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Abstract

Let p be a prime number and k either a finite field of characteristic p or a
generalized sub-p-adic field. Let X; and Xs be hyperbolic curves over k. In the
present paper, we introduce a kind of morphism between X; and X5 called an al-
most open immersion, and give some group-theoretic characterizations for the set
of almost open immersions between X; and Xy via their arithmetic fundamental
groups. This result generalizes the Isom-version of Grothendieck’s anabelian con-
jecture for curves over k which has been proven by S. Mochizuki and A. Tamagawa,
to the case of almost open immersions.
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Introduction

In the present paper, we study the anabelian geometry of curves. Let p be a prime
number, k a field, k& an algebraic closure of k, and G}, the absolute Galois group of k.

Let X;, i € {1,2}, be a hyperbolic curve of type (gx,,nx,) over k (i.e., X; is a smooth,

geometrically connected curve over k satisfying 2gx, +nx, —2 > 0, where gy, is the genus
of the smooth compactification X{P' and ny;, is the cardinality of (X/'\ X;)(k)) and X;
the curve X; x; k over k. Then we have the following exact sequence of étale fundamental
groups:

1 — m (X5, %) — (X, ) =< G — 1,

where * is a suitable geometric point.



Let Primes be the set of prime numbers, p € 3; C Primes a finite set, and p & 3y C
Primes a finite set. We set

¥ € {Primes, Primes \ ¥y, tame} if char(k) = p

and
S ¢ Primes \ ¥, if char(k) = 0.

Write Ay, for 73 (X, *), where 7 (X, *) denotes the maximal pro-Y. quotient of (X, )
if ¥ € {Primes, Primes \ 3¢, Primes \ X2} and denotes the tame fundamental group of
X; if ¥ = tame. Then the kernel of the natural surjection 7(X;,*) — Ay, is a closed
normal subgroup of 7 (X;, x). Moreover, we denote by

def

Iy, = m(X;, %)/ (Ker(my (X, %) — Ayx,)).

Thus, we obtain the following exact sequence of fundamental groups:

pry,
1_>AX¢_>HX2' —X>LG]€—>1

We define

Isonlpro—gps ( ) _) and Honllo)llzs—rtgps ( _7 _)

to be the set of continuous isomorphisms and the set of open continuous homomorphisms
of profinite groups between the two profinite groups in parentheses, respectively, and

define

def
ISOH]Gk (HX17 HXz) - {(b € Isompro-gPS(HXU HXz) | erl - erz © Q)}

Homg™ (ITx, Ilx,) © {® € Homyly,, (x, Ix,) | pry, = pry, o @}.
Thus, by composing with inner automorphisms, we obtain a natural action of Ay, on
Isomg, (Ilx,, I1x,) and a natural action of Ay, on Homg ™ (Ilx,, Ilx,).

We consider the category C, of smooth k-curves and dominant k-morphisms. If
char(k) = p, we denote by FCj the localization of Cj at geometric k-Frobenius maps
between curves (cf. [S1, Section 3]). The ultimate aim of Grothendieck’s anabelian
conjectures (or, the Grothendieck conjectures for short) for curves over suitable k is to
reconstruct the curves from their fundamental groups. More precisely, these conjectures
can be formulated as follows:

(Isom-version): The natural maps
Isom-7y : Isome, (X1, X3) — Isomg, (Ix,, I1y,)/Inn(Ax,)
if char(k) = 0 and
Isomze, -m : Isomze, (X1, X2) — Isomg, (Ix,, Ilx,)/Inn(Ay,)

if char(k) = p are bijections.



Suppose that char(k) = 0. If ¥ = PBrimes and & is a number field, then Isom-version
was proved by H. Nakamura (cf. [N1], [N2]) when the genus of X;,i € {1,2}, is 0, and
was proved by A. Tamagawa (cf. [T1]) in the case of arbitrary affine curves. Later, S.
Mochizuki (cf. [M2]) generalized their results to the case where k is a generalized sub-p-
adic field (i.e., a field which can be embedded as a subfield of a finitely generated extension
of the quotient field of the ring of Witt vectors with coefficients in an algebraic closed field
of F,,), ¥ is a set which contains p, and X;,i € {1,2}, is an arbitrary hyperbolic curve
over k.

Suppose that char(k) = p. If ¥ € {Brimes, tame} and £ is a finite field, then Isom-
version was proved by Tamagawa (cf. [T1]) when X;,i € {1, 2}, is affine, and was proved
by Mochizuki (cf. [M4]) when X;,i € {1,2}, is projective. Recently, M. Saidi and
Tamagawa (cf. [ST1], [ST3|) generalized their results to the case where p € ¥ is a
complement of a finite subset of Primes. On the other hand, J. Stix (cf. [S1], [S2]) proved
Isom-version when > = tame and £ is a field that is finitely generated over [F,,.

In fact, by applying p-adic Hodge theory, Mochizuki proved a very general version
when £ is a sub-p-adic field (i.e., a field which can be embedded as a subfield of a finitely
generated extension of Q,) as follows (cf. [M1]):

(Hom-version of characteristic 0): Suppose that k is a sub-p-adic field.
Then natural map

Hom-my" : Home, (X1, X3) — Homgh ™ (Ilx,, I, ) /Inn(Axy,)
1S a bijection.
Moreover, we have the following commutative diagram:

Isorn-7r1Z

Isome, (X1, Xo) — Isomg, (Ilx,, [Ix,)/Inn(Ax,)

l l

Hom—7r1Z

Home, (X1, Xp) —— HomgZ ™ (Ilx,, lx,)/Inn(Ax,),

when char(k) = 0. Since all the vertical arrows appeared in the commutative diagrams
above are injections, we have that

Hom-version of characteristic 0 = Isom-version of characteristic 0.

On the other hand, since the method used in [M1] can not work well in the case of
generalized sub-p-adic fields, we do not know whether Hom-version of characteristic 0
above holds or not if k is a generalized sub-p-adic field.

Similar like in the case of characteristic 0, we may consider certain Hom-versions of
the Grothendieck conjectures for curves in positive characteristic (=Hom-version of
positive characteristic) which is one of the main open problems in anabelian geometry.
Essentially, Hom-version of positive characteristic is a kind of problems concerning the

following fundamental anabelian style questions:
e Can we find out all of the continuous homomorphisms contained in Homg} " (Il x,, I, )
k

which can be induced by morphisms of X; and X7
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e Can we give a purely group-theoretic characterization of morphisms of curves in
terms of Iy, and Ily, as simple as possible?

Moreover, an optimistic expectation for Hom-version of positive characteristic is the fol-
lowing ultimate goal:

The natural map
Homze, -7 : Homze, (X7, Xo) — Homgy ™ (Ix, , Iy, ) /Inn(Ax, )
is a bijection.

Hom-version of positive characteristic is a much more difficult problem than Isom-version
of positive characteristic. Since Tamagawa proved the Isom-version of the Grothendieck
conjecture for affine curves over finite fields in the 1990s, at the time of writing, except
some obvious cases (e.g. X; — X is a finite étale morphism, 11y, C Ily, is an open
normal subgroup), no published results concerning the Grothendieck conjecture for curves
in positive characteristic for non-isomorphisms are known even the following case:

Suppose that k is a finite field, that ¥ = Primes, and that gx, = gx, and
nx, > nx,. Which elements contained in Homg " (Ix,,Ilx,) can be induced
by morphisms from X; to X57 How to give a purely group-theoretic character-
ization of elements of Homzc, (X7, X3) in terms of étale fundamental groups
of X, and X,?

open

Note that, if (gx,,nx,) = (9x,,7x,), then all of the elements of Homg ™ (Ilx,, Ix,) are
surjections, and all of the morphisms between X; and X5 are compositions of isomorphisms
and Frobenius twists. Since Ily,, i € {1,2}, is not topologically finitely generated, we do
not known whether or not a surjection Ilx, — Ilx, is an isomorphism in general. Thus,
we do not known whether or not the surjection of profinite groups arises from geometry
in general.

On the other hand, we would like to mention that Saidi and Tamagawa obtained a
birational version of Hom-version of positive characteristic for function fields of curves
over finite fields under certain conditions (cf. [ST2]).

In the present paper, we prove a certain type of Grothendieck’s anabelian conjecture
for a kind of non-isomorphisms called almost open immersions. This result generalizes
the Isom-version of the Grothendieck conjecture for curves over either a finite field or a
generalized sub-p-adic field which has been proven by Mochizuki and Tamagawa.

