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1. Introduction

Let X• = (X,DX) be a pointed stable curve of (topological) type (gX , nX) over an
algebraically closed field k of characteristic p > 0, where X denotes the underlying curve

with genus gX , and DX denotes the (finite) set of marked points with cardinality nX
def
=

#(DX). By choosing a suitable base point of X•, we have the admissible fundamental
group ΠX• (2.2.2) of X•. The admissible fundamental groups of pointed stable curves are
natural generalizations of the tame fundamental groups of smooth pointed stable curves.

1



2 YU YANG

In particular, ΠX• is isomorphic to the tame fundamental group of X• if X• is smooth
over k.

1.1. Fundamental groups of curves in positive characteristic.

1.1.1. Write Πp′

X• for the maximal prime-to-p quotient of ΠX• . Then Πp′

X• can be deter-
mined by (gX , nX), and it is isomorphic to the prime-to-p completion of the topological
fundamental group of a Riemann surface of type (gX , nX) (2.2.2). However, the full ad-
missible fundamental group ΠX• is very mysterious, and its structure is no longer known.
In fact, since the 1990s, some developments of F. Pop-M. Säıdi ([PS]), M. Raynaud ([R2]),
A. Tamagawa ([T1], [T2], [T3]), and the author of the present paper ([Y1], [Y4]) showed
that there exist anabelian phenomena for curves over algebraically closed fields of charac-
teristic p. This means that the isomorphism class of X• as a scheme can be completely
determined by the isomorphism class of ΠX• as a profinite group. Furthermore, by the
theory developed in [T2] and [Y1] (e.g. see [Y1, Remark 1.2.2]), we can expect that the
maximal pro-solvable quotient Πsol

X• of ΠX• is sufficiently to determine the isomorphism
class of X• as a scheme. Moreover, since ΠX• is topologically finitely generated, the
isomorphism class of ΠX• is completely determined by the set of finite quotients of ΠX•

([FJ, Proposition 16.10.6]). Then to understand the anabelian phenomena of curves in
positive characteristic, we may ask the following question: Which finite solvable groups
can appear as quotients of ΠX•?

1.1.2. Let H ⊆ ΠX• be an arbitrary open normal subgroup and X•
H = (XH , DXH

) the
pointed stable curve of type (gXH

, nXH
) over k corresponding to H. We have an important

invariant σXH
associated to X•

H (or H) which is called p-rank (or Hasse-Witt invariant).
Roughly speaking, σXH

controls the finite quotients of ΠX• which are extensions of the
group ΠX•/H by p-groups.

Since the structures of maximal prime-to-p quotients of admissible fundamental groups
are known, to find all the solvable quotients of ΠX• , we need to compute the p-rank σXH

when ΠX•/H is abelian. If ΠX•/H is a p-group, then σXH
can be computed by using

the Deuring-Shafarevich formula ([C], [Su]). If ΠX•/H is not a p-group, the situation
of σXH

is very complicated. Moreover, the Deuring-Shafarevich formula implies that, to
compute σXH

, we only need to assume that ΠX•/H is a prime-to-p group (i.e., the order
of ΠX•/H is prime to p). In this situation, we have the so-called generalized Hasse-Witt
invariants associated to (prime-to-p) cyclic admissible coverings of X• (2.3.2) which are

defined as the dimensions of canonical decomposition of Hp,ab ⊗Z Fp(
∼→ H1

ét(XH ,Fp)∨)
under the natural actions of ΠX•/H, and which are refined invariants of p-rank, where
(−)ab denotes the abelianization of (−), and Fp is an algebraic closure of Fp.

1.2. The first main result.

1.2.1. Previous results of Raynaud, Tamagawa, and the author of the present paper. We
fix some notation. Let n be a positive natural number prime to p, and let f • : Y • → X•

be a Galois admissible covering over k with Galois group Z/nZ and Df• the ramification
divisor induced by f • (Definition 2.4 (i)). Note that Df• is an effective divisor on X
whose support is contained in DX , and whose degree deg(Df•) is divisible by n such
that deg(Df•) = 0 if nX = 0 and 0 ≤ deg(Df•) ≤ (nX − 1)n if nX 6= 0. We put

s(Df•)
def
= deg(Df•)/n.

Suppose that X• is smooth over k, and that nX = 0 (i.e., DX = ∅). Raynaud ([R1])
developed his theory of theta divisors and proved that, if n >> 0 is a natural number
prime to p, then there exists a Galois étale covering f • of X• with Galois group Z/nZ
(i.e., s(Df•) = 0) whose “first” generalized Hasse-Witt invariant (2.3.2) is as large as
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possible, namely equal to gX − 1 ([R1, Théorème 4.3.1]). Moreover, as a consequence,
Raynaud obtained that ΠX• is not a prime-to-p profinite group. This is the first deep result
concerning the global structures of étale fundamental groups of curves over algebraically
closed fields of characteristic p.

Suppose that X• is smooth over k, and that nX ≥ 0. The computations of generalized
Hasse-invariants of admissible coverings of X• (i.e., tame coverings of X•) are much
more difficult than the case of nX = 0. Tamagawa observed that Raynaud’s theory of
theta divisors can be generalized to the case of tame coverings, and established a tamely
ramified version of the theory of Raynaud’s theta divisors. By applying the theory of
theta divisors, Tamagawa ([T2]) proved that, if nX ≥ 2 and n >> 0 is a natural number
prime to p, then there exists a Galois admissible covering (i.e., Galois tame covering) f •

of X• with Galois group Z/nZ such that deg(Df•) = n (i.e., s(Df•) = 1), and that the
“first” generalized Hasse-Witt invariant of f • is as large as possible, namely equal to gX .
Note that since all abelian tame coverings of X• are étale if nX ≤ 1, the calculations
of generalized Hasse-Witt invariants can be deduced from Raynaud’s result mentioned
above if nX ≤ 1. As an application, Tamagawa obtained that the type (gX , nX) can
be reconstructed group-theoretically from the tame fundamental group ΠX• when X• is
smooth over k (i.e., an anabelian formula for (gX , nX), see [T2, Theorem 0.1]) which is
the most critical step in his proof of Grothendieck’s anabelian conjecture for curves over
algebraically closed fields of characteristic p ([T2, Theorem 0.2]).
Suppose that X• is an arbitrary pointed stable curve (i.e., possibly singular) over k.

In [Y3], the author of the present paper consider the case of s(Df•) = nX − 1, and by
using the theory of Raynaud-Tamagawa theta divisors, we proved ([Y3, Theorem 1.2])
that, if nX 6= 0 and n >> 0 is a natural number prime to p, then there exists a Galois
admissible covering f • of X• with Galois group Z/nZ such that deg(Df•) = (nX − 1)n,
and that the “first” generalized Hasse-Witt invariant of f • is as large as possible, namely
equal to gX + s(Df•) − 1 = gX + nX − 2. As an application, we obtained that the
type (gX , nX) can be reconstructed group-theoretically from the admissible fundamental
group ΠX• when X• is an arbitrary pointed stable curve over k ([Y3, Theorem 1.3]). On
the other hand, this result is one of main tools to establish the theory of moduli spaces
of admissible fundamental groups by the author in [Y5] (a theory which gives a general
framework for describing the anabelian phenomena of curves over algebraically closed
fields of characteristic p).

1.2.2. In the present paper, we study genrealized Hasse-Witt invariants of prime-to-
p cyclic admissible coverings with certain prescribed ramifications. Let m ∈ N be an

arbitrary natural number. We denote by (Z/mZ)∼ def
= {0, . . . ,m − 1}. Then there is a

natural bijection (as sets) Z/mZ ∼→ (Z/mZ)∼. The first main result of the present paper
is as follows (see Theorem 3.5 for a more precise statement):

Theorem 1.1. Let X• be an arbitrary pointed stable curve of type (gX , nX) over k and
D ∈ Z[DX ] a given effective divisor with degree deg(D) = (nX − 1)n satisfying certain
given conditions introduced in Condition 3.3. Write D for the effective divisor on X

induced by D via the natural map Z[DX ]→ Z/nZ[DX ]
def
= Z[DX ]⊗Z/nZ

∼→ (Z/nZ)∼[DX ],

where the second arrow induced by the above bijection Z/mZ ∼→ (Z/mZ)∼.
Suppose that n >> 0 is a natural number prime to p. Then there exists a Galois

admissible covering f • : Y • → X• with Galois group Z/nZ such that Df• = D, and that
the “first” generalized Hasse-Witt invariant of f • is as large as possible, namely equal to
gX + s(D)− 1.
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Theorem 1.1 implies the following corollary (see Corollary 3.6 for a more precise state-
ment):

Corollary 1.2. Let X• be an arbitrary pointed stable curve of type (gX , nX) over k and
s ∈ {0, . . . , nX − 1} an integer. Suppose that n >> 0 is a natural number prime to p.
Then there exists an effective divisor D with degree deg(D) = (nX − 1)n such that the
following hold:

• D satisfies certain given conditions introduced in Condition 3.3.
• deg(D) = sn (i.e., s(D) = s), where D is the effective divisor on X as defined in
the statement of Theorem 1.1.
• There exists a Galois admissible covering f • : Y • → X• with Galois group Z/nZ
such that Df• = D, and that the “first” generalized Hasse-Witt invariant of f • is
as large as possible, namely equal to gX + s− 1.

In particular, we obtain the results proved by Raynaud and Tamagawa mentioned in the
second and the third paragraphs of 1.2.1 if s ∈ {0, 1} and X• is smooth over k, and obtain
the result proved by the author of the present paper mentioned in the fourth paragraph of
1.2.1 if s = nX − 1.

1.3. The second main result. Let us explain the second main result of the present
paper that motivated the theory developed in the present paper.

1.3.1. We fix some notation. Let ΓX• be the dual semi-graph of X•, and ΓX̂• the dual
semi-graph of the universal admissible covering of X• corresponding to ΠX• (2.3.4). More-
over, we shall suppose nX > 0. Let e be an open edge of ΓX• (i.e., an edge corresponding
to a marked point of DX , see 2.2.1) and ê an arbitrary element of the inverse images of
e of the natural surjection ΓX̂• ↠ ΓX• (2.3.4). Since the dual semi-graph ΓX̂• admits a
natural action of ΠX• , we put Iê ⊆ ΠX• the stabilizer subgroup of ê.
Write xe ∈ DX for the marked point of X• corresponding to e. Then the general theory

of admissible fundamental groups implies Iê
∼→ Gal(K̂t

X,xe
/K̂X,xe)

∼→ Ẑ(1)p′ , where K̂X,xe

denotes the quotient field of the completion of the local ring OX,xe , and K̂t
X,xe

denotes

the maximal tamely ramified extension of K̂X,xe .

Suppose that Fp is the algebraic closure of Fp in k. Then we have the following (see
4.2.3 for a more precise explanation): The set

Fê
def
= (Iê ⊗Z (Q/Z)p′) t {∗ê}

can be identified with Fp as sets, hence, admits a structure of field, whose multiplicative
group is Iê ⊗Z (Q/Z)p′ , and whose zero element is ∗ê. where {∗ê} is an one-point set,
and (Q/Z)p′ denotes the prime-to-p part of Q/Z which can be canonically identified with

(Q/Z)p′(1) def
=

⋃
(p,m)=1 µm(k). Moreover, the set

Fê,pt
def
= Iê ⊗ Z/(pt − 1)Z t {∗ê} ⊆ Fê

admits a structure of field induced by Fê(
∼→ Fp) which is isomorphic to the subfield of Fp

with cardinality pt.

1.3.2. Reconstructions of field structures in anabelian geometry. Tamagawa ([T2, Propo-
sition 5.3]) proved that the field structure of Fê defined above can be reconstructed group-
theoretically from the admissible fundamental group (=tame fundamental group) ΠX• if
X• is smooth over k. Namely, there exists a group-theoretical algorithm whose input
datum is ΠX• , and whose output datum is the field Fê. Furthermore, the author of the
present paper extended Tamagawa’s result to the case where X• is a (possibly singu-
lar) pointed stable curve over k (see [Y3, Theorem 6.4] and [Y5, Theorem 4.13]). These
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results play an important role in the theory of anabelian geometry of curves over alge-
braically closed fields of characteristic p, and are key steps to prove the Grothendieck’s
anabelian conjecture for certain curves over algebraically closed fields of characteristic p
([T2, Theorem 0.2]) and the homeomorphism conjecture for 1-dimensional moduli spaces
([Y5, Theorem 0.1]).

