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Abstract. Let X• = (X,DX) be a pointed stable curve of topological type (gX , nX)
over an algebraically closed field of characteristic p > 0.

Under certain assumptions, we prove that, if X• is component-generic, then the first
generalized Hasse-Witt invariant of every prime-to-p cyclic admissible covering of X•

attains maximum. This result generalizes a result of S. Nakajima concerning the or-
dinariness of prime-to-p cyclic étale coverings of smooth projective generic curves to
the case of (possibly ramified) admissible coverings of (possibly singular) pointed stable
curves.

Moreover, we prove that, if X• is an arbitrary pointed stable curve, then there exists a
prime-to-p cyclic admissible covering of X• whose first generalized Hasse-Witt invariant
attains maximum. This result generalizes a result of M. Raynaud concerning the new-
ordinariness of prime-to-p cyclic étale coverings of smooth projective curves to the case
of (possibly ramified) admissible coverings of (possibly singular) pointed stable curves.

As applications, we obtain an anabelian formula for (gX , nX), and prove that the field
structures associated to inertia subgroups of marked points can be reconstructed group-
theoretically from open continuous homomorphisms of admissible fundamental groups.
Those results generalize A. Tamagawa’s results concerning an anabelian formula for
topological types and reconstructions of field structures associated to inertia subgroups
of marked points of smooth pointed stable curves to the case of arbitrary pointed stable
curves.
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1. Introduction

LetX• = (X,DX) be a pointed stable curve over an algebraically closed field k, whereX
denotes the underlying curve, and DX denotes the (finite) set of marked points. Write gX
for the arithmetic genus of X and nX for the cardinality #(DX) of DX . We call (gX , nX)
the topological type (or type for short) of X•. By choosing a suitable base point of X•, we
have the admissible fundamental group ΠX• of X•. The admissible fundamental groups
of pointed stable curves are natural generalizations of the tame fundamental groups of
smooth pointed stable curves. In particular, ΠX• is isomorphic to the tame fundamental
group of X• if X• is smooth over k.

Suppose that the characteristic char(k) of k is 0 (resp. p > 0). Then the structure

of ΠX• (resp. the maximal prime-to-p quotient Πp′

X• of ΠX•) is well-known, and it is
isomorphic to the profinite completion (resp. prime-to-p completion) of the topological
fundamental group of a Riemann surface of type (gX , nX) (2.1.6). In particular, ΠX•

(resp. Πp′

X•) is a free profinite group with 2gX +nX − 1 generators if nX > 0. We see that
the type (gX , nX) cannot be determined group-theoretically from the isomorphism class

(as a profinite group) of ΠX• if char(k) = 0 (resp. Πp′

X• if char(k) = p).

1.1. Fundamental groups of curves in positive characteristic.

1.1.1. If char(k) = p > 0, the situation is quite different from that in characteristic 0,
and the structure of ΠX• is no longer known. In the remainder of the introduction, we
assume char(k) = p > 0. In the case of positive characteristic, the admissible fundamental
group ΠX• is very mysterious. After M. Raynaud and D. Harbater proved Abhyankar’s
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conjecture, Harbater asked whether or not the geometric information of a curve over in
positive characteristic can be carried out from its geometric fundamental groups ([H]).
Some developments of F. Pop-M. Säıdi ([PS]), M. Raynaud ([R2]), A. Tamagawa ([T1],
[T2], [T3]), and the author of the present paper ([Y1], [Y4]) showed evidence for very
strong anabelian phenomena for curves over algebraically closed fields of characteristic
p > 0. In this situation, the Galois group of the base field is trivial, and the arithmetic
fundamental group coincides with the geometric fundamental group, thus there is a total
absence of a Galois action of the base field. These kinds of anabelian phenomena go
beyond Grothendieck’s anabelian geometry (since no Galois actions), and show that the
admissible (or tame) fundamental group of a pointed stable curve over an algebraically
closed field of characteristic p must encode“moduli” of the curve. This is the reason why
we do not have an explicit description of the admissible (or tame) fundamental group of
any pointed stable curve in positive characteristic.

1.1.2. Furthermore, the theory developed in [T2] and [Y3] implies that the isomorphism
class of X• (as a scheme) can possibly be determined by not only the isomorphism class
of ΠX• but also the isomorphism class of the maximal pro-solvable quotient of ΠX• . On
the other hand, since all the admissible coverings (see Definition 2.3) of X• can be lifted
to characteristic 0 ([V, Théorème 2.2 (c)]), we obtain that ΠX• is topologically finitely
generated. This implies that the isomorphism class of ΠX• is determined by the set of
finite quotients of ΠX• ([FJ, Proposition 16.10.6]). Then to understand the anabelian
phenomena of curves in positive characteristic, we may ask the following question: Which
finite solvable groups can appear as quotients of ΠX•?

1.1.3. Let H ⊆ ΠX• be an arbitrary open normal subgroup and X•
H = (XH , DXH

) the
pointed stable curve of type (gXH

, nXH
) over k corresponding to H. We have an important

invariant σXH
associated to X•

H (or H) which is called p-rank (or Hasse-Witt invariant, see
2.2.2). Roughly speaking, σXH

controls the finite quotients of ΠX• which are extensions
of the group ΠX•/H by p-groups.
Since the structures of maximal prime-to-p quotients of admissible fundamental groups

are known, to find all the solvable quotients of ΠX• , we need to compute the p-rank σXH

when ΠX•/H is abelian. If ΠX•/H is a p-group, then σXH
can be computed by using the

Deuring-Shafarevich formula ([C], [Su]). If ΠX•/H is not a p-group, the situation of σXH

is very complicated. Moreover, the Deuring-Shafarevich formula implies that, to compute
σXH

, we only need to assume that ΠX•/H is a prime-to-p group (i.e., the order of ΠX•/H
is prime to p).

1.2. Generalized Hasse-Witt invariants for generic curves.

1.2.1. Nakajima, Zhang, and Ozman-Pries’ results. Firstly, let us consider the case of
generic curves. Suppose that nX = 0, and that X• is smooth over k. If X• is a curve
corresponding to a geometric generic point of the moduli space (i.e., a geometric generic
curve), S. Nakajima ([N, Proposition 4]) proved that, if ΠX•/H is a prime-to-p cyclic
group, then σXH

attains the maximum gXH
(i.e., X•

H is ordinary). Moreover, B. Zhang
([Z]) generalized Nakajima’s result to the case where ΠX•/H is an arbitrary abelian group.
Recently, E. Ozman and R. Pries ([OP]) generalized Nakajima’s result to the case where
ΠX•/H is a cyclic group with a prime order distinct from p, and where X• is a curve
corresponding to a geometric point over a generic point of p-rank stratum of the moduli
space.
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Let m ∈ N be an arbitrary positive natural number prime to p. In other words, the
results of Nakajima, Zhang, and Ozman-Pries say that the “first” generalized Hasse-Witt
invariant (see [N] or 2.2.4 of the present paper) of every Galois étale covering of X• with
Galois group Z/mZ attains the maximum gX − 1.

1.2.2. LetMg,0,Z be the moduli stack over SpecZ parameterizing smooth pointed stable
curves of type (g, 0) and Mg,0,k the coarse moduli space ofMg,0,Z×Z k. Let q ∈Mg,0,k, X

•
q

a smooth pointed stable curve determined by a geometric point over q (i.e., a morphism
Spec k′ → Mg,0,k whose image is q, where k′ is an algebraically closed field containing
k), and m ∈ N an arbitrary positive natural number prime to p . We denote by Um ⊆
Mg,0,k the subset of points of Mg,0,k such that for q ∈ Um, the “first” generalized Hasse-
Witt invariant of every Galois étale covering of X•

q with Galois group Z/mZ attains the
maximum. By applying [N, Proposition 4], Nakajima proved that Um is a non-empty
Zariski open subset of Mg,0,k ([N, Theorem 2]). Note that we have Um ̸= Mg,0,k in general
(see 4.6.3).

1.2.3. The first main result of the present paper is as follows (see Theorem 4.13 for a
more precise statement):

Theorem 1.1. Let X• be a component-generic pointed stable curve (see 2.1.2 for the
definition) over an algebraically closed field k of characteristic p > 0. Then the “first”
generalized Hasse-Witt invariant of every prime-to-p cyclic admissible covering of X•

attains maximum under certain assumptions.

If nX = 0 and X• is smooth over k, then Theorem 1.1 is equivalent to [N, Proposition
4]. Thus, Theorem 1.1 generalizes Nakajima’s result to the case of (possibly ramified)
admissible coverings of (possibly singular) pointed stable curves. Moreover, by applying
Theorem 1.1, we generalize [N, Theorem 2] to the case of tame coverings (see Proposition
4.15 (i)).

1.3. Generalized Hasse-Witt invariants for arbitrary curves. Next, let us consider
the case whereX• is an arbitrary pointed stable curve. Letm be a positive natural number
prime to p, and let f • : Y • → X• be a Galois admissible covering over k with Galois group
Z/mZ and D the ramification divisor associated to f •. Note that the degree deg(D) of
D is divisible by m, and that 0 ≤ deg(D) ≤ (nX − 1)m if nX ̸= 0.

1.3.1. Raynaud and Tamagawa’s results. If X• is not generic, the computation of σXH
is

very difficult in general. Suppose that X• is smooth over k, and that nX = 0. Raynaud
([R1]) developed his theory of theta divisors and proved that, if m >> 0 is a natural
number prime to p, then there exists a Galois étale covering f • of X• with Galois group
Z/mZ whose “first” generalized Hasse-Witt invariant attains the maximum gX − 1 ([R1,
Théorème 4.3.1]). Moreover, as a consequence, Raynaud obtained that ΠX• is not a prime-
to-p profinite group. This is the first deep result concerning the global structures of étale
fundamental groups of curves over algebraically closed fields of characteristic p > 0.
Suppose that X• is smooth over k, and that nX ≥ 0. The computations of generalized

Hasse-invariants of admissible coverings of X• (i.e., tame coverings of X•) are much more
difficult than the case of nX = 0. Tamagawa observed that Raynaud’s theory of theta
divisors can be generalized to the case of tame coverings, and he established a tamely
ramified version of the theory of Raynaud’s theta divisors. By applying the theory of
theta divisors, Tamagawa proved that, if nX ̸= 0 and m >> 0, then there exists a Galois
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admissible covering (i.e., Galois tame covering) f • of X• with Galois group Z/mZ such
that deg(D) = m, and that the “first” generalized Hasse-Witt invariants of f • is as large
as possible, namely equal to gX .

1.3.2. In the present paper, we study maximum generalized Hasse-Witt invariants for
arbitrary (possibly singular) pointed stable curves. The second main theorem of the
present paper is as follows (see Theorem 5.4 for a more precise statement):

Theorem 1.2. We maintain the notation introduced above. Let X• be an arbitrary pointed
stable curve over an algebraically closed field k of characteristic p > 0. Suppose that
m >> 0. Then there exists a Galois admissible covering f • of X• with Galois group
Z/mZ such that deg(D) = (nX − 1)m if nX ̸= 0, and that the “first” generalized Hasse-
Witt invariant (see 2.2.4 for the definition) attains the maximum (see Definition 3.10 for
γmax
X• )

γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Remark 1.2.1. If nX = 3, we prove a strong version of Theorem 1.2 (see Theorem 5.7)
which is the key tool for reconstructing field structures associated to marked points from
ΠX• under certain conditions (see Theorem 6.4 and Remark 6.4.1).

If nX = 0 and X• is smooth over k, then Theorem 1.2 is equivalent to [R1, Théorème
4.3.1]. Thus, Theorem 1.2 generalizes Raynaud’s result to the case of (possibly ramified)
admissible coverings of arbitrary (possibly singular) pointed stable curves. On the other
hand, Theorem 1.2 can be regarded as an analogue of Tamagawa’s result in the case
of arbitrary (possibly singular) pointed stable curves when deg(D) attains maximum,
namely equal to (nX − 1)m.

1.4. An anabelian formula for topological types. As we mentioned above, the gen-
eralized Hasse-Witt invariants can help us to analyze the structures of admissible fun-
damental groups in positive characteristic, and moreover, to understand the anabelian
phenomena of curves in positive characteristic.

1.4.1. By applying the result explained in 1.3.1, Tamagawa obtained a group-theoretical
formula for the type (gX , nX) by using the tame fundamental group ΠX• when X• is
smooth over k (see 6.1.6). In particular, gX and nX are group-theoretical invariants
associated to ΠX• ([T2, Theorem 0.1]). This result is the main goal of [T2], which plays
a key role in the theory of tame anabelian geometry of curves over algebraically closed
fields of characteristic p > 0 (e.g. [T2], [Y3]).

On the other hand, we mention that Tamagawa’s method for finding a group-theoretical
formula for topological types is difficult to generalize to the case of arbitrary pointed stable
curves (see 6.1.7). If X• is an arbitrary pointed stable curve over k, we ask the following
question:

Does there exist a group-theoretical formula for (gX , nX) when X• is an
arbitrary pointed stable curve over k?

This problem can be completely solved by applying Theorem 1.2 as explained below.
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1.4.2. Let Fp be an arbitrary algebraic closure of Fp, Π an abstract profinite group such

that Π ∼= ΠX• as profinite groups, χ ∈ Hom(Π,F×
p ) such that χ ̸= 1, and Πχ ⊆ Π the

kernel of χ. The profinite group Πχ admits a natural action of Π via the conjugation
action. We put

Hχ,p
def
= Hom(Πχ,Z/pZ)⊗Fp Fp,

Nχ
def
= {π ∈ Hχ,p | τ · π = χ(τ)π for all τ ∈ Π},

γNχ

def
= dimFp

(Nχ),

where (τ · π)(x) def
= π(τ−1 · x) for all x ∈ Πχ. Moreover, we put

γmax
Π

def
= max{γNχ | χ ∈ Hom(Π,F×

p ) such that χ ̸= 1}.

Since the prime number p is a group-theoretical invariant associated to Π (Lemma 6.1
(ii)), we see that γmax

Π is also a group-theoretical invariant associated to Π. Moreover, we
have γmax

Π = γmax
X• (Lemma 6.2). Then we obtain the following formula (see also Theorem

6.3):

Theorem 1.3. Let X• be an arbitrary pointed stable curve of type (gX , nX) over an
algebraically closed field k of characteristic p > 0 and Π an abstract profinite group such
that Π ∼= ΠX• as profinite groups. Then we have (see 6.1.3 for the definitions of group-
theoretical invariants b1Π and b2Π associated to Π)

gX = b1Π − γmax
Π − 1, nX = 2γmax

Π − b1Π − b2Π + 3.

