈ SZ1

Let (ℓ, d, f •
2 : Y •

2 → X
•
2) be a triple associated to X2 such that (ℓ,#(∆X2/P2)) = 1

and (d,#(∆X2/P2)) = 1. By Lemma 2.1, we obtain a triple

(ℓ, d, f •
1 : Y •

1 → X
•
1)

associated to X1 induced by Φ and (ℓ, d, f •
2 : Y •

2 → X•
2 ). On the other hand, we have a

triple

(ℓ, d, g•2 : W •
2

def
= Y •

2 ×X
•
2
Z•

2 → Z•
2)

associated to Z2. Again, by By Lemma 2.1, we obtain a triple

(ℓ, d, g•1 : W •
1

def
= Y •

1 ×X
•
1
Z•

1 → Z•
1)

associated to Z1 induced by ΦZ and (ℓ, d, g•2 : W •
2 → Z•

2).
Let α2 ∈ Ump

Y •
2 ,e2

, where Ump
(−) is defined as in Section 1. Then by similar arguments to

the arguments given in the proof of Lemma 2.2 imply that α2 induces an element

α1 ∈ Ump
Y •
1 ,e′1

.
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Write Y •
α1

and Y •
α2

for the smooth pointed stable curves over k corresponding to α1

and α2, respectively. We consider the connected Galois tame covering

Y •
α2
×X

•
2
Z•

2 → W •
2

of degree ℓ over k, and write β2 for the element of U∗
W •

2
corresponding to this connected

Galois tame covering, where U∗
(−) is defined as in Section 1. Then we have

β2 =
∑

c2∈SZ2

tc2βc2 ,

where tc2 ∈ (Z/ℓZ)× and βc2 ∈ Ump
W •

2 ,c2
. On the other hand, similar arguments to the

arguments given in the proof of Lemma 2.2 imply that βc2 induced an element βλΦZ
(c2) ∈

Ump
W •

1 ,λΦZ
(c2)

. Then β2 induces an element

β1
def
=

∑
c2∈SZ2

\{eZ2
}

tc2βλΦZ
(c2) + teZ2

βλΦZ
(eZ2

) ∈ U∗
W •

1
.

Note that since β1 corresponds to the connected Galois tame covering Y •
α1
×X

•
1
Z•

1 → W •
1 ,

we have the composition of the connected Galois tame covering Y •
α1
×X

•
1
Z•

1 → W •
1 and

the Galois étale covering g•1 : W •
1 → Z•

1 is tamely ramified over SZ2 . This means that
eZ1 = λΦZ

(eZ2) is contained in SZ1 . This completes the proof of the lemma.

Let KXi
, i ∈ {1, 2}, be the function field of X i. We define KΣ

Xi
to be the maximal pro-

Σ (resp. maximal tame if Σ = tame) Galois extension of KXi
in a fixed separable closure

of KXi
, unramified over X i (resp. unramified over X i, and at most tamely ramified over

DXi
). We put

X
•,Σ
i

def
= (X

Σ

i , DX
Σ
i
), i ∈ {1, 2},

where X
Σ

i denotes the normalization of X
cpt

i in KΣ
Xi
, and D

X
Σ
i
denotes the inverse image

of DX in X
Σ

i . We have the following proposition.

Proposition 2.4. Let eΣ2 ∈ D
X

Σ
2
, e2 ∈ DX2

the image of eΣ2 , and IeΣ2 the inertia subgroup

of ∆X2 associated to eΣ2 . Then the following statements hold.
(i) There exists a point eΣ1 ∈ D

X
Σ
1
such that Φ induces a surjection

Φ|I
eΣ1

: IeΣ1 ↠ IeΣ2 ,

where IeΣ1 denotes the inertia subgroup associated to eΣ1 .

(ii) Let eΣ1,1, e
Σ
1,2 ∈ D

X
Σ
1
. Write IeΣ1,1 and IeΣ1,2 for the inertia subgroups of ∆X1 associated

to eΣ1,1 and eΣ1,2, and write e1,1 and e1,2 for the images of eΣ1,1 and eΣ1,2 in DX1
, respectively.

Suppose that Φ|I
eΣ1,1

: IeΣ1,1 ↠ IeΣ2 and Φ|I
eΣ1,2

: IeΣ1,2 ↠ IeΣ2 . Then we have λΦ(e2) = e1,1 =

e1,2.
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Proof. By Lemma 2.5 below, we may assume that gX2 ≥ 2. First, we prove (i). Let C∆X2

be a cofinal system of open subgroups of ∆X2 . For each H2 ∈ C∆X2
, we write X•

H2

def
=

(XH2
, DXH2

) for the smooth pointed stable curve corresponding to H2 and eH2
∈ DXH2

for the image of eΣ2 in X•
H2

. We denote by EC∆X2
the inverse system (eH2

)H2∈C∆X2

. Then

we may identify the inertia subgroup IeΣ2 associated to eΣ2 with the stabilizer of EC∆X2
.

On the other hand, write H1 for Φ
−1
(H2), H2 ∈ C∆X2

, and X•
H1

def
= (XH1

, DXH1
) for

the smooth pointed stable curve corresponding to H1. Then Lemma 2.2 implies that, for
each H2 ∈ C∆X2

, we have an injection

λΦ|H1

: DXH2
↪→ DXH1

.

