GENERALIZED HASSE-WITT INVARIANTS FOR COVERINGS WITH
PRESCRIBED RAMIFICATIONS

YU YANG

ABSTRACT. Let X* = (X, Dx) be a pointed stable curve over an algebraically closed
field of characteristic p > 0 and IIx. the admissible fundamental group of X*. In the
present paper, we prove that the generalized Hasse-Witt invariants of prime-to-p cyclic
admissible coverings of X® with certain prescribed ramifications can attain maximum.
As an application, we prove that the field structures associated to inertia subgroups of
marked points of X*® can be reconstructed group-theoretically from certain finite quo-
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1. INTRODUCTION

Let X* = (X, Dx) be a pointed stable curve of (topological) type (gx,nx) over an

algebraically closed field k of characteristic p > 0, where X denotes the underlying curve

with genus gy, and Dx denotes the (finite) set of marked points with cardinality nx o

#(Dx). By choosing a suitable base point of X*, we have the admissible fundamental
group IIxe. (2.2.2) of X*. The admissible fundamental groups of pointed stable curves are

natural generalizations of the tame fundamental groups of smooth pointed stable curves.
1
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In particular, ITxe is isomorphic to the tame fundamental group of X* if X*® is smooth
over k.

1.1. Fundamental groups of curves in positive characteristic.

1.1.1.  Write H’;é. for the maximal prime-to-p quotient of I1xe. Then HI;. can be deter-
mined by (gx,nx), and it is isomorphic to the prime-to-p completion of the topological
fundamental group of a Riemann surface of type (gx,nx) (2.2.2). However, the full ad-
missible fundamental group Il x. is very mysterious, and its structure is no longer known.
In fact, since the 1990s, some developments of F. Pop-M. Saidi ([PS]), M. Raynaud ([R2]),
A. Tamagawa ([T1], [T2], [T3]), and the author of the present paper ([Y1], [Y4]) showed
that there exist anabelian phenomena for curves over algebraically closed fields of charac-
teristic p. This means that the isomorphism class of X*® as a scheme can be completely
determined by the isomorphism class of Il x. as a profinite group. Furthermore, by the
theory developed in [T2] and [Y1] (e.g. see [Y1, Remark 1.2.2]), we can expect that the
maximal pro-solvable quotient IT15% of Iy« is sufficiently to determine the isomorphism
class of X*® as a scheme. Moreover, since Ilx. is topologically finitely generated, the
isomorphism class of Iy« is completely determined by the set of finite quotients of Il xe
([FJ, Proposition 16.10.6]). Then to understand the anabelian phenomena of curves in
positive characteristic, we may ask the following question: Which finite solvable groups
can appear as quotients of 1 xe?

1.1.2. Let H C Ilxe be an arbitrary open normal subgroup and X3, = (Xpg, Dx,,) the
pointed stable curve of type (gx,,, nx, ) over k corresponding to H. We have an important
invariant ox,, associated to X3 (or H) which is called p-rank (or Hasse- Witt invariant).
Roughly speaking, ox, controls the finite quotients of IIxe which are extensions of the
group Ilx./H by p-groups.

Since the structures of maximal prime-to-p quotients of admissible fundamental groups
are known, to find all the solvable quotients of IIy., we need to compute the p-rank oy,
when Ily./H is abelian. If Ilxe/H is a p-group, then oy, can be computed by using
the Deuring-Shafarevich formula ([C], [Su]). If IIxe/H is not a p-group, the situation
of ox,, is very complicated. Moreover, the Deuring-Shafarevich formula implies that, to
compute ox,, we only need to assume that IIx./H is a prime-to-p group (i.e., the order
of Ilx«/H is prime to p). In this situation, we have the so-called generalized Hasse- Witt
invariants associated to (prime-to-p) cyclic admissible coverings of X* (2.3.2) which are
defined as the dimensions of canonical decomposition of HP** @, F,(5 HZ(Xy,F,)Y)
under the natural actions of IIxe/H, and which are refined invariants of p-rank, where
(—)*" denotes the abelianization of (—), and F, is an algebraic closure of F,.

1.2. The first main result.

1.2.1. Previous results of Raynaud, Tamagawa, and the author of the present paper. We
fix some notation. Let n be a positive natural number prime to p, and let f*:Y* — X*
be a Galois admissible covering over k with Galois group Z/nZ and Dy. the ramification
divisor induced by f® (Definition 2.4 (i)). Note that Dy. is an effective divisor on X
whose support is contained in Dy, and whose degree deg(Dys) is divisible by n such
that deg(Dye) = 0 if nxy = 0 and 0 < deg(Dye) < (nx — 1)n if nx # 0. We put
s(Dys) o deg(Dye)/n.

Suppose that X*® is smooth over k, and that ny = 0 (i.e., Dx = ). Raynaud ([R1])
developed his theory of theta divisors and proved that, if n >> 0 is a natural number
prime to p, then there exists a Galois étale covering f* of X* with Galois group Z/nZ
(i.e., s(Dyse) = 0) whose “first” generalized Hasse-Witt invariant (2.3.2) is as large as
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possible, namely equal to gx — 1 ([R1, Théoreme 4.3.1]). Moreover, as a consequence,
Raynaud obtained that Il x. is not a prime-to-p profinite group. This is the first deep result
concerning the global structures of étale fundamental groups of curves over algebraically
closed fields of characteristic p.

Suppose that X*® is smooth over k, and that nxy > 0. The computations of generalized
Hasse-invariants of admissible coverings of X* (i.e., tame coverings of X*®) are much
more difficult than the case of nxy = 0. Tamagawa observed that Raynaud’s theory of
theta divisors can be generalized to the case of tame coverings, and established a tamely
ramified version of the theory of Raynaud’s theta divisors. By applying the theory of
theta divisors, Tamagawa ([T2]) proved that, if nx > 2 and n >> 0 is a natural number
prime to p, then there exists a Galois admissible covering (i.e., Galois tame covering) f*
of X* with Galois group Z/nZ such that deg(Dys) = n (i.e., s(Dss) = 1), and that the
“first” generalized Hasse-Witt invariant of f* is as large as possible, namely equal to gx.
Note that since all abelian tame coverings of X*® are étale if nxy < 1, the calculations
of generalized Hasse-Witt invariants can be deduced from Raynaud’s result mentioned
above if ny < 1. As an application, Tamagawa obtained that the type (gx,nx) can
be reconstructed group-theoretically from the tame fundamental group Il y. when X* is
smooth over k (i.e., an anabelian formula for (gx,nx), see [T2, Theorem 0.1]) which is
the most critical step in his proof of Grothendieck’s anabelian conjecture for curves over
algebraically closed fields of characteristic p ([T2, Theorem 0.2]).

Suppose that X* is an arbitrary pointed stable curve (i.e., possibly singular) over k.
In [Y3], the author of the present paper consider the case of s(Dys) = nx — 1, and by
using the theory of Raynaud-Tamagawa theta divisors, we proved ([Y3, Theorem 1.2])
that, if nxy # 0 and n >> 0 is a natural number prime to p, then there exists a Galois
admissible covering f* of X* with Galois group Z/nZ such that deg(Dye) = (nx — 1)n,
and that the “first” generalized Hasse-Witt invariant of f* is as large as possible, namely
equal to gx + s(Dp) — 1 = gx + nx — 2. As an application, we obtained that the
type (gx,nx) can be reconstructed group-theoretically from the admissible fundamental
group IIxe when X* is an arbitrary pointed stable curve over k ([Y3, Theorem 1.3]). On
the other hand, this result is one of main tools to establish the theory of moduli spaces
of admissible fundamental groups by the author in [Y5] (a theory which gives a general
framework for describing the anabelian phenomena of curves over algebraically closed
fields of characteristic p).

1.2.2. In the present paper, we study genrealized Hasse-Witt invariants of prime-to-
p cyclic admissible coverings with certain prescribed ramifications. Let m € N be an

arbitrary natural number. We denote by (Z/mZ)~ o {0,...,m — 1}. Then there is a
natural bijection (as sets) Z/mZ — (Z/mZ)~. The first main result of the present paper
is as follows (see Theorem 3.5 for a more precise statement):

Theorem 1.1. Let X* be an arbitrary pointed stable curve of type (gx,nx) over k and
D € Z[Dx] a given effective divisor with degree deg(D) = (nx — 1)n satisfying certain
given conditions introduced in Condition 3.3. Write D for the effective divisor on X
induced by D via the natural map Z[Dx] — Z/nZ]Dx] o Z|Dx|QZ/nZ = (Z/nZ)~[Dx],
where the second arrow induced by the above bijection Z/mZ — (Z/mZ)" .

Suppose that n >> 0 is a natural number prime to p. Then there exists a Galois
admissible covering f® :Y*® — X* with Galois group Z/nZ such that Dy = D, and that
the “first” generalized Hasse- Witt invariant of f® is as large as possible, namely equal to

gx +s(D) — 1.
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Theorem 1.1 implies the following corollary (see Corollary 3.6 for a more precise state-
ment):

Corollary 1.2. Let X*® be an arbitrary pointed stable curve of type (9x,nx) over k and
s € {0,...,nx — 1} an integer. Suppose that n >> 0 is a natural number prime to p.
Then there exists an effective divisor D with degree deg(D) = (nx — 1)n such that the
following hold:
e D satisfies certain given conditions introduced in Condition 3.5.
e deg(D) = sn (i.e., s(D) = s), where D is the effective divisor on X as defined in
the statement of Theorem 1.1.
o There exists a Galois admissible covering f* : Y* — X* with Galois group Z/nZ
such that Dye = D, and that the “first” generalized Hasse- Witt invariant of f* is
as large as possible, namely equal to gx + s — 1.

In particular, we obtain the results proved by Raynaud and Tamagawa mentioned in the
second and the third paragraphs of 1.2.1 if s € {0,1} and X* is smooth over k, and obtain
the result proved by the author of the present paper mentioned in the fourth paragraph of
1.2.1if s=nx — 1.

1.3. The second main result. Let us explain the second main result of the present
paper that motivated the theory developed in the present paper.

1.3.1.  We fix some notation. Let I'xe be the dual semi-graph of X*®, and I' ¢, the dual
semi-graph of the universal admissible covering of X* corresponding to IIx. (2.3.4). More-
over, we shall suppose nx > 0. Let e be an open edge of I'ye (i.e., an edge corresponding
to a marked point of Dy, see 2.2.1) and € an arbitrary element of the inverse images of
e of the natural surjection I'g, — I'xe (2.3.4). Since the dual semi-graph I' ¢, admits a
natural action of ITy., we put Iz C IIx. the stabilizer subgroup of e.