In particular, gX and nX are group-theoretical invariants associated to Π.

Remark 1.3.1. If W • is a pointed stable curve of type (gW , nW ) over an arithmetic
field (e.g. a number field, a p-adic field, a finite field), then a group-theoretical formula
for (gW , nW ) can be deduced immediately by computing “weight” (e.g. by applying the
weight monodromy conjecture or p-adic Hodge theory, see [Y2, Proposition 1.2]).

1.5. Some further applications to anabelian geometry. Let us explain some further
applications of Theorem 1.2 (and Theorem 5.7) that motivated the theory developed in
the present paper.

Theorem 1.2 and Theorem 5.7 are the main ingredients in the proof a critical step
towards proving the main theorems of [Y7], [Y8]. We explain briefly as follows. Let
Mg,n,Z be the moduli stack over SpecZ parameterizing pointed stable curves of type

(g, n) and M g,n the coarse moduli space of Mg,n,Z ×Z Fp. Moreover, we may define an
equivalence relation ∼fe on M g,n induced by Frobenius actions (roughly speaking, for
any q1, q2 ∈ M g,n, q1 ∼fe q2 if the curve corresponding to a geometric point over q1
is a Frobenius twist of the curve corresponding to a geometric point over q2). In [Y7],
the author introduced a topological space Πg,n whose points are isomorphism classes (as
profinite groups) of admissible fundamental groups of pointed stable curves of type (g, n)
over algebraically closed fields of characteristic p > 0, which we call the moduli space of
admissible fundamental groups of type (g, n). Moreover, the author proved that there is
a natural continuous surjective homomorphism

πadm
g,n : M g,n/ ∼fe↠ Πg,n,



MAXIMUM GENERALIZED HASSE-WITT INVARIANTS 7

and formulated the so-called Homeomorphism Conjecture which says that πadm
g,n is a home-

omorphism. The Homeomorphism Conjecture shows a new kind of anabelian phenome-
non which cannot be explained by using Grothendieck’s original anabelian philosophy, and
which means that the moduli spaces of pointed stable curves in positive characteristic
can be reconstructed group-theoretically as topological spaces from admissible fundamental
groups of curves (see [Y7, Introduction]). Furthermore, the main theorems of [Y7], [Y8]
say that the Homeomorphism Conjecture holds when dim(M g,n) ≤ 1 (i.e., (g, n) = (0, 3),
(0, 4), (1, 1)).

1.6. Structure of the present paper. The present paper is organized as follows.
In Section 2, we recall some definitions and properties of admissible coverings, admis-

sible fundamental groups, generalized Hasse-Witt invariants, and Raynaud-Tamagawa
theta divisors.

In Section 3, we study the relation of generalized Hasse-Witt invariants between a
pointed stable curve and the smooth pointed stable curves associated to its irreducible
components. Moreover, we introduce maximum generalized Hasse-Witt invariants and
prove our main results in the case of nX ≤ 1.

In Section 4, we study maximum generalized Hasse-Witt invariants when X• is a
component-generic pointed stable curve and prove the first main result.

In Section 5, we study maximum generalized Hasse-Witt invariants when X• is an
arbitrary pointed stable curve and prove the second main result.

In Section 6, by applying the results obtained in previous sections, we prove an an-
abelian formula for types of arbitrary pointed stable curves, and prove that the field
structures associated to inertia subgroups of marked points can be group-theoretically
reconstructed from admissible fundamental groups.

1.7. Acknowledgements. The main results of the present paper were obtained in Jan-
uary, 2019. The author would like to thank the referees very much for carefully reading
the manuscript and for giving me many comments which substantially helped improving
the quality of the paper. This work was supported by JSPS KAKENHI Grant Number
20K14283, and by the Research Institute for Mathematical Sciences (RIMS), an Interna-
tional Joint Usage/Research Center located in Kyoto University.

2. Preliminaries

2.1. Admissible coverings and admissible fundamental groups. In this subsection,
we recall some definitions and results concerning admissible coverings and admissible
fundamental groups.

2.1.1. We recall some notation concerning semi-graphs ([M, Section 1]). Let

G
def
= (v(G), e(G), ζG)

be a semi-graph. Here, v(G), e(G), and ζG denote the set of vertices of G, the set of
edges of G, and the coincidence map of G, respectively.

Let e ∈ e(G) be an edge. Then e
def
= {b1e, b2e} is a set of cardinality 2 for each e ∈ e(G).

The set e(G) consists of closed edges and open edges. If e is a closed edge, then the
coincidence map ζG(e) is the set of vertices to which e abuts. If e is an open edge, then
ζG(e) is the set which consists of the unique vertex to which e abuts and the one element
set {v(G)} (i.e., either ζG(b1e) or ζG(b2e) is not contained in v(G)).
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We shall write eop(G) ⊆ e(G) for the set of open edges of G and ecl(G) ⊆ e(G) for the
set of closed edges of G. Note that we have

e(G) = eop(G) ∪ ecl(G).

Moreover, we denote by elp(G) ⊆ ecl(G) the subset of closed edges such that #(ζGe (e)) = 1
for each e ∈ elp(G) (i.e., a closed edge which abuts to a unique vertex of G), where “lp”

means “loop”. For each e ∈ e(G), we denote by vG(e)
def
= ζG(e)∩ v(G) ⊆ v(G) the set of

vertices of G to which e abuts. For each v ∈ v(G), we denote by eG(v) ⊆ e(G) the set of
edges of G to which v is abutted.

We shall say that G is a tree if the Betti number dimQ(H
1(G,Q)) of G is equal to 0,

where Q denotes the rational number field.

Example 2.1. Let us give an example of semi-graph to explain the above definitions. We
use the notation “•” and “◦ with a line segment” to denote a vertex and an open edge,
respectively.

Let G be a semi-graph as follows:

v1

e1

e2

e3 v2 e4G:

Then we see that v(G) = {v1, v2}, ecl(G) = {e1, e2, e3}, eop(G) = {e4}, ζG(e1) = {v1, v2},
ζG(e2) = {v1, v2}, ζG(e3) = {v1}, and ζG(e4) = {v2, {v(G)}}. Moreover, we have
elp(G) = {e3}, vG(e1) = {v1, v2}, vG(e2) = {v1, v2}, vG(e3) = {v1}, vG(e4) = {v2},
eG(v1) = {e1, e2, e3}, and eG(v2) = {e1, e2, e4}.

2.1.2. Let p be a prime number, and let

X• = (X,DX)

be a pointed stable curve over an algebraically closed field k of characteristic p, where
X denotes the underlying curve, DX denotes a finite set of marked points satisfying [K,
Definition 1.1 (iv)]. Write gX for the arithmetic genus (or genus for short) of X and nX

for the cardinality #(DX) of DX . We call the pair (gX , nX) the topological type (or type
for short) of X•.

Recall that the dual semi-graph ΓX•
def
= (v(ΓX•), e(ΓX•), ζΓX• ) of X• is a semi-graph

associated to X• defined as follows: (i) v(ΓX•) is the set of irreducible components of X;
(ii) eop(ΓX•) is the set of marked points DX ; (iii) e

cl(ΓX•) is the set of nodes of X; (iv)
ζΓX• (e), e ∈ eop(ΓX•), consists of the unique irreducible component containing e and the
set {v(ΓX•)}; (v) ζΓX• (e), e ∈ ecl(ΓX•), consists of the irreducible components containing
e.

Moreover, we write rX
def
= dimQ(H

1(ΓX• ,Q)) for the Betti number of the semi-graph
ΓX• .

Example 2.2. We give an example to explain dual semi-graphs of pointed stable curves.
Let X• be a pointed stable curve over k whose irreducible components are Xv1 and Xv2 ,
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whose node is xe1 , and whose marked point is xe2 ∈ Xv2 . We use the notation “•” and
“◦” to denote a node and a marked point, respectively. Then X• is as follows:

Xv2

Xv1
xe2

xe1
X•:

We write v1 and v2 for the vertices of ΓX• corresponding to Xv1 and Xv2 , respectively,
e1 for the closed edge corresponding to xe1 , and e2 for the open edge corresponding to
xe2 . Moreover, we use the notation “•” and “◦ with a line segment” to denote a vertex
and an open edge, respectively. Then the dual semi-graph ΓX• of X• is as follows:

v1
e1 v2 e2ΓX• :

2.1.3. Let v ∈ v(ΓX•) and e ∈ e(ΓX•). We write Xv for the irreducible component of X
corresponding to v, xe for the node of X corresponding to e if e ∈ ecl(ΓX•), and xe for the
marked point of X corresponding to e if e ∈ eop(ΓX•). Note that X• is allowed to have

components with self-intersections in general (i.e., elp(ΓX•) ̸= ∅). Moreover, write X̃v for

the smooth compactification of UXv

def
= Xv \Xsing

v , where (−)sing denotes the singular locus
of (−). We call

X̃•
v = (X̃v, DX̃v

def
= (X̃v \ UXv) ∪ (DX ∩Xv))

the smooth pointed stable curve of type (gv, nv) over k associated to v (or the smooth

pointed stable curve associated to v for short). Note that X̃v is the normalization of Xv.

2.1.4. LetMg,n,Z be the moduli stack parameterizing pointed stable curves of type (g, n)

over SpecZ, Fp the algebraic closure of Fp in k,Mg,n
def
= Mg,n,Z×ZFp, and M g,n the coarse

moduli space ofMg,n. Then X• → Spec k determines a morphism cX : Spec k →MgX ,nX

and X̃•
v → Spec k, v ∈ v(ΓX•), determines a morphism cv : Spec k →Mgv ,nv . Moreover,

we have a clutching morphism of moduli stacks ([K, Definition 3.8])

c :
∏

v∈v(ΓX• )

Mgv ,nv →MgX ,nX

such that c ◦ (
∏

v∈v(ΓX• ) cv) = cX . We shall say that X• is a component-generic pointed
stable curve over k if the image of∏

v∈v(ΓX• )

cv : Spec k →
∏

v∈v(ΓX• )

Mgv ,nv

is a generic point in
∏

v∈v(ΓX• ) M gv ,nv .
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2.1.5. We recall the definition of admissible coverings of pointed stable curves. Let
Y • = (Y,DY ) be a pointed stable curve over k and ΓY • the dual semi-graph of Y •. Let

f • : Y • → X•

be a surjective, generically étale, finite morphism of pointed stable curves over k such
that f(y) is a smooth (resp. singular) point of X if y is a smooth (resp. singular) point
of Y . Write f : Y → X for the morphism of underlying curves induced by f • and
f sg : ΓY • → ΓX• for the map of dual semi-graphs induced by f •. Let v ∈ v(ΓX•) and
w ∈ (f sg)−1(v) ⊆ v(ΓY •). Then f • induces a morphism of smooth pointed stable curves

f̃ •
w,v : Ỹ

•
w → X̃•

v

associated to w and v (2.1.3).

Definition 2.3. We shall say that f • : Y • → X• is a Galois admissible covering over k
with Galois group G if the following conditions are satisfied: (i) There exists a finite group
G ⊆ Autk(Y

•) such that Y •/G = X•, and f • is equal to the quotient morphism Y • →
Y •/G; (ii) f̃ •

w,v is a tame covering over k for each v ∈ v(ΓX•) and each w ∈ (f sg)−1(v); (iii)

For each y ∈ Y sing, we write Dy ⊆ G for the decomposition group of y and τ a generator
of Dy. Then the local morphism between singular points induced by f is

ÔX,f(y)
∼= k[[u, v]]/uv → ÔY,y

∼= k[[s, t]]/st
u 7→ s#(Dy)

v 7→ t#(Dy),

and τ(s) = ζ#(Dy)s and τ(t) = ζ−1
#(Dy)

t, where ζ#(Dy) is a primitive #(Dy)th root of unity.

Moreover, we shall say that f • is an admissible covering if there exists a morphism of
pointed stable curves h• : W • → Y • over k such that the composite morphism f • ◦ h• :
W • → X• is a Galois admissible covering over k.
Let Z• be a disjoint union of finitely many pointed stable curves over k. We shall say

that a morphism f •
Z : Z• → X• over k is a multi-admissible covering if the restriction of

f •
Z to each connected component of Z• is admissible. Moreover, we shall say that f •

Z is
étale if the underlying morphism of curves fZ induced by f •

Z is an étale morphism.

2.1.6. By choosing a base point x ∈ X \Xsing, we have the admissible fundamental group
πadm
1 (X•, x) of X• (see [Y7, 1.2.1] for the definition of admissible fundamental groups).

Since we only focus on the isomorphism class of πadm
1 (X•, x) in the present paper, for

simplicity of notation, we omit the base point and denote by

ΠX•

the admissible fundamental group πadm
1 (X•, x). Note that, by the definition of admissible

coverings, the admissible fundamental group of X• is naturally isomorphic to the tame
fundamental group of X• when X• is smooth over k. The structure of the maximal prime-
to-p quotient of ΠX• is well-known, and is isomorphic to the prime-to-p completion of the
following group ([V, Théorème 2.2 (c)])

⟨a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1⟩.
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We denote by Πét
X• and Πtop

X• the étale fundamental group of the underlying curve X of
X• and the profinite completion of the topological fundamental group of ΓX• , respectively.
We have the following natural continuous surjective homomorphisms (for suitable choices
of base points)

ΠX• ↠ Πét
X• ↠ Πtop

X• .

Moreover, for each v ∈ v(ΓX•), we denote by

ΠX̃•
v

the admissible fundamental group of X̃•
v (i.e., the tame fundamental group of the smooth

pointed stable curve associated to v). Then we have a natural (outer) injective homomor-
phism ΠX̃•

v
↪→ ΠX• .

2.2. Generalized Hasse-Witt invariants. In this subsection, we recall some notation
concerning generalized Hasse-Witt invariants of cyclic admissible coverings of arbitrary
pointed stable curves. On the other hand, in the case of smooth pointed stable curves, the
generalized Hasse-Witt invariants of cyclic tame coverings have been studied by I. Bouw
([B, Section 2]) and Tamagawa ([T2, Section 3]).

2.2.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, let ΠX• be the
admissible fundamental group of X•.