Before we explain our main theorem of the present paper, let us introduce some nota-
tion. Let f € Homg, (X1, X2) be a separable k-morphism. We shall say that f: X; — X5
is separable »-almost open immersion if f is a composition of an open immersion and a
finite étale morphism such that the Galois group of the Galois closure of the finite étale
morphism is a finite quotient of Ix,. Suppose that char(k) = p. Let ¢ € Homze, (X7, X3).
We shall say that ¢ : X7 — X5 is a ¥-almost open immersion if ¢ can be represented by
the following k-morphisms

X, = }/(7711> ~Y — }/<7712) — X5



such that Y (my) — Xs is a separable ¥-almost open immersion, where Y (m1) and Y (my)
denote the m!"-Frobenius twist and mii-Frobenius twist of Y, respectively, and & is a
k-isomorphism. Then we define

Homg,;al_op_im(Xb Xp) € Home, (X1, X3)

if char(k) = 0 and _
Hom & "™ (X1, X,) € Homgpe, (X1, Xa)

if char(k) = p to be the sets of all the X-almost open immersions between X; and Xs.
On the other hand, we introduce a purely group-theoretic condition (¥-gnc) concerning
genus (cf. cf. Section 1 and Proposition 1.2). We denote by

open,X-gnc
HOHle (HXU HXQ)

open

for the elements of Hom¢y ™ (Ily,, ILx, ) satisfying the condition (¥-gnc). Then the natural
maps Hom-7} and Homzc, -7 induce the following natural maps:

Hom-m, & : Homg;al'Op'im(Xl, X3) — Homgien’z'gnc(ﬂ x1,1x,)/Inn(Ax,)
if char(k) = 0 and
Hom e, -m) 8" : Hom?_-’ci'()p'im(Xl, X5) — Hom&etl’&gnc(ﬂ x1, x,)/Inn(Ax,)
if char(k) = p which fit into the following commutative diagrams:

Isom—7r1Z

ISOIIle (Xl, X2) ISOHIGk (1_,[)(17 HXQ)/IIH](A)Q)

l l

Hom_ﬂ_z—gnc

Hom?f‘op'im(xl, X,) —— Hom‘gjjn’z'g“(nxl, Ilx,)/Inn(Ax,)

! |

Hom-r}’ open
Home, (X7, X2) ! Homg ™" (Ix,, Ix,) /Inn(Ax, ),

and
Isom]:ck —7'('%

Isom e, (X1, X2) Isomg, (ILx,, IIy,)/Inn(Ax,)

| l

Hom 7z "™ (X1, Xs) Hom@™™* 8 (I1x, , Iy, ) /Inn(Ax,)

l l

Hom -71'12 open
Homge, (Xla XQ) o HOHIGI; (HX17 HX2>/Inn(AX2)7

Hom;ck —7r12_

respectively. Here, all the vertical arrows appeared in the commutative diagrams above

are injections. Now, our main theorem of the present paper is as follows (cf. Theorem 4.2
and Theorem 4.3).



Theorem 0.1. Suppose that k is either a finite field of characteristic p or a generalized
sub-p-adic field. Then the natural maps

Hom-7; #" : Homg ™™™ (X1, Xz) = Hom@ > 5"(TIx,, Ix,) /Inn(Ax,)
if char(k) = 0 and
Homre, -m; % : Hom#g "™ (X1, Xz) = Hom@ ™ #(Ilx,, Iy, ) /Inn(Ay,)
if char(k) = p are bijections.

Remark 0.1.1. We maintain the notation introduced in Theorem 0.1. Suppose that
gx, = gx, > 1 and nx, > nx,. Then all of the morphisms contained in Homz¢, (X1, X»)
(resp. Home, (X1, X)) are X-almost open immersions. Thus, we obtain a group-theoretic
characterization of Homgzc, (X1, X3) (resp. Home, (X1, X3)) in terms of [Ix, and Ily,.

Our method of proving Theorem 0.1 is as follows. The main difficult is proving the

surjectivity of Hom-m; & and Homzc -7, 8. Let & € Homgien’z'gnc(ﬂ x,,1Lx, ). To verify

that the image of @ in Homgien’z‘gnc(ﬂxl,HXQ) /Inn(Ax,) comes from a morphism of
curves, it is easy to see that we may assume that ® is a surjection. First, we assume
that ¥ # Primes when char(k) = p. By using the condition (¥-gnc), we prove that the
kernel of the surjection Ay, — Ay, induced by ® is generated by inertia subgroups of
Ay, associated to cups of X; (cf. Theorem 2.6 (i)). Then we can reduce Theorem 0.1 to
the Isom-version of the Grothendieck conjecture for curves over k which has been proven
by Mochizuki when k is a generalized sub-p-adic field (cf. [M2]), and Saidi-Tamagawa
when £ is a finite field (cf. [ST3]).

Next, we assume that char(k) = p and ¥ = Primes. In this case, the proof of
Theorem 0.1 is more complicated than the prime-to-p (or tame) case explained above.
We introduce a purely group-theoretic condition (X-prc) concerning p-rank (cf. Section 1
and Proposition 1.2), and by (3-gnc) and (¥X-prc), we can also prove that the kernel of the
surjection Ay, — Ay, induced by ® is generated by inertia subgroups of Ay, associated
to cups of X (cf. Theorem 2.4 (ii)). By applying the prime-to-p version of Theorem
0.1, then we can reduce Theorem 0.1 to a result concerning Hopfian and weakly Hopfian
properties of fundamental groups of curves in positive characteristic (cf. Section 3).

The present paper is organized as follows. In Section 1, we review some well-known
facts concerning the Isom-version of the Grothendieck conjecture for curves, introduce
two purely group-theoretic conditions (¥-gnc) and (3-prc), and give a group-theoretic
characterization of the sets of cusps of hyperbolic curves. In Section 2, we study the
kernels of surjections of geometric fundamental groups, and prove that the kernels are
generated by inertia subgroups under the conditions (3-gnc) and (X-prc). In Section 3,
by applying a finiteness theorem concerning étale coverings with restricted ramification of
a variety over a finite field obtained by T. Hiranouchi, we study the Hopfian and weakly
Hopfian properites of fundamental groups of curves in positive characteristic. In Section
4, by applying the Isom-version of the Grothendieck conjecture for curves and the results
obtained in Section 2 and Section 3, we prove our main theorems.
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1 Preliminaries

Let p > 0 be a prime number, F, a finite field of characteristic p, and Fp an algebraic
closure of IF,. We shall say that a field is generalized sub-p-adic if the field may be
embedded as a subfield of a finitely generated extension of the quotient field of W (TF,)
(i.e., the ring of Witt vectors of F,). Let k be either a finite field of characteristic p or
a generalized sub-p-adic field and k an algebraic closure of k. We shall say that X,
i € {1,2}, is a hyperbolic curve of type (gx,, nx,) over k if X; is a smooth, geometrically
connected curve over k satisfying 2gx, +nx, —2 > 0, where gy, is the genus of the smooth
compactification X', and ny, is the cardinality of (X" \ X;)(k). Then we have the

following fundamental exact sequence of étale fundamental groups:
1 — m (X5, %) — (X, ) NGy o1,

where X; denotes the curve X; x; k, G} denotes the absolute Galois group Gal(k/k) of k,
and x is a suitable geometric point. For simplicity, we omit * and denote by m;(X;) and
71(X;) the étale fundamental groups m (X;, *) and 71 (X, %), respectively.

Let Primes be the set of prime numbers, p € 3; C Primes a finite set, and p & 3y C

Primes a finite set. We put
¥ € {Primes, Primes \ 3y, tame} if char(k) =p

and
5 & Primes \ ¥, if char(k) = 0.

Write Ay, for m3(X;), where 77°(X;) denotes the maximal pro-X quotient of m (X;) if
Y € {Primes, Primes \ X1, Primes \ Xy} and denotes the tame fundamental group of X
if ¥ = tame. Note that

Ker(m(yi) - AXz)

is also a normal closed subgroup of 7 (X;). Then we denote by

Iy, € m(X;)/ (Ker(m (X;) — Ax,)).

Moreover, we obtain a commutative diagram as follows:

1] —— 7T1(X7;) —_— 7T1(XZ‘) & Gk — 1

l l H

=
eri
1 —— Ay, —— Iy, —5 Gy —— 1,
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where all the vertical arrows are surjections.
We define

Isomypro.gps(—, —) and Homp % (=, —)

to be the set of continuous isomorphisms and the set of open continuous homomorphisms

of profinite groups between the two profinite groups in parentheses, respectively, and
define

def
ISOHle (HX17 HXQ) = {CD € Isompro-gPS(HXu HXQ) ’ pr?ﬁ = pr§(2 © q)}a

open ef open
Hom®* (ILx,, llx,) = {® € Hom®" (Ilx,,ILy,) | pry, = pry, o ®}.

pro-gps
Thus, by composing with inner automorphisms, we obtain a natural action of Ay, on
Isomg, (Ilx,, I1x,) and a natural action of Ay, on Homg ™ (Ilx,, Ilx,).

We consider the category C, of smooth k-curves and dominant k-morphisms. If
char(k) = p, we denote by FCj the localization of Cj at geometric k-Frobenius maps
between curves. Then we obtain the following commutative diagrams:

ISOHI—TI‘%:

Isome, (X7, Xs) Isomg, (Ilx,, Iy, )/Inn(Ax,)
HOIIle(Xl,XQ) 4) Hom Open(HXl,HXQ)/IDn(AXQ),
if char(k) = 0 and

Isom]:ck —7r1E

ISOHl]:Ck (Xl, XQ) ISOHle (HXU HX2)/IHI](AX2)

! l

Hom 7r1 open
Homge, (X1, X2) S N Homgy ™ (Ix,, Ilx,)/Inn(Ax, )

if char(k) = p, where all the vertical arrows are injections. Moreover, the following Isom-
version of the Grothendieck conjecture for hyperbolic curves over k has been known (cf.
[M2, Theorem 4.12], [T1, Theorem 0.5 and Theorem 0.6], and [ST3, Theorem 4.22]):

Theorem 1.1. The natural maps
Isom-7y : Isome, (X1, X3) = Isomg, (Ix,, I1y,)/Inn(Ax, )
if char(k) =0 and
Isomze, -m : Isomze, (X1, X2) = Isomg, (Ix,, I1x,)/Inn(Ay,)
if char(k) = p are bijections.