Write z. € Dy for the marked point of X* corresponding to e. Then the general theory
of admissible fundamental groups implies Iz — Gal([?&}xﬁ /Kx2.) = Z(1)Y, where K,
denotes the quotient field of the completion of the local ring Ox , , and IA(E(% denotes

the maximal tamely ramified extension of K X e -

Suppose that F, is the algebraic closure of F, in k. Then we have the following (see
4.2.3 for a more precise explanation): The set

def '
Fe = (Ie @2 (Q/Z)") U {*e}

can be identified with Fp as sets, hence, admits a structure of field, whose multiplicative
group is Ir ®z (Q/Z)”, and whose zero element is %z. where {*;} is an one-point set,
and (Q/Z)”" denotes the prime-to-p part of Q/Z which can be canonically identified with

(Q/Z)¥ (1) = Up.m)=1 tim (k). Moreover, the set

Fapt def L® Z/(pt — 1)Z L {*g} C F¢

admits a structure of field induced by Fz(— F,) which is isomorphic to the subfield of F,
with cardinality p’.

1.3.2. Reconstructions of field structures in anabelian geometry. Tamagawa ([T2, Propo-
sition 5.3]) proved that the field structure of Fz defined above can be reconstructed group-
theoretically from the admissible fundamental group (=tame fundamental group) Il xe if
X* is smooth over k. Namely, there exists a group-theoretical algorithm whose input
datum is Ilye, and whose output datum is the field Fgz. Furthermore, the author of the
present paper extended Tamagawa’s result to the case where X*® is a (possibly singu-
lar) pointed stable curve over k (see [Y3, Theorem 6.4] and [Y5, Theorem 4.13]). These
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results play an important role in the theory of anabelian geometry of curves over alge-
braically closed fields of characteristic p, and are key steps to prove the Grothendieck’s
anabelian conjecture for certain curves over algebraically closed fields of characteristic p
([T2, Theorem 0.2]) and the homeomorphism conjecture for 1-dimensional moduli spaces
([Y5, Theorem 0.1]).

On the other hand, motivated by the theory of moduli spaces of admissible fundamental
groups, the author of the present paper observed ([Y6]) that the anabelian phenomena
for curves over algebraically closed fields of characteristic p can be understood by using
not only full tame fundamental groups but also certain finite quotients of them. More
precisely, we obtained a “finite version” of Grothendieck’s anabelian conjecture for certain
curves over algebraically closed fields of characteristic p which is a strong generalization
of Tamagawa’s result [T2, Theorem 0.2] (namely, the isomorphism classes of curves as
schemes can be completely determined by certain finite quotients of their tame funda-
mental groups, see [Y6, Corollary 1.4]). One of main steps in the proof of [Y6, Corollary
1.4] is a “finite version” of [T2, Proposition 5.3] which says that the field structure of
[Fz ¢+ can be reconstructed group-theoretically from certain finite quotients of IlIx. if X*
is smooth over k and ¢t >> 0 (see [Y6, Proposition 5.2]). Note that [Y6, Proposition 5.2]
implies [T2, Proposition 5.3].

1.3.3. By applying Theorem 1.1, we obtain the second main result of the present paper
which generalizes [Y6, Proposition 5.2] to the case of (possibly singular) pointed stable
curves (see Theorem 4.2 for a more precise statement):

Theorem 1.3. We maintain the notation introduced in 1.3.1. Then the field structure
of Fzpe can be reconstructed group-theoretically from certain finite quotients of Ilxe if
t>> 0.

In [Y7], we will use Theorem 1.3 to study the topological properties of the moduli
spaces of admissible fundamental groups and prove a “finite version” of Grothendieck’s
anabelian conjecture for certain (possibly singular) pointed stable curves over algebraically
closed fields of characteristic p. On the other hand, see Remark 4.2.1 for some further
explanations about the applications of Theorem 1.3 to anabelian geometry.

1.4. Structure of the present paper. The present paper is organized as follows. In
§2, we recall some notation and results concerning pointed stable curves and generalized
Hasse-Witt invariants. In §3 and §4, we prove the first main result and the second main
result, respectively.

1.5. Acknowledgements. The author was supported by JSPS Grant-in-Aid for Young
Scientists Grant Numbers 20K14283.

2. PRELIMINARIES

In the present section, we recall some notation and results concerning semi-graphs,
pointed stable curves, admissible fundamental groups, and generalized Hasse-Witt invari-
ants of cyclic admissible coverings.

2.1. Semi-graphs.

2.1.1. Let G ¥ (v(G),e(G), (¢ : e(G) = v(G) U {v(G)}) be a semi-graph. Here,

v(G), e(G), and (¢ denote the set of vertices of G, the set of edges of G, and the set of
coincidence maps of G, respectively. Note that {v(G)} is a set with exactly one element.

Let e € e(G) be an edge. Then e % {b,52} is a set of cardinality 2. The set e(G)

er e

consists of closed edges and open edges defined as follows: If e is a closed edge, then the
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coincidence map (¢ is a map from e to the set of vertices to which e abuts. If e is an
open edge, then the coincidence map (© is a map from e to the set which consists of the
vertex to which e abuts and the set {v(G)} (i.e., either (& (b) or (& (b?) is not contained
in v(Q)).

We denote by e°P(G) C e(G) the set of open edges of G and e(G) C e(G) the set of
closed edges of G. Note that we have e(G) = e°?(G) U ¢(G). Moreover, we denote by

e?(G) o {e € e(G) | #(¢%(e)) = 1} (i.e., a closed edge which abuts to a unique vertex
of G), where “Ip” means “loop”. For each e € e(G), we denote by v¢(e) C v(G) the set
of vertices of G to which e abuts. For each v € v(G), we denote by ¢ (v) C e(G) the set
of edges of G to which v is abutted.

We shall say G connected if G is connected as a topological space whose topology
is induced by the topology of R?, where R denotes the real number field. Denote by

re dimg(H' (G, R)) the Betti number of G. Moreover, we shall call G a tree if rq = 0.

Remark. The motivations of the above notation concerning semi-graphs arise from the
dual semi-graphs of pointed stable curves (see 2.2.1 below).

Example 2.1. Let us give an example of semi-graph to explain the above notation. We
use the notation “e” and “o with a line segment” to denote a vertex and an open edge,
respectively.

Let G be a semi-graph as follows:

€1

G: €3 ‘ U2 o€4

Then we see v(G) = {v, 12}, e(G) = {e1,e2,e3}, eP(G) = {es}, (C(e1) = {v1,v2},
(C(er) = {v1,m}, (C(e3) = {v}, and ((es) = {v2, {v(G)}}. Moreover, we have
eP(G) = {es}, v%(er) = {vi, v}, v¥(ea) = {vr,v2}, v%(e3) = {1}, v%(ea) = {2},
eG(v1) = {e1, ez, e3}, and €% (vy) = {ey, €, €4}

2.1.2. Let G’ be a connected semi-graph. We shall say G’ a sub-semi-graph of G if either
G’ = {e} for some e € ¢(G) or the following conditions hold:

(i) v(G') # 0 and v(G') Cv(G).
(i) e(G’) C e(G) is the subset of closed edges of G such that v(e) C
v(G).
(iii) e°P(G’) C e(G)\e?(G’) is the subset of edges of G such that #(v€(e)N
v(G)) =1
Note that the definition of G’ implies that G’ can be completely determined by v(G’) if
v(G') # 0.
The conditions (ii), (iii) imply that, if e € e?(G) is a loop and vS(e) C v(G’), then
e € e(G). If G’ = {e} for some e € ¢(G), we will use e to denote G’. Moreover, there
exists a natural injection G’ — G, and G’ can be regarded as a topological subspace of G
via this injection.
Suppose that G’ is a sub-semi-graph of G such that v(G’) # . Let L C e“(G’) be
a subset of closed edges of G’ such that G’ \ L (i.e., removing L from G’) is connected.

For any e % {b!,02} € L, we put ¢! & {b%,6%}, i € {1,2}, and shall call ¢ the i-edge

e’ Ve et Vel
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associated to e. We shall say that G, is the semi-graph associated to G' and L if the
following conditions hold:
(i) v(Gp) < (@),
(i) eP(G)) L& eP(G') U {e!,e2}er, such that (Gri(e) = (F'(e) if e €
e (G'), that ¢(Gr(e!) o {¢% (b)), {v(G")}} if et is the 1-edge associated to
e € L, and that (%% (e2) & {¢ (52), {v(G))}} if €2 is the 2-edge associated
toe e L.
(iii) e?(G) & e?(G)\ L such that (G2 (e) & ¢¥'(e) for all e € e(G')\ L.
Then we have a natural map of semi-graphs
6(G’,L) . G/L — G,
which is defined as follows:
° 6(G’,L)(U> =wvforve ’U(G/L)
o dan)(e) =efore€e(Gh)\ {e',e*}eer.
e 0 .r)(e’) =e, i€ {1,2}, for i-edge associated to e € L.
S
Moreover, we put dg; : GJ, ‘M G G the composition of maps of semi-graphs. Note
that (5G2]G2\{61,62}66L is an injection.

Remark. The motivations of the above notation concerning semi-graphs arise from the
dual semi-graphs of pointed stable sub-curves (see 2.2.3 below).

Example 2.2. We give some examples of semi-graphs to explain the above notation. We
use the notation “e” and “o” to denote a vertex and an open edge, respectively.

Let G be a semi-graph constructed in Example 2.1, and let G’ be a sub-semi-graph of
G such that v(G') = {1}, and L % {e;} C €(G') a subset of edges of G’ and {e?, €2}

the set of 1-edge and 2-edge associated to e;. Then we have the following:

€2

G’ €1 vy
€3
6% €9

G U1
6% €3

2.2. Pointed stable curves and their admissible fundamental groups.

2.2.1. Let p be a prime number, and let
X* = (X, Dy)
be a pointed stable curve over an algebraically closed field k of characteristic p, where

X denotes the underlying curve, Dx denotes a finite set of marked points satisfying [K,
Definition 1.1 (iv)]. Write gx for the arithmetic genus (or genus for short) of X and ny
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for the cardinality #(Dy) of Dx. We call the pair (gx,nx) the topological type (or type
for short) of X*.

Recall that the dual semi-graph T'xe % (v(xe),e(Txe),¢Tx*) of X*® is a semi-graph
associated to X* defined as follows: (i) v(I"xe) is the set of irreducible components of X.
(ii) e°P(T'xe) is the set of marked points Dx. (iii) e(I'xs) is the set of singular points (or
nodes) X8 of X. (iv) ¢'x*(e), e € e°P(I'xs), consists of the set {v(I'x+)} and the unique
irreducible component containing e. (v) ¢'x*(e), e € e¥(I'xe), consists of the irreducible
components containing e.

2.2.2. By choosing a base point z € X\ (X*™8UDy), we have the admissible fundamental
group 7™M (X*® x) of X* (see [Y3, §2.1.5] for definitions of (Galois) admissible coverings
and (Galois) multi-admissible coverings, and [Y5, §1.2] for a definition of admissible fun-
damental groups). Since we only focus on the isomorphism class of 72 (X* ) in the
present paper, for simplicity of notation, we omit the base point and denote by

Tye

the admissible fundamental group 724™(X*, x). Note that, by the definition of admissible
coverings ([Y3, §2.1.5]), the admissible fundamental group of X* is naturally isomorphic
to the tame fundamental group of X*® when X* is smooth over k. Moreover, the structure
of the maximal prime-to-p quotient of I1xe is well-known, and is isomorphic to the prime-
to-p completion of the following group

9x nx
(@1,... 005,01, ., by c1y0 o0 Cny | H[ai,bi] ch =1).
i=1 j=1

We denote by I, the étale fundamental group of the underlying curve X of X*®. We
have the following natural continuous surjective homomorphisms (for suitable choices of
base points)

HXO - Hét..