2.2.2. We define the p-rank (or Hasse-Witt invariant) of X• to be

σX
def
= dimFp(H

1
ét(X,Fp)) = dimFp(Π

ab
X• ⊗ Fp),

where Πab
X• denotes the abelianization of ΠX• . We shall say thatX• is ordinary if gX = σX .

Moreover, we have the following:

σX = rX +
∑

v∈v(ΓX• )

σX̃v
,

where rX denotes the Betti number of ΓX• (2.1.2).

2.2.3. Let n be an arbitrary positive natural number prime to p and µn ⊆ k× the group
of nth roots of unity. Fix a primitive nth root ζ, we may identify µn with Z/nZ via the
homomorphism ζ i 7→ i. Let α ∈ Hom(Πab

X• ,Z/nZ). We denote by X•
α = (Xα, DXα)→ X•

the Galois multi-admissible covering with Galois group Z/nZ corresponding to α. Write
FXα for the absolute Frobenius morphism on Xα. Then there exists a decomposition ([S1,
Section 9])

H1(Xα,OXα) = H1(Xα,OXα)
st ⊕H1(Xα,OXα)

ni,

where FXα is a bijection on H1(Xα,OXα)
st and is nilpotent on H1(Xα,OXα)

ni. Moreover,
we have H1(Xα,OXα)

st = H1(Xα,OXα)
FXα ⊗Fp k, where H1(Xα,OXα)

FXα denotes the
subspace of H1(Xα,OXα) on which FXα acts trivially. Then Artin-Schreier theory implies
that we may identify

Hα
def
= H1

ét(Xα,Fp)⊗Fp k

with the largest subspace of H1(Xα,OXα) on which FXα is a bijection.
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The finite dimensional k-linear space Hα is a finitely generated k[µn]-module induced
by the natural action of µn on Xα. Then we have the following canonical decomposition

Hα =
⊕

i∈Z/nZ

Hα,i,

where ζ ∈ µn acts on Hα,i as the ζ i-multiplication.

2.2.4. We call

γα,i
def
= dimk(Hα,i), i ∈ Z/nZ,

a generalized Hasse-Witt invariant (see [B], [N], [T2] for the case of étale or tame coverings
of smooth pointed stable curves) of the cyclic multi-admissible covering X•

α → X•. In
particular, we call

γα,1

the first generalized Hasse-Witt invariant of the cyclic multi-admissible covering X•
α →

X•. Note that the above decomposition implies that

dimk(Hα) =
∑

i∈Z/nZ

γα,i.

In particular, if Xα is connected, then dimk(Hα) = σXα .

2.2.5. We write Z[DX ] for the group of divisors whose supports are contained in DX .
Note that Z[DX ] is a free Z-module with basis DX . We put

Z/nZ[DX ]
def
= Z[DX ]⊗ Z/nZ,

c′n : Z/nZ[DX ]→ Z/nZ, D mod n 7→ deg(D) mod n.

Write (Z/nZ)∼ for the set {0, 1, . . . , n − 1} and (Z/nZ)∼[DX ] for the subset of Z[DX ]
consisting of the elements whose coefficients are contained in (Z/nZ)∼. Then we have a

natural bijection ιn : (Z/nZ)∼[DX ]
∼→ Z/nZ[DX ].

We put

(Z/nZ)∼[DX ]
0 def
= ι−1

n (ker(c′n)).

Note that we have n|deg(D) for all D ∈ (Z/nZ)∼[DX ]
0. Moreover, we put

s(D)
def
=

deg(D)

n
∈ Z≥0.

Since every D ∈ (Z/nZ)∼[DX ]
0 can be regarded as a ramification divisor associated to

some cyclic admissible covering, the structure of the maximal prime-to-p quotient of ΠX•

(2.1.6) implies the following:

0 ≤ s(D) ≤
{

0, if nX ≤ 1,
nX − 1, if nX ≥ 2.
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2.2.6. We put

X̂
def
= lim←−

H⊆ΠX• open

XH , DX̂

def
= lim←−

H⊆ΠX• open

DXH
, ΓX̂•

def
= lim←−

H⊆ΠX• open

ΓX•
H
.

We call

X̂• = (X̂,DX̂)

the universal admissible covering of X• corresponding to ΠX• , and ΓX̂• the dual semi-

graph of X̂•. Note that Aut(X̂•/X•) = ΠX• , and that ΓX̂• admits a natural action of
ΠX• .

Let X̂• = (X̂,DX̂)→ X• be a universal admissible covering corresponding to ΠX• . For
every e ∈ eop(ΓX•), write ê ∈ eop(ΓX̂•) for an open edge over e and xe for the marked
point corresponding to e.

We denote by Iê ⊆ ΠX• the stabilizer of ê. The definition of admissible coverings

(2.1.5) implies that Iê is isomorphic to the Galois group Gal(Kt
xe
/Kxe)

∼= Ẑ(1)p′ , where
Kxe denotes the quotient field of OX,xe , K

t
xe

denotes a maximal tamely ramified extension,

and Ẑ(1)p′ denotes the maximal prime-to-p quotient of Ẑ(1). Suppose that xe is contained
in Xv. Then we have an injection

ϕê : Iê ↪→ Πab
X•

which factors through Iê ↪→ Πab
X̃•

v
induced by the composition of (outer) injective homo-

morphisms Iê ↪→ ΠX̃•
v
↪→ ΠX• , where ΠX̃•

v
denotes the admissible fundamental group of

the smooth pointed stable curve X̃•
v associated to v (2.1.3). Since the image of ϕê de-

pends only on e, we may write Ie for the image ϕê(Iê). Moreover, the structure of maximal
prime-to-p quotients of admissible fundamental groups of pointed stable curves (2.1.6) im-
plies that the following holds: There exists a generator [se] of Ie for each e ∈ eop(ΓX•)
such that ∑

e∈eop(ΓX• )

[se] = 0

in Πab
X• . In the remainder of the present paper, we fix a set of generators {[se]}e∈eop(ΓX• )

of Ie satisfying the above condition.

Definition 2.4. We maintain the notation introduced above.
(i) For α ∈ Hom(Πab

X• ,Z/nZ), we put

Dα
def
=

∑
e∈eop(ΓX• )

α([se])
∼xe,

where α([se])
∼ denotes the element of (Z/nZ)∼ corresponding to α([se]) via the natural

bijection (Z/nZ)∼ ∼→ Z/nZ. Note that we have Dα ∈ (Z/nZ)∼[DX ]
0. On the other hand,

for each D ∈ (Z/nZ)∼[DX ]
0, we put

RevadmD (X•)
def
= {α ∈ Hom(Πab

X• ,Z/nZ) | Dα = D}.

Moreover, we put

(1) γ(α,D)
def
= γα,1 (2.2.4).



14 YU YANG

(ii) Let t ∈ N be an arbitrary positive natural number, and n
def
= pt − 1. For u ∈

{0, . . . , n}, we write

u =
t−1∑
j=0

ujp
j

for the p-adic expansion with uj ∈ {0, . . . , p − 1}. We identify {0, . . . , t − 1} with Z/tZ
naturally. Then {0, . . . , t − 1} admits an additional structure induced by the natural
additional structure of Z/tZ. We put

u(i) def
=

t−1∑
j=0

ui+jp
j, i ∈ {0, . . . , t− 1}.

Let D ∈ (Z/nZ)∼[DX ]
0. For i ∈ {0, . . . , t− 1}, we put

D(i) def
=

∑
x∈DX

(
ordx(D)

)(i)
x

which is an effective divisor on X.
Roughly speaking, D(i) is the ramification divisor associated to a suitable Frobenius

action of a Galois admissible covering whose ramification divisor is D (see the “in partic-
ular” part of Lemma 2.5 below for the relationship between the generalized Hasse-Witt
invariants associated to D and D(i)).

Lemma 2.5. We maintain the notation introduced above. Let l ∈ {1, . . . , n−1}. We put

D(l)
def
= lD −

( ∑
x∈DX

n ·
[
l · ordx(D)

n

]
x
)
,

where [(−)] denotes the largest integer ≤ (−). Then the following holds (see 2.2.4 for the
definition of γα,l)

γα,l = γlα,1 = γ(lα,D(l)).

In particular, if n
def
= pt − 1, we have γ(α,D) = γα,1 = γα,pt−i = γpt−iα,1 = γ(pt−iα,D(pt−i)) =

γ(pt−iα,D(i)), i ∈ {0, . . . , t− 1}.

2.3. Generalized Hasse-Witt invariants via line bundles. The generalized Hasse-
Witt invariants can be also described in terms of line bundles and divisors.

2.3.1. Settings. We maintain the settings introduced in 2.2.1. Moreover, in the present
subsection, we suppose that X• is smooth over k.

2.3.2. Let n ∈ N be an arbitrary natural number prime to p. We denote by Pic(X) the
Picard group of X. Consider the following complex of abelian groups:

Z[DX ]
an→ Pic(X)⊕ Z[DX ]

bn→ Pic(X),

where an(D) = ([OX(−D)], nD), bn(([L], D)) = [Ln ⊗OX(D)]. We denote by

PX•,n
def
= ker(bn)/Im(an)

the homology group of the complex. Moreover, we have the following exact sequence

0→ Pic(X)[n]
a′n→PX•,n

b′n→ Z/nZ[DX ]
c′n→ Z/nZ,
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where Pic(X)[n] denotes the n-torsion subgroup of Pic(X), and

a′n([L]) = ([L], 0) mod Im(an),

b′n(([L], D)) mod Im(an)) = D mod n,

c′n(D mod n) = deg(D) mod n.

We shall define

P̃X•,n ⊆ ker(bn) ⊆ Pic(X)⊕ Z[DX ]

to be the inverse image of (Z/nZ)∼[DX ]
0 ⊆ (Z/nZ)∼[DX ] ⊆ Z[DX ] under the projection

ker(bn) → Z[DX ]. It is easy to see that PX•,n and P̃X•,n are free Z/nZ-modules with
rank 2gX + nX − 1 if nX ̸= 0 and with rank 2gX if nX = 0, and that there is a natural

isomorphism P̃X•,n
∼→PX•,n.

On the other hand, let α ∈ Hom(Πab
X• ,Z/nZ) and f •

α : X•
α → X• the Galois multi-

admissible covering over k with Galois group Z/nZ corresponding to α. Fix a primitive
nth root ζ, we may identify µn with Z/nZ via the map ζ i 7→ i. Then we see

fα,∗OXα
∼=

⊕
i∈Z/nZ

Lα,i,

where locally Lα,i is the eigenspace of the natural action of i with eigenvalue ζ i. Moreover,
we have the following natural isomorphism ([T2, Proposition 3.5]):

Hom(Πab
X• ,Z/nZ) ∼→ P̃X•,n, α 7→ ([Lα,1], Dα).

Then every element of P̃X•,n induces a Galois multi-admissible covering of X• over k
with Galois group Z/nZ.

2.3.3. Assumptions. In the remainder of the present paper, we may assume that

n
def
= pt − 1

for some positive natural number t ∈ N unless indicated otherwise.

2.3.4. Let ([L], D) ∈ P̃X•,n. We fix an isomorphism L⊗n ∼= OX(−D). Note that D is an
effective divisor on X. We have the following composition of morphisms of line bundles

L pt→ L⊗pt = L⊗n ⊗ L ∼→ OX(−D)⊗ L ↪→ L.
This composite morphism induces a homomorphism ϕ([L],D) : H

1(X,L)→ H1(X,L). We
denote by

γ([L],D)
def
= dimk

(∩
r≥1

Im(ϕr
([L],D))

)
.

Write αL ∈ Hom(Πab
X• ,Z/nZ) for the element corresponding to ([L], D) and FX for the

absolute Frobenius morphism on X. Then we see that γαL,1 (2.2.4) is equal to the di-

mension over k of the largest subspace of H1(X,L) on which F t
X

def
= FX ◦ · · · ◦ FX is a

bijection. Moreover, we have

γαL,1 = dimk(H
1(X,L)F t

X ⊗Fp k),

where H1(X,L)F t
X denotes the subspace of H1(X,L) on which F t

X acts trivially. Then
we have the following lemmas.
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Lemma 2.6. We maintain the notation introduced above. Then we have γ([L],D) = γαL,1.
Moreover, since DαL = D, we have

γ([L],D) = γ(αL,D) (
def
= γαL,1).

Proof. The lemma follows immediately from H1(X,L)F t
X ⊗Fp k =

∩
r≥1 Im(ϕr

([L],D)). □

Lemma 2.7. We maintain the notation introduced above. Suppose that X• is smooth
over k. Then we have

γ(αL,D) ≤ dimk(H
1(X,L)) =

 gX , if ([L], D) = ([OX ], 0),
gX − 1, if s(D) = 0, [L] ̸= [OX ],
gX + s(D)− 1, if s(D) ≥ 1,

where s(D) is the integer defined in 2.2.5.

Proof. The first inequality follows from the definition of generalized Hasse-Witt invariants.
On the other hand, the Riemann-Roch theorem implies that

dimk(H
1(X,L)) = gX − 1− deg(L) + dimk(H

0(X,L))

= gX − 1 +
1

n
deg(D) + dimk(H

0(X,L)) = gX − 1 + s(D) + dimk(H
0(X,L)).

This completes the proof of the lemma. □

2.4. Raynaud-Tamagawa theta divisors. In this subsection, we recall the theory of
theta divisors which was introduced by Raynaud in the case of étale coverings ([R1]), and
which was generalized by Tamagawa in the case of tame coverings ([T2]).

2.4.1. Settings. We maintain the settings introduced in 2.3.1.

2.4.2. Let Fk be the absolute Frobenius morphism on Spec k, FX/k the relative Frobenius

morphism X → X1
def
= X ×k,Fk

k over k, and F t
k

def
= Fk ◦ · · · ◦Fk. We put Xt

def
= X ×k,F t

k
k,

and define a morphism

F t
X/k : X → Xt

over k to be F t
X/k

def
= FXt−1/k ◦ · · · ◦ FX1/k ◦ FX/k.

Let ([L], D) ∈ P̃X•,n, and let Lt be the pulling back of L by the natural morphism
Xt → X. Note that L and Lt are line bundles of degree −s(D) (2.2.5). We put

Bt
D

def
= (F t

X/k)∗
(
OX(D)

)
/OXt , ED

def
= Bt

D ⊗ Lt.

Write rk(ED) for the rank of ED. Then we obtain

χ(ED) = deg(det(ED))− (gX − 1)rk(ED).