Write LΦ for the kernel of Φ : ∆X1 ↠ ∆X2 . We denote by K
LΦ

X1
⊆ KΣ

X1
the subfield

corresponding to LΦ. We put

X•
1,LΦ

def
= (X1,LΦ

, DX1,L
Φ
),

whereX1,LΦ
denotes the normalization ofX

cpt

1 inK
LΦ

X1
, DX1,L

Φ
denotes the inverse image of

DX1
in X1,LΦ

. Lemma 2.3 implies that the inverse system (λΦ|H1

(eH2
))H2∈C∆X2

determines

a unique point e1,LΦ
∈ DX1,L

Φ
. We choose a point eΣ1 ∈ D

X
Σ
1
such that the image of eΣ1

in DX1,L
Φ
is e1,LΦ

. Write IeΣ1 for the inertia subgroup of ∆X1 associated to eΣ1 and Ie1,L
Φ

for the inertia subgroup of ∆X1/LΦ associated to e1,LΦ
. Note that the construction above

implies that Ie1,L
Φ

∼= IeΣ2 . Then Φ induces a surjection

Φ|I
eΣ1

: IeΣ1 ↠ Ie1,L
Φ

∼→ IeΣ2 .

Next, we prove (ii). Write e1 for the image of eΣ1 in DX1
. Let (ℓ, d, f •

2 : Y •
2 → X

•
2) be

a triple associated to X2 defined as in Section 1. Then Φ induces a triple

(ℓ, d, f •
1 : Y •

1 → X
•
1)

associated to X1. Write
∆Y1 ⊆ ∆X1 and ∆Y2 ⊆ ∆X2

for the normal open subgroups corresponding to Y •
1 and Y •

2 , respectively. Since f •
2 and

f •
1 are étale, we have

IeΣ2 ⊆ ∆Y2 , IeΣ1,1 ⊆ ∆Y1 , and IeΣ1,2 ⊆ ∆Y1 .

Let α2 ∈ Ump
Y •
2 ,e2

be an element such that the composition of the natural injection IeΣ2 ↪→
∆Y2 and the morphism ∆Y2 → Z/ℓZ corresponding to α2 is nontrivial. Then, similar
arguments to the arguments given in the proof of Lemma 2.2, we obtain an element
α1 ∈ Ump

Y •
1 ,e1

. Moreover, the composition of the natural injection IeΣ1,1 ↪→ ∆Y1 (resp. IeΣ1,2 ↪→
∆Y1) and the morphism ∆Y1 → Z/ℓZ corresponding to α1 is nontrivial. This means that
e1 = e1,1 = e1,2. Moreover, the proof of (i) implies that λΦ(e2) = e1 = e1,1 = e1,2. This
completes the proof of the proposition.
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Lemma 2.5. Suppose that Proposition 2.4 holds when gX2 ≥ 2. Then Proposition 2.4
holds when gX2 ≥ 0.

Proof. Suppose that nX2 = 0. The definition of pointed stable curves implies that gX2 ≥ 2.
Then the lemma is trivial. Suppose that nX2 ̸= 0. Then nX1 ̸= 0. We take ℓ′, ℓ′′ ∈ Primes
distinct from p and from each other. First, by replacingX1 andX2 by finite étale coverings
of X1 and X2 with degree ℓ′′, respectively, we may assume that nX1 ≥ 3 and nX2 ≥ 3.
We choose an open normal subgroup Q2 ⊆ ΠX2 such that the tame covering

g•2 : X•
Q2

def
= (XQ2

, DXQ2
)→ X

•
2

over k corresponding to Q2 is totally ramified over DX2
, where

Q2
def
= Q2 ∩∆X2 = Ker(∆X2 ↠ Z/ℓ′Z).

Write Q1 for Φ−1(Q1), Q1 for Φ
−1
(Q1), and

g•1 : X•
Q1

def
= (XQ1

, DXQ1
)→ X

•
1

for the tame covering over k corresponding to Q1. Note that the genera of X•
Q1

and

X•
Q2

are ≥ 2. Write eQ2
for the image of eΣ2 in DXQ2

. By Lemma 2.2, we have eQ1

def
=

λΦ|Q2

(eQ2
) ∈ DXQ1

. Moreover, by Proposition 2.4 (i), there exists eΣ1 ∈ D
X

Σ
1
such that

the inertia subgroup IeQ1
of Q1 associated to eΣ1 is equal to IeΣ1 ∩ Q1, and that Φ|Ie

Q1

:

IeQ1
↠ IeQ2

, where IeΣ1 denotes the inertia subgroup of ∆X1 associated to eΣ1 . Since IeΣ2 is

commensurable terminal ([M3, Lemma 1.3.7]), we have Φ(IeΣ1 ) ⊆ IeΣ2 . On the other hand,
by applying Proposition 2.4 (ii) to X•

Q1
and X•

Q2
implies that g•1 is totally ramified at eQ1

.

Thus, IeQ1
̸= IeΣ1 . This means that

Φ(IeΣ1 ) = IeΣ2 .

Let eΣ1,1, e
Σ
1,2 ∈ D

X
Σ
1
satisfying Proposition 2.4 (i). Then we have the images of eΣ1,1 and

eΣ1,2 in DXQ1
are equal to eQ1

. Thus, the images of eΣ1,1 and eΣ1,2 in DX1 are equal. This

completes the proof of the lemma.

We set
DX1\X2

def
= DX1

\ λΦ(DX2
).

Next, we prove the main theorem of the present section.

Theorem 2.6. Let LΦ be the kernel of Φ : ∆X1 ↠ ∆X2. For each e ∈ DX1\X2
and each

eΣ ∈ DXΣ
1
over e, we denote by IeΣ the inertia subgroup of ∆X2 associated to eΣ.