2.2.3.  We define pointed stable curves associated to various semi-graphs introduced in
2.1.2. Let I' C T'xe be a sub-semi-graph (2.1.2). Write Xt for the semi-stable sub-
curve of X (i.e., a closed subscheme of X which is a semi-stable curve) whose irreducible
components are the irreducible components corresponding to the vertices of I', and whose
nodes are the nodes corresponding to the closed edges of I'. Moreover, write D, for
the set of closed points Xr M {Zc}eceor()ce(rys), Where z. € X denotes the closed point
corresponding to e € e(I'xs). We define a pointed stable curve of type (gr,nr) over k to
be
Xt = (Xr, Dx,.).

Note that the dual semi-graph of X7 is naturally isomorphic to I'. We shall call X7 the
pointed stable curve of type (gr,nr) associated to I, and denote by II xg the admissible
fundamental group of Xp.

Let I' C I'xe be a sub-semi-graph and L C e®(I") such that I' \ L is connected. Let
', be the semi-graph associated to I' and L (2.1.2), and Nodey(Xp) € X3 the set of
nodes of Xt corresponding to L. Write nory, : Xp, — Xt for the normalization of Xt at

Noder (Xt), and put Dx,. o nor; ' (Dx,. UNodez (Xr)). We define a pointed stable curve
of type (gr,,nr,) to be

XI:L = (XFL7 ‘DFL)'
Note that the dual semi-graph of X7 is naturally isomorphic to I';. We shall call X7 the
pointed stable curve of type (gr,,nr, ) associated to I'y. We denote by HXEL the admissible
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fundamental group of X7 . Moreover, we have the following natural outer injections (i.e.,
up to inner automorphism of ITx.)

HX;L — HXI! — Il xe.

Let v € v(I'xs) and T', C I'ye the sub-semi-graph such that v(T",) = {v}. Let e®(T,)
be the set of loops of T, (2.1.1). Note that in this situation, we have e*(T,) = e(T,).
Write X, for the irreducible component corresponding to v and nor, : )?v — X, for the
normalization of X,. We put Dg o nor, ' ((Dx N X,) U (X8 N X,)). Then we have

Xy =X, and Dy = Dx, . Moreover, we shall call

elP(ry) L) 1p(ry)

X ()N(U,D;(v)

o .
o X(F'U )elp(l"v)

the smooth pointed stable curve of type (g, ny) = (9. gy U)o )) associated to v.

We denote by IIg, the admissible fundamental group of )?; Suppose I', C I'. Then we
have the following natural outer injections

H)}. — HX; — HXE — IIxe.

Example 2.3. Suppose that the dual semi-graph I'xe is equal to the semi-graph con-

structed in Example 2.1. Then we have that I'y, =T'xe , I'5, = Xe are equal
“1 v1 Yelp(ry) )

to the semi-graphs G’, G’ , constructed in Example 2.2, respectively.

2.3. Generalized Hasse-Witt invariants.

2.3.1. Notation and Settings. We maintain the notation and the settings introduced in
2.2.1 and 2.2.2.

2.3.2.  Let n be an arbitrary positive natural number prime to p and pu,, C £* the group of
nth roots of unity. By fixing a primitive nth root ¢, we may identify p,, with Z/nZ via the
homomorphism ¢ — i. Let o € Hom(II3%,Z/nZ). We denote by X2 = (X,, Dx,) — X*
the Galois multi-admissible covering ([Y3, §2.1.5]) with Galois group Z/nZ corresponding
to .

We put H, def H} (X, F,) ®r, k. Then H, is a finitely generated k[u,]-module in-
duced by the natural action of u, on X,, moreover, it admits the following canonical

decomposition
Hy= P Ha,
i€Z/nZ.
where ¢ € p, acts on H,; as the (*-multiplication. We shall call

Yei = ity (Hay), i € Z/0Z,
a generalized Hasse- Witt invariant (see [B], [N], [T2] for the case of étale or tame coverings
of smooth pointed stable curves) of the cyclic multi-admissible covering X* — X*. In
particular, we shall call 7,1 the first generalized Hasse-Witt invariant of the cyclic multi-
admissible covering X3 — X°.

2.3.3.  Write Z[Dx] for the group of divisors whose supports are contained in Dx. Note
that Z[Dx] is a free Z-module with basis Dx. We put

Z/nZ|Dx] = Z|Dx| ® Z/nZ,

¢ :Z/nZ|Dx] — Z/nZ, D mod n s deg(D) mod n.
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Write (Z/nZ)~ for the set {0,1,...,n — 1} and (Z/nZ)~[Dx] for the subset of Z[Dx]
consisting of the elements whose coefficients are contained in (Z/nZ)~. Then we have a
natural bijection ¢, : (Z/nZ)~[Dx] = Z/nZ[Dx]. We put
~ def
(Z/nZ)"[Dx]" = 1, (ker(c,)).
Note that we have n|deg(D) for all D € (Z/nZ) [Dx]°. Moreover, we put

det deg(D)
- n

s(D)

c Zzo.

Since every D € (Z/nZ)~[Dx]° can be regarded as a ramification divisor associated to
some cyclic admissible covering, the structure of the maximal prime-to-p quotient of IIxe
(2.2.2) implies the following:

O, lfTLXSL
ny —1, if ny > 2.

ogs(D)<{

2.34. Let H C Ilx. be an arbitrary open subgroup and X3, = (Xg, Dx,,) the pointed
stable curve over k corresponding to H. We put
X< lim Xy Dg=  lim Dy, g™ lim Ty
HCIIye open HCIIye open HCIIye open
We call X* = ()A( , D) the universal admissible covering of X*® corresponding to IIx., and
I' ¢. the dual semi-graph of X*. Note that Aut()A('/X') = Ilx., and that I';, admits a
natural action of Ilye.

Let e € eP(I'xs). Write € € e°?(I'5.) for an open edge over e (i.e., the image of € of the
natural surjection D¢ — Dx is e) and z. € Dx for the marked point corresponding to e.
We denote by Iz C ITyx. the stabilizer subgroup of €. The definition of admissible coverings
([Y3 §2.1.5]) 1mphes that Iz is (outer) 1somorphlc to the Galois group Gral(Kt /Kx ) =
Z(l) ", where K denotes the quotlent field of OX;r : K denotes a maximal tamely
ramified extens,lon of K,,, and Z(1)” denotes the max1mal prime-to-p quotient of Z(1).
Then we have an injection ¢g : Iz — II35. Since the image of ¢z depends only on e,
we may write I, for the image ¢¢(lz). Moreover, the structures of maximal prime-to-p
quotients of admissible fundamental groups of pointed stable curves (2.2.2) imply that
the following holds: There exists a generator s, of I, for each e € ¢°?(I'x+) such that

Z Se =20
ece°P(I'xe)

in I1.. In the remainder of the present paper, we fiz a set of generators {seteceor(rya) Of
1, satistying the above condition. Then we have the following definitions:

Definition 2.4. (i) For a € Hom(II3%, Z/nZ), we put
D, ¥ Z a(se) z.,
ece®P(I'xe)

where a(s.)™ denotes the element of (Z/nZ)~ corresponding to a(s.) via the natural
bijection (Z/nZ)~ = Z/nZ. Note that we have D, € (Z/nZ)~[Dx]°. On the other hand,
for each D € (Z/nZ)~[Dx]°, we put

Revid™(x*) ¥ {o € Hom(II¥h, Z/nZ) | D, = D},

def
’Y(OGD) = Ya,1 (232)
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(ii) Let t € N be an arbitrary positive natural number, and n aof pt — 1. For u €

{0,...,n}, we write
t—1
u = E upp"
r=0

for the p-adic expansion with w, € {0,...,p — 1}. We identify {0,...,t — 1} with Z/tZ
naturally. Then {0,...,¢t — 1} admits an additional structure induced by the natural
additional structure of Z/tZ. We put

t—1
ut? = ZuiJerr, (&S {07 cot— 1}'
r=0

Let D € Z[Dx] be an effective divisor on X such that ord, (D) < n for all x € Dx and
n|deg(D). For i € {0,...,t — 1}, we put

DO N (ord, (D)) "z € Z[Dx].
z€Dx

We shall call D a Frobenius stable effective divisor on X if
deg(D) = deg(D")
holds for each i € {0,...,t —1}.

2.4. Generalized Hasse-Witt invariants via line bundles. The generalized Hasse-
Witt invariants can be also described in terms of line bundles and divisors.

2.4.1. Notation and Settings. We maintain the notation and the settings introduced in
2.2.1 and 2.2.2.

2.4.2. Let n € N be an arbitrary natural number prime to p. We denote by Pic(X) the
Picard group of X. Consider the following complex of abelian groups:

Z[Dx] % Pic(X) & Z[Dx] 2 Pic(X),
where a,(D) = ([Ox(=D)],nD), b,(([£], D)) = [L" @ Ox(D)]. We denote by

def

Pxen = ker(b,)/Im(a,)

the homology group of the complex. Moreover, we have the following exact sequence

0 — Pic(X)[n] & Pyen 2 Z/nZ[Dx] & Z/0Z,
where Pic(X)[n]| denotes the n-torsion subgroup of Pic(X), and
a, ([£]) = ([£],0) mod Im(a,), b,(([£], D)) mod Im(a,)) = D mod n,

¢ (D mod n) = deg(D) mod n.

We shall define
Pxen Cker(b,) C Pic(X) @ Z[Dy]

to be the inverse image of (Z/nZ)~[Dx]°(2.3.3) C (Z/nZ)~|Dx| C Z[Dx] under the
projection ker(b,) — Z[Dx]|. It is easy to see that Px., and ‘@/X',n are free Z/nZ-
modules with rank 2gx +ny — 1 if nx # 0 and with rank 2gx if ny = 0, and that there
is a natural isomorphism @/X',n = Pxen.

On the other hand, let & € Hom(II13%,Z/nZ) and f2 : X2 — X* the Galois multi-
admissible covering over k with Galois group Z/nZ corresponding to «. By fixing a
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primitive nth root ¢, we may identify p, with Z/nZ via the homomorphism ¢* + 7. Then
we see

fa,*OXQ = @ Ea,h

1€EZ/nL

where locally £, ; is the eigenspace of the natural action of ¢ with eigenvalue (. Moreover,
by similar arguments to the arguments given in [T2, Proposition 3.5], we have the following
isomorphism:

Hom(II3%, Z/nZ) = Pxern, a v ([Lail, Da).