On the other hand, motivated by the theory of moduli spaces of admissible fundamental
groups, the author of the present paper observed ([Y6]) that the anabelian phenomena
for curves over algebraically closed fields of characteristic p can be understood by using
not only full tame fundamental groups but also certain finite quotients of them. More
precisely, we obtained a “finite version” of Grothendieck’s anabelian conjecture for certain
curves over algebraically closed fields of characteristic p which is a strong generalization
of Tamagawa’s result [T2, Theorem 0.2] (namely, the isomorphism classes of curves as
schemes can be completely determined by certain finite quotients of their tame funda-
mental groups, see [Y6, Corollary 1.4]). One of main steps in the proof of [Y6, Corollary
1.4] is a “finite version” of [T2, Proposition 5.3] which says that the field structure of
Fê,pt can be reconstructed group-theoretically from certain finite quotients of ΠX• if X•

is smooth over k and t >> 0 (see [Y6, Proposition 5.2]). Note that [Y6, Proposition 5.2]
implies [T2, Proposition 5.3].

1.3.3. By applying Theorem 1.1, we obtain the second main result of the present paper
which generalizes [Y6, Proposition 5.2] to the case of (possibly singular) pointed stable
curves (see Theorem 4.2 for a more precise statement):

Theorem 1.3. We maintain the notation introduced in 1.3.1. Then the field structure
of Fê,pt can be reconstructed group-theoretically from certain finite quotients of ΠX• if
t >> 0.

In [Y7], we will use Theorem 1.3 to study the topological properties of the moduli
spaces of admissible fundamental groups and prove a “finite version” of Grothendieck’s
anabelian conjecture for certain (possibly singular) pointed stable curves over algebraically
closed fields of characteristic p. On the other hand, see Remark 4.2.1 for some further
explanations about the applications of Theorem 1.3 to anabelian geometry.

1.4. Structure of the present paper. The present paper is organized as follows. In
§2, we recall some notation and results concerning pointed stable curves and generalized
Hasse-Witt invariants. In §3 and §4, we prove the first main result and the second main
result, respectively.

1.5. Acknowledgements. The author was supported by JSPS Grant-in-Aid for Young
Scientists Grant Numbers 20K14283.

2. Preliminaries

In the present section, we recall some notation and results concerning semi-graphs,
pointed stable curves, admissible fundamental groups, and generalized Hasse-Witt invari-
ants of cyclic admissible coverings.

2.1. Semi-graphs.

2.1.1. Let G
def
= (v(G), e(G), ζG : e(G) → v(G) ∪ {v(G)}) be a semi-graph. Here,

v(G), e(G), and ζG denote the set of vertices of G, the set of edges of G, and the set of
coincidence maps of G, respectively. Note that {v(G)} is a set with exactly one element.

Let e ∈ e(G) be an edge. Then e
def
= {b1e, b2e} is a set of cardinality 2. The set e(G)

consists of closed edges and open edges defined as follows: If e is a closed edge, then the
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coincidence map ζG is a map from e to the set of vertices to which e abuts. If e is an
open edge, then the coincidence map ζG is a map from e to the set which consists of the
vertex to which e abuts and the set {v(G)} (i.e., either ζG(b1e) or ζG(b2e) is not contained
in v(G)).

We denote by eop(G) ⊆ e(G) the set of open edges of G and ecl(G) ⊆ e(G) the set of
closed edges of G. Note that we have e(G) = eop(G) ∪ ecl(G). Moreover, we denote by

elp(G)
def
= {e ∈ ecl(G) | #(ζG(e)) = 1} (i.e., a closed edge which abuts to a unique vertex

of G), where “lp” means “loop”. For each e ∈ e(G), we denote by vG(e) ⊆ v(G) the set
of vertices of G to which e abuts. For each v ∈ v(G), we denote by eG(v) ⊆ e(G) the set
of edges of G to which v is abutted.
We shall say G connected if G is connected as a topological space whose topology

is induced by the topology of R2, where R denotes the real number field. Denote by

rG
def
= dimQ(H

1(G,R)) the Betti number of G. Moreover, we shall call G a tree if rG = 0.

Remark. The motivations of the above notation concerning semi-graphs arise from the
dual semi-graphs of pointed stable curves (see 2.2.1 below).

Example 2.1. Let us give an example of semi-graph to explain the above notation. We
use the notation “•” and “◦ with a line segment” to denote a vertex and an open edge,
respectively.

Let G be a semi-graph as follows:

v1

e1

e2

e3 v2 e4G:

Then we see v(G) = {v1, v2}, ecl(G) = {e1, e2, e3}, eop(G) = {e4}, ζG(e1) = {v1, v2},
ζG(e2) = {v1, v2}, ζG(e3) = {v1}, and ζG(e4) = {v2, {v(G)}}. Moreover, we have
elp(G) = {e3}, vG(e1) = {v1, v2}, vG(e2) = {v1, v2}, vG(e3) = {v1}, vG(e4) = {v2},
eG(v1) = {e1, e2, e3}, and eG(v2) = {e1, e2, e4}.

2.1.2. Let G′ be a connected semi-graph. We shall say G′ a sub-semi-graph of G if either
G′ = {e} for some e ∈ e(G) or the following conditions hold:

(i) v(G′) 6= ∅ and v(G′) ⊆ v(G).
(ii) ecl(G′) ⊆ ecl(G) is the subset of closed edges of G such that v(e) ⊆
v(G′).
(iii) eop(G′) ⊆ e(G)\ecl(G′) is the subset of edges ofG such that #(vG(e)∩
v(G′)) = 1.

Note that the definition of G′ implies that G′ can be completely determined by v(G′) if
v(G′) 6= ∅.

The conditions (ii), (iii) imply that, if e ∈ elp(G) is a loop and vG(e) ⊆ v(G′), then
e ∈ ecl(G′). If G′ = {e} for some e ∈ e(G), we will use e to denote G′. Moreover, there
exists a natural injection G′ ↪→ G, and G′ can be regarded as a topological subspace of G
via this injection.

Suppose that G′ is a sub-semi-graph of G such that v(G′) 6= ∅. Let L ⊆ ecl(G′) be
a subset of closed edges of G′ such that G′ \ L (i.e., removing L from G′) is connected.

For any e
def
= {b1e, b2e} ∈ L, we put ei

def
= {b1ei , b2ei}, i ∈ {1, 2}, and shall call ei the i-edge



GENERALIZED HASSE-WITT INVARIANTS WITH PRESCRIBED RAMIFICATIONS 7

associated to e. We shall say that G′
L is the semi-graph associated to G′ and L if the

following conditions hold:

(i) v(G′
L)

def
= v(G′).

(ii) eop(G′
L)

def
= eop(G′) ∪ {e1, e2}e∈L such that ζG

′
L(e) = ζG

′
(e) if e ∈

eop(G′), that ζG
′
L(e1)

def
= {ζG′

(b1e), {v(G′
L)}} if e1 is the 1-edge associated to

e ∈ L, and that ζG
′
L(e2)

def
= {ζG′

(b2e), {v(G′
L)}} if e2 is the 2-edge associated

to e ∈ L.
(iii) ecl(G′

L)
def
= ecl(G′)\L such that ζG

′
L(e)

def
= ζG

′
(e) for all e ∈ ecl(G′)\L.

Then we have a natural map of semi-graphs

δ(G′,L) : G
′
L → G′

which is defined as follows:

• δ(G′,L)(v) = v for v ∈ v(G′
L).

• δ(G′,L)(e) = e for e ∈ e(G′
L) \ {e1, e2}e∈L.

• δ(G′,L)(e
i) = e, i ∈ {1, 2}, for i-edge associated to e ∈ L.

Moreover, we put δG′
L
: G′

L

δ(G′,L)→ G′ ↪→ G the composition of maps of semi-graphs. Note
that δG′

L
|G′

L\{e1,e2}e∈L
is an injection.

Remark. The motivations of the above notation concerning semi-graphs arise from the
dual semi-graphs of pointed stable sub-curves (see 2.2.3 below).

Example 2.2. We give some examples of semi-graphs to explain the above notation. We
use the notation “ • ” and “ ◦ ” to denote a vertex and an open edge, respectively.

Let G be a semi-graph constructed in Example 2.1, and let G′ be a sub-semi-graph of

G such that v(G′) = {v1}, and L
def
= {e1} ⊆ ecl(G′) a subset of edges of G′ and {e11, e21}

the set of 1-edge and 2-edge associated to e1. Then we have the following:

v1

e3

e2

e1G′:

v1

e21

e11

e3

e2

G′
L:

2.2. Pointed stable curves and their admissible fundamental groups.

2.2.1. Let p be a prime number, and let

X• = (X,DX)

be a pointed stable curve over an algebraically closed field k of characteristic p, where
X denotes the underlying curve, DX denotes a finite set of marked points satisfying [K,
Definition 1.1 (iv)]. Write gX for the arithmetic genus (or genus for short) of X and nX
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for the cardinality #(DX) of DX . We call the pair (gX , nX) the topological type (or type
for short) of X•.

Recall that the dual semi-graph ΓX•
def
= (v(ΓX•), e(ΓX•), ζΓX• ) of X• is a semi-graph

associated to X• defined as follows: (i) v(ΓX•) is the set of irreducible components of X.
(ii) eop(ΓX•) is the set of marked points DX . (iii) e

cl(ΓX•) is the set of singular points (or
nodes) Xsing of X. (iv) ζΓX• (e), e ∈ eop(ΓX•), consists of the set {v(ΓX•)} and the unique
irreducible component containing e. (v) ζΓX• (e), e ∈ ecl(ΓX•), consists of the irreducible
components containing e.

2.2.2. By choosing a base point x ∈ X\(Xsing∪DX), we have the admissible fundamental
group πadm

1 (X•, x) of X• (see [Y3, §2.1.5] for definitions of (Galois) admissible coverings
and (Galois) multi-admissible coverings, and [Y5, §1.2] for a definition of admissible fun-
damental groups). Since we only focus on the isomorphism class of πadm

1 (X•, x) in the
present paper, for simplicity of notation, we omit the base point and denote by

ΠX•

the admissible fundamental group πadm
1 (X•, x). Note that, by the definition of admissible

coverings ([Y3, §2.1.5]), the admissible fundamental group of X• is naturally isomorphic
to the tame fundamental group of X• when X• is smooth over k. Moreover, the structure
of the maximal prime-to-p quotient of ΠX• is well-known, and is isomorphic to the prime-
to-p completion of the following group

〈a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1〉.

We denote by Πét
X• the étale fundamental group of the underlying curve X of X•. We

have the following natural continuous surjective homomorphisms (for suitable choices of
base points)

ΠX• ↠ Πét
X• .

2.2.3. We define pointed stable curves associated to various semi-graphs introduced in
2.1.2. Let Γ ⊆ ΓX• be a sub-semi-graph (2.1.2). Write XΓ for the semi-stable sub-
curve of X (i.e., a closed subscheme of X which is a semi-stable curve) whose irreducible
components are the irreducible components corresponding to the vertices of Γ, and whose
nodes are the nodes corresponding to the closed edges of Γ. Moreover, write DXΓ

for
the set of closed points XΓ ∩ {xe}e∈eop(Γ)⊆e(ΓX• ), where xe ∈ X denotes the closed point
corresponding to e ∈ e(ΓX•). We define a pointed stable curve of type (gΓ, nΓ) over k to
be

X•
Γ = (XΓ, DXΓ

).

Note that the dual semi-graph of X•
Γ is naturally isomorphic to Γ. We shall call X•

Γ the
pointed stable curve of type (gΓ, nΓ) associated to Γ, and denote by ΠX•

Γ
the admissible

fundamental group of X•
Γ.

Let Γ ⊆ ΓX• be a sub-semi-graph and L ⊆ ecl(Γ) such that Γ \ L is connected. Let

ΓL be the semi-graph associated to Γ and L (2.1.2), and NodeL(XΓ) ⊆ Xsing
Γ the set of

nodes of XΓ corresponding to L. Write norL : XΓL
→ XΓ for the normalization of XΓ at

NodeL(XΓ), and put DXΓL

def
= nor−1

L (DXΓ
∪NodeL(XΓ)). We define a pointed stable curve

of type (gΓL
, nΓL

) to be

X•
ΓL

= (XΓL
, DΓL

).

Note that the dual semi-graph of X•
ΓL

is naturally isomorphic to ΓL. We shall call X•
ΓL

the
pointed stable curve of type (gΓL

, nΓL
) associated to ΓL. We denote by ΠX•

ΓL
the admissible
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fundamental group of X•
ΓL
. Moreover, we have the following natural outer injections (i.e.,

up to inner automorphism of ΠX•)

ΠX•
ΓL

↪→ ΠX•
Γ
↪→ ΠX• .

Let v ∈ v(ΓX•) and Γv ⊆ ΓX• the sub-semi-graph such that v(Γv) = {v}. Let elp(Γv)
be the set of loops of Γv (2.1.1). Note that in this situation, we have elp(Γv) = ecl(Γv).