(i) Suppose that Σ ̸= Primes when char(k) = p. Then we have IeΣ ⊆ LΦ.
(ii) Suppose that char(k) = p, that Σ = Primes, and that Φ satisfies (Σ-prc). Then

we have IeΣ ⊆ LΦ.
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Proof. First, let us prove (i). We denote by I ⊆ ∆X2 the image Φ(IeΣ). To verify (i), we
may assume that I is not trivial. Then I is a pro-cyclic subgroup of ∆X2 . Let H2 be any

open subgroup of ∆X2 and H1
def
= Φ

−1
(H2). Write H

ét

1 and H
ét

2 for the étale fundamental
groups of the smooth compactifications of the curves over k corresponding to H1 and H2,
respectively. Then we obtain natural surjections

H1 ↠ H
ét

1 and H2 ↠ H
ét

2 .

By Lemma 2.1, Φ induces an isomorphism H
ét,p′

1
∼→ H

ét,p′

2 . Moreover, since IeΣ ∩ H1 is

contained in the kernel of the surjection H1 ↠ H
ét,p′,ab

1 , the natural morphism

I ∩H2 ↪→ H2 ↠ H
ét,p′,ab

2

is trivial. Thus, by applying [N3, Lemma 2.1.4], I is contained in an inertia subgroup
J ⊆ ∆X2 . By replacing X2 and X1 by the smooth pointed stable curves corresponding

open subgroups N2 ⊆ ∆X2 and Φ
−1
(N2) ⊆ ∆X1 , respectively, such that N2∩J = N2∩ I,

Proposition 2.4 implies that e ∈ λΦ(DX2
). This contradicts to the assumption e ∈ DX1\X2

.
We complete the proof of (i).

Next, let us prove (ii). Let G be an arbitrary finite group and δ : ∆X2 ↠ G an
arbitrary surjection. To verify (ii), we only need to prove that the image (δ ◦ Φ)(IeΣ) is
trivial. Write Gp for a Sylow p-subgroup of G. Then we obtain that the index of Gp is

prime to p. LetQ2
def
= δ−1(Gp) andQ1

def
= Φ

−1
(Q2). Write f •

Q1
: X•

Q1

def
= (XQ1

, DXQ1
)→ X

•
1

and f •
Q2

: X•
Q2

def
= (XQ2

, DXQ2
) → X

•
2 for the coverings over k corresponding to Q1 and

Q2, respectively. Lemma 2.3 implies that

#(f •
Q2
)−1(e2) = #(f •

Q1
)−1(λΦ(e2)), e2 ∈ DX2

.

Since Φ satisfies (Σ-gnc), the Riemann-Hurwitz formula implies that

#(f •
Q1
)−1(e1) = [G : Gp], e1 ∈ DX1\X2

.

This means that f •
Q1

is étale over e1 ∈ DX1\X2
. Then we have

(δ ◦ Φ)(IeΣ) ⊆ Gp.

Thus, we may assume that G is a p-group. Write P 1 and P 2 for the kernels of δ ◦Φ and δ,

X•
P 1

def
= (XP 1

, DXP1
) and X•

P 2

def
= (XP 2

, DXP2
) for the smooth pointed stable curves over k

corresponding to P 1 and P 2, respectively. For each e2 ∈ DX2 , Proposition 2.4 (ii) implies
that the ramification indexes of points of DXP2

over e2 are equal to the ramification

indexes of points of DXP1
over λΦ(e2). Since Φ satisfies (Σ-prc), the Deuring-Shafarevich

formula implies that the ramification indexes of points of DXP1
over e is 1. This means

that (δ ◦ Φ)(IeΣ) is trivial. We complete the proof of (ii).
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3 Hopfian and weakly Hopfian properties

Let l be either a finite field of characteristic p > 0 or an algebraically closed field of
characteristic p > 0. Let U cpt be a smooth curve over l of genus gU , l an algebraic closure
of l, Gl the absolute Galois group Gal(l/l) of l, and U ⊆ U cpt an open subset. Then we
obtain an exact sequence of étale fundamental groups

1→ π1(U ×l l, ∗)→ π1(U, ∗)
prU→ Gl → 1,

where ∗ is a suitable geometric point. Write ΠU for the étale fundamental group π1(U, ∗)
and ∆U for the geometric étale fundamental group π1(U ×l l, ∗).

Definition 3.1. Let Π be a profinite group. We shall say that Π is Hopfian, if every
surjection Φ ∈ Homopen

pro-gps(Π,Π) is an isomorphism.

Remark 3.1.1. Suppose that U is a projective curve, and that l is either a finite field or
an algebraically closed field. Since ΠU is topologically finitely generated, ΠU is Hopfian
(cf. [FJ, Proposition 16.10.6]).

Lemma 3.2. Let Φ ∈ Homopen
pro-gps(ΠU ,ΠU) be a surjection. Then Φ ∈ Homopen

Gl
(ΠU ,ΠU).

In particular, Φ induces a surjction Φ ∈ Homopen
pro-gps(∆U ,∆U).

Proof. The lemma follows from [T1, Proposition 3.3 (iii)].

Definition 3.3. We shall say that ΠU is weakly Hopfian, if every surjection Φ ∈
Homopen

pro-gps(ΠU ,ΠU), such that the surjection Φ ∈ Homopen
pro-gps(∆U ,∆U) induced by Φ in-

duces surjections of inertia subgroups and higher ramification subgroups, is an isomor-
phism.

Remark 3.3.1. By the definitions, we see that

Hopfian⇒ weakly Hopfian.

On the other hand, for a given surjection Φ ∈ Homopen
pro-gps(ΠU ,ΠU), we do not know

whether or not Φ induces surjections of inertia subgroups and higher ramification groups.
Moreover, we may ask the following question

Question: When does “weakly Hopfian⇒ Hopfian” hold?