Then every element of @/X',n induces a Galois multi-admissible covering of X*® over k
with Galois group Z/nZ.

2.4.3. In 2.4.3, we suppose n o p! — 1 for some positive natural number ¢ € N. Let

([£], D) € Pxen. We fix an isomorphism L& = Ox(—D). Note that D is an effective
divisor on X. We have the following composition of morphisms of line bundles

LU L = 8" L % Oy(—D) & L < L.

This composite morphism induces a homomorphism ¢z py : H' (X, £) — H' (X, L). We
denote by
def ;. r
Y(ic),0) = lelk(m m(¢{1).p)))

r>1

and write ay € Hom(I13%,Z/nZ) for the element corresponding to ([£], D) via the iso-
morphism Hom (I3, Z/nZ) = Px. . Then we have the following lemma:

Lemma 2.5. We maintain the notation and the settings introduced above. Then the
following statements hold:
(i) We have Y(z),0) = Yara (2-3.2). Moreover, since Do, = D, we have

def
Y(21.0) = Viae.D) (= Yag1)-

(ii) We have

9x; if ([£], D) = ([Ox],0),
7(a£,D) S dlnlk(Hl(Xﬂ [’)) = gx — 17 ZfS(D) = 07 [E] 7A [OX]a
gx +s(D)—1, ifs(D)>1,
where s(D) is the natural number defined in 2.5.3.
Proof. See [Y3, Lemma 2.6 and Lemma 2.7]. O

We shall say that the generalized Hasse- Witt invariant v, py can attain mazimum if
Vag,D) = dimk(Hl(X7 L))
holds.
2.5. Raynaud-Tamagawa theta divisors. We recall the theory of Raynaud-Tamagawa

theta divisors which was introduced by Raynaud in the case of étale coverings ([R1]), and
which was generalized by Tamagawa in the case of tame coverings ([T2]).

2.5.1. Notation and Settings. We maintain the notation and the settings introduced in
2.4.1. Moreover, we suppose that X*® is smooth over k.
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2.5.2. Let Fj, be the absolute Frobenius morphism on Spec k, Fx/;. the relative Frobenius

morphism X — X © x Xk r, k over k, and FY o Fyo---0F,. We put X; ' x Xk, FY k,

and define a morphism F)t(/k : X — X, over k to be Fﬁ(/k def Fx, koo Fx o Fx.

Let ([£],D) € ézx-,n, and let £; be the pulling back of £ by the natural morphism

X; — X. Note that £ and £, are line bundles of degree —s(D) (2.3.3). We put B, o

<F§(/kz)* (OX(D))/OXt and
def

gD - BtD ® £t-
Let Jx, be the Jacobian variety of X; and Lx, a universal line bundle on X; x Jx,. Let
pry, : Xy X Jx, = X; and DIy, X X Jx, = Jx, be the natural projections. We denote
by F the coherent Ox,-module prk, (£p) ® Lx,, and by

def

Xr = dimp(H(Xe xx k(y), F @ k(y))) — dim(H' (X, x5 k(y), F @ k(y)))

for each y € Jx,, where k(y) denotes the residue field of y. Note that since pr Jx, is flat, x~
is independent of y € Jx,. Write (—xx)" for max{0, —xz}. We denote by Og, C Jy, the
closed subscheme of .Jx, defined by the (—xz)"th Fitting ideal Fitt(_, )+ (R* (P, )+ (F)).

The definition of Og,, is independent of the choice of £;. Moreover, we have codim(O¢,,) <
1.
We shall call

O¢, C Jx,

the Raynaud-Tamagawa theta divisor associated to Ep if there exists a line bundle £} of
degree 0 on X; such that

0= min{dimk(HO(Xt,é’D X ,Cé)), dimk(Hl(Xt,gD X Eg))}

The following fundamental theorem of theta divisors was proved by Raynaud when s(D) =
0 ([R1, Théoreme 4.1.1]), and by Tamagawa when s(D) < 1 ([T2, Theorem 2.5]).

Theorem 2.6. Suppose that s(D) € {0,1} (2.3.3). Then the Raynaud-Tamagawa theta
divisor associated to Ep exists.

2.5.3. Let N be an arbitrary non-negative integer. We put

def | O, it N =0,
CN) = { SNCINY, i N £ 0.

Then we have the following proposition.

Proposition 2.7. We maintain the notation introduced above. Suppose that

n 1> Clgx) + 1,

and that the Raynaud-Tamagawa theta divisor associated to Ep exists. Then there exists
a line bundle T of degree 0 on X such that [Z] # [Ox], that [Z®"] = [Ox], and that

gx, Zf([/;]vD):([OX]?O)?
Y(£®1),D) = lelk(H1<X,£ ®I>> = gx — ]-a ZfS(D> = O’ [‘C] 7é [OX]v
gx +s(D)—1, ifs(D)>1.

Namely, the first generalized Hasse-Witt invariant (2.3.2) of the Galois multi-admissible
covering with Galois group Z/nZ corresponding to ([L @ L], D) (2.4.2) can attain mazxi-
mum.

Proof. See [Y3, Proposition 2.10]. O
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3. MAXIMUM GENERALIZED HASSE-WITT INVARIANTS WITH PRESCRIBED
RAMIFICATIONS

In this section, we prove that the generalized Hasse-Witt invariants of cyclic admissible
coverings with certain prescribed ramifications can attain maximum. The main result of
the present section is Theorem 3.5.

3.1. Minimal quasi-trees. In [Y3], we introduced a kind of semi-graph which we call “a
minimal quasi-tree”, and which plays an important role for studying maximum generalized
Hasse-Witt invariants of cyclic admissible coverings. Roughly speaking, the key point
is that we can completely control the ramifications of admissible coverings at nodes of
pointed stable curves by using minimal quasi-trees. For the convenience of readers, we
recall the definition of minimal quasi-trees and give some examples.

3.1.1. Let W* be a pointed stable curve of type (gw,nw) over an algebraically closed
field [ and I'yys the dual semi-graph of W*. We have the following:

Definition 3.1. Let I be a sub-semi-graph (2.1.2) of I'ye and L C e?(I”) \ eP(I7)
(see 2.1.1 for e'P(I")). We shall call the semi-graph '} associated to I and L (2.1.2) a
quasi-tree associated to Dy, if the following conditions are satisfied:
o I, \ eP(I",) is a tree (i.e., the Betti number is 0, see 2.1.1).
e ¢°P(I'yye) is contained in e°P(I).
Moreover, we shall call a semi-graph
I'p

a minimal quasi-tree associated to Dy if either I'p,, = () when ny = 0 or the following
conditions are satisfied when ny, # 0:

w

e I'p, is a quasi-tree associated to Dyy.
e Suppose that I'” is a quasi-tree associated to Dy, such that I C I'p,,. Then we
have I =T'p,, .
Note that by the definition of I'p,,, we have that T'p,, \ e?(T'p,,) is a tree.
In particular, when e?(I'y+) = (), minimal quasi-trees are very simple. Namely, I'p,, is
a minimal tree-like semi-graph contained in I'yye such that I'p,, contains all of the open
edges of Tyye.

Remark 3.1.1. For any pointed stable curves, minimal quasi-tree associated to the sets
of marked points always ezist (see [Y3, §4.4.5]).

3.1.2.  We give an example concerning minimal quasi-trees.

Example 3.2. (a) Let W* be a pointed stable curve over k such that the following
conditions hold: (i) The set of irreducible components of W is {W,, , W,,, Wy, }; (ii)
Dw = {wy,,wp,}; (iii) The set of nodes is {we, wq,, Wa,, Wy }; (iv) W, is a singular
curve with the unique node we; (v) wy, € Wy, and wy, € W,; (Vi) Way, Wa, € Way, N Woy;
(vil) we, € Wy, NW,,. We use the notation “e” and “o” to denote a node and a marked
point, respectively. Then W* is as follows:
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The dual semi-graph I'yys of W* such that the following conditions hold: (i) v(I'yye) o

{v1,v9,v3}; (ii) e (Tye) \ eP(Tyye) o {a1, as,as} such that a; and ay abut to v; and
vy, Tespectively, and that az abuts to vo and wvs; (iii) €P(Tyye) &f {c} and ¢ abuts to vy;
(iv) e°P(T'yye) o {b1, b2} such that by and by abut to vy and wve, respectively. We use

the notation “e” and“ o with a line segment” to denote a vertex and an open edge,
respectively. Then 'y is as follows:

(b) We obtain a minimal quasi-tree I'p,,, LI I associated to Dy is as follows:

ay at
def
I'p, =1t CC%l a2 % 003
by
by

On the other hand, the pointed stable curve W} associated to I' (2.2.3) is as follows:

(c) Next, we give an example IV C Ty, which is a tree containing all open edges of
['we, and which is not a (minimal) quasi-tree associated to Dy,

U1 Ay Vo

|
I % ba

b

If T is a quasi-tree, then by the definition of quasi-trees (Definition 3.1), I is equal to a
semi-graph I'7,, (2.1.2) associated to a sub-semi-graph I of I'yys and a subset of closed

edges L C e/(I") \ e(I"”). Thus, the definition of I/, implies 'z (v1) = {c, by, al, as}.
This means that I is not a quasi-tree.

3.2. Maximum generalized Hasse-Witt invariants.

3.2.1. Notation and Settings. We maintain the notation introduced in 2.2.1 and 2.2.2.
Let I'p, be a minimal quasi-tree associated to Dy. Then by definition, there exist a
sub-semi-graph I” of I'xe and a subset of closed edges L C e?(IV) \ e(I") such that
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I'p, =I". For simplicity, we denote by I" o ['p,. Moreover, let X? = (Xr, Dx,.) be the

pointed stable curve of type (gr,nr) over k associated to F(déf I') (2.2.3). Note that we

have e°?(I'ys) C €?(I") (i.e., Dx C Dx,.).

Let ¢t € N be a positive natural number, n & pt — 1, and D € Z|Dx| C Z|Dx,] an
effective divisor on X with degree (nx — 1)n such that ord, (D) < n for all x € Dx. Write
(see 2.3.3 for (Z/nZ)~|Dx]%)

D e (z/nZ)~[Dx]"’
Lﬁl
for the image of D via the composition of maps Z[Dx| — Z/nZ[Dx] = (Z/nZ)~[Dx],
where the second arrow is the map defined in 2.3.3. Moreover, since #(Supp(D)) €

{nx — 1,nx}, we have (see 2.3.3 for s(D))

s(D) = { #<SUPP(D) \{z € Dx | ord.(D) = n})—l, if #(Supp(D)) =ny,
0, if #(Supp(D)) =nx — L.
Note that we have D = D and s(D) = s(D) = nx — 1 if D € (Z/nZ)~[Dx]°.

3.2.2.  We maintain the notation and the settings introduced in 3.2.1. We introduce a
condition concerning the effective divisor D which plays a central role in the remainder
of the present paper.