Write Xv for the irreducible component corresponding to v and norv : X̃v → Xv for the

normalization of Xv. We put DX̃v

def
= nor−1

v

(
(DX ∩ Xv) ∪ (Xsing ∩ Xv)

)
. Then we have

X̃v = X(Γv)elp(Γv)
and DX̃v

= DX(Γv)elp(Γv)
. Moreover, we shall call

X̃•
v

def
= (X̃v, DX̃v

) = X•
(Γv)elp(Γv)

the smooth pointed stable curve of type (gv, nv)
def
= (g(Γv)elp(Γv)

, n(Γv)elp(Γv)
) associated to v.

We denote by ΠX̃•
v
the admissible fundamental group of X̃•

v . Suppose Γv ⊆ Γ. Then we
have the following natural outer injections

ΠX̃•
v
↪→ ΠX•

Γv
↪→ ΠX•

Γ
↪→ ΠX• .

Example 2.3. Suppose that the dual semi-graph ΓX• is equal to the semi-graph con-
structed in Example 2.1. Then we have that Γv1 = ΓX•

Γv1
, ΓX̃•

v1
= ΓX•

(Γv1 )
elp(Γv1 )

are equal

to the semi-graphs G′, G′
L, constructed in Example 2.2, respectively.

2.3. Generalized Hasse-Witt invariants.

2.3.1. Notation and Settings. We maintain the notation and the settings introduced in
2.2.1 and 2.2.2.

2.3.2. Let n be an arbitrary positive natural number prime to p and µn ⊆ k× the group of
nth roots of unity. By fixing a primitive nth root ζ, we may identify µn with Z/nZ via the
homomorphism ζ i 7→ i. Let α ∈ Hom(Πab

X• ,Z/nZ). We denote by X•
α = (Xα, DXα)→ X•

the Galois multi-admissible covering ([Y3, §2.1.5]) with Galois group Z/nZ corresponding
to α.

We put Hα
def
= H1

ét(Xα,Fp) ⊗Fp k. Then Hα is a finitely generated k[µn]-module in-
duced by the natural action of µn on Xα, moreover, it admits the following canonical
decomposition

Hα =
⊕
i∈Z/nZ

Hα,i,

where ζ ∈ µn acts on Hα,i as the ζ i-multiplication. We shall call

γα,i
def
= dimk(Hα,i), i ∈ Z/nZ,

a generalized Hasse-Witt invariant (see [B], [N], [T2] for the case of étale or tame coverings
of smooth pointed stable curves) of the cyclic multi-admissible covering X•

α → X•. In
particular, we shall call γα,1 the first generalized Hasse-Witt invariant of the cyclic multi-
admissible covering X•

α → X•.

2.3.3. Write Z[DX ] for the group of divisors whose supports are contained in DX . Note
that Z[DX ] is a free Z-module with basis DX . We put

Z/nZ[DX ]
def
= Z[DX ]⊗ Z/nZ,

c′n : Z/nZ[DX ]→ Z/nZ, D mod n 7→ deg(D) mod n.
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Write (Z/nZ)∼ for the set {0, 1, . . . , n − 1} and (Z/nZ)∼[DX ] for the subset of Z[DX ]
consisting of the elements whose coefficients are contained in (Z/nZ)∼. Then we have a

natural bijection ιn : (Z/nZ)∼[DX ]
∼→ Z/nZ[DX ]. We put

(Z/nZ)∼[DX ]
0 def
= ι−1

n (ker(c′n)).

Note that we have n|deg(D) for all D ∈ (Z/nZ)∼[DX ]
0. Moreover, we put

s(D)
def
=

deg(D)

n
∈ Z≥0.

Since every D ∈ (Z/nZ)∼[DX ]
0 can be regarded as a ramification divisor associated to

some cyclic admissible covering, the structure of the maximal prime-to-p quotient of ΠX•

(2.2.2) implies the following:

0 ≤ s(D) ≤
{

0, if nX ≤ 1,
nX − 1, if nX ≥ 2.

2.3.4. Let H ⊆ ΠX• be an arbitrary open subgroup and X•
H = (XH , DXH

) the pointed
stable curve over k corresponding to H. We put

X̂
def
= lim←−

H⊆ΠX• open

XH , DX̂

def
= lim←−

H⊆ΠX• open

DXH
, ΓX̂•

def
= lim←−

H⊆ΠX• open

ΓX•
H
.

We call X̂• = (X̂,DX̂) the universal admissible covering of X• corresponding to ΠX• , and

ΓX̂• the dual semi-graph of X̂•. Note that Aut(X̂•/X•) = ΠX• , and that ΓX̂• admits a
natural action of ΠX• .

Let e ∈ eop(ΓX•). Write ê ∈ eop(ΓX̂•) for an open edge over e (i.e., the image of ê of the
natural surjection DX̂ ↠ DX is e) and xe ∈ DX for the marked point corresponding to e.
We denote by Iê ⊆ ΠX• the stabilizer subgroup of ê. The definition of admissible coverings

([Y3, §2.1.5]) implies that Iê is (outer) isomorphic to the Galois group Gal(K̂t
xe/K̂xe)

∼=
Ẑ(1)p′ , where K̂xe denotes the quotient field of ÔX,xe , K̂t

xe denotes a maximal tamely

ramified extension of K̂xe , and Ẑ(1)p′ denotes the maximal prime-to-p quotient of Ẑ(1).
Then we have an injection φê : Iê ↪→ Πab

X• . Since the image of φê depends only on e,
we may write Ie for the image φê(Iê). Moreover, the structures of maximal prime-to-p
quotients of admissible fundamental groups of pointed stable curves (2.2.2) imply that
the following holds: There exists a generator se of Ie for each e ∈ eop(ΓX•) such that∑

e∈eop(ΓX• )

se = 0

in Πab
X• . In the remainder of the present paper, we fix a set of generators {se}e∈eop(ΓX• ) of

Ie satisfying the above condition. Then we have the following definitions:

Definition 2.4. (i) For α ∈ Hom(Πab
X• ,Z/nZ), we put

Dα
def
=

∑
e∈eop(ΓX• )

α(se)
∼xe,

where α(se)
∼ denotes the element of (Z/nZ)∼ corresponding to α(se) via the natural

bijection (Z/nZ)∼ ∼→ Z/nZ. Note that we have Dα ∈ (Z/nZ)∼[DX ]
0. On the other hand,

for each D ∈ (Z/nZ)∼[DX ]
0, we put

RevadmD (X•)
def
= {α ∈ Hom(Πab

X• ,Z/nZ) | Dα = D},

γ(α,D)
def
= γα,1 (2.3.2).
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(ii) Let t ∈ N be an arbitrary positive natural number, and n
def
= pt − 1. For u ∈

{0, . . . , n}, we write

u =
t−1∑
r=0

urp
r

for the p-adic expansion with ur ∈ {0, . . . , p − 1}. We identify {0, . . . , t − 1} with Z/tZ
naturally. Then {0, . . . , t − 1} admits an additional structure induced by the natural
additional structure of Z/tZ. We put

u(i) def
=

t−1∑
r=0

ui+rp
r, i ∈ {0, . . . , t− 1}.

Let D ∈ Z[DX ] be an effective divisor on X such that ordx(D) ≤ n for all x ∈ DX and
n|deg(D). For i ∈ {0, . . . , t− 1}, we put

D(i) def
=

∑
x∈DX

(
ordx(D)

)(i)
x ∈ Z[DX ].

We shall call D a Frobenius stable effective divisor on X if

deg(D) = deg(D(i))

holds for each i ∈ {0, . . . , t− 1}.

2.4. Generalized Hasse-Witt invariants via line bundles. The generalized Hasse-
Witt invariants can be also described in terms of line bundles and divisors.

2.4.1. Notation and Settings. We maintain the notation and the settings introduced in
2.2.1 and 2.2.2.

2.4.2. Let n ∈ N be an arbitrary natural number prime to p. We denote by Pic(X) the
Picard group of X. Consider the following complex of abelian groups:

Z[DX ]
an→ Pic(X)⊕ Z[DX ]

bn→ Pic(X),

where an(D) = ([OX(−D)], nD), bn(([L], D)) = [Ln ⊗OX(D)]. We denote by

PX•,n
def
= ker(bn)/Im(an)

the homology group of the complex. Moreover, we have the following exact sequence

0→ Pic(X)[n]
a′n→PX•,n

b′n→ Z/nZ[DX ]
c′n→ Z/nZ,

where Pic(X)[n] denotes the n-torsion subgroup of Pic(X), and

a′n([L]) = ([L], 0) mod Im(an), b′n(([L], D)) mod Im(an)) = D mod n,

c′n(D mod n) = deg(D) mod n.

We shall define

P̃X•,n ⊆ ker(bn) ⊆ Pic(X)⊕ Z[DX ]

to be the inverse image of (Z/nZ)∼[DX ]
0(2.3.3) ⊆ (Z/nZ)∼[DX ] ⊆ Z[DX ] under the

projection ker(bn) → Z[DX ]. It is easy to see that PX•,n and P̃X•,n are free Z/nZ-
modules with rank 2gX + nX − 1 if nX 6= 0 and with rank 2gX if nX = 0, and that there

is a natural isomorphism P̃X•,n
∼→PX•,n.

On the other hand, let α ∈ Hom(Πab
X• ,Z/nZ) and f •

α : X•
α → X• the Galois multi-

admissible covering over k with Galois group Z/nZ corresponding to α. By fixing a
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primitive nth root ζ, we may identify µn with Z/nZ via the homomorphism ζ i 7→ i. Then
we see

fα,∗OXα
∼=

⊕
i∈Z/nZ

Lα,i,

where locally Lα,i is the eigenspace of the natural action of i with eigenvalue ζ i. Moreover,
by similar arguments to the arguments given in [T2, Proposition 3.5], we have the following
isomorphism:

Hom(Πab
X• ,Z/nZ) ∼→ P̃X•,n, α 7→ ([Lα,1], Dα).

Then every element of P̃X•,n induces a Galois multi-admissible covering of X• over k
with Galois group Z/nZ.

2.4.3. In 2.4.3, we suppose n
def
= pt − 1 for some positive natural number t ∈ N. Let

([L], D) ∈ P̃X•,n. We fix an isomorphism L⊗n ∼= OX(−D). Note that D is an effective
divisor on X. We have the following composition of morphisms of line bundles

L pt→ L⊗pt = L⊗n ⊗ L ∼→ OX(−D)⊗ L ↪→ L.

This composite morphism induces a homomorphism φ([L],D) : H
1(X,L)→ H1(X,L). We

denote by

γ([L],D)
def
= dimk

(⋂
r≥1

Im(φr([L],D))
)
,

and write αL ∈ Hom(Πab
X• ,Z/nZ) for the element corresponding to ([L], D) via the iso-

morphism Hom(Πab
X• ,Z/nZ) ∼→ P̃X•,n. Then we have the following lemma:

Lemma 2.5. We maintain the notation and the settings introduced above. Then the
following statements hold:

(i) We have γ([L],D) = γαL,1 (2.3.2). Moreover, since DαL = D, we have

γ([L],D) = γ(αL,D) (
def
= γαL,1).

(ii) We have

γ(αL,D) ≤ dimk(H
1(X,L)) =

 gX , if ([L], D) = ([OX ], 0),
gX − 1, if s(D) = 0, [L] 6= [OX ],
gX + s(D)− 1, if s(D) ≥ 1,

where s(D) is the natural number defined in 2.3.3.

Proof. See [Y3, Lemma 2.6 and Lemma 2.7]. □

We shall say that the generalized Hasse-Witt invariant γ(αL,D) can attain maximum if

γ(αL,D) = dimk(H
1(X,L))

holds.

2.5. Raynaud-Tamagawa theta divisors. We recall the theory of Raynaud-Tamagawa
theta divisors which was introduced by Raynaud in the case of étale coverings ([R1]), and
which was generalized by Tamagawa in the case of tame coverings ([T2]).

2.5.1. Notation and Settings. We maintain the notation and the settings introduced in
2.4.1. Moreover, we suppose that X• is smooth over k.
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2.5.2. Let Fk be the absolute Frobenius morphism on Spec k, FX/k the relative Frobenius

morphism X → X1
def
= X ×k,Fk

k over k, and F t
k

def
= Fk ◦ · · · ◦ Fk. We put Xt

def
= X ×k,F t

k
k,

and define a morphism F t
X/k : X → Xt over k to be F t

X/k

def
= FXt−1/k ◦ · · · ◦ FX1/k ◦ FX/k.

Let ([L], D) ∈ P̃X•,n, and let Lt be the pulling back of L by the natural morphism

Xt → X. Note that L and Lt are line bundles of degree −s(D) (2.3.3). We put BtD
def
=

(F t
X/k)∗

(
OX(D)

)
/OXt and

ED
def
= BtD ⊗ Lt.