Let F be a geometric object and Ilx a profinite group associated to the geometric
object F. Given an invariant Invz depending on the isomorphism class of F (in a certain
category), we shall say that Invrx can be reconstructed group-theoretically from
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Iz if I = I1x, (as profinite groups) implies that Invy, = Invz, for two such geometric

objects F; and Fy. Moreover, suppose that we are given an additional structure Addz

(e.g., a family of subgroups) on the profinite group I1z depending functorially on F; then

we shall say that Addr can be reconstructed group-theoretically from Ilz if all

isomorphisms IIx = 1, (as profinite groups) preserve the structures Addyz and Addz,.
Let ® € Hom®™ (Ay,,Ay,). We denote by

pro-gps

A@ déf IHI(@) Q AXz

the image of ®. We introduce a condition concerning genus as follows:

(X-gnc): For each open subgroup Hy C Ag, write H; for the inverse image
5_1(H2). We denote by gz, and g, the genera of the curves over k corre-

sponding to H; and H, respectively. We shall say that ® satisfies (X-gnc) if
9%, = 9m, for each open subgroup Hy C Ag.

Let C be a smooth curve over k and C°P* the smooth compactification of C. If char(k) = p,
we define the p-rank of C' to be

oc & dimg, (HY (CP* ).
Next, we introduce a condition concerning p-rank as follows:

(X-prc): Suppose that char(k) = p and ¥ € {Primes, tame}. For each open
subgroup Hy C Ag, write H; for the inverse image 5_1(ﬁ2). We denote by
o, and og, the p-rank of the curves over k corresponding to H; and Ho,
respectively. We shall say that @ satisfies (X-prc) if o5 = o, for each open
subgroup Hy C Ag.

Note that if ® satisfies (X-gnc) (resp. (X-pre)), then, for each open subgroup @Q, C Ax,,
the homomorphism 5_1(@2) — @, induced by ® also satisfies (3-gnc) (resp. (3-prc)).

Proposition 1.2. (i) Suppose that char(k) = p, and that ¥ is either Primes or tame.
Then (X-gnc) and (X-pre) are group-theoretic properties.

(ii) Let ® € Hom® ™" (I, , Ilx,). Write ® : Ax, — Ax, for the morphism induced by
®. Then (X-gne) is a group-theoretical property.

Proof. For each H; C Ag and Hy def _71(ﬁ1), we shall write X, i € {1,2}, for the
hyperbolic curve of genus gz, over k corresponding to H;.

First, we prove (i). Suppose that ¥ = tame. Then we see immediately that oz, =
dimg, (ﬁ?b ®F,), where (—)* denotes the abelianization of (—). Then (X-prc) is a group-
theoretical property. If ¥ = rimes, then [T2, Corollary 1.7] implies that ® satisfies
(3-pre) group-theoretically. Moreover, if ¥ = PBrimes (resp. 3 = tame), by [T2, Theorem
1.9] (resp. [T4, Theorem 0.5]), (X-gnc) is a group-theoretical property.

Next, we prove (ii). Suppose that char(k) = 0. To verify the proposition, we may

reduce immediately to the case where k is finite over the quotient field of W (F,). Then
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the genera gz, and gg, are equal to the dimensions of the weight 0 parts of the Hodge-
Tate decompositions of the abelianizations of the maximal pro-p quotients of H, and H,
(cf. [Ta, Section 4, Remark]), respectively. Suppose that char(k) = p. Let ¢ be a prime
number distinct from p. Then the genera gz and gz, are equal to 1/2 the dimensions of
the Frobenius weight 1 parts of the abelianizations of the maximal pro-¢ quotients of H;
and Ho, respectively. This completes the proof of the proposition. n

Remark 1.2.1. Let ® ¢ Hom X% ((Ax,,Ax,). The proposition means that we can
determine whether ® satisfies (3-gnc) (resp. (¥-prc)) or not group-theoretically from

AXl and AXQ'

In the remainder of this section, let X be a hyperbolic curve of type (gx,nx) over
k. Write X for the smooth compactification of X over k. We define a pointed smooth
stable curve
X* € (X, Dy € X\ X)
over k. Here, X°P* denotes the underlying curve of X*, and D denotes the set of marked
points of X*. By choosing a suitable geometric point, we denote by m(X) the étale

fundamental group of X.

Let Ky be the function field of X. We define K% to be the maximal pro-X (resp. the
maximal tame if 3 = tame) Galois extension of Ky in a fixed separable closure of K,
unramified over X (resp. unramified over X, and at most tamely ramified over D). Then

we may identify the maximal pro-3 quotient Ay of m(X) (resp. the tame fundamental
group of X if ¥ = tame) with Gal(K%/Kx). We put

X*E € (X® Dys),

where X* denotes the normalization of X' in K%, and Dy= denotes the inverse image
of Dx in X*. For each e* € Dys, we denote by I s the inertia subgroup of Ay associated

to e” (i.e., the stabilizer of €*). Let Ca, be a cofinal system of open subgroups of Ax.

For each H € Ca,, we write X} = (Xu, Dx,,) for the smooth pointed stable curve

corresponding to H and ey € Dy, for the image of ¢* in X§,. Write Ec, for the system
(en) HECA and note that Ecy, admits a natural action of Ayx. Then we may identify
the inertia subgroup I.= associated to e* with the stabilizer of ECAX'

Definition 1.3. Let f*:Y* ef (Y, Dy) — X* be a morphism of smooth pointed stable

curves over k. We shall say that f* is a Galois tame covering (resp. Galois étale covering)
if f* induces a Galois covering of underlying curves which is at most tamely ramified over
Dx (resp. f® induces a Galois covering of underlying curves which is étale). Moreover,
we put

Ram fe o {e € Dx | f* is ramified over e}.

In the remainder of this section, we suppose that gx > 2, and that nx > 0. We define
(6,d, f*:Y* < (v,Dy) > X°)

to be a triple associated to X satisfying the following conditions:
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(a) ¢,d are prime numbers distinct from each other and from p such that
¢ =1 (mod d); then all d*" roots of unity are contained in FF;; Moreover, we
assume that ¢, d € ¥ if ¥ # tame.

(b) f*:Y* — X*is a Galois étale covering (i.e., the morphism of underlying
curves induced by f* is a Galois étale covering) over k whose Galois group is
equipped with an isomorphism with G4, where G4 C IF,* denotes the subgroup
of d*™ roots of unity.

Write ML and My. for Hét(K F;) and Hom(Ay,Fy), respectively, where Ay denotes
the maximal pro-X quotient of the étale fundamental group of Y \ Dy (resp. the tame
fundamental group of Y\ Dy if ¥ = tame). Note that there is a natural injection

Mt — My

induced by the natural surjection Ay — A$, where Al denotes the étale fundamental
group of Y. Then we obtain an exact sequence

0 — M — Mye — M2 Y coker(ME < My.) — 0

with a natural action of Gj.
Let
My o, © Mys

be the subset of elements on which G, acts via the natural character G, — F/ induced
by the inclusion Gy C F, and
U;. g MY.

the subset of elements that map to nonzero elements of My . For each a € Uy, write

g Y (Y, Dy) - Y*

for the Galois tame covering over k of degree ¢ corresponding to a. Then we obtain a

map
€:Uye =7, o #Dy,,

where #(—) denotes the cardinality of (—).
We define a subset of Uy. to be

def
Uyd = {a € Uy

#Ramge = d} = {a € Uy.

e(a) = L(dny — d) + d}.

For each o € Uy?, since the image of « is contained in MjA  , we obtain that the action
of G4 on the set Ramge C Dy- is transitive. Thus, there exists a unique marked point e,
of X* such that f*(y) = e, for each y € Ramg,. Moreover, we define a pre-equivalence
relation ~ on Uyd as follows:

Let a, 8 € Uys. Then a ~ g if, for each A\, u € F for which Ao + pf € Uy,
we have Ao+ pf € Uyy.

11



On the other hand, for each e € Dx, we define

Uye, = {a € Uy? | g2 is ramified over (f*)"'(e)}.
Then, for any two marked points e, e’ € Dx distinct from each other, we have
Uys, NUyY, = 0.

Moreover, we have
m m
Uy = J Uyr,.
ecDx

Write (gy,ny) for the type of Y'*. Then the structure of the maximal pro-¢ quotients of
tame fundamental groups implies that

gy
A?/b@)lﬁ‘ﬁg<a17-'~7agyab17'--7bgy7{Ce’}e’EDy | H[aza ] H Ce =1 ab®F£,

e'eDy

where {ce }erep, denotes a set of generators of inertia subgroups associated to marked
points. Next, let us explain the set Uy, more precisely. Let a € Uyy, and ¢’ €
(f*)~'(e) € Dy. The construction of Uy, implies that a(c.r) = a for some a € Fj, that

a(cren) = Ta for each 7 € G4, and that a(cez) = 0 for each ¢’ € Dy \ (f*)"!(e). Note
that

holds in [F,.

mp

Proposition 1.4. (i) The pre-equivalence relation ~ on Uys is an equivalence relation,

and there exists a natural bijection

Moreover, let

(£*7d*’ f.,* : Y.,* _> X.)

be an arbitrary triple associated to X. Hence we obtain a resulting set Uye./ ~ and a
natural bijection
(VA U;/HB*/ ~— Dx.