For the question in Remark 3.3.1, we have the following proposition.

Proposition 3.4. Let Φ ∈ Homopen
pro-gps(ΠU ,ΠU) be a surjection and Φ ∈ Homopen

pro-gps(∆U ,∆U)

the surjection induced by Φ. Suppose that Φ satisfies (Σ-gnc). Then Φ induces surjections
of inertia subgroups and higher ramification groups.

Proof. We may assume that U is affine. By Proposition 2.4, we obtain that Φ induces
surjections of inertia subgroups. Then we only need to prove that Φ induces surjections

of higher ramification groups. Write U
cpt

and U for U cpt ×l l and U ×l l, respectively.

Let e be a closed point of U
cpt \ U and I the subgroup of ∆U generated by the inertia
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subgroups associated to the inverse images of e′, e′ ∈ U
cpt \ (U ∪ {e}), in the universal

covering. Then by applying Proposition 2.4, we have that Φ induces a surjection

ΦI,e : ∆U/I ↠ ∆U/I.

Note that ∆U/I is the étale fundamental group of U
cpt \ (U cpt \ (U ∪ {e})). Thus, by

replacing U
cpt

, ∆U , and Φ by U
cpt \ (U cpt \ (U ∪ {e})), ∆U/I, and ΦI,e, respectively, we

may assume that #(U
cpt \ U) = 1.

Let I1 be an inertia subgroup associated to the unique cusp. Write I2 for Φ(I1). Note
that I2 is also an inertia subgroup of ΠU . Then I1 and I2 carry the upper filtration
{Ir1}r∈R≥0

and {Ir2}r∈R≥0
, respectively. For each finite quotient I2 ↠ J , {Ir1}r∈R≥0

and the
natural surjection I1 ↠ I2 ↠ J (resp. {Ir2}r∈R≥0

and the surjection I2 ↠ J) induces an
upper filtration {Jr

1}r∈R≥0
(resp. {Jr

2}r∈R≥0
) on J . Thus, we obtain two lower filtrations

{J1,s}s∈R≥0
and {J2,s}s∈R≥0

on J induced by {Jr
1}r∈R≥0

and {Jr
2}r∈R≥0

, respectively. To verify that Φ induces a sur-

jection Ir1 ↠ Ir2 for each r ∈ R≥0, we only need to prove that Φ induces an isomorphism
Jr
1

∼→ Jr
2 for each r ∈ R≥0; moreover, this is equivalent to prove that Φ induces an isomor-

phism J1,s
∼→ J2,s for each r ∈ R≥0, or that the Artin character of J determined by the

lower filtration {J1,s}s∈R≥0
is equal to the Artin character of J determined by the lower

filtration {J2,s}s∈R≥0
.

Let H2 be an arbitrary open normal subgroup of ∆U , H1 the inverse image Φ
−1
(H1),

GH the quotient ∆U/H2, and JH the image of I2 in GH . Write U
cpt

H1
and U

cpt

H2
for the

smooth compactifications of the curves corresponding to H1 and H2, respectively. We
denote by ArJH,1

: JH → Z and ArJH,2
: JH → Z the Artin character induced by the

natural surjection I1 ↠ I2 ↠ JH and the surjection I2 ↠ JH , respectively. Let ℓ ̸= p
be a prime number. Then the Lefschetz trace formula induces the following formulas for
characters (cf. [S, Chapter VI §4 Corollary]):

Ind
GH
JH

(ArJH,1
) = (2− 2gU)rGH

− 2 · uGH
+ hℓ,H1

and
IndGH

JH
(ArJH,2

) = (2− 2gU)rGH
− 2 · uGH

+ hℓ,H2
,

where rGH
denotes the regular representation of GH , uGH

denotes the unit representation

of GH , and hℓ,H1
(resp. hℓ,H2

) denotes the character of the GH-module π1(U
cpt

H1
)ab ⊗ Zℓ

(resp. π1(U
cpt

H2
)ab ⊗ Zℓ) whose GH-module structure coming from the conjugate action of

∆U on H1 (resp. H2). Since Φ satisfies (Σ-gnc), Lemma 2.1 implies that Φ induces an
isomorphism

π1(U
cpt

H1
)ab ⊗ Zℓ

∼→ π1(U
cpt

H2
)ab ⊗ Zℓ

as GH-modules. This implies that hℓ,H1
= hℓ,H2

. Thus, we obtain

Ind
GH
JH

(ArJH,1
) = Ind

GH
JH

(ArJH,2
).
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Moreover, similar arguments to the arguments given in the proof of [T2, Theorem 2.7]
imply that

ArJH,1
= ArJH,2

.

This completes the proof of the proposition.

In [T3, Section 6], Tamagawa posed two conjectures concerning Hopfian and weakly
Hopfian properties of fundamental groups of curves over algebraically closed fields of
characteristic p > 0 as follows:

Conjecture 3.5. Suppose that l is an algebraically closed field, and that U is affine.
Write Fp for the algebraic closure of Fp in l, and td(l) for the transcendence degree of l
over Fp. Then ΠU is Hopfian if and only if td(l) < ℵ0, where ℵ0 denotes the countable
infinite cardinality.

Conjecture 3.6. Suppose that l is an algebraically closed field, and that U is affine.
Write Fp for the algebraic closure of Fp in l, and td(l) for the transcendence degree of
l over Fp. Then ΠU is weakly Hopfian if and only if td(l) < ℵ0, where ℵ0 denotes the
countable infinite cardinality.