Moreover, we have χ(ED) = 0 ([T2, Lemma 2.3 (ii)]).
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2.4.3. Let JXt be the Jacobian variety of Xt and LXt a universal line bundle on Xt×JXt .
Let prXt

: Xt × JXt → Xt and prJXt
: Xt × JXt → JXt be the natural projections. We

denote by F the coherent OXt-module pr∗Xt
(ED)⊗ LXt , and by

χF
def
= dimk(H

0(Xt ×k k(y),F ⊗ k(y)))− dimk(H
1(Xt ×k k(y),F ⊗ k(y)))

for each y ∈ JXt , where k(y) denotes the residue field of y. Note that since prJXt
is flat,

χF is independent of y ∈ JXt . Write (−χF)
+ for max{0,−χF}. We denote by

ΘED ⊆ JXt

the closed subscheme of JXt defined by the (−χF)
+th Fitting ideal Fitt(−χF )+

(
R1(prJXt

)∗(F)
)
.

The definition of ΘED is independent of the choice of Lt. Moreover, we have codim(ΘED) ≤
1.

2.4.4. In [R1], Raynaud investigated the following property of the vector bundle ED on
X.

Condition 2.8. We shall say that ED satisfies (⋆) if there exists a line bundle L′
t of degree

0 on Xt such that

0 = min{dimk(H
0(Xt, ED ⊗ L′

t)), dimk(H
1(Xt, ED ⊗ L′

t))}.

Moreover, [T2, Proposition 2.2 (i) (ii)] implies that [L′] ̸∈ ΘED if and only if ED satisfies
(⋆) for L′, where [L′] denotes the point of JXt corresponding to L′. Namely, ΘED is a
divisor of JXt when ED satisfies (⋆). Then we have the following definition:

Definition 2.9. We shall say that ΘED ⊆ JXt is the Raynaud-Tamagawa theta divisor
associated to ED if ED satisfies (⋆).

Remark 2.9.1. Suppose that ED satisfies (⋆) (i.e., Condition 2.8). [R1, Proposition
1.8.1] implies that ΘED is algebraically equivalent to rk(ED)Θ, where Θ is the classical
theta divisor (i.e., the image of XgX−1

t in JXt).

Remark 2.9.2. Note that (see [Y6, Lemma 2.8]) if

γ([L⊗I],D) = dimk(H
1(X,L ⊗ I))

for some [I] ∈ Pic(X)[n], then the Raynaud-Tamagawa theta divisor ΘED associated to
ED exists (i.e., [It] ̸∈ ΘED).

2.4.5. Let N be an arbitrary non-negative integer. We define a constant concerning N
as following:

C(N)
def
=

{
0, if N = 0,
3N−1N !, if N ̸= 0.

Then we have the following proposition.

Proposition 2.10. We maintain the notation introduced above. Suppose that

n = pt − 1 > C(gX) + 1,

and that the Raynaud-Tamagawa theta divisor associated to ED exists. Then there exists
a line bundle I of degree 0 on X such that [I] ̸= [OX ], that [I⊗n] = [OX ], and that
γ(([L⊗I],D)) = dimk(H

1(X,L ⊗ I)) (i.e., [It] ̸∈ ΘED).
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Proof. By applying similar arguments to the arguments given in the proof of [T2, Corollary
3.10], the proposition follows from Remark 2.9.2. □

Namely, if n >> 0 and the Raynaud-Tamagawa theta divisor associated to ED exists,
then there exists a line bundle I of degree 0 with order n such that the following hold:

• [It] ̸∈ ΘED
• the first generalized Hasse-Witt invariant (2.2.4) of the Galois multi-admissible
covering with Galois group Z/nZ corresponding to ([L⊗ I], D) (2.3.2) is as large
as possible.

2.4.6. The following fundamental theorem of theta divisors was proved by Raynaud when
s(D) = 0 ([R1, Théorème 4.1.1]), and by Tamagawa when s(D) ≤ 1 ([T2, Theorem 2.5]).

Theorem 2.11. Suppose that s(D) ∈ {0, 1} (2.2.5). Then the Raynaud-Tamagawa theta
divisor associated to ED exists.

We may ask whether or not the Raynaud-Tamagawa theta divisor ΘED exists for an
arbitrary s(D) when X• is smooth over k. However, the following example shows that
the Raynaud-Tamagawa theta divisor does not exist in general.

Example 2.12. Let p > 2, n = p−1, X = P1
k, DX = {0, 1,∞, λ} such that λ ∈ k\{0, 1},

and

D =
∑
x∈DX

n

2
· x

an effective divisor on X. Then we have s(D) = 2. Let ([L], D) be an arbitrary element

of P̃X•,n. We see that ED satisfies (⋆) if and only if the elliptic curve defined by the
equation

y2 = x(x− 1)(x− λ)

is ordinary. Thus, we cannot expect that ΘED exists in general.

3. Maximum generalized Hasse-Witt invariants

In this section, we introduce the maximum generalized Hasse-Witt invariants for cyclic
prime-to-p admissible coverings. The main result of the present section is Theorem 3.9
which says that the first generalized Hasse-Witt invariant of a prime-to-p cyclic admissible
covering attains maximum if and only if the first generalized Hasse-Witt invariants of the
induced admissible coverings of irreducible components attain maximum.

By the formula mentioned in 2.2.2 and the definition of generalized Hasse-Witt invari-
ants (2.2.3), to prove Theorem 3.9 for a cyclic prime-to-p admissible covering f • : Y • →
X• of degree n, the most difficult part is to compute the following:

• The generalized Hasse-Witt invariants arising from the covering of dual semi-
graphs

f sg : ΓY • → ΓX•

induced by f • (i.e., the dimensions of irreducible representations

Z/nZ→ GL(H1(ΓY • ,Fp)⊗ k)

induced by the natural action of Z/nZ on ΓY •).
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Note that the computations concerning generalized Hasse-Witt invariants of coverings of
dual semi-graphs are not easy since f sg is not a topological covering in general (i.e., f • is
ramified over singular points and marked points of X•).
In Section 3.1, we will compute generalized Hasse-Witt invariants of coverings of dual

semi-graphs and prove two technical propositions (Proposition 3.5 and Proposition 3.8).
In Section 3.2, we will use the propositions to obtain Theorem 3.9.

3.1. Generalized Hasse-Witt invariants for coverings of dual semi-graphs. The
readers who would like to start the proofs of Theorem 3.9 quickly may skip this subsection,
after glancing at the statements of Proposition 3.5 and Proposition 3.8.

3.1.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, in this sub-
section, let n be an arbitrary positive natural number prime to p and µn ⊆ k× the group
of nth roots of unity. Fix a primitive nth root ζ, we may identify µn with Z/nZ via the
homomorphism ζ i 7→ i. Let

f • : Y • → X•

be a Galois admissible covering over k with Galois group Z/nZ, f the underlying morphism
of f •, N et

X the set of nodes of X over which f is étale, and

f sg : ΓY • → ΓX•

the map of dual semi-graphs of Y • andX• induced by f •, where “sg” means “semi-graph”.
Note that Y • is connected.

We put MY •
def
= H1

ét(Y,Fp)⊗Fp k. Then MY • is a k[µn]-module and admits the following
canonical decomposition

MY • =
⊕

j∈Z/nZ

MY •(j),

where ζ ∈ µn (or 1 ∈ Z/nZ) acts on MY •(j) as the ζj-multiplication. Note that
dimk(MY •(j)), j ∈ Z/nZ, is a generalized Hasse-Witt invariant of the Galois admissi-
ble covering f • (2.2.4).

3.1.2. The dual semi-graph ΓY • admits a natural action of Z/nZ induced by the Ga-
lois admissible covering f •. We write MΓX• , MΓY • , and M∨

ΓY • for H1(ΓX• ,Fp) ⊗ k,

H1(ΓY • ,Fp) ⊗ k, and the dual vector space πtop
1 (ΓY •)ab ⊗Z Fp ⊗Fp k of MΓY • , respec-

tively. Moreover, we fix a basis {λq}q for MΓY • . Then we have a dual basis {λ∨
q }q for

M∨
ΓY • .

Let l ⊆ ΓY • be a loop and α∨
l

def
=

∑
q aqλ

∨
q , aq ∈ k, the vector of M∨

ΓY • corresponding to
l. We shall call

αl
def
=

∑
q

aqλq ∈MΓY •

the vector of MΓY • corresponding to l.
Moreover, we shall say that l is a minimal loop of ΓY • if, for any loop l′ ⊆ l ⊆ ΓY • such

that l and l′ are homotopic, then l = l′.



20 YU YANG

3.1.3. Let r ∈ Z/nZ. We denote by r · l and r · α∨
l the natural actions of r on l and α∨

l ,
respectively. Note that we have r · α∨

l = α∨
r·l.

On the other hand, we denote by r ∗ αl the action of r ∈ Z/nZ on αl ∈ MΓY • induced
by the action of Z/nZ on M∨

ΓY • . Then we have (−r) ∗ αl = αr·l. For convenience, we put

r · αl
def
= (−r) ∗ αl.

Then we have r · αl = αr·l and r′′ · (r′ · αl) = (r′ + r′′) · αl for all r
′, r′′ ∈ Z/nZ. Moreover,

MΓY • is a k[µn]-module and admits the following canonical decomposition

MΓY • =
⊕

j∈Z/nZ

MΓY • (j),

where ζ ∈ µn (or 1 ∈ Z/nZ) acts on MΓY • (j) as the ζj-multiplication.

3.1.4. Firstly, we have the following lemma.

Lemma 3.1. We maintain the notation introduced above. Then the following statements
hold:

(i) Suppose that f • : X• → Y • is a Galois étale covering (i.e., f is étale) with Galois
group Z/nZ, and that X• and Y • are ordinary (2.2.2). Then we have

dimk(MY •(j)) =

{
gX , if j = 0,
gX − 1, if j ∈ {1, . . . , n− 1},

(ii) Suppose that f sg : ΓY • → ΓX• is a Galois topological covering with Galois group
Z/nZ. Then we have

dimk(MΓY • (j)) =

{
rX , if j = 0,
rX − 1, if j ∈ {1, . . . , n− 1},

where rX denotes the Betti number of ΓX• (2.1.2).

Proof. (i) Since the underlying morphism f is étale, there exists a line bundle L on X
whose degree is 0, and whose order is n, such that

f∗OY
∼=

⊕
j∈Z/nZ

L⊗j.

Then we have dimk(MY •(j)) = dimk(H
1(X,L)) = gX − 1 for all j ∈ {1, . . . , n − 1} and

dimk(MY •(0)) = dimk(H
1(X,OX)) = gX . This completes the proof of (i).

(ii) Since this is a topological question, to verify (ii), by adding certain marked points,
we may assume that X• is an ordinary pointed stable curve such that the normalization
of every irreducible component is isomorphic to P1

k. Then Y • is also an ordinary pointed
stable curve such that the normalizations of irreducible components are isomorphic to P1

k.
Then (ii) follows immediately from (i). This completes the proof of the lemma. □

3.1.5. By using admissible coverings, we compute the dimensions of irreducible represen-
tations of a certain representation of Z/nZ. We have the following linear algebra result
which follows immediately from Lemma 3.4 below (i.e., by replacing V , αa,b by MΓY • ,
αla,b , respectively).
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Proposition 3.2. Let s, t, n ∈ N be positive natural numbers prime to p such that n = st,
and let Vb, b ∈ {1, . . . , t}, be a k-linear space of dimension s − 1 and {α1,b, . . . , αs−1,b} a
basis for Vb. We put

V
def
=

t⊕
b=1

Vb,

and let 1 ∈ Z/nZ. We define an action of Z/nZ on V as follows: 1 · αa,b = αa,b+1 if
1 ≤ a ≤ s− 1 and 1 ≤ b ≤ t− 1, 1 · αa,t = αa+1,1 if 1 ≤ a ≤ s− 2, and

1 · αs−1,t = −
s−1∑
a=1

αa,1.

Then we have the following:

dimk(V (j)) =

{
0, if j ∈ {0, s, 2s, . . . , (t− 1)s},
1, otherwise,

where V (j) ⊆ V denotes the k-linear subspace on which 1 ∈ Z/nZ acts as the ζj-
multiplication.

We give an algebraic geometric proof of the above proposition. We maintain the no-
tation introduced above. Suppose that f • : Y • → X• is a Galois étale covering with
Galois group Z/nZ, that the set of irreducible components of X• is {X1, X2}, and that
X1, X2 are non-singular. Write v1 and v2 for the vertices of ΓX• corresponding to X1

and X2, respectively. Let f •
i

def
= f̃ •

vi
: Y •

i
def
= Ỹ •

vi
→ X•

i
def
= X̃•

vi
, i ∈ {1, 2}, be the Galois

multi-admissible covering over k induced by f • (see 2.1.3 for X̃•
vi
). Moreover, we suppose

that the following conditions are satisfied:

• X•
1 and X•

2 are ordinary pointed stable curves of type (1, 1). This implies that the
connected components of Yi are non-singular curves of genus (resp. p-rank) 1.
• Y1 is connected and #(π0(Y2)) = t, where π0(Y2) denotes the set of connected
components of Y2. Then the decomposition group of a connected component of Y2

is a subgroup of Z/nZ with order s
def
= n/t.

Note that the structures of maximal prime-to-p quotients of admissible fundamental
groups (2.1.6) imply that the above Galois admissible covering exists.

Write w1 ∈ v(ΓY •) for the vertex corresponding to Y1 and w2,b ∈ v(ΓY •), b ∈ {1, . . . , t}
for the vertex corresponding to a connected component of Y2. Then we see v(ΓY •) =
{w1, w2,1, . . . , w2,t}. Moreover, we write {e1,b, . . . , es,b} for the set of closed edges of ΓY •

connecting w1 and w2,b. We define a minimal loop as following (for instance, see Example
3.3 below):

la,b
def
= w1ea,bw2,bea+1bw1, a ∈ {1, . . . , s− 1}, b ∈ {1, . . . , t}.

Then we have 1 · αla,b = αla,b+1
if 1 ≤ b ≤ t− 1, and 1 · αla,t = αla+1,1 if 1 ≤ a ≤ s− 2, and

1 · αls−1,t = −
s−1∑
a=1

αla,1 .