Let JXt be the Jacobian variety of Xt and LXt a universal line bundle on Xt×JXt . Let
prXt

: Xt × JXt → Xt and prJXt
: Xt × JXt → JXt be the natural projections. We denote

by F the coherent OXt-module pr∗Xt
(ED)⊗ LXt , and by

χF
def
= dimk(H

0(Xt ×k k(y),F ⊗ k(y)))− dimk(H
1(Xt ×k k(y),F ⊗ k(y)))

for each y ∈ JXt , where k(y) denotes the residue field of y. Note that since prJXt
is flat, χF

is independent of y ∈ JXt . Write (−χF)
+ for max{0,−χF}. We denote by ΘED ⊆ JXt the

closed subscheme of JXt defined by the (−χF)
+th Fitting ideal Fitt(−χF )+

(
R1(prJXt

)∗(F)
)
.

The definition of ΘED is independent of the choice of Lt. Moreover, we have codim(ΘED) ≤
1.

We shall call

ΘED ⊆ JXt

the Raynaud-Tamagawa theta divisor associated to ED if there exists a line bundle L′
t of

degree 0 on Xt such that

0 = min{dimk(H
0(Xt, ED ⊗ L′

t)), dimk(H
1(Xt, ED ⊗ L′

t))}.

The following fundamental theorem of theta divisors was proved by Raynaud when s(D) =
0 ([R1, Théorème 4.1.1]), and by Tamagawa when s(D) ≤ 1 ([T2, Theorem 2.5]).

Theorem 2.6. Suppose that s(D) ∈ {0, 1} (2.3.3). Then the Raynaud-Tamagawa theta
divisor associated to ED exists.

2.5.3. Let N be an arbitrary non-negative integer. We put

C(N)
def
=

{
0, if N = 0,
3N−1N !, if N 6= 0.

Then we have the following proposition.

Proposition 2.7. We maintain the notation introduced above. Suppose that

n
def
= pt − 1 > C(gX) + 1,

and that the Raynaud-Tamagawa theta divisor associated to ED exists. Then there exists
a line bundle I of degree 0 on X such that [I] 6= [OX ], that [I⊗n] = [OX ], and that

γ([L⊗I],D) = dimk(H
1(X,L ⊗ I)) =

 gX , if ([L], D) = ([OX ], 0),
gX − 1, if s(D) = 0, [L] 6= [OX ],
gX + s(D)− 1, if s(D) ≥ 1.

Namely, the first generalized Hasse-Witt invariant (2.3.2) of the Galois multi-admissible
covering with Galois group Z/nZ corresponding to ([L ⊗ I], D) (2.4.2) can attain maxi-
mum.

Proof. See [Y3, Proposition 2.10]. □



14 YU YANG

3. Maximum generalized Hasse-Witt invariants with prescribed
ramifications

In this section, we prove that the generalized Hasse-Witt invariants of cyclic admissible
coverings with certain prescribed ramifications can attain maximum. The main result of
the present section is Theorem 3.5.

3.1. Minimal quasi-trees. In [Y3], we introduced a kind of semi-graph which we call “a
minimal quasi-tree”, and which plays an important role for studying maximum generalized
Hasse-Witt invariants of cyclic admissible coverings. Roughly speaking, the key point
is that we can completely control the ramifications of admissible coverings at nodes of
pointed stable curves by using minimal quasi-trees. For the convenience of readers, we
recall the definition of minimal quasi-trees and give some examples.

3.1.1. Let W • be a pointed stable curve of type (gW , nW ) over an algebraically closed
field l and ΓW • the dual semi-graph of W •. We have the following:

Definition 3.1. Let Γ′ be a sub-semi-graph (2.1.2) of ΓW • and L ⊆ ecl(Γ′) \ elp(Γ′)
(see 2.1.1 for elp(Γ′)). We shall call the semi-graph Γ′

L associated to Γ′ and L (2.1.2) a
quasi-tree associated to DW if the following conditions are satisfied:

• Γ′
L \ elp(Γ′

L) is a tree (i.e., the Betti number is 0, see 2.1.1).
• eop(ΓW •) is contained in eop(Γ′

L).

Moreover, we shall call a semi-graph
ΓDW

a minimal quasi-tree associated to DW if either ΓDW
= ∅ when nW = 0 or the following

conditions are satisfied when nW 6= 0:

• ΓDW
is a quasi-tree associated to DW .

• Suppose that Γ′′ is a quasi-tree associated to DW such that Γ′′ ⊆ ΓDW
. Then we

have Γ′′ = ΓDW
.

Note that by the definition of ΓDW
, we have that ΓDW

\ elp(ΓDW
) is a tree.

In particular, when elp(ΓW •) = ∅, minimal quasi-trees are very simple. Namely, ΓDW
is

a minimal tree-like semi-graph contained in ΓW • such that ΓDW
contains all of the open

edges of ΓW • .

Remark 3.1.1. For any pointed stable curves, minimal quasi-tree associated to the sets
of marked points always exist (see [Y3, §4.4.5]).

3.1.2. We give an example concerning minimal quasi-trees.

Example 3.2. (a) Let W • be a pointed stable curve over k such that the following
conditions hold: (i) The set of irreducible components of W is {Wv1 ,Wv2 ,Wv3}; (ii)
DW = {wb1 , wb2}; (iii) The set of nodes is {wc, wa1 , wa2 , wa3}; (iv) Wv1 is a singular
curve with the unique node wc; (v) wb1 ∈ Wv1 and wb2 ∈ Wv2 ; (vi) wa1 , wa2 ∈ Wv1 ∩Wv2 ;
(vii) wa3 ∈ Wv2 ∩Wv3 . We use the notation “•” and “◦” to denote a node and a marked
point, respectively. Then W • is as follows:

Wv1 Wv3

Wv2

wc
wb1 wb2

wa1

wa2

wa3W •:
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The dual semi-graph ΓW • of W • such that the following conditions hold: (i) v(ΓW •)
def
=

{v1, v2, v3}; (ii) ecl(ΓW •) \ elp(ΓW •)
def
= {a1, a2, a3} such that a1 and a2 abut to v1 and

v2, respectively, and that a3 abuts to v2 and v3; (iii) e
lp(ΓW •)

def
= {c} and c abuts to v1;

(iv) eop(ΓW •)
def
= {b1, b2} such that b1 and b2 abut to v1 and v2, respectively. We use

the notation “ • ” and“ ◦ with a line segment” to denote a vertex and an open edge,
respectively. Then ΓW • is as follows:

v1

a1

a2

c

b1

v2 a3 v3

b2

ΓW • :

(b) We obtain a minimal quasi-tree ΓDW

def
= Γ associated to DW is as follows:

v1 a2c

b1

a11

v2

a21

a3

b2

ΓDW

def
= Γ:

On the other hand, the pointed stable curve W •
Γ associated to Γ (2.2.3) is as follows:

wa11 wb2
wa21 wa3

Wv1

Wv2wc
wb1

W •
Γ :

(c) Next, we give an example Γ′ ⊆ ΓW • , which is a tree containing all open edges of
ΓW • , and which is not a (minimal) quasi-tree associated to DW

v1 a2

b1

v2

b2

Γ′:

If Γ′′ is a quasi-tree, then by the definition of quasi-trees (Definition 3.1), Γ′ is equal to a
semi-graph Γ′′

L′′ (2.1.2) associated to a sub-semi-graph Γ′′ of ΓW • and a subset of closed

edges L′′ ⊆ ecl(Γ′′) \ elp(Γ′′). Thus, the definition of Γ′′
L′′ implies eΓ

′′
L′′ (v1) = {c, b1, a11, a2}.

This means that Γ′ is not a quasi-tree.

3.2. Maximum generalized Hasse-Witt invariants.

3.2.1. Notation and Settings. We maintain the notation introduced in 2.2.1 and 2.2.2.
Let ΓDX

be a minimal quasi-tree associated to DX . Then by definition, there exist a
sub-semi-graph Γ′ of ΓX• and a subset of closed edges L ⊆ ecl(Γ′) \ elp(Γ′) such that
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ΓDX
= Γ′

L. For simplicity, we denote by Γ
def
= ΓDX

. Moreover, let X•
Γ = (XΓ, DXΓ

) be the

pointed stable curve of type (gΓ, nΓ) over k associated to Γ(
def
= Γ′

L) (2.2.3). Note that we
have eop(ΓX•) ⊆ eop(Γ) (i.e., DX ⊆ DXΓ

).

Let t ∈ N be a positive natural number, n
def
= pt − 1, and D ∈ Z[DX ] ⊆ Z[DXΓ

] an
effective divisor on X with degree (nX−1)n such that ordx(D) ≤ n for all x ∈ DX . Write
(see 2.3.3 for (Z/nZ)∼[DX ]

0)

D ∈ (Z/nZ)∼[DX ]
0

for the image of D via the composition of maps Z[DX ] ↠ Z/nZ[DX ]
ι−1
n
∼→ (Z/nZ)∼[DX ],

where the second arrow is the map defined in 2.3.3. Moreover, since #
(
Supp(D)

)
∈

{nX − 1, nX}, we have (see 2.3.3 for s(D))

s(D) =

{
#
(
Supp(D) \ {x ∈ DX | ordx(D) = n}

)
−1, if #

(
Supp(D)

)
= nX ,

0, if #
(
Supp(D)

)
= nX − 1.

Note that we have D = D and s(D) = s(D) = nX − 1 if D ∈ (Z/nZ)∼[DX ]
0.

3.2.2. We maintain the notation and the settings introduced in 3.2.1. We introduce a
condition concerning the effective divisor D which plays a central role in the remainder
of the present paper.

Condition 3.3. Suppose nX > 0. There exist a positive natural number m ∈ N and a
set of effective divisors {Dj ∈ Z[DX ]}j∈{1,...,m} on X such that the following conditions
are satisfied:

(i) deg(Dj) = (nX − 1)(ptj − 1), where tj ∈ N is a positive natural number.
(ii) ordx(Dj) ≤ ptj − 1 for all x ∈ DX .
(iii) #

(
{x ∈ DX | ordx(Dj) = ptj − 1}

)
≥ nX − 2.

(iv) D
def
= D1 + pt1D2 + pt1+t2D3 + · · ·+ p

∑m−1
j=1 tjDm.

Note that if D satisfies Condition 3.3, we see that t =
∑m

j=1 tj, and that Dj, j ∈
{1, . . . ,m}, is Frobenius stable (see Definition 2.4 (ii)). Then D and D are also Frobenius
stable.

3.2.3. Firstly, we have the following lemma:

Lemma 3.4. We maintain the notation and the settings introduced in 3.2.1. Suppose that
s(D) ≥ 1, that n > max{C(gX) + 1,#(Xsing) + nX} (see 2.5.3 for C(gX)), and that D
satisfies Condition 3.3. Then there exists an element αΓ ∈ Revadm

D
(X•

Γ) \ {0} (Definition
2.4 (i)) such that

γ(αΓ,D) = gΓ + s(D)− 1.

Proof. We divide the proof of the lemma into the following parts:

Constructions of ramification divisors for irreducible components. Firstly, we construct
explicitly ramification divisors on irreducible components of X•

Γ induced by the divisor D
on XΓ.

Let v ∈ v(Γ) be an arbitrary vertex of Γ, Xv the irreducible component of XΓ corre-

sponding to v, and π0(v) the set of connected components of {XΓ \Xv}, where {XΓ \Xv}
denotes the topological closure of XΓ \ Xv in XΓ. We denote by DXv

def
= (DXΓ

∩ Xv) ∪(⋃
C∈π0(v)(C ∩Xv)

)
and put X•

v = (Xv, DXv). Then X•
v is a pointed stable curve of type
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(gXv , nXv) over k. Note that X•
v = X̃•

v if Xv is smooth over k, where X̃•
v denotes the

smooth pointed stable curve associated to v (see 2.2.3).
Let C ∈ π0(v) be an arbitrary connected component. Since Γ is a minimal quasi-tree

associated to DX , we have #(C ∩Xv) = 1. Then we shall put

xC
def
= C ∩Xv, C ∈ π0(v).

Note that C ∩{XΓ \ C} = C ∩Xv = {xC}. We denote by DC
def
= (DXΓ

∩C)∪{xC}. Then
C• = (C,DC) is a pointed stable curve of type (gC , nC) over k. We put

D′
Xv

def
= DXv \ (DXΓ

\DX) =
( ⋃
C∈π0(v)

{xC}
)
∪ (DX ∩Xv), n′

Xv

def
= #(D′

Xv
),

D′
C

def
= DC \ (DXΓ

\DX) = {xC} ∪ (DX ∩ C), n′
C

def
= #(D′

C).

We see immediately

n′
Xv

= nX + 2#(π0(v))−
∑

C∈π0(v)

n′
C .

Let j ∈ {1, . . . ,m} and {Dj}j∈{1,...,m} the set of effective divisors introduced in Condi-
tion 3.3. We put

dvxC ,j
def
=

{
ptj − 1, if dx,j = ptj − 1 for all x ∈ DX ∩ C,[∑

x∈DX∩C ordx(Dj)
]
, otherwise,

where [(−)] denotes the image of (−) of the natural surjection Z ↠ Z/(ptj−1)Z. Moreover,
we put

Dv,j
def
=

∑
C∈π0(v)

dvxC ,jxC +
∑

x∈DX∩Xv

ordx(Dj)x ∈ Z[D′
Xv
],

Dv
def
= Dv,1 + pt1Dv,2 + pt1+t2Dv,3 + · · ·+ p

∑m−1
j=1 Dv,m ∈ Z[D′

Xv
].