Tamagawa proved that, if ΠU is either Hopfian or weakly Hopfian, then td(l) < ℵ0 (i.e.,
the “only if” parts of Conjecture 3.5 and Conjecture 3.6). Moreover, by the definitions of
Hopfian and weakly Hopfian, Conjecture 3.5 implies Conjecture 3.6. For the “if” part of
Conjecture 3.5 and Conjecture 3.6, no results are known even when l = Fp and U = A1

Fp
.

In fact, we don’t know any examples of affine curves in positive characteristic whose étale
fundamental groups are Hopfian even when l = Fp and U = A1

Fp
. On the other hand,

we can prove that, if U is a curve over a finite field l, then ΠU is weakly Hopfian (see
Proposition 3.8 below).

Let V be an arbitrary separated and connected scheme of finite type over Spec l, V cpt

a Nagata compactification of V over l, and B an effective Cartier divisor on V cpt whose
support is contained in V cpt \ V . We denote by ΠB

V the étale fundamental group with
restricted ramification bounded by B (cf. [H, Definition 2.4]). Then we have the following
proposition.

Proposition 3.7. Suppose that l is a finite field. Then ΠB
V is Hopfian.

Proof. Let ΦB ∈ Homopen
pro-gps(Π

B
V ,Π

B
V ) be an arbitrary surjection. Let G be an arbitrary

finite group and δ : ΠB
V ↠ G an arbitrary surjection. To verify the proposition, we only

need to prove that there exists a surjection γ : ΠB
V ↠ G such that δ = γ ◦ Φ. We set

S#G
def
= {H ⊆ ΠB

V | #(ΠB
V /H) ≤ #G}.

Note that all the étale coverings induced by H is of ramification bounded by B (cf. [H,
Definition 2.2]). Moreover, by [H, Theorem 1.2], S#G is a finite set. This means that
ΠB

V is small (cf. [H, Definition 3.1]). Then the proposition follows from [FJ, Proposition
16.10.6].

Proposition 3.8. Suppose that l is a finite field. Then ΠV is weakly Hopfian.
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Proof. Let Φ ∈ Homopen
pro-gps(ΠV ,ΠV ) be an arbitrary surjection such that the surjection

Φ ∈ Homopen
pro-gps(∆V ,∆V ) induced by Φ induces surjections of inertia subgroups and higher

ramification subgroups. Let G′ be an arbitrary finite group, δ′ : ΠV ↠ G′ a surjection, and
Vδ′ → V the Galois étale covering of degree #G′ induced by δ′. To verify the proposition,
we only need to prove that there exists a surjection γ′ : ΠV ↠ G′ such that δ′ = γ′ ◦ Φ.
We see that there exists an effective divisor B′ def

=
∑

v′∈V cpt\V mv′v
′ on V cpt which satisfies

that the Galois étale covering Vδ′ → V is of ramification bounded by B′. Then there exist
surjective morphisms ν : ΠV ↠ ΠB′

V and δB′ : ΠB′
V ↠ G′ such that δ′ = δB′ ◦ ν, where ΠB′

V

denotes the étale fundamental group with restricted ramification bounded by B′.
Moreover, since Φ induces surjections of inertia subgroups and higher ramification

subgroups, we obtain a surjection ΦB′
: ΠB′

V ↠ ΠB′
V induced by Φ. Then we have the

following commutative diagram

ΠV
Φ−−−→ ΠV

ν

y ν

y
ΠB′

V
ΦB′

−−−→ ΠB′
V

δB′

y
G′ .

Since ΠB′
V is Hopfian (cf. Proposition 3.7), ΦB′

is an isomorphism. Thus, we may define

γ′ def
= δB′ ◦ (ΦB′

)−1 ◦ ν.

This completes the proof of the proposition.

The main theorem of the present section is as follows.

Theorem 3.9. Let Φ ∈ Homopen
pro-gps(ΠU ,ΠU) be a surjection. Suppose that the surjection

Φ ∈ Homopen
pro-gps(∆U ,∆U) induced by Φ satisfies (Σ-gnc). Then Φ is an isomorphism.

Proof. The theorem follows from Proposition 3.4 and Proposition 3.8.

4 Group-theoretic characterizations of almost open

immersions

We maintain the notation introduced in Section 1 and Section 2.

Definition 4.1. Let f ∈ HomCk(X1, X2) be a separable k-morphism. We shall say that
f : X1 → X2 is separable Σ-almost open immersion if f is a composition of an open
immersion and a finite étale morphism such that the Galois group of the Galois closure of
the finite étale morphism is a finite quotient of ΠX2 . Note that the open immersion and
the finite étale morphism are unique.

Suppose that char(k) = p. Let ϕ ∈ HomFCk(X1, X2). We shall say that ϕ : X1 → X2

is a Σ-almost open immersion if ϕ can be represented by the following k-morphisms

X1
∼=k Y (m1)← Y → Y (m2)→ X2
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such that Y (m2)→ X2 is a separable Σ-almost open immersion, where Y (m1) and Y (m2)
denote the mth

1 -Frobenius twist and mth
2 -Frobenius twist of Y , respectively, and ∼=k is a

k-isomorphism.

Remark 4.1.1. Let f : X1 → X2 be a separable morphism over k, KXi
, i ∈ {1, 2}, the

function field of Xi, and Xsep
2 the normalization of X2 in KX1 . Then f is a separable

Σ-almost open immersion if and only if the natural finite morphism of Xsep
2 → X2 is étale

such that the Galois closure of Xsep
2 → X2 is a finite quotient of ΠX2 , and the natural

morphism X1 → Xsep
2 induced by f is an open immersion. On the other hand, if X1 and

X2 are projective, then f is a separable Σ-almost open immersion if and only if f is a
finite étale morphism.