Then there exists a natural bijection
Uper] ~=2UY ) ~

which is compatible with the bijections ¥ and ¥* (i.e., the set Uyy/ ~ does not depend on
the choices of £,d, and the étale covering f®:Y*® — X*).
(ii) Write gy for the genus of Y*. We have, for each e € Dy,

#Ump = 29y +1 _ 29y nd U;l.p — nX(g29y+1 _ g2gy)‘
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Proof. First, let us prove (i). Let 8,y € Uyw. If Ramgs = Ramy,, then, for each A, i € F
for which A8 + pvy # 0, we have Ramg = Ramg = Ramgs. Thus, f ~ ~. On the
other hand, if 8 ~ =, we have Ramgé = Ramge. Otherwise, we have #Ramggﬂ = 2d.
Thus, § ~ « if and only if Ramgs = Ramg.. Then ~ is an equivalence relation on U, e
Let
s U;El.p ~— DX

be a map defined by a + e,. We prove that 9 is a bijection. It is easy to see that ¢ is
an injection. On the other hand, for each e € Dy, the explanation of Uy, mentioned in
front of the proposition implies that we may construct a connected Galois tame covering
of h* : Z* — Y* such that the element corresponding to h* is contained in Uyy. Then o
is a surjection.

Next, we prove the “moreover” part. First, we suppose that ¢ # ¢*, and that d # d*.
Then there exists a natural bijection

UEP. |~ UIP

which compatible with the bijections ¥ and ¥* as follows. Let o € Upd and o* € Upt..
Write Y* — Y* and Y% — Y** for the tame coverings corresponding to a and o,

respectively. Let us consider
Yy* X xe Y*r.

Thus, we have a connected Galois tame covering Y* X xe Y** — X* of degree dd*(¢*.
Then it is easy to check that o and a* correspond to same marked point if and only if the
cardinality of the set of marked points of Y'* X ye Y** is equal to dd*(¢¢*(nxy — 1) +1). In
general case, for any two given triples (¢,d, f* : Y* — X*®) and (¢*,d*, f** : Y** — X°),
we may choose a triple

(g**’d**’ f.,** . Y.,** _) X.)

associated to X such that ¢** #£ ¢, 0** £ (* d** # d, and d** # d*. Hence we obtain a
resulting set Uye../ ~ and a natural bijection #** : Uys../ ~— Dx. Then we obtain
two natural bijections Uye../ ~= Uyl / ~ and Uye../ ~= Uys./ ~. Thus, we have
Uye.] ~= UyP/ ~. This completes the proof of (i).

Next, let us prove (ii). Write E, € Dy for the set (f*)~'(e). Then Uy?, can be
naturally regarded as a subset of H} (Y'\ E.,F;) via the natural open immersion Y\ E, <
Y. Write L, for the Fi-vector space generated by Uy?, in Hy (Y \ E.,F,). Then we have

U§n3e = L. \ Hét(Y7 Fe)-
Write H, for the quotient L./H} (Y,F,). We have an exact sequence as follows:
0 — Hg (Y, F,) = L, — H, — 0.
The explanation of Uy?’, mentioned in front of the proposition implies that
dimp,(H.) = 1.
On the other hand, since dimg, (H, (Y, F)) = 2gy, we obtain

#Ug;l.P — g2gy+1 . €2gy
€ !
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Thus, we have
HUPY = ny (0291 — 2ov),

This completes the proof of the lemma. Il

Remark 1.4.1. The proof of the “moreover” part of Proposition 1.4 (i) implies that,
if the cardinality of the sets of marked points of smooth pointed stable curves can be
reconstructed group-theoretically, then the bijection

m m

can be determined group-theoretically.

2 The kernels of surjections of geometric fundamen-
tal groups

We maintain the notation introduced in Section 1. Let Yfpt, i € {1,2}, be the smooth
compactification of X; over k. We define a pointed smooth stable curve over k to be

= Dy, EXTAX), e {12}

Let ® € Hom > (Ax,,Ax,). In this section, we suppose that ny, > 0, that  is

a surjective homomorphism, and that ® satisfies (3-gnc). First, we have the following
lemma.

Lemma 2.1. Suppose that gx, > 2. For each i € {1,2}, we write Aé& for the étale
fundamental group of Y:pt and Aigpl for the mazximal pro-X \ {p} quotient of Ax, (resp.
mazximal prime-to-p quotient of Ax, if ¥ = tame). Then ® induces an isomorphism

AT 5 ALY
Proof. Let No C Ay, be an arbitrary open subgroup such that the Galois covering Xy, —
X2 corresponding to N is étale, and that (#(Ax,/N2),p) = 1. Write N; C Ay, for the
inverse image 571(]\72). Then the condition (¥-gen) and the Riemann-Hurwitz formula

imply that the covering Xy, — X, corresponding to N, is étale. Note that #(Ax, /N;) =
#(Ax,/Ns) is prime to p. Thus, ® induces a surjection

ét,p’ ét,p’
AYP — AP
. t.p! . . . &t.p" .
On the other hand, since gx, = gx,, A% is isomorphic to A% as abstract profinite

groups. Moreover, we have Aigp l, i € {1,2}, is topologically finitely generated. Then

the surjection Ai&p, —» Aég’f " obtained above is an isomorphism (cf. [FJ, Proposition
16.10.6]). This completes the proof of the lemma. [
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Suppose that gx, > 2. Let
(6,d, f3: Y3 = (Y, Dy,) = X3)

be a triple associated to Zg (cf. Section 1). Lemma 2.1 implies that the triple (¢,d, fs3 :
Yy — X,) associated to X, induces a triple

(6,d, f2 YT (vi, Dy,) = X3)

associated to X, where the Galois étale covering f? is induced by f3 via the isomorphism
H;, (ngt, Fy) = HL (X, F,) induced by AP " AP g

Write Aylt C Ay, and AYQ- C Ay, for open normal subgroups corresponding to Y*
and Yy, respectively. Write Mys, Mf{., My, Myy, Mf‘é., an(/i My, for Hom(Aylo,IF_g),
He (Y1, Fr), Myp /My, Hom(Ayy, Fy), Hy, (Y2, Fy), and Myg /My, vespectively. Write @y

for 5]AY1. Then @y induces a homomorphism
—ab
\I[Y,Z : MY2. — Myl-.

By replacing ® by ®y, the claim implies that ®y induces the following commutative
diagram: /
0—>M§:.—>My1-—>M;jz—>0

=] |
0 —— Myls —— My, —— Mji —— 0,

where the vertical arrows on the right-hand side and the middle side are injections, and
the vertical arrow on the left-hand side is an isomorphism. Write Uy. and Uy, for the
subsets of Myes and My, defined as in Section 1, respectively. Since the actions of Gy
on the exact sequences are compatible with the morphisms appeared in the commutative
diagram above, we have

—ab * *

mY,e(UYZ.) g UYl.-

Let e; € Dx,, oz € Uy, and g3, : Y3, — Y5 the Galois tame covering of degree ¢

over k corresponding to a,. Write
o * Yo, = YT

: - : def —ab .
for the tame covering of degree ¢ over k corresponding to a; = \If;e(ag). Write gy,,
and gy,, for the genera of Y7 and Y, respectively. Then the condition (¥-gnc) and the

Riemann-Hurwitz formula imply that

1
gYDq — gy(12 = §(d — #Ramgal)(f — 1) = O

Then we have d = #Ramgal. This means that oy € U H}p . Moreover, there exists e; € Dy,
such that oy € U8

1.,61'
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Let of, € U;an.IfeQ distinct from ay. Since, for each aas +bah, # 0, a,b € F), aas +basy €
—ab —ab .
Uyy'e,» we have \If;g(aozg +bajy) € Uys’. Moreover, we have \If;g(aozg +bay) € Uys,,. This

implies that E?K(a;) € Uy, Thus, we obtain

—-ab m m
Uy (Uyy,,) € Uye

2 €2 1.761 :

On the other hand, Proposition 1.4 (ii) implies that #U;?.liel = #U;;.Ifez. We have
ﬁab (Ump ) _ Ump
Y Y;,ez Yl. ,e1”

Then Proposition 1.4 (i) implies that @?}; induces an injection

Ny USR] s URP) ~ |

°
1

On the other hand, let (¢, d*, f3* : Y, & (Ys,Dy;) — X,) be an arbitrary triple

associated to X,. Then by similar arguments to the arguments given above imply that
—ab . .. .
\IJ;Z induces an injection

. 77mp mp
)\E’Y*’g* . UY;’./ ~— Uyl*,o/ ~ .
Since ® satisfies (X-gnc), we have ng, = ng, for each open normal subgroup H, C Ay,,

where H; denotes the inverse image 6_1(ﬁ2), and ng, 1 € {1,2}, denotes the cardinality

of the marked points of the curves over k corresponding to H;. Then Remark 1.4.1 implies
that the following commutative diagram holds:

mp )‘5,3’* L mp
U, )~ S i )
1

Y;,.
Ump A@J’,Z Ump
Yy Yy [/~

where the vertical arrows are the bijection constructed in the proof of Proposition 1.4
(i). Moreover, Proposition 1.4 (i) implies that we may identify Dy with Uy?/ ~ for
i € {1,2}. Then we obtain the following result.

Lemma 2.2. Suppose that gx, > 2. Then the surjective ® induces a map
)\5 : Dyz — Dyl.
Moreover, A\g is an injection.