Condition 3.3. Suppose ny > 0. There exist a positive natural number m € N and a

.....

are satisfied:
(i) deg(D;) = (nx — 1)(p" — 1), where ¢; € N is a positive natural number.
(ii) ord,(D;) < p% —1 for all x € Dy.
(iii) #({z € Dx | ord,(D;) =p" — 1}) > ny — 2.
(iv) D Dy +pDy + p+eDy 4 - 4 == YD,

Note that if D satisfies Condition 3.3, we see that t = 377" ¢;, and that D;, j €

{1,...,m}, is Frobenius stable (see Definition 2.4 (ii)). Then D and D are also Frobenius
stable.

3.2.3. Firstly, we have the following lemma:

Lemma 3.4. We maintain the notation and the settings introduced in 3.2.1. Suppose that
s(D) > 1, that n > max{C(gx) + 1, #(X*8) + nx} (see 2.5.8 for C(gx)), and that D
satisfies Condition 3.3. Then there exists an element ar € Reva™(XP) \ {0} (Definition
2.4 (1)) such that

Var, D) = 9r +8(D) — 1.
Proof. We divide the proof of the lemma into the following parts:

Constructions of ramification divisors for irreducible components. Firstly, we construct
explicitly ramification divisors on irreducible components of X induced by the divisor D
on XF.

Let v € v(I') be an arbitrary vertex of I', X,, the irreducible component of Xr corre-
sponding to v, and my(v) the set of connected components of { Xt \ X, }, where { X1\ X,}

denotes the topological closure of Xp \ X, in Xp. We denote by Dy, o (Dx. N X,) U
(UCem(v)(C N X,)) and put X; = (X,, Dx,). Then X is a pointed stable curve of type
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(9x,,nx,) over k. Note that X3 = )?; it X, is smooth over k, where )~(; denotes the
smooth pointed stable curve associated to v (see 2.2.3).

Let C' € my(v) be an arbitrary connected component. Since I' is a minimal quasi-tree
associated to Dx, we have #(C N X,) = 1. Then we shall put

xcdifCﬂXv, C € m(v).
def

Note that CN{Xp \ C} = CNX, = {z¢}. We denote by D¢ = (Dx,. NC)U{z¢}. Then
C* = (C, D¢) is a pointed stable curve of type (gc, n¢) over k. We put

D, ™ D, \ (D \ Dx) = ( |J {ae}) U(Dx N X,), nly, & #(DY,),

Cemg(v)
Dy ™ Do\ (Dx, \ Dx) = {c} U (Dx N C), np = #(Dp).
We see immediately
Cemp(v)

Let ] S {17 e ,m} and {D]}]E{l
tion 3.3. We put
g pli —1, ifd,; =p—1forallze DxNC,
Lo A [erDXmC ordx(Dj)}, otherwise,

where [(—)] denotes the image of (—) of the natural surjection Z — Z/(p'i —1)Z. Moreover,
we put

my the set of effective divisors introduced in Condi-

-----

U]d_ef Z dy.. jTc + Z ord,(D;)x € Z[DY ],
CEﬂ'o ) rzeDxNXy

D, Dyy+p" Dy +p" " Dys + - - +p2;n:7lle,m € Z[D,].

Note that #({z € Dx | ordI(Dj) = p'i —1}) > ny — 2 (i.e., Condition 3.3 (iii)) implies
#({z € Dy, | ord,(D,;) =p" —1}) > nly, — 2.

Calculations of degrees of ramification divisors. Next, we calculate the degrees of D, ;,

je{l,...,m}, and D,. Let C € my(v) and j € {1,...,m}. We shall put

Qoy = (P —1—di, Jac+ Y ordy(D))x € Z[Dy],

rzeDxNC

Qc ™ Qot + 9" Qos + 12 Qos + -+ + P21 Qo € ZD).

Moreover, deg(D;) = (nx — 1)(p" — 1) (i.e., Condition 3.3 (i)) and the definition of dj, ;
imply

> ordo(Dy) +di+ (P —1—di )+ Y ordy( nx(pt — 1),
xGDx\D/C zeDxNC
(p" —1—di )+ Y orde(D;) < (ng — )P — 1),
zeDxNC
> ordy (D)) + i ; < (nx —ng + 1) (P — 1),
CIJEDx\D/C

Then we have deg(Qc,;) = (n — 1)(ph — 1).
On the other hand, we see

(nx + #(mo(v) = D)(p' — 1) = deg(Dyy) + Y deg(Qcy)

CEﬂ'o )
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~dee(Dug)+ ( 3wt #(m(vn) (s — 1)
CEﬂ'o(U)
Then we obtain
deg(D, ;) = (nx + 2#(mo(v Z ng —1)(ph — 1)
CEﬂ'o )

!/

= (n’y, — D(ph —1),
and
deg(D,) = (nly, = 1)n.

Constructions of Galois multi-admissible coverings for XJ. Next, we construct Galois
multi-admissible coverings for irreducible components with ramifications divisors con-
structing above.

Let v € v(T') and j € {1,...,m}. Write D, € (Z/nZ)~[DY ]° for the image of D,

—1
Ln

via the composition of maps Z[DY | — Z/nZ[D | = (Z/nZ)~ DY, ], where the second
arrow is the map defined in 2.3.3. We denote by

B,; % v, |Supp(Ba)-

Then the constructions of D, and D, ; imply the following conditions are satisfied:

o deg(B,) = s(Dy) (5 — 1). B

e ord,(B,;) <pY —1 for all z € Supp(D,).

o #({z € Supp(D,) | ord,(B,;) =p' — 1}) > s(D,) — 1.

« D= Bus b1 Bus b+ 05 By

Let v € v(I') and X? the smooth pointed stable curve of type (gu,n,) over k. Write

nom, : )?U — X, for the normalization morphism. We use the notation l~)v to denote
nom*(D,). Note that D, and D, are equal via the isomorphism X, \ nom;!(Xsn) 5
X, \ X5 In particular we have s(D,) = s(D,). Let L5 be a line bundle on X,
such that £®” = Oz, (—=D,). Write L5, for the pulling back hne bundle of L5 by the

natural morphlsm Xv,t X g, F k — Xv, where F), denotes the absolute Frobenius morphlsm
on Speck. Then by applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 3.13]
for D, and B, , j € {1,...,m}, the Raynaud-Tamagawa theta divisor associated to the
vector bundle (2.5.2)

Bt~ ®L Dt

exists. Moreover, by Proposition 2.7, there exists a, € Revadm(X *) such that VD) =

gy—l—S(D) 1.
Weputf Y’—)X'

* v € v(I'), the Galois multi-admissible covering over k induced by

a, whose Galois group is isomorphic to Z/nZ. Then f;‘ induces a Galois multi-admissible
covering
fo Yy = X3 vew(l),
over k whose Galois group is isomorphic to Z/nZ. Let Ilxs,II e be the admissible fun-
damental groups of X7, )?; , respectively, and «, € Hom(H‘}}’;,Z/ nZ) an element induced
by f5 satisfying the composition of the homomorphisms Hab H%P. X Z/nZ is equal to
a, (see 2.2.3 for the first arrow). Then we see a, € Revadm( )\ {0}. By [Y3, Theorem
3.9], we obtain
Vaw, Do) = 9Xo T S(Ev) -1
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Namely, the generalized Hasse-Witt invariant v, p,) can attain maximum.

Constructions of Galois multi-admissible coverings for Xp. Next, we prove that the Galois
multi-admissible covering f2 : Y,* — X?* v € v(I"), constructed above can be glued as a
Galois multi-admissible covering of X7.

Let vy, v € v(I') be vertices of I" distinct from each other such that X,, N X,, is not
empty. Since I' is a minimal quasi-tree associated to Dx, we have #(X,, N X,,) = 1.

Let C; € m(v1) and Cy € mg(vy) be the connected components such that X,, C C)

and X, C C’Q Then we have z7 def To, = xo, = Xy, N X,, = C1 N Cy. Note that
C1 U Cy = Xr. The definitions of d2*, ., d}* . imply

xTCy,J0 T xCysd

2 g dzlc j=07—1, ifd,; =p% —1forallze DxnNC,
zo, ]+ TCyed dZQCT] —pJ -1, if d@] = J — 1 for allxeDXmCQ,
otherwise,

i s+dz =1 > ordo(D)] 4 [ D ordo(Dy)].

$€Dxﬂcl xEDXﬂCQ

Since Y cp ne, O1de(Dj) + > cpne, 0rda(D;) = deg(D;) is divided by p% — 1, we have
I Z ord,(D;)] + | Z ord,(D;)] = p" — 1.
x€DxNC xeDxNCs
Then we obtain
v v t
dxlcj+dr2cj p7 -1

On the other hand, deg(D,,) = (nx — 1)n and ord,(D,,) < n for all x € DY imply

0 < ord,, ,(D,,) = d”lc L+, + +pz§'n;11 tjdgici,m <n

TC,;H =

for all 7 € {1,2}. Then we obtain ord,, ,(D.,) + ord,, ,(D,,) = n. Moreover, we see
[ ordy, ,(Dy,) =mn, if Supp(D) C C,

(D) +oxt (Do) = { G (De) T ST E

Thus, we have

0, if either Supp(D) C C; or Supp(D) C Cy,
n, otherwise.

Ordm,z (Em) + Ordm,z (Evz) = {

This means that we may glue {f$},enr) along {f, (D, \ (D, N Dx))}vesr) in a way
that is compatible with the actions of Z/nZ and the gluing of { X} },cor) that gives rise
to Xp. Then we obtain a Galois multi-admissible covering

fl: : YF. = (YF?DYF) - XI.‘

over k with Galois group Z/nZ. Note that the construction of f2 implies that fr is étale
over Dx,. \ Dx, where fr : Yr — Xr denotes the morphism of underlying curves induced

by f¢.
Let ITye, v € v(I), be the admissible fundamental group of X and ar € Hom(IT8%, Z/nZ)

an element induced by fp satisfying the composition of the homomorphisms Ha . -
H%}f’. I Z/nZ is equal to o, for all v € v(I') (see 2.2.3 for the first arrow). Then we sce
ar € Rev®@™(X2) \ {0}. By [Y3, Theorem 3.9], we obtain

Viar,5) = Ixr +5(D) — 1.
This completes the proof of the lemma.
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3.2.4. Now, we can prove the first main result of the present paper:

Theorem 3.5. Let X* = (X, Dx) be an arbitrary pointed stable curve of type (gx,nx)

over an algebraically closed field k of characteristic p > 0, and n of pb—1 € Na
natural number satisfying n > max{C(gx)+ 1, #(X*"8) +nx} (see 2.5.3 for C(gx)). Let
D € Z[Dx] be an effective divisor on X such that ord,(D) < n for all z € Dx, and that

p def 0, ifnxy =0,
| an effective divisor with degree (nx — 1)n satisfies Condition 3.3, if nx # 0.

Then there exists an element o € Reva™(X*) \ {0} (see 5.2.1 for D, and see Definition
2.4 (i) for Revis™(X*®)) such that the generalized Hasse-Witt invariant Ya,p) Can attain
maximum. Namely, the following holds:

po (Bl s
(D) gx +s(D) — 1, if Supp(D) # 0.