Note that #
(
{x ∈ DX | ordx(Dj) = ptj − 1}

)
≥ nX − 2 (i.e., Condition 3.3 (iii)) implies

#
(
{x ∈ D′

Xv
| ordx(Dv,j) = ptj − 1}

)
≥ n′

Xv
− 2.

Calculations of degrees of ramification divisors. Next, we calculate the degrees of Dv,j ,
j ∈ {1, . . . ,m}, and Dv. Let C ∈ π0(v) and j ∈ {1, . . . ,m}. We shall put

QC,j
def
= (ptj − 1− dvxC ,j)xC +

∑
x∈DX∩C

ordx(Dj)x ∈ Z[D′
C ],

QC
def
= QC,1 + pt1QC,2 + pt1+t2QC,3 + · · ·+ p

∑m−1
j=1 QC,m ∈ Z[D′

C ].

Moreover, deg(Dj) = (nX − 1)(ptj − 1) (i.e., Condition 3.3 (i)) and the definition of dvxC ,j
imply ∑

x∈DX\D′
C

ordx(Dj) + dvxC ,j + (ptj − 1− dvxC ,j) +
∑

x∈DX∩C

ordx(Dj) = nX(p
tj − 1),

(ptj − 1− dvxC ,j) +
∑

x∈DX∩C

ordx(Dj) ≤ (n′
C − 1)(ptj − 1),∑

x∈DX\D′
C

ordx(Dj) + dvxC ,j ≤ (nX − n′
C + 1)(ptj − 1).

Then we have deg(QC,j) = (n′
C − 1)(ptj − 1).

On the other hand, we see

(nX +#(π0(v))− 1)(ptj − 1) = deg(Dv,j) +
∑

C∈π0(v)

deg(QC,j)
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= deg(Dv,j) +

( ∑
C∈π0(v)

n′
C −#(π0(v))

)
(ptj − 1).

Then we obtain

deg(Dv,j) = (nX + 2#(π0(v))−
∑

C∈π0(v)

n′
C − 1)(ptj − 1)

= (n′
Xv
− 1)(ptj − 1),

and
deg(Dv) = (n′

Xv
− 1)n.

Constructions of Galois multi-admissible coverings for X•
v . Next, we construct Galois

multi-admissible coverings for irreducible components with ramifications divisors con-
structing above.

Let v ∈ v(Γ) and j ∈ {1, . . . ,m}. Write Dv ∈ (Z/nZ)∼[D′
Xv
]0 for the image of Dv

via the composition of maps Z[D′
Xv
] ↠ Z/nZ[D′

Xv
]
ι−1
n
∼→ (Z/nZ)∼[D′

Xv
], where the second

arrow is the map defined in 2.3.3. We denote by

Bv,j
def
= Dv,j|Supp(Dv)

.

Then the constructions of Dv and Dv,j imply the following conditions are satisfied:

• deg(Bv,j) = s(Dv)(p
tj − 1).

• ordx(Bv,j) ≤ ptj − 1 for all x ∈ Supp(Dv).
• #

(
{x ∈ Supp(Dv) | ordx(Bv,j) = ptj − 1}

)
≥ s(Dv)− 1.

• Dv = Bv,1 + pt1Bv,2 + · · ·+ p
∑m−1

j=1 Bv,m

Let v ∈ v(Γ) and X̃•
v the smooth pointed stable curve of type (gv, nv) over k. Write

nomv : X̃v → Xv for the normalization morphism. We use the notation D̃v to denote

nom∗(Dv). Note that D̃v and Dv are equal via the isomorphism X̃v \ nom−1
v (Xsing

v )
∼→

Xv \ Xsing
v . In particular, we have s(D̃v) = s(Dv). Let LD̃v

be a line bundle on X̃v

such that L⊗n
D̃v

∼= OX̃v
(−D̃v). Write LD̃v ,t

for the pulling back line bundle of LD̃v
by the

natural morphism X̃v,t×k,F t
k
k → X̃v, where Fk denotes the absolute Frobenius morphism

on Spec k. Then by applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 3.13]
for Dv and Bv,j , j ∈ {1, . . . ,m}, the Raynaud-Tamagawa theta divisor associated to the
vector bundle (2.5.2)

Bt
D̃v
⊗ LD̃v ,t

exists. Moreover, by Proposition 2.7, there exists α̃v ∈ Revadm
D̃v

(X̃•
v ) such that γ(α̃v ,D̃v)

=

gv + s(Dv)− 1.

We put f̃ •
v : Ỹ •

v → X̃•
v , v ∈ v(Γ), the Galois multi-admissible covering over k induced by

α̃v whose Galois group is isomorphic to Z/nZ. Then f̃ •
v induces a Galois multi-admissible

covering
f •
v : Y •

v → X•
v , v ∈ v(Γ),

over k whose Galois group is isomorphic to Z/nZ. Let ΠX•
v
,ΠX̃•

v
be the admissible fun-

damental groups of X•
v , X̃

•
v , respectively, and αv ∈ Hom(Πab

X•
v
,Z/nZ) an element induced

by f •
v satisfying the composition of the homomorphisms Πab

X̃•
v
→ Πab

X•
v

αv→ Z/nZ is equal to

α̃v (see 2.2.3 for the first arrow). Then we see αv ∈ Revadm
Dv

(X•
v ) \ {0}. By [Y3, Theorem

3.9], we obtain
γ(αv ,Dv)

= gXv + s(Dv)− 1.
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Namely, the generalized Hasse-Witt invariant γ(αv ,Dv)
can attain maximum.

Constructions of Galois multi-admissible coverings for X•
Γ. Next, we prove that the Galois

multi-admissible covering f •
v : Y •

v → X•
v , v ∈ v(Γ), constructed above can be glued as a

Galois multi-admissible covering of X•
Γ.

Let v1, v2 ∈ v(Γ) be vertices of Γ distinct from each other such that Xv1 ∩ Xv2 is not
empty. Since Γ is a minimal quasi-tree associated to DX , we have #(Xv1 ∩ Xv2) = 1.
Let C1 ∈ π0(v1) and C2 ∈ π0(v2) be the connected components such that Xv2 ⊆ C1

and Xv1 ⊆ C2. Then we have x1,2
def
= xC1 = xC2 = Xv1 ∩ Xv2 = C1 ∩ C2. Note that

C1 ∪ C2 = XΓ. The definitions of dv1xC1
,j, d

v2
xC2

,j imply

dv1xC1
,j + dv2xC2

,j =

{
dv1xC1

,j = ptj − 1, if dx,j = ptj − 1 for all x ∈ DX ∩ C1,

dv2xC2
,j = ptj − 1, if dx,j = ptj − 1 for all x ∈ DX ∩ C2,

otherwise,

dv1xC1
,j + dv2xC2

,j =
[ ∑
x∈DX∩C1

ordx(Dj)
]
+
[ ∑
x∈DX∩C2

ordx(Dj)
]
.

Since
∑

x∈DX∩C1
ordx(Dj) +

∑
x∈DX∩C2

ordx(Dj) = deg(Dj) is divided by ptj − 1, we have[ ∑
x∈DX∩C1

ordx(Dj)
]
+
[ ∑
x∈DX∩C2

ordx(Dj)
]
= ptj − 1.

Then we obtain
dv1xC1

,j + dv2xC2
,j = ptj − 1.

On the other hand, deg(Dvi) = (n′
X − 1)n and ordx(Dvi) ≤ n for all x ∈ D′

Xvi
imply

0 < ordx1,2(Dvi) = dvixCi
,1 + pt1dvixCi

,2 + · · ·+ p
∑m−1

j=1 tjdvixCi
,m ≤ n

for all i ∈ {1, 2}. Then we obtain ordx1,2(Dv1) + ordx1,2(Dv2) = n. Moreover, we see

ordx1,2(Dv1) + ordx1,2(Dv2) =

{
ordx1,2(Dv2) = n, if Supp(D) ⊆ C1,
ordx1,2(Dv1) = n, if Supp(D) ⊆ C2.

Thus, we have

ordx1,2(Dv1) + ordx1,2(Dv2) =

{
0, if either Supp(D) ⊆ C1 or Supp(D) ⊆ C2,
n, otherwise.

This means that we may glue {f •
v }v∈v(Γ) along {f−1

v

(
D′
Xv
\ (D′

Xv
∩DX)

)
}v∈v(Γ) in a way

that is compatible with the actions of Z/nZ and the gluing of {X•
v}v∈v(Γ) that gives rise

to X•
Γ. Then we obtain a Galois multi-admissible covering

f •
Γ : Y •

Γ = (YΓ, DYΓ)→ X•
Γ

over k with Galois group Z/nZ. Note that the construction of f •
Γ implies that fΓ is étale

over DXΓ
\DX , where fΓ : YΓ → XΓ denotes the morphism of underlying curves induced

by f •
Γ.

Let ΠX•
v
, v ∈ v(Γ), be the admissible fundamental group of X•

v and αΓ ∈ Hom(Πab
X•

Γ
,Z/nZ)

an element induced by f •
Γ satisfying the composition of the homomorphisms Πab

X•
v
→

Πab
X•

Γ

αΓ→ Z/nZ is equal to αv for all v ∈ v(Γ) (see 2.2.3 for the first arrow). Then we see

αΓ ∈ Revadm
D

(X•
Γ) \ {0}. By [Y3, Theorem 3.9], we obtain

γ(αΓ,D) = gXΓ
+ s(D)− 1.

This completes the proof of the lemma.
□
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3.2.4. Now, we can prove the first main result of the present paper:

Theorem 3.5. Let X• = (X,DX) be an arbitrary pointed stable curve of type (gX , nX)

over an algebraically closed field k of characteristic p > 0, and n
def
= pt − 1 ∈ N a

natural number satisfying n > max{C(gX)+1,#(Xsing)+nX} (see 2.5.3 for C(gX)). Let
D ∈ Z[DX ] be an effective divisor on X such that ordx(D) ≤ n for all x ∈ DX , and that

D
def
=

{
0, if nX = 0,
an effective divisor with degree (nX − 1)n satisfies Condition 3.3, if nX 6= 0.

Then there exists an element α ∈ Revadm
D

(X•) \ {0} (see 3.2.1 for D, and see Definition

2.4 (i) for Revadm
D

(X•)) such that the generalized Hasse-Witt invariant γ(α,D) can attain
maximum. Namely, the following holds:

γ(α,D) =

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) 6= ∅.

Proof. Suppose Supp(D) = ∅. Then we have D = 0. Thus, the theorem follows immedi-
ately from Theorem 2.6 (i.e., Raynaud’s result for zero divisor), Proposition 2.7, and [Y3,
Theorem 3.9].

Suppose Supp(D) 6= ∅ (note that this implies nX ≥ 2). Let Γ
def
= ΓDX

be a minimal
quasi-tree associated to DX . There is a natural map of semi-graphs δΓ : Γ→ ΓX• defined
in 2.1.2. Write Γim for the image of δΓ. Note that Γim is a sub-semi-graph (2.1.2) of ΓX• .
We put

X•
Γ = (XΓ, DXΓ

), X•
Γim = (XΓim , DX

Γim
)

the pointed stable curves of types (gΓ, nΓ), (gΓim , nΓim) over k corresponding to Γ, Γim

(2.2.3), respectively, and ΠX•
Γ
, ΠX•

Γim
the admissible fundamental groups of X•

Γ, X
•
Γim ,

respectively.
By Lemma 3.4, there exists an element αΓ ∈ Revadm

D
(X•

Γ) \ {0} such that

γ(αΓ,D) = gΓ + s(D)− 1

holds. Write f •
Γ : Y •

Γ = (YΓ, DYΓ) → X•
Γ for the Galois multi-admissible covering over k

with Galois group Z/nZ induced by αΓ. Note that the construction of f •
Γ given in the

proof of Lemma 3.4 (see the penultimate paragraph of the proof of Lemma 3.4) implies
that the morphism fΓ : YΓ → XΓ of underlying curves is étale at

f−1
Γ

(
DXΓ

\ (DX ∪ {xe}
e∈δ−1

Γ

(
eop(Γim)

))).
By gluing Y •

Γ along f−1
Γ

(
DXΓ
\(DX∪{xe}

e∈δ−1
Γ

(
eop(Γim)

))) in a way that is compatible with

the actions of Z/nZ and the gluing ofX•
Γ that gives rise toX•

Γim , we obtain a pointed stable
curve Y •

Γim over k. Moreover, f •
Γ induces a Galois multi-admissible covering f •

Γim : Y •
Γim →

X•
Γim over k with Galois group Z/nZ. Write αΓim for an element of Hom(Πab

X•
Γim

,Z/nZ)

induced by f •
Γim such that the composition of the homomorphisms Πab

X•
Γ
→ Πab

X•
Γim

α
Γim→ Z/nZ

is equal to αΓ. Note that we have Dα
Γim

= D, where Dα
Γim

denotes the effective divisor

on XΓim determined by αΓim via the bijection Hom(Πab
X•

Γim
,Z/nZ) ∼→ P̃X•

Γim ,n
(see 2.4.2).