Note that the set of vectors {αla,b}a∈{1,...,s−1},b∈{1,...,t} is linearly independent and is a basis
for MΓY • .
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Example 3.3. We maintain the notation introduced above. If n = 4 and b = 2, we have
the following

ΓY • :

e1,1 e1,2

e2,1 e2,2

w2,1 w1 w2,2

f sg

ΓX• :-
v1 v2

By replacing V , αa,b by MΓY • , αla,b , respectively, to verify Proposition 3.2, it is sufficient
to prove the following lemma:

Lemma 3.4. We maintain the notation introduced above. Then we have the following:

dimk(MΓY • (j)) =

{
0, if j ∈ {0, s, 2s, . . . , (t− 1)s},
1, otherwise.

Proof. We put

M1
def
= H1

ét(Y1,Fp)⊗Fp k, M2
def
=

t⊕
b=1

H1
ét(Yw2,b

,Fp)⊗Fp k.

Then since all the connected components of Y1 and Y2 are non-singular curves of genus
(resp. p-rank) 1, we obtain

dimk(M1(j)) =

{
1, if j = 0,
0, otherwise,

dimk(M2(j)) =

{
1, if j ∈ {0, s, 2s, . . . , (t− 1)s},
0, otherwise,

where M1(j)
def
= MΓY • (j) ∩M1 and M2(j)

def
= MΓY • (j) ∩M2. On the other hand, Lemma

3.1 (i) implies

dimk(MY •(j)) = dimk(M1(1)) + dimk(M2(j)) + dimk(MΓY • (j))

=

{
2, if j = 0,
1, otherwise.

Then we complete the proof of the lemma. □

3.1.6. Next, we calculate generalized Hasse-Witt invariants of dual semi-graphs when
X• is irreducible.

Proposition 3.5. We maintain the notation introduced above. We maintain the notation
introduced above. Recall that N et

X ⊆ Xsing (3.1.1) is the subset of nodes over which f is
étale. Suppose that v(ΓX•) = {vX}. Then we have

dimk(MΓY • (1)) =

{
#(N et

X )− 1, if #(v(ΓY •)) = n,
#(N et

X ), if #(v(ΓY •)) ̸= n.
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Proof. We compute dimk(MΓY • (1)) by analyzing the minimal loops of ΓY • . Let l ⊆ ΓY • be
an arbitrary minimal loop of ΓY • and Vl ⊆MΓY • the subspace spanned by {j · αl}j∈Z/nZ.
Firstly, we note that

Vl ⊆
⊕

0≤j≤n/m, m|n

MΓY • (jm)

for some natural numberm > 1 if all the decomposition groups of the elements of ecl(ΓY •)∩
l are not trivial (i.e., there exists a closed edge e contained in l such that f is étale at the
node of Y corresponding to e). Then to compute dimk(MΓY • (1)), it is sufficient to consider
the subspaces of MΓY • which are generalized by the corresponding vectors (3.1.2) of the
minimal loops of ΓY • such that the decomposition groups of the closed edges contained
in the minimal loops are trivial (see MeX , MTY,eX

, Mi, and Mπ defined below).
We prove the proposition by dividing into various cases.

Case 1: Suppose #(v(ΓY •)) = n. Then we have that f sg : ΓY • → ΓX• is a Galois
topological covering with Galois group Z/nZ. Then Lemma 3.1 (ii) implies

dimk(MΓY • (i)) = rX−1 = #(ecl(X•))−#(v(ΓX•))+1−1 = #(ecl(X•))−1 = #(N et
X )−1

for all i ∈ {1, . . . , n−1} and dimk(MΓY • (0)) = rX . Thus, we obtain the proposition when
#(v(ΓY •)) = n.

Case 2: Suppose #(v(ΓY •)) ̸= n. Since #(v(ΓX•)) = 1, we have that the linear
space MΓX• is spanned by the vectors corresponding to the closed edges of ΓX• , and that
dimk(MΓX• ) = #(ecl(ΓX•)) = #(elp(ΓX•)). Write Elp ⊆ ecl(ΓX•) for the subset of closed

edges such that (f sg)−1(Elp) ⊆ elp(ΓY •) and Etr def
= ecl(ΓX•) \ Elp, where “tr” means

“tree”. Note that for every eX ∈ Etr, every closed edge eY ∈ (f sg)−1(eX) abuts exactly to
two different vertices of ΓY • . Moreover, we write Elp,et (resp. Etr,et) for the subset of Elp

(resp. Etr) such that f is étale over all the nodes corresponding to the elements of Elp,et

(resp. Etr,et).

The subspace MeX : Roughly speaking, this kind of subspace is generated
by the corresponding vectors of the following minimal loops: Let l be a
minimal loop of ΓY • ; Then l ∩ ecl(ΓY •) is an element of elp(ΓY •).

Let eX ∈ Elp, eY ∈ (f sg)−1(eX), and let DeY ⊆ Z/nZ be the decomposition group of
eY and meY the order of DeY . Note that eY is a minimal loop of ΓY • , and that DeY does
not depend on the choice of eY (i.e., De′Y

= De′′Y
for all e′Y , e

′′
Y ∈ (f sg)−1(eX)). Write neY

for n/meY and MeX for the subspace of MΓY • spanned by {αeY }eY ∈(f sg)−1(eX). Then we
see that MeX is a k[(Z/nZ)/DeY ]-module, that

MeX ⊆
⊕

0≤j≤neY
−1

MΓY • (jmeY ),

and that dimk(MeX ) = neY . Write MeX (1) ⊆ MeX for the subspace on which ζ ∈ µn acts
as the ζ-multiplication. Thus, we obtain dimk(MeX ∩MΓY • (1)) = 1 if and only if meY = 1
(i.e., f is étale over the node of X corresponding to eX).
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Case 2A: Suppose Etr = ∅. We have

MΓY • (1) =
⊕

eX∈Elp,et

MeX (1).

Then we obtain

dimk(MΓY • (1)) = #(Elp,et) = #(N et
X )

if Etr = ∅ and #(v(ΓY •)) ̸= n.

Case 2B: Suppose Etr ≠ ∅. Then we have n ̸= 2. Let vY ∈ (f sg)−1(vX), and let
DvY be the decomposition group of vY which does not depend on the choice of vY (i.e.,

Dv′Y
= Dv′′Y

for all v′Y , v
′′
Y ∈ (f sg)−1(vX)), 1 < mvY

def
= #(DvY ), and nvY

def
= n/mvY . We

put

(f sg)−1(vX)
def
= {vY,0, . . . , vY,nvY

−1},
which admits a natural action of r ∈ Z/nZ such that r · vY,0 = vY,r, where r denotes

the image of Z/nZ ↠ (Z/nZ)/DvY
∼→ Z/nvY Z. Moreover, without loss of generality,

we may assume YvY,i
∩ YvY,i+1

̸= ∅ for all i ∈ {0, . . . , nvY − 2}, YvY,nY −1
∩ YvY,0

̸= ∅, and
YvY,j′

∩ YvY,j′′
= ∅ for all j′, j′′ ∈ {0, . . . , nvY − 1}.

The subspace MTY,eX
: Roughly speaking, this kind of subspace is gener-

ated by the corresponding vectors of the minimal loops constructed by the
following minimal loops via Galois actions: Let leX ,i be a minimal loop
of ΓY • ; Then leX ,i ∩ ecl(ΓY •) is stable under the actions of decomposition
groups of vertices leX ,i ∩ v(ΓY •), and the images of leX ,i ∩ ecl(ΓY •) in ΓX•

is an element of Etr,et.

We put

TY,eX
def
= {eY,0, . . . , eY,mvY −1} ⊆ (f sg)−1(eX) ⊆ ecl(ΓY •), eX ∈ Etr,et,

the subset of closed edges such that vΓY • (eY,i) = {vY,0, vY,1} for all i ∈ {0, . . . ,mvY − 1}
(see 2.1.1 for vΓY • (eY,i)). Then

leX ,i
def
= vY,0eY,ivY,1eY,i+1vY,0, i ∈ {0, . . . ,mvY − 2},

can be regarded as a minimal loop of ΓY • (for instance, see Example 3.6 (a) below).
Moreover, the set of vectors

{j · αleX,i
}i∈{0,...,mvY

−2},j∈{0,...,nvY
−1},eX∈Etr,et ⊆MΓY •

is linearly independent. We denote by MTY,eX
⊆MΓY • , eX ∈ Etr,et, the subspace spanned

by

{j · αleX,i
}i∈{0,...,mvY

−2},j∈{0,...,nvY
−1}.

Then we see that MTY,eX
, eX ∈ Etr,et, is a k[µn]-module. Moreover, we have

1 ·
(
j · αleX,i

) = (j + 1) · αleX,i

if 0 ≤ j ≤ nvY − 2 and 0 ≤ i ≤ mvY − 2,

1 ·
(
(nvY − 1) · αleX,i

)
= αleX,i+1
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if 0 ≤ i ≤ mvY − 3, and

1 ·
(
(nvY − 1) · αleY ,mvY

−2

)
= −

mvY
−2∑

i=0

αleX ,i.

Then Proposition 3.2 implies

dimk(MTY,eX
(1)) = 1,

where MTY,eX
(1) denotes the subspace on which ζ ∈ µn acts as the ζ-multiplication.

The subspace Mi: Roughly speaking, this kind of subspace is generated by
the corresponding vectors of the minimal loops constructed by the following
minimal loops via Galois actions: Let li be a minimal loop of ΓY • ; Then
the images of li ∩ ecl(ΓY •) in ΓX• is two different elements of Etr,et.

Let m
def
= #(Etr,et) and Etr,et def

= {eX,1, . . . , eX,m}. Let eiY ∈ TY,eX,i
, i ∈ {1, . . . ,m}, be

an arbitrary element. Note that vΓY • (eiY ) = {vY,0, vY,1}. Then

li
def
= vY,0e

i
Y vY,1e

i+1
Y vY,0, i ∈ {1, . . . ,m− 1},

can be regarded as a minimal loop of ΓY • (for instance, see Example 3.6 (b) below). Note
that ei+1

Y ∈ TY,eX,i+1
. Let

αi
def
=

mvY
−1∑

j=0

jnvY · αli .

Note that the decomposition group of αi is DvY . Then the set of vectors

{j · αi}i∈{1,...,m−1},j∈{0,...,nvY
−1} ⊆MΓY •

is linearly independent. We denote by Mi ⊆ MΓY • , i ∈ {1, . . . ,m − 1}, the subspace
spanned by {j · αi}j∈{0,...,nvY

−1}. Then Mi is a k[(Z/nZ)/DvY ]-module. Thus, we obtain
that

Mi ⊆
⊕

0≤j<nvY
−1

MΓY • (jmvY ), i ∈ {1, . . . ,m− 1}.

Moreover, we see that the set of vectors

{j · αi}i∈{1,...,m−1},j∈{0,...,nvY
−1} ∪ {j · αleX,i

}i∈{0,...,mvY
−2},j∈{0,...,nvY

−1},eX∈Etr,et ⊆MΓY •

is linearly independent.

The subspace Mπ: Roughly speaking, this kind of subspace is generated by
the corresponding vectors of the minimal loops constructed by the following
minimal loops via Galois actions: Let lY be a minimal loop of ΓY • ; Then
lY ∩ ecl(ΓY •) is not stable under the actions of decomposition groups of
vertices lY ∩ v(ΓY •), and the images of lY ∩ ecl(ΓY •) in ΓX• is an element
of Etr,et.
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Let eY ∈ TY,eX for some eX ∈ Etr,et. Then we see that j · eY , j ∈ {0, . . . , nvY − 2},
abuts to vY,j and vY,j+1 (i.e., vΓY • (j · eY ) = {vY,j, vY,j+1}), and that (nvY − 1) · eY abuts
to vY,nY −1 and vY,0 (i.e., vΓY • ((nvY − 1) · eY ) = {vY,nvY

−1, vY,0}). Thus, we have that

lY
def
= vY,0(0 · eY )vY,1 · · · vY,nY −1((nvY − 1) · eY )vY,0

can be regarded as a minimal loop of ΓY • (for instance, see Example 3.6 (c) below). Note
that 0 · eY = eY . We put

απ
def
=

mvY
−1∑

j=0

jnvY · αlY ∈MΓY • .

Let us prove that the decomposition group of απ is Z/nZ. Note that απ corresponds to
the loop

π
def
= lY (nvY · lY ) · · · ((mvY − 1)nvY · lY ).

Let e be an arbitrary closed edge which is contained in π. Then there exists r ∈ Z/nvY Z
such that e abuts to vY,r and vY,r+1. Thus, e can be regraded as an oriented edge induced
by the oriented loop π as follows:

• If 0 ≤ r ≤ nY − 2, the starting of e is vY,r, and the ending of e is vY,r+1.
• If r = nY − 1, the starting of e is vY,nvY

−1, and the ending of e is vY,1.

Consider the action of 1 ∈ Z/nZ on e. We see that 1 · e is an oriented edge which is
contained in π. Moreover, the starting of 1 · e is vY,r+1, and the ending of 1 · e is vY,r+2,
where r + 1, r + 2 ∈ Z/nvY Z. Namely, we have 1 · π = π. Thus, the stabilizer of απ is
Z/nZ. Write Mπ ⊆MΓY • for the subspace spanned by απ. Then we have that

Mπ ⊆MΓY • (0),

and that

{j · αi}i∈{1,...,m−1},j∈{0,...,nvY
−1} ∪ {j · αleX,i

}i∈{1,...,mvY
−1},j∈{0,...,nvY

−1},eX∈Etr,et ∪ {απ}
is linearly independent.

Let l ⊆ ΓY • be an arbitrary minimal loop of ΓY • and Vl ⊆MΓY • the subspace spanned
by {j · αl}j∈Z/nZ. Then if dimk(Vl(1)) ̸= 0, we have

Vl(1) ⊆
( ⊕
eX∈Etr,et

MTY,eX

)
⊕
( ⊕
eX∈Elp,et

MeX

)
⊕
( m⊕
i=1

Mi

)
⊕Mπ.

Thus, we obtain

MΓY • (1) =
( ⊕
eX∈Etr,et

MTY,eX
(1)

)
⊕
( ⊕
eX∈Elp,et

MeX (1)
)
.

This implies
dimk(MΓY • (1)) = #(Etr,et) + #(Elp,et) = #(N et

X )

if Etr ̸= ∅ and #(v(ΓY •)) ̸= n. We complete the proof of the proposition. □
Example 3.6. We maintain the notation introduced in the proof of Proposition 3.5.
Suppose n = 4, mvY = 2 and #(Etr,et) = 2.