Proof. Suppose Supp(D) = (). Then we have D = 0. Thus, the theorem follows immedi-
ately from Theorem 2.6 (i.e., Raynaud’s result for zero divisor), Proposition 2.7, and [Y3,
Theorem 3.9].

=Y def

Suppose Supp(D) # () (note that this implies nx > 2). Let I' = I'p, be a minimal
quasi-tree associated to Dx. There is a natural map of semi-graphs or : I' = I'xe defined
in 2.1.2. Write I'™ for the image of dr. Note that I'™ is a sub-semi-graph (2.1.2) of I'x..
We put

Xf = (XF7DXF)7 Xfim - (Xl"lm,DX

rim )

the pointed stable curves of types (gr,nr), (grim,nrm) over k corresponding to I', T'™
(2.2.3), respectively, and Ly, HX;im the admissible fundamental groups of X7, X,
respectively.

By Lemma 3.4, there exists an element ar € Rev&™(X?) \ {0} such that

Yarp) = 9r +8(D) — 1

holds. Write f2: Y® = (Y1, Dy;.) — X} for the Galois multi-admissible covering over k
with Galois group Z/nZ induced by ar. Note that the construction of f2 given in the
proof of Lemma 3.4 (see the penultimate paragraph of the proof of Lemma 3.4) implies
that the morphism fr : Yr — Xr of underlying curves is étale at

f;l (DXF \ (Dx U {xe}eeégl (6°p(Fim)) >)

By gluing Y;* along f;! (DXF \(DxU{z.} ea (eon(rim) )) in a way that is compatible with
e T €
the actions of Z/nZ and the gluing of X that gives rise to X, we obtain a pointed stable

curve Y%, over k. Moreover, f induces a Galois multi-admissible covering f. @ Y. —
X over k with Galois group Z/nZ. Write apm for an element of Hom(II8% ,Z/nZ)
Flm

induced by 2. such that the composition of the homomorphisms H*}}”; — H*}%im =7 /nZ
is equal to ar. Note that we have D, , = D, where D, denotes the effective divisor
on Xrim determined by apim via the bijection Hom(H?}[’;im,Z/nZ) = DX (see 2.4.2).
Then [Y3, Theorem 3.9] implies

ry(arim,ﬁ) = grim + S(D) - ]_
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Write 7o(X \ Xpim) for the set of connected components of the topological closure
X\ Xpim of X\ Xpim in X. We define the following pointed stable curve

E*=(E,Dp EN Xpm), E € mo(X \ Xpim),

over k. By Theorem 2.6 (i.e., Raynaud’s result for zero divisor), Proposition 2.7, and [Y3,
Theorem 3.9], there exists a Galois étale covering fr : Y2 = (Yg, Dy,) — E*® over k with
Galois group Z/nZ such that the following holds:

_ 9k, if gg = O?
PY(QE’O) 9gr — 17 if 9gE 7£ 07

where gg denotes the genus of F/, and ag € Revgdm(E°) is an element induced by f},

(note that ap = 0 if gg = 0).
Since fr and fg are étale at

X (| B fo'(XpmnE),
EEﬂ'o(X\XFim)

respectively, we can glue Y2, and {Yz} Pem (XX along
F]n]

JoH (Xpim O ( U E)) and { 5" (Xpim N E)}EEWO(m)

Bemo(X\Xpim)

in a way that is compatible with the actions of Z/nZ and the gluing of { X P JU{E*} o vz
l"lm
that gives rise to X*®. Then we obtain a Galois multi-admissible covering
oYy =X

over k with Galois group Z/nZ.

Let IIxe, IIgs be the admissible fundamental groups of X°®, E*, E € my(X \ Xpim),
respectively. Write o € Hom(II3%,Z/nZ) for an element induced by f® such that the
compositions of the homomorphisms H%?;im — 113 5 Z/nZ, T3 — 1135 5 Z/nZ, E €

7o(X \ Xtim), are equal to apm and ag, respectively. We see o € Rev%dm(X‘) \ {0}. By
applying [Y3, Theorem 3.9], we obtain

VD) = 9x +8(D) — 1.

This completes the proof of the theorem.
O

3.2.5. Let X* = (X, Dx) be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k£ of characteristic p > 0 and Ilx. the admissible fundamental
group of X*. We put (see also [Y3, Definition 3.10 (i)])

max def a
YxoF = MAX4eN st (dp)=11V(a,Da) | @ € Hom (I3, Z/dZ) \ {0}}.

Note that Lemma 2.5 (ii) implies

max - gX_17 langla
XS gy tnx —2, ifny > 2.

In [Y3], we proved the following significant result concerning existence of maximum
generalized Hasse-Witt invariants of cyclic admissible coverings:
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([Y3, Theorem 5.4]): We maintain the notation introduced above. Then
there exist a natural number n = p'—1, an effective divisor D € (Z/nZ)~[Dx]°,
and an element Revis™(X*®)\ {0} such that the following holds:

_ . max __ gX_17 1an§1,
TaD) =X = gy +nx —2, ifny >2

This result is one of main results of [Y3], and it is an important tool to study admissible
fundamental groups of pointed stable curves in positive characteristic and the anabelian
geometry of curves over algebraically closed fields of characteristic p > 0 (e.g. [Y3], [Y5],
[Y6]). On the other hand, we have the following:

Corollary 3.6. Let X* = (X, Dx) be an arbitrary pointed stable curve of type (gx,nx)

over an algebraically closed field k of characteristic p > 0, and n o pb—1 € Na
natural number satisfying n > max{C(gx)+ 1, #(X*"8) +nx} (see 2.5.3 for C(gx)). Let
s €{0,...,nx — 1} be an integer. Then there exists an effective divisor D € Z[Dx|on X
such that ord, (D) < n for all x € Dy, and that the following conditions are satisfied:

e We have
P def 0, ifnxy =0,
| an effective divisor with degree (nx — 1)n satisfies Condition 3.3, if nx # 0

such that s(D) = s (see 3.2.1 for D).

e There exists an element o € Revas™(X*)\{0} (see Definition 2.4 (i) for Revis™(X*))
such that the generalized Hasse- Witt invariant 7y, py can attain mazimum. Namely,
the following holds:

N { gx —1, if Supp(D) = 0,
(D) gx +s(D)—1, if Supp(D) # 0.
In particular, we obtain [Y3, Theorem 5.4] if s of nx — 1.

Proof. If s = 0, the corollary follows immediately from Theorem 3.5. Then we may

suppose s > 1. We put m ©f ¢ and t; € N, j € {1,...,m}, a positive natural number
satisfying n & p=is1t — 1 > max{C(gx) + 1, #(X*"8) + ny}.
def

Let Dx = {x1,...,2Zn, }. Then we put

def . . . def
Dy a0 —2aga S (0 —DreZDxl, jefL,...,m % s).

zeDx\{z;,xj4+1}
Moreover, we put

D déf D, —i—ptlDQ —|—pt1+t2D3 4+ ... +p2;n=_11tij S Z[DX]

We see immediately that D satisfies Condition 3.3, and that D € (Z/nZ)~[Dx]° is an

effective divisg‘ on X whose support is equal to {x1,...,zs1}, and whose degree is equal
to sn (i.e., s(D) = s). Then the corollary follows from Theorem 3.5. This completes the
proof of the corollary. O

4. RECONSTRUCTIONS OF FIELD STRUCTURES VIA FINITE GROUPS

In this section, by applying Theorem 3.5, we prove that the field structures associated
to inertia subgroups can be reconstructed group-theoretically from certain finite quotients
of admissible fundamental groups. The main result of the present section is Theorem 4.2.

4.1. A lemma for constructing effective divisors.
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4.1.1. Notation and Settings. We maintain the notation and the settings introduced in
2.2.1. Moreover, suppose ny > 0.

Let t € N be a positive natural number, n def p'—1,and D € Z[Dx] an effective divisor
on X with degree (nx —1)n such that ord,(D) < n for all x € Dx. Suppose the following
holds:

e D is Frobenius stable (Definition 2.4 (ii)). Namely, deg(D) = deg(D®) = (nx —
)n for all i € {0,...,t —1}.
Note that the above condition is a necessary condition for the existence of the Raynaud-

Tamagawa theta divisor associated to the vector bundle £p defined in 2.5.2 (see [T2,
Lemma 2.15]).

We denote by di) & ord, (D) (see Definition 2.4 (ii)), # € Dx, and put
—1

d® — d(i)rpr

T T,

Il
=)

T

the p-adic expansion of d¥. In particular, D = D© if { = 0. We shall write d,, d,, for
déo), d(z?i, respectively.
On the other hand, let u € N be an arbitrary positive natural number. We put

S, € 0,...,u—1}.
4.1.2.  We have the following lemma:

Lemma 4.1. We maintain the notation and the settings introduced in 4.1.1. Let x1 € Dx.
Then the following statements hold:

(i) We have
Y Al =(x —Dp-1)
re€Dx
for each i € {0,...,t —1} and each r € {0,...,t —1}.

(ii) If d,, € p™ & {p* | b € S;}, then we have that

#({dy =n |z € Dx}) >nx -2,

and that D satisfies Condition 3.3.
(iii) If dy, € Sp_1p% < {ap® | a € S,_1, b € S,}, then

#({dI:n]:UEDX})an—Z

holds if and only if D satisfies Condition 3.35.
(iv) Suppose

Spap®™, if p#2
dz StUS_ St: p—1 5 . ’
V€D p—1P {SppSt’ if p=2.

We divide the set S; o {0,...,t — 1} into the following parts
SPOP T (€ Sy | dyy e £ 0,p — 1},
SOE (res, | dy,, =0},

S e, | dyy, =p— 1),
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Note that the above assumption implies #(S’Zéo’p_l US;?™") > 2. Then there exists a set
{d}, € Sp}ocpy\(z1} Of natural numbers such that the effective divisor

D' Edyr + Y. dx € Z[Dy]

IGDx\{xl}
on X satisfies Condition 3.3 (in particular, D' and D' are Frobenius stable), and that

(@)= [ AT A2, A #STT) #2457 + 1 <,
| nx —1, if #(STOPY) 4 24P + 1 > ny,

where D' € (Z/nZ)~[Dx]® denotes the image of D' of the composition of maps Z[Dx] —
Lﬁl

Z/nZ|Dx] = (Z/nZ)~[Dx] (see 2.5.3 for 1,). Note that we have 2 < s(D') < ny — 1 if

nx Z 3.