We define
HomΣ-al-op-im

Ck (X1, X2) ⊆ HomCk(X1, X2)

to be the set of separable Σ-almost open immersions if char(k) = 0 and

HomΣ-al-op-im
FCk (X1, X2) ⊆ HomFCk(X1, X2)

if char(k) = p to be the set of Σ-almost open immersions. On the other hand, we put

Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)
def
= {Φ ∈ Homopen

Gk
(ΠX1 ,ΠX2) | Φ satisfies (Σ-gnc)},

where Φ ∈ Homopen
pro-gps(∆X1 ,∆X2) denotes the morphism induced by Φ. Note that, by

Proposition 1.2, Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2) is a purely group-theoretic set. The natural
maps

Hom-πΣ
1 : HomCk(X1, X2)→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = 0 and

HomFCk-π
Σ
1 : HomFCk(X1, X2)→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p induce the following natural maps:

Hom-πΣ-gnc
1 : HomΣ-al-op-im

Ck (X1, X2)→ Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

and

HomFCk-π
Σ-gnc
1 : HomΣ-al-op-im

FCk (X1, X2)→ Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

which fit into the following commutative diagrams:

IsomCk(X1, X2)
Isom-πΣ

1−−−−→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomΣ-al-op-im
Ck (X1, X2)

Hom-πΣ-gnc
1−−−−−−−→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomCk(X1, X2)
Hom-πΣ

1−−−−→ Homopen
Gk

(ΠX1 ,ΠX2)/Inn(∆X2),
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and

IsomFCk(X1, X2)
Isom-πΣ

1−−−−→ IsomGk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomΣ-al-op-im
FCk (X1, X2)

HomFCk -π
Σ-gnc
1−−−−−−−−−→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)y y

HomFCk(X1, X2)
HomFCk -π

Σ
1−−−−−−−→ Homopen

Gk
(ΠX1 ,ΠX2)/Inn(∆X2),

respectively, where all the vertical arrows are injections. Next, let us start to prove our
main theorems.

Theorem 4.2. Suppose that Σ ̸= Primes when char(k) = p. Then the natural maps

Hom-πΣ-gnc
1 : HomΣ-al-op-im

Ck (X1, X2)
∼→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = 0 and

HomFCk-π
Σ-gnc
1 : HomΣ-al-op-im

FCk (X1, X2)
∼→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

if char(k) = p are bijections.

Proof. Frist, let us prove the theorem when char(k) = p. Let us prove that HomFCk-π
Σ-gnc
1

is a surjection. Let
Φ ∈ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2).

To verify the surjectivity, it is sufficient to prove that the image of Φ in

Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2)

is induced by an almost immersion of X1 and X2. Moreover, Φ is a composite of an open
surjection and an open injection. Since any open injection is induced by a finite étale
covering of X2, to verify the surjectivity, we may assume that Φ is a surjection. Note that

(Σ-gnc) implies that g
def
= gX1 = gX2 .

Let Σ3 ⊆ Primes be a finite set which contains Σ1 (resp. Σ3
def
= {p} if Σ = tame) and

Λ
def
= Primes \ Σ3. Then, for each i ∈ {1, 2}, we obtain a surjection

∆Xi
↠ ∆Λ

Xi
,

where ∆Λ
Xi

denotes the maximal pro-Λ quotient of ∆Xi
. We denote by

ΠΛ
Xi

def
= ΠXi

/(Ker(∆Xi
↠ ∆Λ

Xi
))

for each i ∈ {1, 2}. Then the surjection Φ induces the following commutative diagram:

1 −−−→ ∆Λ
X1
−−−→ ΠΛ

X1
−−−→ Gk −−−→ 1

Φ
Λ

y ΦΛ

y ∥∥∥
1 −−−→ ∆Λ

X2
−−−→ ΠΛ

X2
−−−→ Gk −−−→ 1.
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We define a pointed smooth curve over k to be

X
∗,•
1

def
= (X

cpt

1 , DX
∗
1

def
= λΦ(DX2

)).

Let Xcpt
1 be the smooth compactification of X1 over k and DX∗

1
the image of DX

∗
1
in Xcpt

1 .
We put

X∗
1

def
= Xcpt

1 \DX∗
1
.

Note that X∗
1 is a hyperbolic curve of type (g, nX2) over k. Write ∆X∗

1
for the maximal

pro-Σ quotient of π1(X
∗
1 ×k k), ∆Λ

X∗
1
for the maximal pro-Λ quotient of ∆X∗

1
, ΠX∗

1
for

π1(X
∗
1 )/(Ker(π1(X

∗
1 ×k k) ↠ ∆X∗

1
), and ΠΛ

X∗
1
for ΠX∗

1
/(Ker(∆X∗

1
) ↠ ∆Λ

X∗
1
). Since X1 is an

open subcurve of X∗
1 , we have a natural surjection ΠX1 → ΠX∗

1
.

Write DX1\X2
for DX1

\ λΦ(DX2
), and write E ⊆ ∆X1 for the subgroup generated

by the inertia subgroups of ∆X1 associated the inverse images of the elements of DX1\X2

in D
X

Σ
1
. Then the kernels of ΠX1 → ΠX∗

1
and ∆X1 ↠ ∆X∗

1
are equal to E. Moreover,

Theorem 2.6 (i) implies that Φ induces the following commutative diagram:

1 −−−→ ∆X1 −−−→ ΠX1 −−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆X∗

1
−−−→ ΠX∗

1
−−−→ Gk −−−→ 1

Φ
∗
y yΦ∗

∥∥∥
1 −−−→ ∆X2 −−−→ ΠX2 −−−→ Gk −−−→ 1,

where all the vertical arrows are surjections. Thus, to verify the surjectivity of HomFCk-π
Σ-gnc
1 ,

it is sufficient to prove that the image of Φ∗ in Homopen
Gk

(ΠX∗
1
,ΠX2)/Inn(∆X2) is induced

by an element of IsomFCk(X
∗
1 , X2).