(a) The case of MTY,eX
: We have leX ,0

def
= vY,0eY,0vY,1eY,1vY,0, where f sg is as follows:
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ΓY • :

eY,0
eY,1

vY,0 vY,1
f sg

ΓX• :-

vX

eX

Here, vY,1 = 1 · vY,0.

(b) The case of Mi: We have l1
def
= vY,0e

1
Y vY,1e

2
Y vY,0, where f sg is as follows:

ΓY • :

e1Y

e2Y

vY,0 vY,1
f sg

ΓX• :-

vX

eX,1 eX,2

Here, vY,1 = 1 · vY,0.

(c) The case of Mπ: We have lY
def
= vY,0(0 · eY )vY,1(1 · eY )vY,0, where f sg is as follows:

ΓY • :

0 · eY = eY

1 · eY

2 · eY

3 · eY

vY,0 vY,1
f sg

ΓX• :-

vX

eX

Here, vY,1 = 1 · vY,0.

3.1.7. We calculate generalized Hasse-Witt invariants of dual semi-graphs when X• is
not irreducible.

Lemma 3.7. We maintain the notation introduced above. Suppose that the set of irre-
ducible components of X• is {X1, X2}, and that X1, X2 are non-singular. Write v1 and

v2 for the vertices of ΓX• corresponding to X1 and X2, respectively. Let f •
i

def
= f̃ •

vi
: Y •

i
def
=

Ỹ •
vi
→ X•

i
def
= X̃•

vi
, i ∈ {1, 2}, be the Galois multi-admissible covering over k induced by

f •. Then the following statements hold:



28 YU YANG

(i) Suppose that there exists i ∈ {1, 2} such that #(v(ΓY •
i
)) = n. Then we have

dimk(MΓY • (1)) = #(N et
X )− 1.

(ii) Suppose that #(X1 ∩X2) = 1 (i.e., #(ecl(ΓX•)) = 1) and #(v(ΓY •
i
)) ̸= n for each

i ∈ {1, 2}. Then we have
dimk(MΓY • (1)) = #(N et

X ).

Proof. (i) Suppose that either #(v(ΓY •
1
)) = 1 or #(v(ΓY •

2
)) = 1 holds. Then either f •

1 or
f •
2 is a trivial Galois multi-admissible covering with Galois group Z/nZ. Then we see

dimk(MΓY • (1)) = rX − rX1 − rX2 = rX = #(X1 ∩X2)− 1 = #(N et
X )− 1,

where rXi
, i ∈ {1, 2}, denotes the Betti number of the dual semi-graph of X•

i .
Suppose #(v(ΓY •

1
)) = #(v(ΓY •

2
)) = n. Then f sg is a Galois topological covering of ΓX•

with Galois group Z/nZ. Then Lemma 3.1 (ii) implies

dimk(MΓY • (1)) = rX − 1 = #(N et
X )− 1.

This completes the proof of (i).
(ii) Let w1 ∈ (f sg)−1(v1) and w2 ∈ (f sg)−1(v2) be arbitrary vertices of ΓY • . We denote

by D1 ⊆ Z/nZ and D2 ⊆ Z/nZ the decomposition groups of w1 and w2, respectively,
which do not depend on the choices of w1 and w2. Since #(X1 ∩ X2) = 1 (i.e., ΓX• is
a tree), the Galois topological coverings of ΓX• with cyclic Galois groups do not exist.
Namely, either D1 = Z/nZ or D2 = Z/nZ holds. Without loss of generality, we may

assume that D1 = Z/nZ ⊇ D2. We put m2
def
= #(D2) and n2

def
= n/m2.

Let eX be the unique closed edge of ΓX• , (f sg)−1(v1)
def
= {w1}, w2,0 ∈ (f sg)−1(v2), and

eY,0 ∈ (f sg)−1(eX) such that eY,0 abuts to w1 and w2,0 (i.e., vΓY • (eY,0) = {w1, w2,0}). Let

DeY,0
be the decomposition group of eY,0, meY,0

= #(DeY,0
) and neY,0

def
= n/meY,0

. Then we
see that

MΓY • =
⊕

0≤j≤neY,0
−1

MΓY • (jmeY,0
).

Then we obtain that dimk(MΓY • (1)) = 0 if #(N et
X ) = 0.

Suppose that #(N et
X ) = 1. Then f sg : ΓY • → ΓX• is equal to the covering of dual semi-

graphs induced by the Galois admissible covering constructed in 3.1.5. Thus, Lemma 3.4
implies dimk(MΓY • (1)) = 1 = #(N et

X ). This completes the proof of the lemma. □
Proposition 3.8. We maintain the notation introduced above. Suppose that the set of
irreducible components of X• is {X1, X2}, and that X1, X2 are non-singular. Then we
have

dimk(MΓY • (1)) ={
#(N et

X )− 1, if there exists i ∈ {1, 2} such that #(v(ΓY •
i
)) = n,

#(N et
X ), if for each i ∈ {1, 2}, #(v(ΓY •

i
)) ̸= n.

Proof. Suppose that there exists i ∈ {1, 2} such that #(v(ΓY •
i
)) = n. Then the proposition

follows from Lemma 3.7 (i). To verify the proposition, we may assume that #(v(ΓY •
i
)) ̸= n

for all i ∈ {1, 2}. Moreover, if #(X1 ∩X2) = 1, then the proposition follows from Lemma
3.7 (ii). Thus, we may assume that #(X1 ∩X2) ≥ 2.

First, let us construct two Galois admissible coverings associated to f • : Y • → X•.
Let R be a complete discrete valuation ring with residue field k, K the quotient field of
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R, K an algebraic closure of K, e ∈ ecl(ΓX•) an arbitrary closed edge, and xe the node
of X corresponding to e. By deforming X along xe, we obtain a pointed stable curve X
over R whose special fiber is X•, and whose generic fiber X•

K is an irreducible pointed
stable curve over K such that #(ecl(ΓX•

K
)) = #(elp(ΓX•

K
)) = #(ecl(ΓX•))− 1, where ΓX•

K

denotes the dual semi-graph of X•
K . Moreover, since the specialization homomorphism of

admissible fundamental groups is a surjection, by replacing R by a finite extension of R,
f • can be lifted to a finite morphism f •

K : Y •
K → X•

K over K such that

f •
\e

def
= f •

K ×K K : Y •
\e

def
= Y •

K ×K K → X•
\e

def
= X•

K ×K K

is a Galois admissible covering over K with Galois group Z/nZ. Note that X•
\e is

irreducible. We write ΓY •
\e

for the dual semi-graph of Y •
\e and denote by MΓY •

\e

def
=

H1(ΓY •
\e
,Fp) ⊗ k. Then MΓY •

\e
is a k[µn]-module and admits the following canonical de-

composition

MΓY •
\e

=
⊕

j∈Z/nZ

MΓY •
\e
(j),

where ζ ∈ µn acts on MΓY •
\e
(j) as the ζj-multiplication.

On the other hand, let norme : Xe → X be the normalization morphism of X over the
nodes corresponding to the closed edges which are contained in ecl(ΓX•) \ {e}. Then we
obtain a pointed stable curve

X•
e = (Xe, DXe

def
= norm−1

e (DX) ∪ {norm−1(xe′)}e′∈ecl(ΓX• )\{e})

over k. Note that Xe has two non-singular irreducible components X1 and X2, and that
X1 ∩X2 = {xe} in Xe. Then f • induces a Galois multi-admissible covering

f •
e : Y •

e → X•
e

over k with Galois group Z/nZ. We write ΓY •
e
for the dual semi-graph of Y •

e and denote

by MΓY •
e

def
= H1(ΓY •

e
,Fp) ⊗ k. Then MΓY •

e
is a k[µn]-module and admits the following

canonical decomposition

MΓY •
e
=

⊕
j∈Z/nZ

MΓY •
e
(j),

where ζ ∈ µn acts on MΓY •
e
(j) as the ζj-multiplication.

Write N et
X\e

and N et
Xe

for the sets of nodes of X\e and Xe over which f\e and fe are étale,

respectively. Then we see immediately #(N et
X\e

)+#(N et
Xe
) = #(N et

X ). The constructions

of ΓY •
\e

and ΓY •
e
imply MΓY • = MΓY •

\e
⊕MΓY •

e
as k[µn]-modules. Then we obtain

MΓY • (1) = MΓY •
\e
(1)⊕MΓY •

e
(1).

On the other hand, Proposition 3.5 and Lemma 3.7 imply that

dimk(MΓY • (1)) = dimk(MΓY •
\e
(1)) + dimk(MΓY •

e
(1))

= #(N et
X\e

) + #(N et
Xe
) = #(N et

X ).

This completes the proof of the proposition. □
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3.2. Generalized Hasse-Witt invariants of curves and their irreducible compo-
nents.

3.2.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption in-

troduced in 2.3.3 (i.e., n
def
= pt − 1).

3.2.2. The main result of the present section is as follows:

Theorem 3.9. Let D ∈ (Z/nZ)∼[DX ]
0 (2.2.5) and α ∈ RevadmD (X•)\{0} (Definition 2.4

(i)). Let ΠX• be the admissible fundamental group of X• and

f • : Y • = (Y,DY )→ X•

the Galois multi-admissible covering over k with Galois group Z/nZ induced by α. For
each v ∈ v(ΓX•), f • induces a Galois multi-admissible covering for the smooth pointed
stable curve of type (gv, nv) associated to v (2.1.3)

f̃ •
v : Ỹ •

v → X̃•
v

over k with Galois group Z/nZ. Let α̃v ∈ Hom(Πab
X̃•

v
,Z/nZ) be the homomorphism Πab

X̃•
v
→

Πab
X•

α→ Z/nZ, where Πab
X̃•

v
→ Πab

X• is the natural homomorphism induced by the natural

(outer) injection ΠX̃•
v
↪→ ΠX•. Then we have (see Definition 2.4 (i)-(1) for γ(α,D) and

2.2.5 for s(D))

γ(α,D) =

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) ̸= ∅,

if and only if, for each v ∈ v(ΓX•),

γ(α̃v ,Dα̃v )
=

 gv, if α̃v = 0,
gv − 1, if α̃v ̸= 0, Supp(Dα̃v) = ∅,
gv + s(Dα̃v)− 1, if α̃v ̸= 0, Supp(Dα̃v) ̸= ∅,

where Supp(−) denotes the support of (−).

Proof. We prove the theorem by induction on the cardinality #(v(ΓX•)) of v(ΓX•). Sup-
pose that #(v(ΓX•)) = 1 (i.e., X is irreducible). Then we have Dα̃v |UXv

= D and

gv = gX −#(Xsing),

where UXv is the open subset of Xv defined in 2.1.3. Moreover, since X̃•
v is smooth over

k, we write ([Lα̃v ], Dα̃v) ∈ P̃X̃•
v ,n

for the pair induced by α̃v (2.3.2). Write N ra
X ⊆ Xsing

for the subset of nodes over which f is ramified and N et
X ⊆ Xsing for the subset of nodes

over which f is étale. Then we have s(Dα̃v) = s(D) + #(N ra
X ).

On the other hand, by Lemma 2.7, we have

dimk(H
1(X̃v,Lα̃v)) =

 gv, if α̃v = 0,
gv − 1, if α̃v ̸= 0, Supp(Dα̃v) = ∅,
gv + s(Dα̃v)− 1, if α̃v ̸= 0, Supp(Dα̃v) ̸= ∅.

Write ΓY • for the dual semi-graph of Y •. The natural k[µn]-submodule

H1(ΓY • ,Fp)⊗ k ⊆ H1
ét(Y,Fp)⊗ k
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admits the following canonical decomposition

H1(ΓY • ,Fp)⊗ k =
⊕

j∈Z/nZ

MΓY • (j),

where ζ ∈ µn acts on MΓY • (j) as the ζj-multiplication. By Proposition 3.5, we have

dimk(MΓY • (1)) =

{
#(N et

X )− 1, if α̃v = 0,
#(N et

X ), if α̃v ̸= 0.

Thus, we obtain

dimk(H
1(X̃v,Lα̃v)) + dimk(MΓY • (1)) =

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) ̸= ∅.

Since γ(α,D) = γ([Lα̃v ],Dα̃v )
+ dimk(MΓY • (1)) and #(Xsing) = #(N ra

X ) + #(N et
X ), we have

γ(α,D) =

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) ̸= ∅

if and only if γ(α̃v ,Dα̃v )
= γ([Lα̃v ],Dα̃v )

= dimk(H
1(X̃v,Lα̃v)). This completes the proof of

the proposition when #(v(ΓX•)) = 1.

Supposem
def
= #(v(ΓX•)) ≥ 2. Let v0 ∈ v(ΓX•) be a vertex such that ΓX•\{v0, eΓX• (v0)}

(see 2.1.1 for eΓX• (v0)) is connected (note that v0 always exists). Write X1 for the topo-
logical closure of X \Xv0 in X and X2 for Xv0 . Note that X1 is connected. We define a
pointed stable curve

X•
i = (Xi, DXi

def
= (Xi ∩DX) ∪ (X1 ∩X2)), i ∈ {1, 2},

of type (gXi
, nXi

) over k. Then f • induces a Galois multi-admissible covering

f •
i : Y •

i → X•
i , i ∈ {1, 2},

over k with Galois group Z/nZ. Moreover, we denote by αi ∈ Hom(Πab
X•

i
,Z/nZ), i ∈

{1, 2}, the composition of the natural homomorphisms Πab
X•

i
→ Πab

X•
α→ Z/nZ, where ΠX•

i

denotes the admissible fundamental group of X•
i .

Write N ra
X1∩X2

⊆ X1∩X2 for the subset of nodes over which f is ramified and N et
X1∩X2

⊆
X1 ∩ X2 for the subset of nodes over which f is étale. Then we have #(N ra

X1∩X2
) +

#(N et
X1∩X2

) = #(X1 ∩X2). Moreover, we have

γ(αi,Dαi )
≤

 gXi
, if αi = 0,

gXi
− 1, if αi ̸= 0, Supp(Dαi

) = ∅,
gXi

+ s(Dαi
)− 1, if αi ̸= 0, Supp(Dαi

) ̸= ∅,

for all i ∈ {1, 2}. Note that the definition of admissible coverings implies that s(Dα1) +
s(Dα2) = s(D) + #(N ra

X1∩X2
).