Proof. (i) This is [Y2, Lemma 3.2].
(ii) If d,, = p® € p, then (i) implies that

S _{(nx—l)(p—1)7 if r # b,

wre —1)(p—1)—1, ifr=0,
BN RO PR
holds for all r € {0,...,t —1}. If r € {0,...,t — 1} \ {b}, we see immediately d,, =p—1
for each € Dx \ {x1}. If r = b, then there exists 2’ € Dx such that d, , = p — 2 and
dypy =p—1forall z € Dx \ {x1,2'}. We put

Q= > (p-DreZDy], re{o,... .t—1}\{},

IGDx\{:El}

Qv o T+ (p—2)a’ + Z (p— 1)z € Z[Dx].

z€Dx\{z1,2'}

If we put m 4 and D; o Qi_1,1€{1,...,t}, then we see D = Dy +pDy+---+p'~ 1D,
satisfying Condition 3.3.
(iii) If d,, = ap® € S,_1p™, then (i) implies that

S a - { ey s
wr —1(p—1)—a, ifr=5a,
veDx\(e1) (nx =Dp—1)—a ifr
holds for each r € {0,...,t—1}. If r € {0,...,t—1}\{b}, we see immediately d,, = p—1
for all z € Dx \ {z1}.
Suppose #({olz =n|z¢€ DX}) > ny — 2. If r = b, then there exists ' € Dy such
that dpyp=p—1—aand d,, =p— 1 for all z € Dx \ {z1,2'}. We put

QY Y (p-DreZDy], ref{o,... .t—1}\{b},

z€Dx\{z1}
0, ary + (p—1—a)x’ + Z (p— 1)z € Z|Dx].
z€Dx \{z1,2'}

If we put m 4 and D; def Qi_1,i€{1,...,t}, then we see D = Dy +pDy+---+p'~tD;
satisfying Condition 3.3.
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On the other hand, suppose that D satisfies Condition 3.3. We maintain the notation in-

troduced in Condition 3.3. Note that there exists a unique natural number s € {1,...,m}
such that
s s+1
dti<b< )t
j=1 j=1
We put ¢/ ©p - > j=1tj < tsy1. Then we have
Dij= > ("-1x
xGDx\{:m}

forall j € {1,...,m}\ {s+ 1}, and
Dy =ap’ar + (p—1—a)p”a’ + ( Z (p— 1)pr) z' + Z (P = Da
re{0,tup1— 1N\ {b') €D\ {12}

for some 2’ € Dx\{z1} if j = s+1. Then we see immediately d, = n for all Dx \ {x,2'}.
This completes the proof of (ii).
(iv) Suppose
—1

dz1 - Z dazl,rpr é pSt U Sp—lpSt'
r=0

Then we have S7%P~ U S;7~! £ (. We put

def
d;’[r],r =p— 1- dﬂﬁlﬂ"

for some z'[r] € Dx \ {z,} if r € S70P7",

def

d;’r =p—1

for all z € Dx \ {z1} if r € S7°, and

d;:”[r},r déf P — 2, d;:’”[r},r déf 1

for some 2”[r], 2" [r] € Dx \ {1} if r € S;7~'. Denote by
;7 def / " m
(U @r)u( U @a"m).
res7 0Pt res; Pt

By taking suitably chosen marked points z'[r], z”[r], 2”'[r] € Dx \ {x1}, we have

#(Dly) = { STV 24H(STTT), A H(STOTT) 245 + T <,
X7 nx — 1, if #(S7OPY) 4 24P 41 > ny,

Furthermore, we put

Q. “d, ., + Y d,,xeZDx], re{0,... .t -1},
$€Dx\{x1}
t—1
d., def Z d,,.p" € Sy.
r=0
Then we see immediately that

D/défDll—i-pD/Q—i-‘“"i‘ptilD;:dasll'l‘i‘ Z d;xGZ[DX]
z€Dx\{z1}
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satisfies Condition 3.3 if we put m & ¢ and D; o ‘1,1 € {l...,t}. Note that the
construction of @, r € {0,...,t — 1}, implies deg(D’) = (nx — 1)n and

#({r € Dx | ord,(D') =n}) =

nx — #(S7OPTY =24 (ST — 1, A #(STOPTH 4 24(S7 7N + 1 < ny,
0, if #(S7OP7Y) 4 24(S7PT 41 > ny.

Thus, we obtain (see the second paragraph of 3.2.1)
oD = [ ST 2SI, ST + 25 + 1 S,
nx —1, if (ST 4 24(S7P ) +1 > ny.
This completes the proof of the lemma. O

4.2. Reconstructions of field structures.

4.2.1. Notation and Settings. Let i € {1,2}, and let X? = (X;, Dx,) be a pointed stable
curve of type (gx,nx) over an algebraically closed field k; of characteristic p > 0, I'xs the
dual semi-graph of X?, and IIxs the admissible fundamental group of X;. Moreover, we
suppose nx > 0.

4.2.2. Recall that )?; is the universal admissible covering of X? corresponding to IIx.
(2.3.4), and that I' ¢, is the dual semi-graph of )A(Z’ We put

o def
Edg p(Hx;) = {Igi}a.Eeop(p)?!)?

where Iz, C Ilxs denotes the stabilizer subgroup of €; (2.3.4), and “op” means “open

edge”.
Let N; C Ilxs be an arbitrary open normal subgroup of Ilxs, Qn; o Iye/N;, X3, =

(Xn,, Dxy.) the pointed stable curve of type (gn,,nn;) correspondlng to IV;, and FX]-V‘

the dual semi-graph of X3 . Write f§. : X}, — X7 for the Galois admissible covering
over k; with Galois group @y, corresponding to N; — Ilxs. The set of open edges
OP(FX- ) admits an action of @y, induced by the Galois admissible covering fx.. Let

en, € eOP(FX- ) be an open edge of I'xs . We denote by I\, € Qn, the stabilizer subgroup
of ey,. Moreover, we put

o def
BEdg™(Qn,) = {Lex, e, ecor(iys )-

Let €], € eoP(FX.) and e € eOP(FX- ) the image of €, of the natural surjection I' gs —
Ixe . Then the image of I~ of the natural surjection IIxs — @y, is equal to I, . Thus,
the SurJectlon Ixs = Qn, 1nduces a surjection

Edg™(Ilxs) — Edg™(Qn,), I = Lo,
4.2.3. Field structures associated to inertia subgroups. Let €; € eP(I'¢ ) We put
Fe, % (Ie 82 (Q/2)]) U {+a),
)

where {#g } is an one-point set, and (Q/Z

can be canonically identified with (Q/Z)Y' (1) € o Utpmy=1 m (ki) Moreover, let ag, be a
generator of I5,. Then we have a natural bijection

I ®2 (Q/2) 3 28z (Q/Z)], a5, @111,

denotes the prime-to-p part of Q/Z which
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Let T, ; be the algebraic closure of F, in k;. Thus, we obtain the following bijections
I, ®2 (Q/2)} % Z@z (Q/Z)! = (Q/2)) (1) 5 F,.

This means that Fz, can be identified with Fp,z- as sets, hence, admits a structure of field,
whose multiplicative group is I, ®z (Q/Z), and whose zero element is *,.

Let A be a profinite group and b € N a positive natural number. We denote by
Dy(A) C A the topological closure of [A, AJA’, where [A, A] denotes the commutator

subgroup of A. Let t € N be a positive natural number and n aof pt — 1. Let IIE. be the

étale fundamental group of the underlying curve X and A; C Ilxe the inverse image of
D, (1%, ) of the natural surjection ITys — II%. (2.2.2). We shall put

0, D, (4;), ifnx <3,

L Dn<Hx:), if nx Z 3.

Note that the structures of maximal prime-to-p quotients of admissible fundamental

groups (2.2.2) imply I 5 Z/nZ for all I € Edg®(Qo, ), where Qo % Ixs/O;.

Let f5, : X8, = (Xo,, Dx,,) — X be the Galois admissible covering over k; corre-
sponding to O; < Ilxe, I'ye the dual semi-graph of X, and eo, € e’?(T X&) the image
of €; of the natural surjection I g~ Ixp - Write L., € Edg”(Qo,) for the stabilizer
subgroup of ep,. Then the image of Iz, of the natural surjection Ilxs — Qo, is equal
to [eoi- Moreover, write Qeo, for the image of ag, of the surjection Iz — Ieoi. Since

Lo S Z/nZ 5 pn(ki) > T,

».i» where the first arrow is determined by a., > 1, the set

Feoi,t déf Ieo,i U {*gi} g ]ng
admits a structure of field induced by Fz (= F,;) which is isomorphic to the subfield of
F,; with cardinality p'.

4.2.4. Now, we can state the second main result of the present paper:
Theorem 4.2. We maintain the notation and the settings introduced in 4.2.1. Let n &t
pt — 1 €N be a positive natural number satisfying the following condition:

e Let my be the product of all prime numbers < p — 2 if p > 3 and my aof {1} if
p € {2,3}. We put ty the order of p in the multiplicative group (Z/moZ)*. Then
we have

C p'—1>max{C(gx) + 1, #(X*8) + nx, 2}, (p° —1)|n.

Let H; C Ilxs be an open normal subgroup satisfying H; C D,(0;), where O; C Ilxs
denotes the open subgroup defined in 4.2.5. Then the following statements hold:

1) The field structure of F., + (4.2.3) can be reconstructed group-theoretically from
O;»

Qu, def lxe/H;, Qo,, and Edg™(Qo,). Namely, there exists a group-theoretical algorithm

whose input data are Qy,, Qo,, and Edg®®(Qo,), and whose output datum is Feoi,t as a
field.

(ii) Let ¢ : Qu, — Qm, be a surjection. Suppose that the following conditions are
satisfied:
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e ¢ fits into the following commutative diagram

¢
Qu, — Qe

l !

Ty /DM(0)) — Tixs/DW(0,)

J |

QOl — QOQ

such that p is an isomorphism.
e p induces a bijection p°® : Edg®(Qo,) — Edg®(Qo,), I — p(I), such that

p(1601) = [602'
def

Then the isomorphism Peoyeop, = P

1. 1y — I, induces a field isomorphism
(X} 1 2

fd

peol 7602 : Ol7t _> IF

€0, by

where “fd” means “field”.

Proof. Suppose nx < 3. Let O} o D, (4;) and f8, : X¢, = (Xor, Dx,,) — X} the Galois
admissible covering over k; corresponding to O; < Ilys. The definition of A; implies that
f&, is étale (i.e., the morphism of underlying curves induced by fg, is étale). Then Lo,

is contained in O;/D,(0;). Moreover, we have no, o #(Dx,,) > 3 since n > 2. Thus,
by replacing X7, Tlxs, and Qo, by X¢,, O;, and O;/D,(0;), respectively, to verify the

theorem, it is sufficient to assume ny > 3.