Let P, C Ax, be an arbitrary open subgroup and P; C Ay, the inverse image 5_1(132)

of P,. Write

78 © (7, Dy,) i € {1,2},
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for the pointed smooth stable curves of over k corresponding to P,. The surjection ®
induces a surjection

def

62 = 6‘p1 : P1 —»PQ.

Then Lemma 2.2 implies an injective map
)\52 : D22 — DZl-

On the other hand, P;, i € {1,2}, determines a morphism fp : Z; — X of smooth
pointed stable curves over k. Moreover, Jp, induces a surjective map of the sets of marked
points

Vie, - Dz, — Dfi

of Z? and 7: Furthermore, we have the following lemma.

Lemma 2.3. Suppose that gx, > 2. Then the natural diagram

18 commutative.

def def def

Proof. Let ez, € Dg,, ez, = Xg,(ez,) € Dz, ex = nyQ(eZZ) € Dx,, e1 = (yfpl o
; def

Xg,)(ez,) € Dx,, and ] = Xg(ez) € Dx,. Let us prove that e; = ej. Write Sz, and Sy,
for the sets (v, )" (e}) and (v, )" (e2), respectively. Note that ez, € Sz,. To verify
ey = €}, it is sufficient to prove that ez, € Sz,

Let (£,d, f3 : Yy — X5) be a triple associated to X, such that (£, #(Ax,/P)) = 1
and (d, #(Ax,/P,)) = 1. By Lemma 2.1, we obtain a triple

(0,d, fr Y — X7)

associated to X induced by ® and (£, d, f3 : Y — X3). On the other hand, we have a

triple

(C.d, g3 - W3 B Y5 X Z3 — Z3)

associated to Z5. Again, by By Lemma 2.1, we obtain a triple

. o def . . °
(€7d7gl : Wl d: }/1 XYI Zl — Zl)

associated to Z; induced by ®5 and (¢,d, g3 : Wy — Z3).

Let ay € U H;.p ey Where U " is defined as in Section 1. Then by similar arguments to

the arguments given in the proof of Lemma 2.2 imply that oy induces an element

m
ap € U .pe,.
1561
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Write Y2 and Y, for the smooth pointed stable curves over k corresponding to a;
and aw, respectively. We consider the connected Galois tame covering

YO:Q XY; ZQ. — WQ.

of degree ¢ over k, and write /3, for the element of U{g/z. corresponding to this connected
Galois tame covering, where U(*_) is defined as in Section 1. Then we have

> tefe

C2€SZ2

where t., € (Z/{Z)* and B,, € UVH[}SQ. On the other hand, similar arguments to the
arguments given in the proof of Lemma 2.2 imply that (., induced an element /3 Mg, (c2) €

U;}f.” X, (c2)" Then (3, induces an element

def .
61 - Z tCZ/B)\gz(CQ) + teZ2/B)‘6Z(eZQ) e UWI.

c2€8z,\{ez, }

Note that since 3; corresponds to the connected Galois tame covering Y3, X% zZ = WP,
we have the composition of the connected Galois tame covering Y7 x5+ Z7 — W7 and
the Galois étale covering ¢} : Wy — Z7 is tamely ramified over Sz,. This means that
ez, = Ag,(€z,) is contained in Sz,. This completes the proof of the lemma. ]

Let Kx,, i € {1,2}, be the function field of X;. We define KE to be the maximal pro-
Y (resp. maximal tame if 3 = tame) Galois extension of K%, in a fixed separable closure

of K%, , unramified over X (resp. unramified over X, and at most tamely ramified over
D+,). We put
<~z def

X (X7, Dy »), i€ {1,2},

)

= . . <~cpt . . .
where X, denotes the normalization of X "in K%, and D= denotes the inverse image

of Dx in 7? We have the following proposition.

Proposition 2.4. Let ey € D+, €3 € Dx, the image of ey, and IGQZ the inertia subgroup
2

of Ax, associated to e5. Then the following statements hold.

(i) There exists a point ef € D> such that ® induces a surjection
1

where 1.z denotes the inertia subgroup associated to er.
(ii) Let ey, e7y € D=, Write Iz and I.s | for the inertia subgroups of Ax, associated
’ ’ 1 s ’
to 6%1 and 6%2_, and write e1 1 and 6172_]007“ the images of 6%1 and 6%2 in Dy, , respectively.
Suppose that <D|Ie§1 FEREE and ¢|Ie§2 iz, > Ip. Then we have Ag(es) = €11 =

€1,2-
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Proof. By Lemma 2.5 below, we may assume that gy, > 2. First, we prove (i). Let Cax,
be a cofinal system of open subgroups of Ay,. For each H, € Cay,. We write X%Q o
(X7, DXﬁQ) for the smooth pointed stable curve corresponding to H, and e, € D Xz,

. Then
we may identify the inertia subgroup Iy associated to ey with the stabilizer of E¢ Ay
2
< =17\ - o def
On the other hand, write Hy for & (H,), Hy € Cay,, and Xﬁ1 = (XﬁNDXﬁl) for

the smooth pointed stable curve corresponding to H;. Then Lemma 2.2 implies that, for
each H, € CAXQ: we have an injection

for the image of e in X%,- We denote by Ec,  the inverse system (eg,)g, €Ca
2 2

)\@ﬁl : DXEQ — DXﬁl'

Write Ly for the kernel of ® : Ay, — Ax,. We denote by K;T - K% the subfield
corresponding to L. We put

o def
Tig — (Xiig Dxyp),

where X 7_ denotes the normalization of y(ipt in K;?, Dx, Ly denotes the inverse image of
D%, in Xy 1. Lemma 2.3 implies that the inverse system ()\@ﬁl (QFQ))HZECAXZ determines
a unique point ey € DXl,L$~ We choose a point e € Dylz such that the image of ey’
in DXLL6 is e1,r5. Write Iy for the inertia subgroup of Ay, associated to ef and ]e1,L$
for the inertia subgroup of Ay, /Lg associated to e;. Ly Note that the construction above
implies that I, Ly I.z. Then ® induces a surjection

6|Ielz FERY!

e1.1—
LLg

5 1.

Next, we prove (ii). Write e; for the image of e} in D . Let (¢,d, f3 : Y3 — X)) be
a triple associated to X5 defined as in Section 1. Then ® induces a triple

(6.d, fy: Y — X))

associated to X;. Write
Ayl g Axl and AYQ g AX2

for the normal open subgroups corresponding to Y;* and Y., respectively. Since f5 and
f1 are étale, we have

]e§ Q AYQ, 1612,1 Q Ayl, and 161272 g Ayl.

Let as € U. H;.p

., be an element such that the composition of the natural injection Iy —

Ay, and the morphism Ay, — Z/{Z corresponding to as is nontrivial. Then, similar
arguments to the arguments given in the proof of Lemma 2.2, we obtain an element
ap € U ni.p o,- Moreover, the composition of the natural injection Iz < Ay, (resp. Is <
Ay, ) and the morphism Ay, — Z/{Z corresponding to «; is nontrivial. This means that
e1 = e11 = e12. Moreover, the proof of (i) implies that A\g(e2) = €3 = €11 = €1 2. This
completes the proof of the proposition. m
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Lemma 2.5. Suppose that Proposition 2.4 holds when gx, > 2. Then Proposition 2.4
holds when gx, > 0.

Proof. Suppose that ny, = 0. The definition of pointed stable curves implies that gx, > 2.
Then the lemma is trivial. Suppose that nx, # 0. Then nx, # 0. We take ¢/, " € Primes
distinct from p and from each other. First, by replacing X; and X, by finite étale coverings
of X and X, with degree ¢”, respectively, we may assume that ny, > 3 and ny, > 3.
We choose an open normal subgroup )3 C Ily, such that the tame covering

9 X3, def (Xg, Dxy,) = X,

over k corresponding to @Q, is totally ramified over D+,, where

@2 dﬁf QQ N AX2 = I(E)I‘(AX2 - Z/E,Z)

Write Q; for ®1(Q,), Q, for 64(@1% and
g1 Xy < (Xg,, Dx, ) = X,

for the tame covering over k corresponding to Q,. Note that the genera of X2 and
1

XéQ are > 2. Write eg, for the image of €3 in DX, . By Lemma 2.2, we have eg o

)\@6 (6@2) € Dy@l. Moreover, by Proposition 2.4 () there exists e; € D+ = such that
2 —
the inertia subgroup [,l of @, associated to e} is equal to I, =N Q,, and that @\1

IEQ —» IeQ , where Is denotes the inertia subgroup of Ay, associated to ef. Since I 3 1s

commensurable termmal (M3, Lemma 1.3.7]), we have @(Ielz) C Iz. On the other hand7

by applying Proposition 2.4 (ii) to X5 and X5 implies that g7 is totally ramified at ez .
1 2

Thus, 1661 # I.s. This means that

Let e7),efy € D—z satisfying Proposition 2.4 (i). Then we have the images of ey’ and

6122 in DXf are equal to eg, . Thus, the images of 61 , and e¥ ', in Dy, are equal. This
completes the proof of the lemma. n

We set
def

Dx.x, = Dx, \ \s(Dx,)-

Next, we prove the main theorem of the present section.

Theorem 2.6. Let Lg be the kernel of ® : Ax, — Ax,. For each e € Dx,\x, and each
er e Dxs over e, we denote by I .= the inertia subgroup of Ax, associated to e,

(i) Suppose that ¥ # Primes when char(k) = p. Then we have = C L.