Then [Y3, Theorem 3.9] implies

γ(α
Γim ,D) = gΓim + s(D)− 1.
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Write π0(X \XΓim) for the set of connected components of the topological closure

X \XΓim of X \XΓim in X. We define the following pointed stable curve

E• = (E,DE
def
= E ∩XΓim), E ∈ π0(X \XΓim),

over k. By Theorem 2.6 (i.e., Raynaud’s result for zero divisor), Proposition 2.7, and [Y3,
Theorem 3.9], there exists a Galois étale covering f •

E : Y •
E = (YE, DYE)→ E• over k with

Galois group Z/nZ such that the following holds:

γ(αE ,0) =

{
gE, if gE = 0,
gE − 1, if gE 6= 0,

where gE denotes the genus of E, and αE ∈ Revadm0 (E•) is an element induced by f •
E

(note that αE = 0 if gE = 0).
Since fΓ and fE are étale at

f−1
Γ (XΓim ∩ (

⋃
E∈π0(X\X

Γim )

E)), f−1
E (XΓim ∩ E),

respectively, we can glue Y •
Γim and {Y •

E}E∈π0(X\X
Γim ) along

f−1
Γ (XΓim ∩ (

⋃
E∈π0(X\X

Γim )

E)) and {f−1
E (XΓim ∩ E)}E∈π0(X\X

Γim )

in a way that is compatible with the actions of Z/nZ and the gluing of {X•
Γim}∪{E•}E∈π0(X\X

Γim )

that gives rise to X•. Then we obtain a Galois multi-admissible covering

f • : Y • → X•

over k with Galois group Z/nZ.
Let ΠX• , ΠE• be the admissible fundamental groups of X•, E•, E ∈ π0(X \XΓim),

respectively. Write α ∈ Hom(Πab
X• ,Z/nZ) for an element induced by f • such that the

compositions of the homomorphisms Πab
X•

Γim
→ Πab

X•
α→ Z/nZ, Πab

E• → Πab
X•

α→ Z/nZ, E ∈
π0(X \XΓim), are equal to αΓim and αE, respectively. We see α ∈ Revadm

D
(X•) \ {0}. By

applying [Y3, Theorem 3.9], we obtain

γ(α,D) = gX + s(D)− 1.

This completes the proof of the theorem.
□

3.2.5. Let X• = (X,DX) be an arbitrary pointed stable curve of type (gX , nX) over an
algebraically closed field k of characteristic p > 0 and ΠX• the admissible fundamental
group of X•. We put (see also [Y3, Definition 3.10 (i)])

γmax
X•

def
= maxd∈N s.t. (d,p)=1{γ(α,Dα) | α ∈ Hom(Πab

X• ,Z/dZ) \ {0}}.

Note that Lemma 2.5 (ii) implies

γmax
X• ≤

{
gX − 1, if nX ≤ 1,
gX + nX − 2, if nX ≥ 2.

In [Y3], we proved the following significant result concerning existence of maximum
generalized Hasse-Witt invariants of cyclic admissible coverings:
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([Y3, Theorem 5.4]): We maintain the notation introduced above. Then
there exist a natural number n = pt−1, an effective divisorD ∈ (Z/nZ)∼[DX ]

0,
and an element RevadmD (X•) \ {0} such that the following holds:

γ(α,D) = γmax
X• =

{
gX − 1, if nX ≤ 1,
gX + nX − 2, if nX ≥ 2.

This result is one of main results of [Y3], and it is an important tool to study admissible
fundamental groups of pointed stable curves in positive characteristic and the anabelian
geometry of curves over algebraically closed fields of characteristic p > 0 (e.g. [Y3], [Y5],
[Y6]). On the other hand, we have the following:

Corollary 3.6. Let X• = (X,DX) be an arbitrary pointed stable curve of type (gX , nX)

over an algebraically closed field k of characteristic p > 0, and n
def
= pt − 1 ∈ N a

natural number satisfying n > max{C(gX)+1,#(Xsing)+nX} (see 2.5.3 for C(gX)). Let
s ∈ {0, . . . , nX − 1} be an integer. Then there exists an effective divisor D ∈ Z[DX ]on X
such that ordx(D) ≤ n for all x ∈ DX , and that the following conditions are satisfied:

• We have

D
def
=

{
0, if nX = 0,
an effective divisor with degree (nX − 1)n satisfies Condition 3.3, if nX 6= 0

such that s(D) = s (see 3.2.1 for D).
• There exists an element α ∈ Revadm

D
(X•)\{0} (see Definition 2.4 (i) for Revadm

D
(X•))

such that the generalized Hasse-Witt invariant γ(α,D) can attain maximum. Namely,
the following holds:

γ(α,D) =

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) 6= ∅.

In particular, we obtain [Y3, Theorem 5.4] if s
def
= nX − 1.

Proof. If s = 0, the corollary follows immediately from Theorem 3.5. Then we may

suppose s ≥ 1. We put m
def
= s and tj ∈ N, j ∈ {1, . . . ,m}, a positive natural number

satisfying n
def
= p

∑m
j=1 tj − 1 > max{C(gX) + 1,#(Xsing) + nX}.

Let DX
def
= {x1, . . . , xnX

}. Then we put

Dj
def
= xj + (ptj − 2)xj+1 +

∑
x∈DX\{xj ,xj+1}

(ptj − 1)x ∈ Z[DX ], j ∈ {1, . . . ,m def
= s}.

Moreover, we put

D
def
= D1 + pt1D2 + pt1+t2D3 + · · ·+ p

∑m−1
j=1 tjDm ∈ Z[DX ].

We see immediately that D satisfies Condition 3.3, and that D ∈ (Z/nZ)∼[DX ]
0 is an

effective divisor on X whose support is equal to {x1, . . . , xs+1}, and whose degree is equal
to sn (i.e., s(D) = s). Then the corollary follows from Theorem 3.5. This completes the
proof of the corollary. □

4. Reconstructions of field structures via finite groups

In this section, by applying Theorem 3.5, we prove that the field structures associated
to inertia subgroups can be reconstructed group-theoretically from certain finite quotients
of admissible fundamental groups. The main result of the present section is Theorem 4.2.

4.1. A lemma for constructing effective divisors.
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4.1.1. Notation and Settings. We maintain the notation and the settings introduced in
2.2.1. Moreover, suppose nX > 0.

Let t ∈ N be a positive natural number, n
def
= pt−1, and D ∈ Z[DX ] an effective divisor

on X with degree (nX−1)n such that ordx(D) ≤ n for all x ∈ DX . Suppose the following
holds:

• D is Frobenius stable (Definition 2.4 (ii)). Namely, deg(D) = deg(D(i)) = (nX −
1)n for all i ∈ {0, . . . , t− 1}.

Note that the above condition is a necessary condition for the existence of the Raynaud-
Tamagawa theta divisor associated to the vector bundle ED defined in 2.5.2 (see [T2,
Lemma 2.15]).

We denote by d
(i)
x

def
= ordx(D

(i)) (see Definition 2.4 (ii)), x ∈ DX , and put

d(i)x =
t−1∑
r=0

d(i)x,rp
r

the p-adic expansion of d
(i)
x . In particular, D = D(0) if i = 0. We shall write dx, dx,r for

d
(0)
x , d

(0)
x,r, respectively.

On the other hand, let u ∈ N be an arbitrary positive natural number. We put

Su
def
= {0, . . . , u− 1}.

4.1.2. We have the following lemma:

Lemma 4.1. We maintain the notation and the settings introduced in 4.1.1. Let x1 ∈ DX .
Then the following statements hold:

(i) We have ∑
x∈DX

d(i)x,r = (nX − 1)(p− 1)

for each i ∈ {0, . . . , t− 1} and each r ∈ {0, . . . , t− 1}.
(ii) If dx1 ∈ pSt

def
= {pb | b ∈ St}, then we have that

#
(
{dx = n | x ∈ DX}

)
≥ nX − 2,

and that D satisfies Condition 3.3.

(iii) If dx1 ∈ Sp−1p
St

def
= {apb | a ∈ Sp−1, b ∈ St}, then

#
(
{dx = n | x ∈ DX}

)
≥ nX − 2

holds if and only if D satisfies Condition 3.3.
(iv) Suppose

dx1 /∈ pSt ∪ Sp−1p
St =

{
Sp−1p

St , if p 6= 2,
Spp

St , if p = 2.

We divide the set St
def
= {0, . . . , t− 1} into the following parts

S ̸=0,p−1
t

def
= {r ∈ St | dx1,r 6= 0, p− 1},

S=0
t

def
= {r ∈ St | dx1,r = 0},

S=p−1
t

def
= {r ∈ St | dx1,r = p− 1}.
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Note that the above assumption implies #(S ̸=0,p−1
t ∪ S=p−1

t ) ≥ 2. Then there exists a set
{d′x ∈ Sn}x∈DX\{x1} of natural numbers such that the effective divisor

D′ def
= dx1x1 +

∑
x∈DX\{x1}

d′xx ∈ Z[DX ]

on X satisfies Condition 3.3 (in particular, D′ and D
′
are Frobenius stable), and that

s(D
′
) =

{
#(S ̸=0,p−1

t ) + 2#(S=p−1
t ), if #(S ̸=0,p−1

t ) + 2#(S=p−1
t ) + 1 ≤ nX ,

nX − 1, if #(S ̸=0,p−1
t ) + 2#(S=p−1

t ) + 1 > nX ,

where D
′ ∈ (Z/nZ)∼[DX ]

0 denotes the image of D′ of the composition of maps Z[DX ] ↠

Z/nZ[DX ]
ι−1
n
∼→ (Z/nZ)∼[DX ] (see 2.3.3 for ιn). Note that we have 2 ≤ s(D

′
) ≤ nX − 1 if

nX ≥ 3.

Proof. (i) This is [Y2, Lemma 3.2].
(ii) If dx1 = pb ∈ pSt , then (i) implies that∑

x∈DX\{x1}

dx,r =

{
(nX − 1)(p− 1), if r 6= b,
(nX − 1)(p− 1)− 1, if r = b,

holds for all r ∈ {0, . . . , t− 1}. If r ∈ {0, . . . , t− 1} \ {b}, we see immediately dx,r = p− 1
for each x ∈ DX \ {x1}. If r = b, then there exists x′ ∈ DX such that dx′,b = p − 2 and
dx,b = p− 1 for all x ∈ DX \ {x1, x

′}. We put

Qr
def
=

∑
x∈DX\{x1}

(p− 1)x ∈ Z[DX ], r ∈ {0, . . . , t− 1} \ {b},

Qb
def
= x1 + (p− 2)x′ +

∑
x∈DX\{x1,x′}

(p− 1)x ∈ Z[DX ].

If we put m
def
= t and Di

def
= Qi−1, i ∈ {1, . . . , t}, then we see D = D1 + pD2 + · · ·+ pt−1Dt

satisfying Condition 3.3.
(iii) If dx1 = apb ∈ Sp−1p

St , then (i) implies that∑
x∈DX\{x1}

dx,r =

{
(nX − 1)(p− 1), if r 6= b,
(nX − 1)(p− 1)− a, if r = b,

holds for each r ∈ {0, . . . , t−1}. If r ∈ {0, . . . , t−1}\{b}, we see immediately dx,r = p−1
for all x ∈ DX \ {x1}.

Suppose #
(
{dx = n | x ∈ DX}

)
≥ nX − 2. If r = b, then there exists x′ ∈ DX such

that dx′,b = p− 1− a and dx,b = p− 1 for all x ∈ DX \ {x1, x
′}. We put

Qr
def
=

∑
x∈DX\{x1}

(p− 1)x ∈ Z[DX ], r ∈ {0, . . . , t− 1} \ {b},

Qb
def
= ax1 + (p− 1− a)x′ +

∑
x∈DX\{x1,x′}

(p− 1)x ∈ Z[DX ].

If we put m
def
= t and Di

def
= Qi−1, i ∈ {1, . . . , t}, then we see D = D1 + pD2 + · · ·+ pt−1Dt

satisfying Condition 3.3.



GENERALIZED HASSE-WITT INVARIANTS WITH PRESCRIBED RAMIFICATIONS 25

On the other hand, suppose that D satisfies Condition 3.3. We maintain the notation in-
troduced in Condition 3.3. Note that there exists a unique natural number s ∈ {1, . . . ,m}
such that

s∑
j=1

tj ≤ b <

s+1∑
j=1

tj.