On the other hand, Φ∗ induces the following commutative diagram:

1 −−−→ ∆Λ
X∗

1
−−−→ ΠΛ

X∗
1
−−−→ Gk −−−→ 1

Φ
∗,Λ

y Φ∗,Λ

y ∥∥∥
1 −−−→ ∆Λ

X2
−−−→ ΠΛ

X2
−−−→ Gk −−−→ 1,

where all the vertical arrows are surjections. SinceX∗
1 andX2 are hyperbolic curves of type

(g, nX2), and p ̸∈ Λ, we obtain that Φ
∗,Λ

is an isomorphism. Thus, Φ∗,Λ is also an isomor-
phism. Then Theorem 1.1 implies that the image of Φ∗,Λ in IsomGk

(ΠΛ
X∗

1
,ΠΛ

X2
)/Inn(∆Λ

X2
)

is induced by an isomorphism of IsomFCk(X
∗
1 , X2). Since ∆X1 and ∆X2 are topologically

finitely generated, the surjection Φ is an isomorphism. Then Φ∗ is an isomorphism. Again,
by applying Theorem 1.1, we obtain that the image of Φ∗ in

IsomGk
(ΠX∗

1
,ΠX2)/Inn(∆X2)

is induced by an isomorphism of IsomFCk(X
∗
1 , X2).

Next, let us prove HomFCk-π
Σ-gnc
1 is an injection. Let

ϕ1, ϕ2 ∈ HomΣ-al-op-im
FCk (X1, X2)
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such that [Φ′]
def
= HomFCk-π

Σ-gnc
1 (ϕ1) = HomFCk-π

Σ-gnc
1 (ϕ2). We may assume that ϕ1 and

ϕ2 are separable k-morphisms. Note that, if ϕ1 and ϕ2 are finite étale morphisms, then we
obtain immediately ϕ1 = ϕ2. Since ϕ1 and ϕ2 are compositions of a unique open immersion
and a unique finite étale morphism, to verify the injectivity, we may assume that ϕ1 and
ϕ2 are open immersions. Let Φ′ ∈ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2) such that the image of Φ in

Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2) is [Φ
′]. Then the kernel of Φ′ is generated by the inertia

subgroups associated to the inverse images of the elements of DX1\X2
in D

X
Σ
1
. Then the

injectivity follows immediately from [T4, Lemma 5.1] or [M5, Proposition 1.2].
On the other hand, suppose that char(k) = 0. By replacing Λ by Σ, similar argu-

ments to the arguments given in the proof of the case where k is a finite field imply that
Hom-πΣ-gnc

1 is a bijection. This completes the proof of the theorem.

Finally, we treat the case where char(k) = p and Σ = Primes.

Theorem 4.3. Suppose that char(k) = p and Σ = Primes. Then the natural map

HomFCk-π
Σ-gnc
1 : HomΣ-al-op-im

FCk (X1, X2)
∼→ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2)/Inn(∆X2)

is a bijection.

Proof. First, let us prove that HomFCk-π
Σ-gnc
1 is a surjection. Let

Φ ∈ Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2).

To verify the theorem, we may assume that Φ is a surjection. Write Φ : ∆X1 ↠ ∆X2 for
the surjection induced by Φ. We have the following claim.

Claim: The surjection Φ satisfies (Σ-prc).

Let us prove the claim. For each H2 ⊆ ∆X2 open normal subgroup, let H2 ⊆
ΠX2 be an open normal subgroup thatH2∩∆X2 = H2. Write Gk′ for the image
of H2 in Gk, H1 for Φ

−1(H2), and XH1 and XH2 for the curve corresponding to

H1 and H2, respectively. Note that H1∩∆X1 = Φ
−1
(H2), and Φ|H1 : H1 ↠ H2

satisfies (Σ-gnc).

Let Ω
def
= Primes \ {p}. Write H

Ω

1 and H
Ω

2 for the maximal pro-Ω quotients

of H1 and H2, respectively. We denote by ΠXH1

def
= H1/Ker(H1 ↠ HΩ

1 )

and denote by ΠXH2

def
= H2/Ker(H2 ↠ HΩ

2 ). Then Φ induces a surjection

ΦXH
: ΠXH1

↠ ΠXH2
. Moreover, we have ΦXH

∈ Homopen,Ω-gnc
Gk′

(ΠXH1
,ΠXH2

).
Thus, Theorem 4.2 implies that XH1 is isomorphic to an open subset of XH2

as schemes. Then we obtain that the p-rank of XH1 is equal to the p-rank of
XH2 . This completes the proof of the claim.

We define a pointed smooth curve over k to be

X
∗,•
1

def
= (X

cpt

1 , DX
∗
1

def
= λΦ(DX2

)).
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Let Xcpt
1 be the smooth compactification of X1 over k and DX∗

1
the image of DX

∗
1
in Xcpt

1 .
We set

X∗
1

def
= Xcpt

1 \DX∗
1
.

Note that X∗
1 is a hyperbolic curve of type (g, nX2) over k. Write ΠX∗

1
for the étale

fundamental group π1(X
∗
1 ) and ∆X∗

1
for the geometric étale fundamental group π1(X

∗
1 ×k

k). Since X1 is an open subcurve of X∗
1 , we have a natural surjection ΠX1 → ΠX∗

1
.