(ii) Suppose that char(k) = p, that ¥ = Primes, and that ® satisfies (X-prc). Then
we have I,z C L.
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Proof. First, let us prove (i). We denote by I C Ay, the image ®(I.s). To verify (i), we

may assume that I is not trivial. Then I is a pro- cyclic subgroup of Ax,. Let H, be any

open subgroup of Ay, and H, L (Fg) Write H and H for the étale fundamental

groups of the smooth compactifications of the curves over k correspondlng to Hy and Ho,
respectively. Then we obtain natural surjections

H, — H and H, — Hy.

~ —==6t,p . 7 .
— H," . Moreover, since [.s N H; is
—ét,p’,ab

By Lemma 2.1, ® induces an isomorphism Fét

contained in the kernel of the surjection H, — H, , the natural morphism

—=ét,p ,ab

[ﬂHg‘—)HQ—»H

is trivial. Thus, by applying [N3, Lemma 2.1.4], I is contained in an inertia subgroup
J C Ax,. By replacing X, and X, by the smooth pointed stable curves corresponding
open subgroups Ny C A x, and 671(W2) C Ay, respectively, such that NonJ = Nynl,
Proposition 2.4 implies that e € Ap(Dx,). This contradicts to the assumption e € Dx %,
We complete the proof of (i).

Next, let us prove (ii). Let G be an arbitrary finite group and 6 : Ay, - G an
arbitrary surjection. To verify (ii), we only need to prove that the image (6 o ®)(1,x) is

trivial. Write G, for a Sylow p-subgroup of G. Then we obtain that the index of G, is

prime to p. Let Q, o 5- 1(G,) and @, o (Qz). Write f3 - X5, o (Xg, » Dy, ) = X,

° . def
and f5,
@5, respectively. Lemma 2.3 1mplies that

#(f5,) 7 (e2) = #(£5) " Ogle2)). 2 € Dx,.

(XQ , D Xg, ) — X, 5 for the coverings over k correspondmg to @, and

Since ® satisfies (X-gnc), the Riemann-Hurwitz formula implies that
£(f5 )7 (1) = G5 Gy), €1 € Dy,

This means that fé is étale over e; € Dx,\x,. Then we have
1

(50)(I2) C G,

Thus, we may assume that G is a p-group. Write P; and P, for the kernels of 6o ® and 6,
X7, def (X5, Dx,, ) and X7, o (X5, Dx, ) for the smooth pointed stable curves over k

correspondlng to P1 and ]_32, respectively. For each ey € Dy,, Proposition 2.4 (ii) implies
that the ramification indexes of points of DXﬁ2 over ey are equal to the ramification

indexes of points of D Xp, OVr Ag(es). Since @ satisfies (X-prc), the Deuring-Shafarevich
formula implies that the ramification indexes of points of Dxﬁ1 over e is 1. This means

that (6 o ®)(I.x) is trivial. We complete the proof of (ii). O
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3 Hopfian and weakly Hopfian properties

Let [ be either a finite field of characteristic p > 0 or an algebraically closed field of
characteristic p > 0. Let U be a smooth curve over [ of genus ¢y, [ an algebraic closure
of I, G; the absolute Galois group Gal(l/l) of I, and U C U°"* an open subset. Then we
obtain an exact sequence of étale fundamental groups

1= m(Ux; Lx) = m(U %)= G — 1,

where * is a suitable geometric point. Write II;; for the étale fundamental group (U, %)
and Ay for the geometric étale fundamental group w1 (U x; [, *).

Definition 3.1. Let II be a profinite group. We shall say that II is Hopfian, if every

surjection ® € Hom Pt (I1, IT) is an isomorphism.

Remark 3.1.1. Suppose that U is a projective curve, and that [ is either a finite field or
an algebraically closed field. Since Il is topologically finitely generated, Il is Hopfian
(cf. [FJ, Proposition 16.10.6]).

Lemma 3.2. Let ® € Hom}" (Ily, Ilyy) be a surjection. Then ® € Homg ™ (Ily, ).

In particular, ® induces a surjction ® € Hom®<" (A, Ay).

Proof. The lemma follows from [T1, Proposition 3.3 (iii)]. O

Definition 3.3. We shall say that Il is weakly Hopfian, if every surjection ¢ €
Hom P (Ily, ITyy), such that the surjection ® € Hom Yo% (Ay, Ay) induced by @ in-
duces surjections of inertia subgroups and higher ramification subgroups, is an isomor-

phism.
Remark 3.3.1. By the definitions, we see that

Hopfian = weakly Hopfian.

On the other hand, for a given surjection ® € Hom 7"  (Ily, ), we do not know

whether or not ® induces surjections of inertia subgroups and higher ramification groups.
Moreover, we may ask the following question

Question: When does “weakly Hopfian = Hopfian” hold?
For the question in Remark 3.3.1, we have the following proposition.

Proposition 3.4. Let ® € Hom®" (Il I1yy) be a surjection and ® € Hom®P™  (Ay, Ay)
the surjection induced by ®. Suppose that ® satisfies (S-gnc). Then ® induces surjections

of inertia subgroups and higher ramification groups.

Proof. We may assume that U is affine. By Proposition 2.4, we obtain that ® induces
surjections of inertia subgroups. Then we only need to prove that ® induces surjections
of higher ramification groups. Write U™ and U for U x; 1 and U x; [, respectively.
Let e be a closed point of T \ U and I the subgroup of Ay generated by the inertia
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subgroups associated to the inverse images of ¢/, ¢/ € U \ (U U {e}), in the universal
covering. Then by applying Proposition 2.4, we have that ® induces a surjection

6]76 . AU/I - AU/[

Note that Ay/I is the étale fundamental group of U™ \ (UCpt \ (U U {e})). Thus, by
replacing UCpt Ay, and @ by I \ (UCpt \ (U U{e})), Ay/I, and ®;, respectively, we
may assume that #(U (058 \U) = 1.

Let I; be an inertia subgroup associated to the unique cusp. Write I, for ®(I;). Note
that I is also an inertia subgroup of II;;. Then I; and Iy carry the upper filtration
{I] }rer-, and {I]},er.,, respectively. For each finite quotient Iy — J, {I] },er., and the
natural surjection I; —» Iy — J (resp. {I}},cr., and the surjection I, —» J) induces an
upper filtration {JJ},er., (resp. {J5}rer-,) on J. Thus, we obtain two lower filtrations

{JLS}SERZO a‘nd {JQ,S}SGRE()

on J induced by {Ji},er., and {J5},cr.,, respectively. To verify that ® induces a sur-
jection I7 — IJ for each r € R5(, we only need to prove that @ induces an isomorphism
JI 5 J5 for each r € Rsg; moreover, this is equivalent to prove that ® induces an isomor-
phism J; ¢ — Jo, for each r € R, or that the Artin character of J determined by the
lower filtration {.J; s}ser., is equal to the Artin character of J determined by the lower
filtration {J2,s}ser-,- -

Let H, be an arbitrary open normal subgroup of Ay, H; the inverse image 5_1(F1),
G the quotient Ay /Hs, and Jz the image of I, in Gg. Write U%Jf and U%); for the
smooth compactiﬁcations of the curves corresponding to Hy and H,, respectively. We
denote by Ary_ : Jg — Z and Ary_ : Jg — Z the Artin character induced by the
natural surJectlon L - I, » Jgz and the surjection Iy — J, respectively. Let ¢ # p

be a prime number. Then the Lefschetz trace formula induces the following formulas for
characters (cf. [S, Chapter VI §4 Corollary]):

Ind (AI‘J ) = (2 — 2gU)rGﬁ -2 UGF + hf7ﬁ1
and
G
Ind;¥ (Ary; ) = (2= 29v)re; — 2 ucy + hy g,
where 7. denotes the regular representation of G, ug,. denotes the unit representation

of G, and hyz, (resp. h,7,) denotes the character of the Gg-module m (UCpt)aLb ® Zy

(resp. m(Ug H2)ab ® Z¢) whose G-module structure coming from the conjugate action of

Ay on Hy (resp. Hy). Since ® satisfies (X-gnc), Lemma 2.1 implies that ® induces an
isomorphism
7T1(Ucp ) ® Zy = 7T1(U )ab ® 2y

as Gg-modules. This implies that h, 77, = h,7,. Thus, we obtain

Ind§7(Ary, ) = Ind;7 (Ary, ).
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Moreover, similar arguments to the arguments given in the proof of [T2, Theorem 2.7]
imply that
AI‘Jf

This completes the proof of the proposition. Il

= 1AI'Jﬁ72 .

In [T3, Section 6], Tamagawa posed two conjectures concerning Hopfian and weakly
Hopfian properties of fundamental groups of curves over algebraically closed fields of
characteristic p > 0 as follows:

Conjecture 3.5. Suppose that | is an algebraically closed field, and that U is affine.
Write Fp for the algebraic closure of Fy, in l, and td(l) for the transcendence degree of
over Fp. Then Iy is Hopfian if and only if td(l) < Vg, where Xy denotes the countable
infinite cardinality.

Conjecture 3.6. Suppose that | is an algebraically closed field, and that U is affine.
Write |, for the algebraic closure of F, in [, and td(l) for the transcendence degree of
[ over Fp. Then 11y is weakly Hopfian if and only if td(I) < N, where Rg denotes the
countable infinite cardinality.