On the other hand, the natural k[µn]-modules H1(ΓY • ,Fp) ⊗ k and H1(ΓY •
i
,Fp) ⊗ k,

i ∈ {1, 2}, admit the following canonical decomposition

H1(ΓY • ,Fp)⊗ k =
⊕

j∈Z/nZ

MΓY • (j),

H1(ΓY •
i
,Fp)⊗ k =

⊕
j∈Z/nZ

MΓY •
i
(j), i ∈ {1, 2},
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respectively, where ΓY •
i
denotes the dual semi-graph of Y •

i , and ζ ∈ µn acts on MΓY • (j)

and MΓY •
i
(j), i ∈ {1, 2}, as the ζj-multiplication, respectively. We put

dimk(MΓY1∩Y2
(1))

def
= dimk(MΓY • (1))− dimk(MΓY •

1
(1))− dimk(MΓY •

2
(1)).

Let us compute dimk(MΓY1∩Y2
(1)). Without loss of generality, we may assume that X1

and X2 are non-singular. Then Proposition 3.8 implies that the following holds:

dimk(MΓY1∩Y2
(1)) ={

#(N et
X1∩X2

)− 1, if there exists i ∈ {1, 2} such that αi = 0,
#(N et

X1∩X2
), if for each i ∈ {1, 2}, αi ̸= 0.

Since α ̸= 0, we obtain

γ(α,D) = γ(α1,Dα1 )
+ γ(α2,Dα2 )

+ dimk(MΓY1∩Y2
(1))

≤ gX1 + s(Dα1) + gX2 + s(Dα2) + #(N et
X1∩X2

)− 2 = gX + s(D)− 1

=

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) ̸= ∅.

Thus, we have

γ(α,D) =

{
gX − 1, if Supp(D) = ∅,
gX + s(D)− 1, if Supp(D) ̸= ∅

if and only if

γ(αi,Dαi )
=

 gXi
, if αi = 0,

gXi
− 1, if αi ̸= 0, Supp(Dαi

) = ∅,
gXi

+ s(Dαi
)− 1, if αi ̸= 0, Supp(Dαi

) ̸= ∅,
for all i ∈ {1, 2}. By induction, the theorem follows from the theorem when #(v(ΓX•)) =
m− 1 and #(v(ΓX•)) = 1. This completes the proof of the theorem. □
3.2.3. We define maximum generalized Hasse-Witt invariants as follows:

Definition 3.10. (i) We put

γmax
X•

def
= maxt∈N{γ(α,Dα) | α ∈ Hom(Πab

X• ,Z/(pt − 1)Z) and α ̸= 0}

= maxm∈N s.t. (m,p)=1{γ(α,Dα) | α ∈ Hom(Πab
X• ,Z/mZ) and α ̸= 0},

and call γmax
X• the maximum generalized Hasse-Witt invariant of prime-to-p cyclic admis-

sible coverings of X•. Note that Theorem 3.9 implies that

γmax
X• ≤

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

(ii) Let m be a natural number prime to p and α ∈ Hom(Πab
X• ,Z/mZ). We shall say

that γ(α,Dα) attains maximum if

γ(α,Dα) =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

We shall say that γmax
X• attains maximum if there exist a prime-to-p natural number m′

and an element α′ ∈ Hom(Πab
X• ,Z/m′Z) such that γ(α′,Dα′ ) attains maximum.
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3.3. An easy case of main results.

3.3.1. Settings. We maintain the notation introduced in 2.1.2.

3.3.2. By applying Nakajima and Raynaud’s results concerning ordinariness of cyclic
étale coverings, we have the following result.

Proposition 3.11. (i) Let n ∈ N be an arbitrary natural number prime to p, D ∈
(Z/nZ)∼[DX ]

0, and α ∈ RevadmD (X•) \ {0}. Suppose that X• is a smooth component-
generic pointed stable curve over k, and that nX ≤ 1. Then γ(α,D) attains maximum.
Namely, the following holds:

γ(α,D) = gX − 1.

(ii) Let X• be an arbitrary pointed stable curve over k. Suppose that nX ≤ 1. Then
γmax
X• attains maximum. Namely, the following holds:

γmax
X• = gX − 1.

Proof. Since nX ≤ 1, the structures of maximal prime-to-p quotients of admissible funda-
mental groups (2.1.6) imply D = 0. Namely, all of the prime-to-p cyclic Galois admissible
coverings of X• are étale over DX (in particular, are étale if X• is smooth over k).
(i) This follows immediately from [N, Proposition 4].

(ii) Let v ∈ v(ΓX•), and let X̃•
v be the smooth pointed stable curve of type (gv, nv) over

k associated to v (2.1.3). We denote by

V
def
= {v ∈ v(ΓX•) | gv > 0}.

Suppose that V = ∅. Then nX ≤ 1 implies that ΓX• is not a tree. Namely, Πtop
X• is not

trivial. Let α′ : Πtop,ab
X• ↠ Z/nZ be a surjection and α : Πab

X• ↠ Z/nZ the composite of

the homomorphisms Πab
X• ↠ Πtop,ab

X•
α′

↠ Z/nZ. Then the theorem follows from Lemma 3.1
(ii).

Suppose that V ̸= ∅. Let v ∈ V . Then Proposition 2.10 and Theorem 2.11 imply that

there exists an element α̃v ∈ Revadm0 (X̃•
v ) such that α̃v : Π

ab
X̃•

v
↠ Z/nZ is a surjection, and

that
γ(α̃v ,0) = gv − 1.

Write f̃ •
v : Ỹ •

v → X̃•
v for the connected Galois étale covering with Galois group Z/nZ

induced by α̃v.
Let C be the set of connected components ofX \

∪
v∈V Xv and C ∈ C , whereX \

∪
v∈V Xv

denotes the topological closure of X \
∪

v∈V Xv in X. We define

C• = (C,DC
def
= (C ∩

∪
v∈V

Xv) ∪ (DX ∩ C))

to be a pointed stable curve over k. Note that the normalization of each irreducible
component of C is isomorphic to P1

k. We put

Y •
C

def
=

⊔
i∈Z/nZ

C•
i ,

where C•
i is a copy of C

•. Then we obtain a Galois multi-admissible covering f •
C : Y •

C → C•

over k with Galois group Z/nZ, where the restriction morphism f •
C |C•

i
is an identity, and

the Galois action is j(Ci) = Ci+j for all i, j ∈ Z/nZ. By gluing {Ỹ •
v }v∈V and {Y •

C}C∈C
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along {DX̃v
}v∈V and {DC}C∈C in a way that is compatible with the gluing of {X̃•

v}v∈V ∪
{C•}C∈C that gives rise to X•, we obtain a Galois (étale) admissible covering

f • : Y • → X•

over k with Galois group Z/nZ.
Write α ∈ Revadm0 (X•) for an element induced by f • such that the composition of the

natural homomorphisms Πab
X̃•

v
→ Πab

X•
α→ Z/nZ is equal to α̃v constructed above if v ∈ V ,

and is equal to α̃v
def
= 0 if v ̸∈ V . This means that the following holds:

γ(α̃v ,Dα̃v )
=

{
gv − 1, if v ∈ V ,
gv = 0, if v ̸∈ V .

Then (ii) follows from Theorem 3.9. □
3.3.3. If X• is an arbitrary component-generic pointed stable curve (i.e., reducible and
the dual semi-graph is not a tree) over k, we see that Proposition 3.11 (i) does not hold
in general. For instance, we have the following example:

Example 3.12. Let X• be a component-generic pointed stable curve of type (gX , 0) over
k with two smooth irreducible components X1 and X2 of genus g1 and g2, respectively.
Moreover, suppose that X1 ∩X2 = {x1, x2, x3}. We put

X•
j = (Xj, DXj

def
= X1 ∩X2), j ∈ {1, 2}.

Let n
def
= pt − 1, and let D1 ∈ (Z/nZ)∼[DX1 ]

0 be an effective divisor on X1 such that

s(D1) = 2, and that s(D
(i)
1 ) = 1 < s(D1) = 2 for some i ∈ {1, . . . , t − 1} (see Definition

2.4 (ii) for D
(i)
1 ). We put

D2
def
= (n− ordx1(D1))x1 + (n− ordx2(D1))x2 + (n− ordx3(D1))x3.

Then D2 ∈ (Z/nZ)∼[DX2 ]
0 is an effective divisor on X2 with degree n (i.e., s(D2) = 1).

Let αj ∈ RevadmDj
(X•

j ), j ∈ {1, 2}, and let f •
j : Y •

j → X•
j be the Galois multi-admissible

covering induced by αj. Then by gluing {X•
j }j=1,2 and {Y •

j }j=1,2, we obtain a Galois
multi-admissible covering

f • : Y • → X•

over k. Write α ∈ Revadm0 (X•) for the element induced by f •. Then Theorem 3.9 implies
that γ(α,0) = gX − 1 = g1 + g2 + 1 if and only if γ(α1,D1) = g1 + 1 and γ(α2,D2) = g2. On

the other hand, since s(D
(i)
1 ) = 1 for some i ∈ {1, . . . , t − 1}, we have that γ(α1,D1) = g1.

Then we have
γ(α,0) ̸= gX − 1.

Namely, γ(α,0) does not attain maximum.

On the other hand, if X• is not a component-generic pointed stable curve, then Propo-
sition 3.11 (i) does not hold in general. In fact, if k is an algebraic closure of Fp, then
Proposition 3.11 (i) does not hold for an arbitrary pointed stable curve over k (see Propo-
sition 4.15 (ii)).

3.3.4. The main goals of the next two sections are to generalize Proposition 3.11 to the
case of (possibly singular) pointed stable curves of an arbitrary type (gX , nX). More
precisely, we will generalize Proposition 3.11 as follows:
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The first main theorem: a generalization of Proposition 3.11 (i). Let n be a natural
number prime to p and D ∈ (Z/nZ)∼[DX ]

0. In order for γ(α′,D) to attain the maximum

for some α′ ∈ RevadmD (X•), it is necessary for D to satisfy a certain condition, which we
call being Frobenius stable (see [Y6, Definition 3.3] or 4.1.2 below). For a Frobenius stable
divisor D, we will prove that γ(α,D) attains maximum for all α ∈ RevadmD (X•) when X• is
a certain component-generic pointed stable curve (Theorem 4.13 (i)). Moreover, we will
prove that γ(β,D) attains maximum for some β ∈ RevadmD (X•) when X• is an arbitrary
component-generic pointed stable curve (Theorem 4.13 (ii)).

The second main theorem: a generalization of Proposition 3.11 (ii). We will prove that
γmax
X• attains maximum for arbitrary pointed stable curve of type (gX , nX) over k (Theorem

5.4).

4. Maximum generalized Hasse-Witt invariants for generic curves

In the present section, we discuss the maximum generalized Hasse-Witt invariants of
cyclic admissible coverings for generic curves. The main result of this section is Theorem
4.13.

4.1. Idea. We briefly explain the idea of our proof of Theorem 4.13.

4.1.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, we suppose
that X• is a component-generic pointed stable curve over k (2.1.4).

4.1.2. Let n be a natural number prime to p,D ∈ (Z/nZ)∼[DX ]
0 (2.2.5), α ∈ RevadmD (X•)

(Definition 2.4 (i)), and f •
α : X•

α → X• the Galois multi-admissible covering corresponding
to α. Note that there exists a natural number t ∈ N such that pt = 1 in (Z/nZ)×. Write
m′ for (pt − 1)/n. To compute γ(α,D), by replacing α and D by the composition of

homomorphisms Πab
X•

α→ Z/nZ m′
→ Z/(pt− 1)Z and m′D, we may assume that n

def
= pt− 1.

A necessary condition: The generalized Hasse-Witt invariant γ(α,D) attains maximum

(Definition 3.10 (ii)) if the following holds (see Definition 2.4 (ii) for D(i)):

deg(D(i)) = deg(D) = (nX − 1)n, i ∈ {0, . . . , t− 1}.

The above condition concerning D is a special case of Frobenius stable ([Y6, Definition
3.3]) when deg(D) = (nX − 1)n. Then to verify our main result of this section, we may
assume that D satisfies the above condition.

4.1.3. Irreducible case. Suppose that X• is irreducible. Moreover, by Proposition 3.11,
we may assume nX ≥ 2. First, if (gX , nX) = (0, 3), then the first main result follows
from a result of I. Bouw (Lemma 4.4). Next, for the case of an arbitrary (gX , nX), since
X• is component-generic, we introduce certain degeneration data (i.e., degenerations of
X•) concerning X• (see 4.3.2) such that, for instance, the irreducible components of the
degeneration data are either type of (0, 3) or (1, 0). Then by applying Lemma 4.4, Propo-
sition 3.11 (i), and Theorem 3.9, we see that the first generalized Hasse-Witt invariants
(2.2.4) of Galois multi-admissible coverings of the degenerations of X• induced by f •

α at-
tain maximum. Moreover, the specialization homomorphisms of admissible fundamental
groups implies that γ(α,D) attains maximum. This completes the proof of Theorem 4.13
(i) when X• is irreducible (Proposition 4.6).
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4.1.4. General case. We have seen that γ(α,D) does not attain maximum for all α ∈
RevadmD (X•) in general if X• is an arbitrary component-generic pointed stable curve (e.g.
Example 3.12). To avoid such situation, we introduce a kind of semi-graph associated
to the sets of marked points of pointed stable curves, which we call a minimal quasi-tree
associated to DX (4.4). Roughly speaking, a minimal quasi-tree is a minimal tree-like
semi-graph contained in the dual semi-graph of a pointed stable curve which contains all
open edges.

Firstly, we see that, if the dual semi-graph ΓX• is a minimal quasi-tree, then the rami-
fications over nodes of a Galois multi-admissible covering can be completely determined
by the ramifications over the marked points DX . To explain this observation, let us see
the following example.

Example 4.1. Let X• be a pointed stable curve of type (gX , 2) over k with two smooth
irreducible componentsX1 andX2. Moreover, we assume thatX1∩DX = {x1}, X2∩DX =
{x2}, and X1 ∩ X2 = Xsing = {x}. Let f • : Y • → X• be a Galois admissible covering
over k with Galois group Z/nZ and D = ax1 + bx2 ∈ (Z/nZ)∼[DX ]

0 the ramification

divisor associated to f •. Note that we have a + b = 0 mod n. Write f •
i : Y •

i → X•
i

def
=

(Xi, DXi

def
= {xi, x}), i ∈ {1, 2}, for the Galois multi-admissible covering induced by

f • and Di ∈ (Z/nZ)∼[DXi
]0 for the ramification divisor associated to f •

i . Note that
ordx1(D1) = a and ordx2(D2) = b. Moreover, since ordx1(D1) + ordx(D1) = 0 mod n and
ordx(D2) + ordx2(D2) = 0 mod n, we obtain

ordx(D1) = b, ordx(D2) = a.