We put b′
def
= b−

∑s
j=1 tj < ts+1. Then we have

Dj =
∑

x∈DX\{x1}

(ptj − 1)x

for all j ∈ {1, . . . ,m} \ {s+ 1}, and

Ds+1 = apb
′
x1 + (p− 1− a)pb

′
x′ +

( ∑
r∈{0,...ts+1−1}\{b′}

(p− 1)pr
)
x′ +

∑
x∈DX\{x1,x′}

(pts+1 − 1)x

for some x′ ∈ DX \{x1} if j = s+1. Then we see immediately dx = n for all DX \{x1, x
′}.

This completes the proof of (ii).
(iv) Suppose

dx1 =
t−1∑
r=0

dx1,rp
r /∈ pSt ∪ Sp−1p

St .

Then we have S ̸=0,p−1
t ∪ S=p−1

t 6= ∅. We put

d′x′[r],r
def
= p− 1− dx1,r

for some x′[r] ∈ DX \ {x1} if r ∈ S ̸=0,p−1
t ,

d′x,r
def
= p− 1

for all x ∈ DX \ {x1} if r ∈ S=0
t , and

d′x′′[r],r
def
= p− 2, d′x′′′[r],r

def
= 1

for some x′′[r], x′′′[r] ∈ DX \ {x1} if r ∈ S=p−1
t . Denote by

D′
X

def
=

( ⋃
r∈S ̸=0,p−1

t

{x′[r]}
)
∪
( ⋃
r∈S=p−1

t

{x′′[r], x′′′[r]}
)
.

By taking suitably chosen marked points x′[r], x′′[r], x′′′[r] ∈ DX \ {x1}, we have

#(D′
X) =

{
#(S ̸=0,p−1

t ) + 2#(S=p−1
t ), if #(S ̸=0,p−1

t ) + 2#(S=p−1
t ) + 1 ≤ nX ,

nX − 1, if #(S ̸=0,p−1
t ) + 2#(S=p−1

t ) + 1 > nX ,

Furthermore, we put

Q′
r
def
= dx1,r +

∑
x∈DX\{x1}

d′x,rx ∈ Z[DX ], r ∈ {0, . . . , t− 1},

d′x
def
=

t−1∑
r=0

d′x,rp
r ∈ Sn.

Then we see immediately that

D′ def
= D′

1 + pD′
2 + · · ·+ pt−1D′

t = dx1x1 +
∑

x∈DX\{x1}

d′xx ∈ Z[DX ]
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satisfies Condition 3.3 if we put m
def
= t and D′

i
def
= Q′

i−1, i ∈ {1 . . . , t}. Note that the
construction of Q′

r, r ∈ {0, . . . , t− 1}, implies deg(D′) = (nX − 1)n and

#
(
{x ∈ DX | ordx(D′) = n}

)
={

nX −#(S ̸=0,p−1
t )− 2#(S=p−1

t )− 1, if #(S ̸=0,p−1
t ) + 2#(S=p−1

t ) + 1 ≤ nX ,

0, if #(S ̸=0,p−1
t ) + 2#(S=p−1

t ) + 1 > nX .

Thus, we obtain (see the second paragraph of 3.2.1)

s(D
′
) =

{
#(S ̸=0,p−1

t ) + 2#(S=p−1
t ), if #(S ̸=0,p−1

t ) + 2#(S=p−1
t ) + 1 ≤ nX ,

nX − 1, if #(S ̸=0,p−1
t ) + 2#(S=p−1

t ) + 1 > nX .

This completes the proof of the lemma. □

4.2. Reconstructions of field structures.

4.2.1. Notation and Settings. Let i ∈ {1, 2}, and let X•
i = (Xi, DXi

) be a pointed stable
curve of type (gX , nX) over an algebraically closed field ki of characteristic p > 0, ΓX•

i
the

dual semi-graph of X•
i , and ΠX•

i
the admissible fundamental group of X•

i . Moreover, we
suppose nX > 0.

4.2.2. Recall that X̂•
i is the universal admissible covering of X•

i corresponding to ΠX•
i

(2.3.4), and that ΓX̂•
i
is the dual semi-graph of X̂•

i . We put

Edgop(ΠX•
i
)
def
= {Iêi}êi∈eop(ΓX̂•

i
),

where Iêi ⊆ ΠX•
i
denotes the stabilizer subgroup of êi (2.3.4), and “op” means “open

edge”.

Let Ni ⊆ ΠX•
i
be an arbitrary open normal subgroup of ΠX•

i
, QNi

def
= ΠX•

i
/Ni, X

•
Ni

=
(XNi

, DXNi
) the pointed stable curve of type (gNi

, nNi
) corresponding to Ni, and ΓX•

Ni

the dual semi-graph of X•
Ni
. Write f •

Ni
: X•

Ni
→ X•

i for the Galois admissible covering
over ki with Galois group QNi

corresponding to Ni ↪→ ΠX•
i
. The set of open edges

eop(ΓX•
Ni
) admits an action of QNi

induced by the Galois admissible covering f •
Ni
. Let

eNi
∈ eop(ΓX•

Ni
) be an open edge of ΓX•

Ni
. We denote by IeNi

⊆ QNi
the stabilizer subgroup

of eNi
. Moreover, we put

Edgop(QNi
)
def
= {IeNi

}eNi
∈eop(ΓX•

Ni
).

Let ê′i ∈ eop(ΓX̂•
i
) and e′Ni

∈ eop(ΓX•
Ni
) the image of ê′i of the natural surjection ΓX̂•

i
↠

ΓX•
Ni
. Then the image of Iê′i of the natural surjection ΠX•

i
↠ QNi

is equal to Ie′Ni
. Thus,

the surjection ΠX•
i
↠ QNi

induces a surjection

Edgop(ΠX•
i
) ↠ Edgop(QNi

), Iê′i 7→ Ie′Ni
.

4.2.3. Field structures associated to inertia subgroups. Let êi ∈ eop(ΓX̂•
i
). We put

Fêi
def
= (Iêi ⊗Z (Q/Z)p

′

i ) t {∗êi},

where {∗êi} is an one-point set, and (Q/Z)p
′

i denotes the prime-to-p part of Q/Z which

can be canonically identified with (Q/Z)p
′

i (1)
def
=

⋃
(p,m)=1 µm(ki). Moreover, let aêi be a

generator of Iêi . Then we have a natural bijection

Iêi ⊗Z (Q/Z)p
′

i
∼→ Z⊗Z (Q/Z)p

′

i , aêi ⊗ 1 7→ 1⊗ 1.
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Let Fp,j be the algebraic closure of Fp in ki. Thus, we obtain the following bijections

Iêi ⊗Z (Q/Z)p
′

i
∼→ Z⊗Z (Q/Z)p

′

i
∼→ (Q/Z)p

′

i (1)
∼→ F×

p,i.

This means that Fêi can be identified with Fp,i as sets, hence, admits a structure of field,

whose multiplicative group is Iêi ⊗Z (Q/Z)p
′

i , and whose zero element is ∗êi .
Let ∆ be a profinite group and b ∈ N a positive natural number. We denote by

Db(∆) ⊆ ∆ the topological closure of [∆,∆]∆b, where [∆,∆] denotes the commutator

subgroup of ∆. Let t ∈ N be a positive natural number and n
def
= pt − 1. Let Πét

X•
i
be the

étale fundamental group of the underlying curve X and Ai ⊆ ΠX•
i
the inverse image of

Dn(Π
ét
X•

i
) of the natural surjection ΠX•

i
↠ Πét

X•
i
(2.2.2). We shall put

Oi
def
=

{
Dn(Ai), if nX < 3,
Dn(ΠX•

i
), if nX ≥ 3.

Note that the structures of maximal prime-to-p quotients of admissible fundamental

groups (2.2.2) imply I
∼→ Z/nZ for all I ∈ Edgop(QOi

), where QOi

def
= ΠX•

i
/Oi.

Let f •
Oi

: X•
Oi

= (XOi
, DXOi

) → X•
i be the Galois admissible covering over ki corre-

sponding to Oi ↪→ ΠX•
i
, ΓX•

Oi
the dual semi-graph of X•

Oi
, and eOi

∈ eop(ΓX•
Oi
) the image

of êi of the natural surjection ΓX̂•
i
↠ ΓX•

Oi
. Write IeOi

∈ Edgop(QOi
) for the stabilizer

subgroup of eOi
. Then the image of Iêi of the natural surjection ΠX•

i
↠ QOi

is equal
to IeOi

. Moreover, write aeOi
for the image of aêi of the surjection Iêi ↠ IeOi

. Since

IeOi

∼→ Z/nZ ∼→ µn(ki) ↪→ F×
p,i, where the first arrow is determined by aeOi

7→ 1, the set

FeOi
,t

def
= IeOi

t {∗êi} ⊆ Fêi

admits a structure of field induced by Fêi(
∼→ Fp,i) which is isomorphic to the subfield of

Fp,i with cardinality pt.

4.2.4. Now, we can state the second main result of the present paper:

Theorem 4.2. We maintain the notation and the settings introduced in 4.2.1. Let n
def
=

pt − 1 ∈ N be a positive natural number satisfying the following condition:

• Let m0 be the product of all prime numbers ≤ p − 2 if p > 3 and m0
def
= {1} if

p ∈ {2, 3}. We put t0 the order of p in the multiplicative group (Z/m0Z)×. Then
we have

n
def
= pt − 1 > max{C(gX) + 1,#(Xsing) + nX , 2}, (pt0 − 1)|n.

Let Hi ⊆ ΠX•
i
be an open normal subgroup satisfying Hi ⊆ Dp(Oi), where Oi ⊆ ΠX•

i

denotes the open subgroup defined in 4.2.3. Then the following statements hold:
(i) The field structure of FeOi

,t (4.2.3) can be reconstructed group-theoretically from

QHi

def
= ΠX•

i
/Hi, QOi

, and Edgop(QOi
). Namely, there exists a group-theoretical algorithm

whose input data are QHi
, QOi

, and Edgop(QOi
), and whose output datum is FeOi

,t as a
field.

(ii) Let φ : QH1 ↠ QH2 be a surjection. Suppose that the following conditions are
satisfied:
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• φ fits into the following commutative diagram

QH1

ϕ−−−→ QH2y y
ΠX•

1
/D(1)(O1)

ψ−−−→ ΠX•
2
/D(1)(O2)y y

QO1

ρ−−−→ QO2

such that ρ is an isomorphism.
• ρ induces a bijection ρop : Edgop(QO1)

∼→ Edgop(QO2), I 7→ ρ(I), such that
ρ(IeO1

) = IeO2
.

Then the isomorphism ρeO1
,eO2

def
= ρ|IeO1

: IeO1

∼→ IeO2
induces a field isomorphism

ρfdeO1
,eO2

: FeO1
,t

∼→ FeO2
,t,

where “fd” means “field”.

Proof. Suppose nX < 3. Let O′
i
def
= Dn(Ai) and f •

O′
i
: X•

O′
i
= (XO′

i
, DXO′

i

)→ X•
i the Galois

admissible covering over ki corresponding to O′
i ↪→ ΠX•

i
. The definition of Ai implies that

f •
O′

i
is étale (i.e., the morphism of underlying curves induced by f •

O′
i
is étale). Then IeOi

is contained in O′
i/Dn(O

′
i). Moreover, we have nO′

i

def
= #(DXO′

i

) ≥ 3 since n > 2. Thus,

by replacing X•
i , ΠX•

i
, and QOi

by X•
O′

i
, O′

i, and O′
i/Dn(O

′
i), respectively, to verify the

theorem, it is sufficient to assume nX ≥ 3.

From now on, we suppose nX ≥ 3. Note that since Oi
def
= Dn(ΠX•

i
) when nX ≥ 2

(4.2.3), we have the following isomorphism

QOi

∼→ 〈a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1〉ab ⊗ Z/nZ.

Let e′ ∈ eop(ΓX•
i
) and e′Oi

∈ f sg,−1
Oi

(e′) ⊆ eop(ΓX•
Oi
), where f sg

Oi
: ΓX•

Oi
→ ΓX•

i
denotes the

map of dual semi-graphs induced by f •
Oi

introduced in 4.2.3. We see that Ie′Oi
does not

depend on the choices of e′Oi
∈ f sg,−1

Oi
(e′). Thus, we may denote by Ie′

def
= Ie′Oi

, and we

have

Edgop(QOi
) = {Ie′}e′∈eop(ΓX•

i
),

Edgop(QOi
)

∼→ eop(ΓX•
i
), Ie′ 7→ e′.

Moreover, there exists a generator se of Ie for each e ∈ eop(ΓX•) such that∑
e∈eop(ΓX• )

se = 0

in QOi
, and se = aeOi

if eOi
∈ f sg,−1

Oi
(e) (see 4.2.3 for aeOi

).