Tamagawa proved that, if I1;; is either Hopfian or weakly Hopfian, then td(1) < ¥, (i.e.,
the “only if” parts of Conjecture 3.5 and Conjecture 3.6). Moreover, by the definitions of
Hopfian and weakly Hopfian, Conjecture 3.5 implies Conjecture 3.6. For the “if” part of
Conjecture 3.5 and Conjecture 3.6, no results are known even when [ = Fp and U = A% :

In fact, we don’t know any examples of affine curves in positive characteristic whose étale
fundamental groups are Hopfian even when [ = F, and U = AIIFP. On the other hand,
we can prove that, if U is a curve over a finite field [, then Il is weakly Hopfian (see
Proposition 3.8 below).

Let V be an arbitrary separated and connected scheme of finite type over Specl, VPt
a Nagata compactification of V over [, and B an effective Cartier divisor on VP* whose
support is contained in V' \ V. We denote by I1F the étale fundamental group with
restricted ramification bounded by B (cf. [H, Definition 2.4]). Then we have the following
proposition.

Proposition 3.7. Suppose that | is a finite field. Then 11¥ is Hopfian.

Proof. Let ® € Hom® (IIf}, II{}) be an arbitrary surjection. Let G be an arbitrary
finite group and § : [1¥ — G an arbitrary surjection. To verify the proposition, we only
need to prove that there exists a surjection v : I[I¥ — G such that § = v o ®. We set

def

Spa = {H CIIY | #(IIY/H) < #G}.

Note that all the étale coverings induced by H is of ramification bounded by B (cf. [H,
Definition 2.2]). Moreover, by [H, Theorem 1.2], Suq is a finite set. This means that
153 is small (cf. [H, Definition 3.1]). Then the proposition follows from [FJ, Proposition
16.10.6]. O

Proposition 3.8. Suppose that | is a finite field. Then Il is weakly Hopfian.
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Proof. Let @ € Hom P ((Ily,Ily) be an arbitrary surjection such that the surjection

® € Hom®™"  (Ay, Ay) induced by ® induces surjections of inertia subgroups and higher
ramification subgroups. Let G’ be an arbitrary finite group, ¢’ : Iy, — G’ a surjection, and
Vs — V the Galois étale covering of degree #G” induced by ¢’. To verify the proposition,

we only need to prove that there exists a surjection 7' : Iy, — G’ such that 0’ = v o ®.

We see that there exists an effective divisor B’ & > weveny Myt on VP which satisfies
that the Galois étale covering Vi — V is of ramification bounded by B’. Then there exist
surjective morphisms v : Il — Hg/ and dp : Hgl — G’ such that ¢’ = dp o v, where H‘Ef'
denotes the étale fundamental group with restricted ramification bounded by B’.

Moreover, since ® induces surjections of inertia subgroups and higher ramification
subgroups, we obtain a surjection ® : II¥" — IIZ" induced by ®. Then we have the
following commutative diagram

HVL)HV

G’ )
Since 115" is Hopfian (cf. Proposition 3.7), ®”' is an isomorphism. Thus, we may define

7y def Opr o (@B,)_l o .

This completes the proof of the proposition. n
The main theorem of the present section is as follows.

Theorem 3.9. Let & € Hom>" (11, I1y) be a surjection. Suppose that the surjection

- pro-gps
® € Homteh (Ap, Ay) induced by @ satisfies (X-gnc). Then ® is an isomorphism.
Proof. The theorem follows from Proposition 3.4 and Proposition 3.8. ]

4 Group-theoretic characterizations of almost open
immersions

We maintain the notation introduced in Section 1 and Section 2.

Definition 4.1. Let f € Homg, (X1, X2) be a separable k-morphism. We shall say that
f: X1 — X, is separable YX-almost open immersion if f is a composition of an open
immersion and a finite étale morphism such that the Galois group of the Galois closure of
the finite étale morphism is a finite quotient of IIy,. Note that the open immersion and
the finite étale morphism are unique.

Suppose that char(k) = p. Let ¢ € Homzc, (X7, X2). We shall say that ¢ : X7 — X,
is a Y-almost open immersion if ¢ can be represented by the following k-morphisms

Xl %’k Y(ml) ~Y —> Y(mQ) — X2
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such that Y (my) — Xs is a separable ¥-almost open immersion, where Y (m1) and Y (my)
denote the m!"-Frobenius twist and mi'-Frobenius twist of Y, respectively, and = is a
k-isomorphism.

Remark 4.1.1. Let f : X; — X5 be a separable morphism over k, Kx,, i € {1,2}, the
function field of X;, and X5 the normalization of X, in Kx,. Then f is a separable
Y-almost open immersion if and only if the natural finite morphism of X5%* — Xj is étale
such that the Galois closure of X;* — X, is a finite quotient of Ily,, and the natural
morphism X; — X5 induced by f is an open immersion. On the other hand, if X; and
X, are projective, then f is a separable »-almost open immersion if and only if f is a
finite étale morphism.

We define :
Hom?,;al_op_lm(Xb Xp) C Home, (X1, X2)

to be the set of separable ¥-almost open immersions if char(k) = 0 and
HOHI?_—?]CI_Op_im(Xl, X2> - HOHI]:Ck (Xl, XQ)

if char(k) = p to be the set of ¥-almost open immersions. On the other hand, we put
Hom(éien’z'gnc(ﬂ x5 x,) o {® € HomZ*(Ilx,, ILx,) | ® satisfies (3-gnc)},

where & € Hom®" (Ax,,Ax,) denotes the morphism induced by ®. Note that, by
Proposition 1.2, Hom‘gfn’z'gm(ﬂxl,ﬂ&) is a purely group-theoretic set. The natural

maps
Hom-my" : Home, (X1, X5) — Homgh ™ (I, , Iy, ) /Inn(Ax, )

if char(k) = 0 and
Homze, -7 : Homze, (X7, Xo) — Homgy ™ (Ix, , Iy, )/Inn(Ax, )
if char(k) = p induce the following natural maps:
Hom-m, & : Homg;al'Op'im(Xl, Xy) — Homg;en’z'gnc(ﬂ x1, x,)/Inn(Ax,)
and
Hom e, -, 8" : Hom?g]j_(’p_im(Xb Xy) — Homgien’z'gnc(ﬂ x5 x,)/Inn(Ax,)
which fit into the following commutative diagrams:

Isorn—7r1Z

Isome, (X1, Xs) Isomg, (ILx,, 1y, )/Inn(Ax,)

l l

-
Hom-m3"8"¢

Hom?f‘op'im(xl, X,) —— Hom(g:n’z'gnc(ﬂxl, Ilx,)/Inn(Ax,)

! !

Hom-r}’ open
HOIIle (Xl,XQ) ! HOIHGI; (HXUHXZ)/IDD(A)Q),
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and
Isom—7r1E

Isomze, (X1, X2) Isomg, (ILx,, IIy,)/Inn(Ax,)

! !

3-gnc
Homig‘;'op'lm(xl, X,) Homgfn’z'gnc(ﬂxl y,)/Inn(Ay,)

Hom]:ck -

Hom —7r1Z
Hom e, (X1, Xa) Homh™ (I, , I, ) /Inn (A, ),

respectively, where all the vertical arrows are injections. Next, let us start to prove our
main theorems.

Theorem 4.2. Suppose that ¥ # PBrimes when char(k) = p. Then the natural maps
Hom—ﬁlz_gm : Homgkfal'(’p'im(Xl, X,) = Homgien’z_gnc(ﬂxl, IIx,)/Inn(Ax,)
if char(k) =0 and
Hom ¢, -m; 8" - Hom%il_()p_im(Xl, X5) = Hom(gj:n’z'gnc(ﬂxl, IIy,)/Inn(Ax,)

if char(k) = p are bijections.

Proof. Frist, let us prove the theorem when char(k) = p. Let us prove that Hom ¢, -m; "

is a surjection. Let
® € Homg*™#" (1L, , Ilx, ).

To verify the surjectivity, it is sufficient to prove that the image of ® in

Hom?;ien’z'gnc (Iy,,y,)/Inn(Ax,)

is induced by an almost immersion of X; and X,. Moreover, ® is a composite of an open
surjection and an open injection. Since any open injection is induced by a finite étale
covering of Xs, to verify the surjectivity, we may assume that & is a surjection. Note that

(3-gnc) implies that g o Ix, = 9x,-
Let X3 C PBrimes be a finite set which contains > (resp. 33 o {p} if ¥ = tame) and
AY Primes \ X3. Then, for each i € {1,2}, we obtain a surjection

AXi - Aé\(ﬂ
where A% denotes the maximal pro-A quotient of Ay,. We denote by
My, = T,/ (Ker(Ax, - A%)

for each i € {1,2}. Then the surjection ® induces the following commutative diagram:

1 — A%, —— T, Gr > 1
el
1 — A} —— TI%, G 1.
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We define a pointed smooth curve over k to be

~*,® def ,<>cpt def

X=X ’DY’{ = )@(DYQ))-
Let X{** be the smooth compactification of X; over k and Dy; the image of Dy in X,
We put