From now on, we suppose nx > 3. Note that since O; &

(4.2.3), we have the following isomorphism

D (HX;) when nxy > 2

nx

Qo, = (a1, gy, b1y by Cry Oy | Hal, ]ch:1>ab®Z/nZ.
j=1
Let ¢’ € e®P(I'xs) and ep, € fsg’_l( " C eoP(FX- ), where f& : Pxs, = I'xp denotes the
map of dual semi-graphs induced by f§, introduced in 4.2. 3 We see that I~ does not

depend on the choices of e, € fg%’ (e’ ). Thus, we may denote by I ef [e’O', and we
have l

Edg™ (QOZ) = {Ie’ }e’Eeop(in’)a

~

Edg™(Qo,) = ¢®(I'xe), Io — e.
Moreover, there exists a generator s, of I, for each e € e°?(I'xs) such that
> s
eceoP(I'xe)

in Qo,, and s, = ac,, if eo, € fo5,~ '(e) (see 4.2.3 for Qeo, )-
For o; € Homgp(Qo ) = Homgp(Hg‘}).,]FX) (“gp” means “group”), we put

D, > ai(se)"ze € (Z/nZ)"[Dx]"

ece’P(Ixe)
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where z, € Dy denotes the marked point corresponding to e, and «;(s.)™~ denotes the
element of (Z/nZ)~ corresponding to a;(s.) via the natural bijection (Z/nZ)~ = Z/nZ
defined in 2.3.3. We shall put

HomfS »(Qo,, F ) = {a; € Homgy(Qo,, F}) | Da, is Frobenius stable (see Definition 2.4)}.

Note that the above constructions imply that Hom (Qoﬂ FX ) can be reconstructed group-
theoretically from Qo, and Edg®®(Qo,).

(i) Let F, be an algebraic closure of F, and F,: C [, the subfield with cardinality p'.
The field structure of ]Fxoi + 1s equivalent to the subset

Homfd(IFwoi,ta Fpt) - Homgp(FX

zo, t’F;t)’
where “fd” means “field”. Then in order to prove (i), it is sufficient to prove that
the set Homfd(IFxoi7t,Fpt> can be reconstructed group-theoretically from Qp,, Qo,, and
Edg*™(Qo,)-

Let x; € Homg,(Qo,, F ;). We put

def

H,y, = ker(Qp, — Qo, 3 F%), My, = H @ F,.

Then M,, admits a natural action of QQo, via the conjugation action. Since we assume
H; C D,(0;), we see M,, = (ker(HX; — Qo, 4 F%))™ @ F,. Denote by

Yo (M) = dimg (M, [xi))-

The integer 7,, (M,,) is a generalized Hasse-Witt invariant of the cyclic admissible covering
of X7 corresponding to ker(Ilxs — Qo, X F).) = Ilxs. Note that we have v,,(M,,) <
gx + s(D,,) — 1 if D,, is not zero (see Lemma 2.5). We define two maps

Resft ; Homfs »(Qo,, Fy) — Homgy (F7 )  FL),

zo, b

Ffst HOHI (Qo ) — Z>0, Xi = Y (My,),
where the map Res is the restriction with respect to the natural inclusion F; , =

Iyo, — Qo,. It is easy to see that Res” is a surjection. We put H o {9x +1,9x +

2,...,9x +nx — 2}. Then (i) follows from the following claim:

Claim. We have
Homgq (Fep 1, Fpr) = HomSurJ (FX

€o, N2

Fy) \ Res; (T5) 7' (M),
where Homsu”( , —) denotes the subset of Hom,,(—, —) whose elements are surjections.

Proof of Claim. Fix a primitive nth root ( € F,, we may identify F;t with Z/nZ via
the map ¢ +— 1, and identify I, = FeXO ¢ With Z/nZ via the map a., — 1 (4.2.3).
By considering the Frobenius element of Gal(F,: /F,), we see that a homomorphism
w € Homs‘l”(lﬁ‘>< Fr) = HomS“rJ(Z/nZ Z/nZ) is a field isomorphism contained in

€0;» ty
Homgy(Fe,, 1, Fpe) if and only if w(1) € pS & {1,p7 o ptH

Let f5, + X8, = (Xo,, Dx, ) — X} be the Galois admissible covering over k; corre-
sponding to O; < Ilx.. Write zp, € Dx,, for the marked point corresponding to ep, and
z;1 € Dy, for fo,(xo,), where fo, denotes the morphism of underlying curves induced by
J5,- Then the claim is equivalent to the following statement:
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w(1) € p% if and only if (w(1),n) = 1, and there does not exist an effec-
tive lelSOl" D! € (Z/nZ)~[Dx,]° such that D! is Frobenius stable, that

ord,,(D;) = w(1), and that v, py = gx + s(D;) —1 € H for some

a € Revadm( )\ {0}.
Firstly, we treat the “only if” part of the above statement. Suppose that there exists an
effective divisor D} € (Z/nZ)~[Dx,]" such that D/ is Frobenius stable, that ord,, , (D) =
w(1), and that v,py) = gx + s(D;) — 1 € H for some a € Revadm(XZ-’) \ {0}. Since Dj is
Frobenius stable, Lemma 4.1 (ii) implies s(D;) = 1. This means vy, p) < gx ¢ H for all
o € Revadm( )\ {0}. This contradicts v, py = gx +s(D;) —1 € H.

Next, to verify the “if” part of the above statement, suppose w(1) ¢ pSi Since w(1)
is prime to n, the assumption mg|(p' — 1)|n implies that w(1) & S,— S {ap | a =
0,...,p—2,b =0,...,t —1}. Then Lemma 4.1 (iv) implies that there exists DZ- €
(Z/nZ)~[Dx,]° on X; such that Condition 3.3 is satisfied, and that 2 < s(D}) < nx — 1
holds since we assume ny > 3. Moreover, since n % pt —1 > max{C(gx) + 1, #(X""8) +
nx}, Theorem 3.5 implies that Vo) € H for some o € Revadm(Xi') \ {0}. This con-

tradicts our assumptions. Then we obtam w(1) € p®. This completes the proof of the
claim.

(i) Let ko € Homgp(Qo27 *). Then we obtain a character

K1 € Hom;sp (Qoy. F )

induced by p: Qo, — Qo, and p°° : Edg?(Qo,) = Edg®(Qo,). Moreover, the surjection
Olu,, + He, — Hy, induces a surjection My, [k1] — M, [Ka]. Suppose ky € (Fgfr)_l("ﬂ).
The surjection My, [k1] = M,,[k2] implies v, (My,) > Ve, (M,). Namely, we have x; €

(T'%,) " (H). Thus, the isomorphism pe, o, : Loy, =+ lep, induces an injection

Resy,((T3,) ™ (H)) = Resp, (F1) ™ (H)).
Since #(Homea(Fep 1, Fpr)) = #(Homea(Feo, 1, Fpr)), we obtain that pe, o, induces a
bijection
Homygy (Fe% HFp) = HOIHfd(FeOl o Fpt).
If we choose Fyr = F.,, :, then the image of idFCOT . via the above bijection induces a field

isomorphism
fd

peol 60 : Feol7t _> IF@OZ 7t'

This completes the proof of (ii) of the theorem. O
Remark 4.2.1. In the statement of Theorem 4.2 (i) and (ii), we assume that the following
group-theoretical data are given:

e The set of inertia subgroups Edg®(Qo,) of open edges of the dual semi-graph of
X¢, (=the set of inertia subgroups of marked points of X¢, ).
e The surjection ¢ : Qy, — Qp, induces a commutative diagram

HXl'/D ( 1) —) HXO/D (02)

! l

p
Qo, — Qo,

such that p is an isomorphism, that p induces a bijection p° : Edg®(Qo,) —
Edg*(Qo,), I+ p(1), and that p(l,,,) = I

602 .
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As we mentioned in §1.3 of the introduction of the present paper, reconstructions of field
structures associated to inertia subgroups play a critical role in the theory of anabelian
geometry of curves over algebraically closed fields of characteristic p. However, in general,
the above group-theoretical data do not hold for an arbitrary open subgroup H; C Ilxs
such that H; C D,(0;). This means that we cannot apply directly Theorem 4.2 to
anabelian geometry.

To overcome the difficulties, in [Y7], the author of the present paper introduced the
so-called “quasi-anabelian pairs’ (for various combinatorial data of dual semi-graphs)
associated to admissible fundamental groups (see [Y6, §4] for the case of the tame fun-
damental groups of smooth pointed stable curves). More precisely, for the case of open
edges, we have the following:

Quasi-anabelian pairs for open-edge-like subgroups. Let A C B C Ilxs be open charac-
teristic subgroups of Ilx,. The pair of finite quotients

Q¥ Iys /A, Qg « Ilys/B)

is called a quasi-anabelian pair for open-edge-like subgroups associated to Ilxy if, for any

. . . . . . @ .
surjection « : Ilxs — @4, the composition of surjections 8 : [Ixs — Q4 — Qp induces a
surjection

B Edg™(Ilxy) — Edg™(@p),
where Q4 — Qg denotes the natural surjection induced by A C B.

In [Y7], we established a general method for constructing explicitly quasi-anabelian pairs
associated to admissible fundamental groups of arbitrary pointed stable curves (see [Y6,
§4] for the case of the tame fundamental groups of smooth pointed stable curves).

Once a quasi-anabelian pair can be explicitly constructed, we can construct a quasi-
anabelian pair (Q4,Qp) for open-edge-like subgroups associated to Ilys such that B C

D,(0O;) holds. We put H, ' B and H, aof ker(3). Then we see that 8 induces a

surjection ¢ : Qp, oof [xs/Hy — Qu,. Moreover, 3 : Edg*(Ilys) — Edg®(Qp)

induces a commutative diagram

Ede™(Qn,) —— Edg™(Qu,)

l !

Edg™(Qo,) ——— Edg™(Qo,),

where the horizontal arrows are surjections, and the vertical arrows are surjections induced
by the natural surjections Qp, — Qo, and Qp, - Qo,. Then we see immediately that
the group-theoretical data mentioned in the first paragraph of the remark are satisfied.
Namely, we have the following strong version of Theorem 4.2:

We maintain the notation and the settings introduced in 4.2.1. Let n aef

p' —1 € N be a positive natural number satisfying the following condition:

e Let mg be the product of all prime numbers < p — 2 if p > 3 and

mo < {1} if p € {2,3}. We put ¢, the order of p in the multiplicative
group (Z/moZ)*. Then we have

n % p' — 1> max{C(gx) + 1, #(X*™) + ny, 2}, (p — 1)|n.

Let Ny C Hy C Ilx. are open characteristic subgroups such that (Qn,, Q)
is a quasi-anabelian pair for open-edge-like subgroups associated to Ilxs,
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and that Hy C D,(O2), where Oy C s denotes the open subgroup de-
fined in 4.2.3. Let a : Tlys — Qn, be an arbitrary surjection and S :

ITxs 50 N, — Qp, the composition of surjections. We put H, o ker(3).
Then the following statements hold:

(i) We have that H; is contained in D,(O;), and that the field structure
of F co,,t CaN be reconstructed group-theoretically from @y, and Qop,, ¢ €
{1,2}, where O; C Ilxs denotes the open subgroup defined in 4.2.3.

(ii) Let ¢ : Qn, — Qp, be the surjection induced by B. Then the
def

isomorphism Peoy e, = Plicg, [eo1 — Ie02 induces a field isomorphism
fd ) ~
peol €0y : Feol’t — FSOQvt'
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