Write DX1\X2
for DX1

\ λΦ(DX2
), and write E ⊆ ∆X2 for the subgroup generated

by the inertia subgroups of ∆X2 associated the inverse images of the elements of DX1\X2

in D
X

Σ
1
. Then the kernels of ΠX1 → ΠX∗

1
and ∆X1 ↠ ∆X∗

1
are equal to E. Moreover,

Theorem 2.6 (ii) implies that Φ induces the following commutative diagram:

1 −−−→ ∆X1 −−−→ ΠX1 −−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆X∗

1
−−−→ ΠX∗

1
−−−→ Gk −−−→ 1

Φ
∗
y yΦ∗

∥∥∥
1 −−−→ ∆X2 −−−→ ΠX2 −−−→ Gk −−−→ 1,

where all the vertical arrows are surjections. Thus, to verify the surjectivity of HomFCk-π
Σ-gnc
1 ,

it is sufficient to prove that the image of Φ∗ in Homopen
Gk

(ΠX∗
1
,ΠX2)/Inn(∆X2) is induced

by an element of IsomFCk(X
∗
1 , X2). Note that Φ

∗
satisfies (Σ-gnc).

Let Σ3 ⊆ Primes be a finite set which contains {p} and Λ
def
= Primes \ Σ3. We

write ∆Λ
X∗

1
and ∆Λ

X2
for the maximal pro-Λ quotients of ∆X∗

1
and ∆X2 , Π

Λ
X∗

1
and ΠΛ

X2

for ΠX∗
1
/Ker(∆X∗

1
↠ ∆Λ

X∗
1
) and ΠX2/Ker(∆X2 ↠ ∆Λ

X2
), respectively. We obtain that Φ∗

induces the following commutative diagram:

1 −−−→ ∆Λ
X∗

1
−−−→ ΠΛ

X∗
1
−−−→ Gk −−−→ 1

Φ
∗,Λ

y Φ∗,Λ

y ∥∥∥
1 −−−→ ∆Λ

X2
−−−→ ΠΛ

X2
−−−→ Gk −−−→ 1,

where all the vertical arrows are surjections. Then Theorem 4.2 implies that X∗
1 is iso-

morphic to X2 in FCk. We obtain that ΠX∗
1
is isomorphic to ΠX2 as abstract profinite

groups. Thus, by Theorem 3.9, we obtain that

Φ∗ ∈ IsomGk
(ΠX∗

1
,ΠX2).

Moreover, Theorem 1.1 implies that the image of Φ∗ in IsomGk
(ΠX∗

1
,ΠX2)/Inn(∆X2) is

induced by an isomorphism of IsomFCk(X
∗
1 , X2).

Next, let us prove HomFCk-π
Σ-gnc
1 is an injection. Let

ϕ1, ϕ2 ∈ HomΣ-al-op-im
FCk (X1, X2)

such that [Φ′]
def
= HomFCk-π

Σ-gnc
1 (ϕ1) = HomFCk-π

Σ-gnc
1 (ϕ2). We may assume that ϕ1 and

ϕ2 are separable k-morphisms. Note that, if ϕ1 and ϕ2 are finite étale morphisms, then we
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obtain immediately ϕ1 = ϕ2. Since ϕ1 and ϕ2 are compositions of a unique open immersion
and a unique finite étale morphism, to verify the injectivity, we may assume that ϕ1 and
ϕ2 are open immersions. Let Φ′ ∈ Homopen,Σ-gnc

Gk
(ΠX1 ,ΠX2) such that the image of Φ in

Homopen,Σ-gnc
Gk

(ΠX1 ,ΠX2)/Inn(∆X2) is [Φ
′]. Then the kernel of Φ′ is generated by the inertia

subgroups associated to the inverse images of the elements of DX1\X2
in D

X
Σ
1
. Then the

injectivity follows immediately from [T2, Corollary 2.2]. This completes the proof of the
theorem.

Remark 4.3.1. Theorem 4.2 and Theorem 4.3 can be regarded as a certain Hom-version
of the Grothendieck conjecture for almost open immersion of curves.

Remark 4.3.2. Finally, let us come back to Hom-version of positive characteristic.
Note that, for any ϕ which is either an element of HomCk(X1, X2) or an element of
HomFCk(X1, X2), there exists an open sub-curve Ui ⊆ Xi, i ∈ {1, 2} such that the restric-
tion of ϕ on U1 is an almost open immersion. Write ∆Ui

for the maximal pro-Σ quotient of
the geometric tame fundamental group πt

1(Ui ×k k), ΠUi
for πt(Ui)/(Ker(πt(Ui) ↠ ∆Ui

)).
Let Φ be an arbitrary element of Homopen

Gk
(ΠX1 ,ΠX2). If one can develop a suitable theory

of anabelian cuspidalizations for surjections (i.e., group-theoretic reconstructions of the
fundamental groups of open sub-curves of given curves from the fundamental group of
the given curves; moreover, the cases of abelian and pro-ℓ cuspidalizations for isomor-
phisms have already been established by Mochizuki (cf. [M4])), then one may obtain
a homomorphism Φcusp : ΠU ′

1
→ ΠU ′

2
group-theoretically from Φ such that the condi-

tion (Σ-gnc) is satisfied. Here, U ′
i , i ∈ {1, 2}, is an open sub-curve of Xi, and ΠU ′

i
is

π1(U
′
i)/(Ker(π1(U

′
i ×k k) ↠ ∆U ′

i
)), where ∆U ′

i
denotes the maximal pro-Σ quotient of the

geometric étale fundamental group π1(U
′
i ×k k). Then Hom-version of positive character-

istic can be deduced from Theorem 4.2 and Theorem 4.3.
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