For αi ∈ Homgp(QOi
,F×

pt) = Homgp(Π
ab
X• ,F×

pt) (“gp” means “group”), we put

Dαi

def
=

∑
e∈eop(ΓX• )

αi(se)
∼xe ∈ (Z/nZ)∼[DX ]

0
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where xe ∈ DX denotes the marked point corresponding to e, and αi(se)
∼ denotes the

element of (Z/nZ)∼ corresponding to αi(se) via the natural bijection (Z/nZ)∼ ∼→ Z/nZ
defined in 2.3.3. We shall put

Homfs
gp(QOi

,F×
pt)

def
= {αi ∈ Homgp(QOi

,F×
pt) | Dαi

is Frobenius stable (see Definition 2.4)}.

Note that the above constructions imply that Homfs
gp(QOi

,F×
pt) can be reconstructed group-

theoretically from QOi
and Edgop(QOi

).
(i) Let Fp be an algebraic closure of Fp and Fpt ⊆ Fp the subfield with cardinality pt.

The field structure of FxOi
,t is equivalent to the subset

Homfd(FxOi
,t,Fpt) ⊆ Homgp(F×

xOi
,t,F×

pt),

where “fd” means “field”. Then in order to prove (i), it is sufficient to prove that
the set Homfd(FxOi

,t,Fpt) can be reconstructed group-theoretically from QHi
, QOi

, and

Edgop(QOi
).

Let χi ∈ Homgp(QOi
,F×

pt). We put

Hχi

def
= ker(QHi

↠ QOi

χi→ F×
pt), Mχi

def
= Hab

χi
⊗ Fp.

Then Mχi
admits a natural action of QOi

via the conjugation action. Since we assume

Hi ⊆ Dp(Oi), we see Mχi
=

(
ker(ΠX•

i
↠ QOi

χi→ F×
pt)

)ab ⊗ Fp. Denote by

Mχi
[χi]

def
= {a ∈Mχi

⊗Fp Fp | σ · a = χi(σ)a for all σ ∈ QOi
},

γχi
(Mχi

)
def
= dimFp

(Mχi
[χi]).

The integer γχi
(Mχi

) is a generalized Hasse-Witt invariant of the cyclic admissible covering

of X•
i corresponding to ker(ΠX•

i
↠ QOi

χi→ F×
pt) ↪→ ΠX•

i
. Note that we have γχi

(Mχi
) ≤

gX + s(Dχi
)− 1 if Dχi

is not zero (see Lemma 2.5). We define two maps

Resfsi,t : Hom
fs
gp(QOi

,F×
pt)→ Homgp(F×

xOi
,t,F×

pt),

Γfs
i,t : Hom

fs
gp(QOi

,F×
pt)→ Z≥0, χi 7→ γχi

(Mχi
),

where the map Resfsi,t is the restriction with respect to the natural inclusion F×
xOi

,t =

IxOi
↪→ QOi

. It is easy to see that Resfsi,t is a surjection. We put H def
= {gX + 1, gX +

2, . . . , gX + nX − 2}. Then (i) follows from the following claim:

Claim. We have

Homfd(FeOi
,t,Fpt) = Homsurj

gp (F×
eOi

,t,F×
pt) \ Res

fs
i,t

(
(Γfs

i,t)
−1(H)

)
,

where Homsurj
gp (−,−) denotes the subset of Homgp(−,−) whose elements are surjections.

Proof of Claim. Fix a primitive nth root ζ ∈ Fpt , we may identify F×
pt with Z/nZ via

the map ζ 7→ 1, and identify IeOi
= F×

eOi
,t with Z/nZ via the map aeOi

7→ 1 (4.2.3).

By considering the Frobenius element of Gal(Fpt/Fp), we see that a homomorphism
ω ∈ Homsurj

gp (F×
eOi

,t,F×
pt) = Homsurj

gp (Z/nZ,Z/nZ) is a field isomorphism contained in

Homfd(FeOi
,t,Fpt) if and only if ω(1) ∈ pSt

def
= {1, p, . . . , pt−1}.

Let f •
Oi

: X•
Oi

= (XOi
, DXOi

) → X•
i be the Galois admissible covering over ki corre-

sponding to Oi ↪→ ΠX•
i
. Write xOi

∈ DXOi
for the marked point corresponding to eOi

and

xi,1 ∈ DXi
for fOi

(xOi
), where fOi

denotes the morphism of underlying curves induced by
f •
Oi
. Then the claim is equivalent to the following statement:
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ω(1) ∈ pSt if and only if (ω(1), n) = 1, and there does not exist an effec-
tive divisor D′

i ∈ (Z/nZ)∼[DXi
]0 such that D′

i is Frobenius stable, that
ordxi,1(D

′
i) = ω(1), and that γ(α,D′

i)
= gX + s(D′

i) − 1 ∈ H for some

α ∈ RevadmD′
i
(X•

i ) \ {0}.
Firstly, we treat the “only if” part of the above statement. Suppose that there exists an
effective divisor D′

i ∈ (Z/nZ)∼[DXi
]0 such that D′

i is Frobenius stable, that ordxi,1(D
′
i) =

ω(1), and that γ(α,D′
i)
= gX + s(D′

i)− 1 ∈ H for some α ∈ RevadmD′
i
(X•

i ) \ {0}. Since D′
i is

Frobenius stable, Lemma 4.1 (ii) implies s(D′
i) = 1. This means γ(α′,D′

i)
≤ gX 6∈ H for all

α′ ∈ RevadmD′
i
(X•

i ) \ {0}. This contradicts γ(α,D′
i)
= gX + s(D′

i)− 1 ∈ H.
Next, to verify the “if” part of the above statement, suppose ω(1) 6∈ pSt . Since ω(1)

is prime to n, the assumption m0|(pt0 − 1)|n implies that ω(1) 6∈ Sp−1p
St

def
= {apb | a =

0, . . . , p − 2, b = 0, . . . , t − 1}. Then Lemma 4.1 (iv) implies that there exists D
′
i ∈

(Z/nZ)∼[DXi
]0 on Xi such that Condition 3.3 is satisfied, and that 2 ≤ s(D

′
i) ≤ nX − 1

holds since we assume nX ≥ 3. Moreover, since n
def
= pt− 1 > max{C(gX)+ 1,#(Xsing)+

nX}, Theorem 3.5 implies that γ(α,D′
i)
∈ H for some α ∈ Revadm

D
′
i
(X•

i ) \ {0}. This con-

tradicts our assumptions. Then we obtain ω(1) ∈ pSt . This completes the proof of the
claim.

(ii) Let κ2 ∈ Homfs
gp(QO2 ,F×

pt). Then we obtain a character

κ1 ∈ Homfs
gp(QO1 ,F×

pt)

induced by ρ : QO1

∼→ QO2 and ρop : Edgop(QO1)
∼→ Edgop(QO2). Moreover, the surjection

φ|Hκ1
: Hκ1 ↠ Hκ2 induces a surjection Mκ1 [κ1] ↠ Mκ2 [κ2]. Suppose κ2 ∈ (Γfs

2,r)
−1(H).

The surjection Mκ1 [κ1] ↠ Mκ2 [κ2] implies γκ1(Mκ1) ≥ γκ2(Mκ2). Namely, we have κ1 ∈
(Γfs

1,t)
−1(H). Thus, the isomorphism ρeO1

,eO2
: IeO1

∼→ IeO2
induces an injection

Resfs2,t((Γ
fs
2,t)

−1(H)) ↪→ Resfs1,t((Γ
fs
1,t)

−1(H)).
Since #(Homfd(FeO1

,t,Fpt)) = #(Homfd(FeO2
,t,Fpt)), we obtain that ρeO1

,eO2
induces a

bijection

Homfd(FeO2
,t,Fpt)

∼→ Homfd(FeO1
,t,Fpt).

If we choose Fpt = FeO2
,t, then the image of idFeO2

,t via the above bijection induces a field

isomorphism

ρfdeO1
,eO2

: FeO1
,t

∼→ FeO2
,t.

This completes the proof of (ii) of the theorem. □
Remark 4.2.1. In the statement of Theorem 4.2 (i) and (ii), we assume that the following
group-theoretical data are given:

• The set of inertia subgroups Edgop(QOi
) of open edges of the dual semi-graph of

X•
Oi

(=the set of inertia subgroups of marked points of X•
Oi
).

• The surjection φ : QH1 ↠ QH2 induces a commutative diagram

ΠX•
1
/D(1)(O1)

ψ−−−→ ΠX•
2
/D(1)(O2)y y

QO1

ρ−−−→ QO2

such that ρ is an isomorphism, that ρ induces a bijection ρop : Edgop(QO1)
∼→

Edgop(QO2), I 7→ ρ(I), and that ρ(IeO1
) = IeO2

.
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As we mentioned in §1.3 of the introduction of the present paper, reconstructions of field
structures associated to inertia subgroups play a critical role in the theory of anabelian
geometry of curves over algebraically closed fields of characteristic p. However, in general,
the above group-theoretical data do not hold for an arbitrary open subgroup Hi ⊆ ΠX•

i

such that Hi ⊆ Dp(Oi). This means that we cannot apply directly Theorem 4.2 to
anabelian geometry.

To overcome the difficulties, in [Y7], the author of the present paper introduced the
so-called “quasi-anabelian pairs” (for various combinatorial data of dual semi-graphs)
associated to admissible fundamental groups (see [Y6, §4] for the case of the tame fun-
damental groups of smooth pointed stable curves). More precisely, for the case of open
edges, we have the following:

Quasi-anabelian pairs for open-edge-like subgroups. Let A ⊆ B ⊆ ΠX•
2
be open charac-

teristic subgroups of ΠX•
2
. The pair of finite quotients

(QA
def
= ΠX•

2
/A,QB

def
= ΠX•

2
/B)

is called a quasi-anabelian pair for open-edge-like subgroups associated to ΠX•
2
if, for any

surjection α : ΠX•
1
↠ QA, the composition of surjections β : ΠX•

1

α↠ QA ↠ QB induces a
surjection

βop : Edgop(ΠX•
1
) ↠ Edgop(QB),

where QA ↠ QB denotes the natural surjection induced by A ⊆ B.

In [Y7], we established a general method for constructing explicitly quasi-anabelian pairs
associated to admissible fundamental groups of arbitrary pointed stable curves (see [Y6,
§4] for the case of the tame fundamental groups of smooth pointed stable curves).
Once a quasi-anabelian pair can be explicitly constructed, we can construct a quasi-

anabelian pair (QA, QB) for open-edge-like subgroups associated to ΠX•
2
such that B ⊆

Dp(O1) holds. We put H2
def
= B and H1

def
= ker(β). Then we see that β induces a

surjection φ : QH1

def
= ΠX•

1
/H1 ↠ QH2 . Moreover, βop : Edgop(ΠX•

1
) ↠ Edgop(QB)

induces a commutative diagram

Edgop(QH1)
ϕop−−−→ Edgop(QH2)y y

Edgop(QO1)
ρop−−−→ Edgop(QO2),

where the horizontal arrows are surjections, and the vertical arrows are surjections induced
by the natural surjections QH1 ↠ QO1 and QH2 ↠ QO2 . Then we see immediately that
the group-theoretical data mentioned in the first paragraph of the remark are satisfied.
Namely, we have the following strong version of Theorem 4.2:

We maintain the notation and the settings introduced in 4.2.1. Let n
def
=

pt− 1 ∈ N be a positive natural number satisfying the following condition:
• Let m0 be the product of all prime numbers ≤ p − 2 if p > 3 and

m0
def
= {1} if p ∈ {2, 3}. We put t0 the order of p in the multiplicative

group (Z/m0Z)×. Then we have

n
def
= pt − 1 > max{C(gX) + 1,#(Xsing) + nX , 2}, (pt0 − 1)|n.

LetN2 ⊆ H2 ⊆ ΠX• are open characteristic subgroups such that (QN2 , QH2)
is a quasi-anabelian pair for open-edge-like subgroups associated to ΠX•

2
,
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and that H2 ⊆ Dp(O2), where O2 ⊆ ΠX•
2
denotes the open subgroup de-

fined in 4.2.3. Let α : ΠX•
1
↠ QN2 be an arbitrary surjection and β :

ΠX•
1

α↠ QN2 ↠ QH2 the composition of surjections. We put H1
def
= ker(β).

Then the following statements hold:
(i) We have that H1 is contained in Dp(O1), and that the field structure

of FeOi
,t can be reconstructed group-theoretically from QHi

and QOi
, i ∈

{1, 2}, where O1 ⊆ ΠX•
1
denotes the open subgroup defined in 4.2.3.

(ii) Let φ : QH1 ↠ QH2 be the surjection induced by β. Then the

isomorphism ρeO1
,eO2

def
= ρ|IeO1

: IeO1

∼→ IeO2
induces a field isomorphism

ρfdeO1
,eO2

: FeO1
,t

∼→ FeO2
,t.
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