* def cpt
Note that X7} is a hyperbolic curve of type (g,nx,) over k. Write Ax: for the maximal
pro-% quotient of (X7 X E), qu for the maximal pro-A quotient of Ax;, IIx» for
T (X7)/(Ker(mi (X7 xy k) = Ax:), and ngq. for'HXf/(Ker(AXI*) — Agxq). Since X is an
open subcurve of X7, we have a natural surjection Ily, — Ix:.
Write D\, for Dx, \ A\5(Dx,), and write E C Ay, for the subgroup generated

by the inertia subgroups of Ay, associated the inverse images of the elements of Dx,\x,
in D=, Then the kernels of Iy, — Ilx; and Ay, — Ax; are equal to E. Moreover,

1
Theorem 2.6 (i) implies that ® induces the following commutative diagram:

1 —— Ay, —— Iy, > Gy, 1

1 — AX{‘ —_— HXT > Gk 1
gl e

1 —— AXQ e HX2 > Gk > 1,

where all the vertical arrows are surjections. Thus, to verify the surjectivity of Hom ;ck—ﬁlz'gnc,

it is sufficient to prove that the image of ®* in Homg ™ (Ilx;, Ilx,)/Inn(Ay,) is induced
by an element of Isomge, (X7, Xo).
On the other hand, ®* induces the following commutative diagram:

o el
1] — A%2 E— H%2 ” Gk 17

where all the vertical arrows are surjections. Since X and X, are hyperbolic curves of type

(9,nx,), and p € A, we obtain that &% is an isomorphism. Thus, ®** is also an isomor-
phism. Then Theorem 1.1 implies that the image of ®** in Isomg, (HAT, I1%,)/Inn(A%,)
is induced by an isomorphism of Isomgzc, (X7, X2). Since Ay, and Ay, are topologically
finitely generated, the surjection ® is an isomorphism. Then ®* is an isomorphism. Again,
by applying Theorem 1.1, we obtain that the image of ®* in

ISOIIle <HXT s HXQ)/IHH<AX2)

is induced by an isomorphism of Isomge, (X7, Xs).
Next, let us prove Homze,-m; 2" is an injection. Let

¢1, ¢2 € Hom7a "™ (X1, Xo)
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such that [®'] o Hom e, -m 8"(¢1) = Hompe,-m1 ™ (3). We may assume that ¢; and
¢o are separable k-morphisms. Note that, if ¢; and ¢y are finite étale morphisms, then we
obtain immediately ¢; = ¢5. Since ¢; and ¢, are compositions of a unique open immersion
and a unique finite étale morphism, to verify the injectivity, we may assume that ¢; and
¢9 are open immersions. Let &' € Hom(g;en’z'gnc(ﬂ x1,x,) such that the image of ® in
HomOGien’Z'gm(H x5 x,)/Inn(Ax,) is [®’]. Then the kernel of @’ is generated by the inertia
subgroups associated to the inverse images of the elements of Dx ¥, in DEE' Then the

injectivity follows immediately from [T4, Lemma 5.1] or [M5, Proposition 1.2].
On the other hand, suppose that char(k) = 0. By replacing A by X, similar argu-
ments to the arguments given in the proof of the case where k is a finite field imply that

Hom-7>"#" is a bijection. This completes the proof of the theorem. Il

Finally, we treat the case where char(k) = p and ¥ = Primes.

Theorem 4.3. Suppose that char(k) = p and ¥ = Brimes. Then the natural map

Y-gnc | Y-al-op-im ~ open,X-gnc
Homge, -m"*" : Homze, (X1, Xp) — Homgy (Tlx,,Ix,)/Inn(Ay,)
s a bijection.

gn

Proof. First, let us prove that Homjrck—wlE 8% i a surjection. Let

NS Horllaen’z‘gnc(ﬂxl, IIy,).

To verify the theorem, we may assume that ® is a surjection. Write ® : Ax, —» Ay, for
the surjection induced by ®. We have the following claim.

Claim: The surjection ® satisfies (3-prc).

Let us prove the claim. For each Hy C Ay, open normal subgroup, let Hy C
IIx, be an open normal subgroup that HyNAx, = H,. Write G for the image
of Hy in Gy, Hy for ®1(H,), and Xp, and Xpg, for the curve corresponding to
H; and Ho, respectively. Note that H1NAx, = Efl(ﬁz), and @y, : Hy — Hy
satisfies (X-gnc).

Let © % Primes \ {p}. Write ﬁ? and FS; for the maximal pro-§2 quotients
def

of Hy and H,, respectively. We denote by My, = H,/Ker(H, — HY)
and denote by Il © [, /Ker(Hy — HY). Then ® induces a surjection
Dy, 1 Ix, — Iy, . Moreover, we have Oy, € Homg;jn’g'gnc(HXHl,HXHz).
Thus, Theorem 4.2 implies that X, is isomorphic to an open subset of Xy,
as schemes. Then we obtain that the p-rank of Xy, is equal to the p-rank of
Xp,. This completes the proof of the claim.

We define a pointed smooth curve over k to be

~*,® def ,~<=cpt def
X, = (le 7DY§‘ - )‘E(DYQ))~
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Let X{* be the smooth compactification of X; over k and Dy; the image of D in X7
We set

X7 XN Dy
Note that X{ is a hyperbolic curve of type (g,nx,) over k. Write Ilx: for the étale
fundamental group 71 (X7) and Ax: for the geometric étale fundamental group (X7 X

k). Since X is an open subcurve of X¥, we have a natural surjection Ilx, — II Xz
Write D \x, for Dx, \ A\5(Dx,), and write E C Ay, for the subgroup generated

by the inertia subgroups of Ay, associated the inverse images of the elements of Dy \ X

in D— . Then the kernels of IIy, — Ix» and Ax, - A X; are equal to E. Moreover,

Theorem 2.6 (ii) implies that ® induces the following commutative diagram:

1 —— Axl —_— HX1 1

1 —— AX{‘ —_— HXT 1
v & H

1 — Ax, —— llx, > G, > 1,

where all the vertical arrows are surjections. Thus, to verify the surjectivity of Homr¢, -7 e B

it is sufficient to prove that the image of ®* in HomoPen(H x5 11x,)/Inn(Ax,) is 1nduced
by an element of Isomz¢, (XF, X,). Note that ® satisfies (X-gnc).

Let X3 C Primes be a finite set which contains {p} and AY i]3t1me5 \ X3. We
write Ag\q and A% for the maximal pro-A quotients of Ay: and Ax,, Hs\q and T4,
for Ix: /Ker(Ax: — AAT) and Ilx, /Ker(Ax, — A%,), respectively. We obtain that ®*
induces the following commutative diagram:

1—>AAT—>HAT en S|
o e
1 — A, — 1%, G > 1,

where all the vertical arrows are surjections. Then Theorem 4.2 implies that X7 is iso-
morphic to Xy in FC. We obtain that IIx» is isomorphic to ITx, as abstract profinite
groups. Thus, by Theorem 3.9, we obtain that

d* € ISOHIGIc (HXT’ HX2)~

Moreover, Theorem 1.1 implies that the image of ®* in Isomg, (Ilx+, IIx,)/Inn(Ax,) is
induced by an isomorphism of Isomge, (X7, Xs).

8 . L
Next, let us prove Homze, -7, is an injection. Let

o1, 02 € HOIHE al-op- lm(Xh X5)

such that [@] & Hom;ck 778 (¢1) = Home, -1, ™ (¢5). We may assume that ¢; and
¢o are separable k- morphlsms. Note that, if ¢; and ¢ are finite étale morphisms, then we
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obtain immediately ¢; = ¢o. Since ¢ and ¢, are compositions of a unique open immersion
and a unique finite étale morphism, to verify the injectivity, we may assume that ¢; and
¢o are open immersions. Let &' € Homgien’z'gnc(ﬂ x,,1Lx,) such that the image of ® in
Homgien’z'gnc(ﬂ X1, x,)/Inn(Ay,) is [®']. Then the kernel of @' is generated by the inertia
subgroups associated to the inverse images of the elements of Dy \%, in Dylz. Then the
injectivity follows immediately from [T2, Corollary 2.2]. This completes the proof of the
theorem. ]

Remark 4.3.1. Theorem 4.2 and Theorem 4.3 can be regarded as a certain Hom-version
of the Grothendieck conjecture for almost open immersion of curves.

Remark 4.3.2. Finally, let us come back to Hom-version of positive characteristic.
Note that, for any ¢ which is either an element of Homg, (X3, Xs) or an element of
Homgze, (X1, X2), there exists an open sub-curve U; C X, i € {1,2} such that the restric-
tion of ¢ on U; is an almost open immersion. Write Ay, for the maximal pro-X quotient of

the geometric tame fundamental group 7} (U; Xy k), Iy, for 7°(U;)/(Ker(7*(U;) — Ay,)).
Let ® be an arbitrary element of Hom¢y ™ (Ilx, , Iy, ). If one can develop a suitable theory
of anabelian cuspidalizations for surjections (i.e., group-theoretic reconstructions of the
fundamental groups of open sub-curves of given curves from the fundamental group of
the given curves; moreover, the cases of abelian and pro-¢ cuspidalizations for isomor-
phisms have already been established by Mochizuki (cf. [M4])), then one may obtain
a homomorphism &P : Iy, — Ily; group-theoretically from @ such that the condi-
tion (¥-gnc) is satisfied. Here, U], i € {1,2}, is an open sub-curve of X;, and Il is

m(U;)/(Ker(my (Uj xx k) = Apr)), where Ay, denotes the maximal pro-3 quotient of the

geometric étale fundamental group (U X k). Then Hom-version of positive character-
istic can be deduced from Theorem 4.2 and Theorem 4.3.
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