Namely, we have D1 = ax1 + bx, D2 = ax + bx2. This means that the ramification of f •

over the node x can be determined completely by the ramification of f •.

Secondly, by applying Theorem 3.9, we can reduce Theorem 4.13 (i) to the case where
X• is irreducible. This completes Theorem 4.13 (i) (Proposition 4.12). Moreover, by
gluing certain Galois multi-admissible coverings, Theorem 4.13 (ii) follows from Theorem
3.9, Proposition 3.11 (i), and Theorem 4.13 (i).

4.2. A necessary condition.

4.2.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption in-

troduced in 2.3.3 (i.e., n
def
= pt − 1). Moreover, let D ∈ (Z/nZ)∼[DX ]

0, and let

ordx(D) =
t−1∑
j=0

dx,jp
j, x ∈ DX

be the p-adic expansion. For any x ∈ DX , we put dx
def
= ordx(D) and d

(i)
x

def
= (ordx(D))(i)

(Definition 2.4 (ii)).

4.2.2. First, we have the following necessary condition that the first generalized Hasse-
Witt invariants attain maximum.

Lemma 4.2. We maintain the notation introduced above. Suppose that nX ≥ 2. Then
the following statements hold:
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(i) Suppose that s(D) = nX − 1. Then deg(D(i)) ≥ deg(D) for all i ∈ {0, 1, . . . , t− 1}
if and only if D is Frobenius stable. Moreover, D is Frobenius stable if and only if∑

x∈DX

dx,j = (nX − 1)(p− 1), j ∈ {0, . . . , t− 1}.

(ii) Suppose that there exists an element α ∈ RevadmD (X•) such that γ(α,D) attains
maximum. Then we have D is a Frobenius stable divisor with degree (nX − 1)n.

(iii) Suppose that n > nX−1. Then there exists D′ ∈ (Z/nZ)∼[DX ]
0 such that s(D′) =

nX − 1, and that D′ is Frobenius stable.

Proof. (i) Since deg(D(i)) ≥ deg(D) = (nX − 1)n is equivalent to deg(D(i)) = deg(D) =
(nX − 1)n, (i) follows immediately from [Y6, Lemma 3.2] and the definition of Frobenius
stable.

(ii) This follows from Definition 3.10 (ii) and Lemma 2.5.
(iii) Note that there exists D′′ ∈ (Z/nZ)∼[DX ]

0 such that s(D′′) = (nX − 1)n if n >
nX − 1. Then (iii) follows from (i). We complete the proof of the lemma. □

4.2.3. The following lemma will be used in the constructions of Galois admissible cover-
ings of degenerations of X•.

4.2.4. The following lemma will be used in the constructions of Galois admissible cover-
ings of degenerations of X•.

Lemma 4.3. We maintain the notation introduced above. Suppose that nX ≥ 3, and
that deg(D(i)) = deg(D) = (nX − 1)n for all i ∈ {0, 1, . . . , t − 1}. Moreover, we put

DX
def
= {x1, . . . , xnX

} and

al,l+1
def
= [

nX∑
r=l+1

dxr ],

bl,l+1
def
= [

l∑
r=1

dxr ], l ∈ {2, . . . , nX − 2},

where [(−)] denotes the integer which is equal to the image of (−) in Z/nZ when we
identify {0, . . . , n− 1} with Z/nZ naturally. Then, for each i ∈ {0, . . . , t− 1}, we have

a
(i)
l,l+1 + b

(i)
l,l+1 = n, l ∈ {2, . . . , nX − 2},

d(i)x1
+ d(i)x2

+ a
(i)
2,3 = 2n,

b
(i)
nX−2,nX−1 + d(i)xnX−1

+ d(i)xnX
= 2n,

b
(i)
l,l+1 + d(i)xl+1

+ a
(i)
l+1,l+2 = 2n, l ∈ {2, . . . , nX − 3}.

Proof. First, let us treat the first equality. Let l ∈ {2, . . . , nX − 2} and i ∈ {0, . . . , t− 1}.
Since

nX∑
r=l+1

dxr +
l∑

r=1

dxr = deg(D) = (nX − 1)n,

we see n|(al,l+1 + bl,l+1). Note that if al,l+1 + bl,l+1 = 0, then deg(D) < (nX − 1)n. Thus,
al,l+1+ bl,l+1 ̸= 0. Moreover, since al,l+1+ bl,l+1 ≤ n, we obtain that al,l+1+ bl,l+1 = n, and
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that a
(i)
l,l+1 + b

(i)
l,l+1 is divided by n. On the other hand, since 0 < a

(i)
l,l+1, b

(i)
l,l+1 < n, we have

a
(i)
l,l+1 + b

(i)
l,l+1 = n. This completes the proof of the first equality.

Let i ∈ {0, . . . , t− 1}. We denote by

S
(i)
1

def
= d(i)x1

+ d(i)x2
+ a

(i)
2,3,

S
(i)
l

def
= b

(i)
l,l+1 + d(i)xl+1

+ a
(i)
l+1,l+2, l ∈ {2, . . . , nX − 3},

S
(i)
nX−2

def
= b

(i)
nX−2,nX−1 + d(i)xnX−1

+ d(i)xnX
.

We have S
(i)
l ≤ 2n, l ∈ {1, . . . , nX − 2}. Moreover, if i = 0, the definitions of al,l+1 and

bl,l+1 imply

S
(0)
l = 2n, l ∈ {1, . . . , nX − 2}.

Then we have that S
(i)
l is divided by n for all i ∈ {0, . . . , t− 1}. Since s(D(i)) = nX − 1,

the first equality implies that

nX−2∑
l=1

S
(i)
l = n(nX − 3) + (nX − 1)n = 2n(nX − 2).

On the other hand, since S
(i)
l ≤ 2n, we have

S
(i)
l = 2n, l ∈ {1, . . . , nX − 2}, i ∈ {0, . . . , t− 1}.

This completes the proof of the lemma. □

4.2.5. The following lemma follows immediately from [B, Corollary 6.8].

Lemma 4.4. We maintain the notation introduced above. Suppose that X• = (X,DX)
is a smooth component-generic pointed stable curve of type (gX , nX) = (0, 3) over k.
Moreover, we suppose that D is a Frobenius stable divisor with degree 2n (i.e., deg(D(i)) =
deg(D) = (nX − 1)n = 2n for all i ∈ {0, 1, . . . , t − 1}). Then the Raynaud-Tamagawa
theta divisor ΘED associated to ED exists (see Definition 2.9). Moreover, we have (see
2.3.4 for γ([L],D))

γ([L],D) = dimk(H
1(X,L)), ([L], D) ∈ P̃X•,n.

Remark 4.4.1. Note that, if nX = 3, then we have s(D) ∈ {0, 1, 2}.

4.3. Degenerations. In this subsection, we introduce certain degenerations of X• and
prove the first main result in the case of irreducible component-generic pointed stable
curves (Proposition 4.6).

4.3.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption intro-

duced in 2.3.3 (i.e., n
def
= pt−1). Moreover, we assume thatX• = (X,DX

def
= {x1, . . . , xnX

})
is an irreducible component-generic pointed stable curve over k.
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4.3.2. Degeneration data. We introduce some degeneration data for X•. Let R be a
discrete valuation ring with algebraically closed residue field kR, KR the quotient field

of R, and KR an algebraic closure of KR. Suppose that k ⊆ KR. Let X • = (X , DX
def
=

{e1, . . . , enX
}) be a pointed stable curve of type (gX , nX) over R. We put

X •
η = (Xη, DXη

def
= {eη,1, . . . , eη,nX

}) def
= X • ×R KR,

X •
η = (Xη, DXη

def
= {eη,1, . . . , eη,nX

}) def
= X • ×R KR,

X •
s = (Xs, DXs

def
= {es,1, . . . , es,nX

}) def
= X • ×R kR.

We shall say that X• admits a (DEG) if (gX , nX) ̸= (1, 1) and there exists X • such
that the following conditions hold, where “(DEG)” means “degeneration”:

(i) We have that X •
η is KR-isomorphic to X• ×k KR, and that X •

s is a component-
generic pointed stable curve over kR. Then without loss of generality, we may identify
eη,r, r ∈ {1, . . . , nX}, with xr ×k KR via this isomorphism.

(ii) Let T be a set with cardinality #(T ) = #(Xsing) which consists of irreducible
singular projective semi-stable curves of genus 1 (i.e., the normalizations are P1

kR
). Let P

be a set which consists of smooth semi-stable curves of genus 0 (i.e., a set of P1
kR
). Let C1

be either an empty set or a smooth semi-stable curve of genus gX −#(Xsing). We have
the set of irreducible components of Xs is

{T}T∈T ∪ {C1} ∪ {P}P∈P .

Moreover, one of the following conditions is satisfied (see Example 4.5 below for examples
of (a) (b) (c)):

(a) Suppose that nX ≤ 1 and #(Xsing) ≥ 1. Then the following conditions
hold:
• C1 = ∅ when nX = 0 and #(Xsing) = 2; otherwise, C1 ̸= ∅.
• When C1 = ∅, we have T

def
= {T1, T2} such that #(T1 ∩ T2) = 1.

• When C1 ̸= ∅, we have that T ′ ∩ T ′′ ̸̸= ∅ if and only if T ′ = T ′′ for all
T ′, T ′′ ∈ T , that #(T ∩ C1) = 1 for all T ∈ T , and that DXs ⊆ C1.
• P = ∅.

(b) Suppose that nX = 2. Then the following conditions hold:
• T ′ ∩ T ′′ ̸̸= ∅ if and only if T ′ = T ′′ for all T ′, T ′′ ∈ T .
• C1 = ∅ when gX − #(Xsing) = 0; otherwise, C1 ̸= ∅ when gX −
#(Xsing) ≥ 1.

• P
def
= {P} such that DXs ⊆ P .

• When C1 = ∅, we have #(P ∩ T ) = 1 for all T ∈ T .
• When C1 ̸= ∅, we have that #(C1 ∩ T ) = 1, that #(C1 ∩ P ) = 1, and
that P ∩ T = ∅ for all T ∈ T .

(c) Suppose that nX ≥ 3. Then the following conditions hold:
• The first and the second conditions of (b) hold.

• P
def
= {Pv}v∈{2,...,nX−1} such that DXs ⊆

∪
v∈{2,...,nX−1} Pv .

• When C1 = ∅, we have #(P2 ∩ T ) = 1 and Pv ∩ T = ∅ for all T ∈ T
and all v ̸= 2.
• When C1 ̸= ∅, we have #(C1 ∩ T ) = 1, #(C1 ∩ P2) = 1, C1 ∩ Pv = ∅,
and Pv ∩ T = ∅ for all T ∈ T and all v ̸= 2.
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• If nX ≥ 4, for each v ∈ {2, . . . , nX − 2}, we have #(Pv ∩ Pv+1) = 1
and Pv ∩ Pv′ = ∅ when v′ ̸∈ {v − 1, v, v + 1}.
• If nX = 3, we have DXs ∩ P2 = {es,1, es,2, es,3}.
• If nX = 4, we have DXs ∩ P2 = {es,1, es,2} and DXs ∩ P3 = {es,3, es,4}.
• If nX ≥ 5, we haveDXs∩P2 = {es,1, es,2},DXs∩PnX−1 = {es,nX−1, es,nX

},
and DXs ∩ Pv = {es,v}, v ∈ {3, . . . , nX − 2}.

Note that since generic curves admit all degeneration types, we have that X• admits a
(DEG) when X• is a component-generic pointed stable curve of type (gX , nX) ̸= (1, 1).

4.3.3. Next, we give some examples to explain the degeneration data introduced above.
For simplicity, we assume that #(Xsing) = 2, C1 ̸= ∅, and nX ̸= 0.

Example 4.5. We use the notation “•” and “◦ with a line segment” to denote a vertex
and an open edge, respectively. Moreover, we use v(−) to denote the vertex corresponding
to the irreducible component (−).
(a) If nX = 1, then the dual semi-graph ΓX •

s
of X •

s is as follows (see 4.3.2 (ii)-(a)):

vT1

vC1

vT2

ΓX •
s
:

(b) If nX = 2, then the dual semi-graph ΓX •
s
of X •

s is as follows (see 4.3.2 (ii)-(b)):

vT1

vC1

vT2

vP

ΓX •
s
:

(c) If nX = 5, then the dual semi-graph ΓX •
s
of X •

s is as follows (see 4.3.2 (ii)-(c)):

vT1

vC1

vT2

vP2 vP3 vP4

ΓX •
s
:

4.3.4. Proposition 4.6 below was obtained by the author of the present paper when
X• is smooth over k (see [Y6, Proposition 3.4]), and its proof is similar to the proof of
[Y6, Proposition 3.4]. On the other hand, the degenerations appeared in the proof of
Proposition 4.6 are different from that of the proof of [Y6, Proposition 3.4]. Then for
convenience of the reader, we give the proof here.
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Proposition 4.6. Let X• = (X,DX
def
= {x1, . . . , xnX

}) be an irreducible component-
generic pointed stable curve over k, D ∈ (Z/nZ)∼[DX ]

0, and α ∈ RevadmD (X•) \ {0}.
Suppose that deg(D) = (nX − 1)n (i.e., s(D) = nX − 1) if nX ̸= 0, and that D is
Frobenius stable (i.e., deg(D(i)) = deg(D) = (nX − 1)n for all i ∈ {0, 1, . . . , t− 1}). Then
γ(α,D) attains maximum. Namely, the following holds:

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Proof. Let f • : Y • = (Y,DY ) → X• be the Galois multi-admissible covering over k with
Galois group Z/nZ induced by α. Firstly, we note that, to verify the proposition, we may
assume that Y • is connected.

Suppose that X• is smooth over k, and that nX ≤ 1. Then the proposition follows
immediately from Proposition 3.11 (i). Thus, to verify the proposition, it is sufficient to
assume that one of the following conditions holds: (1) #(Xsing) ≥ 1 and nX ≤ 1; (2)
nX ≥ 2.

Suppose that X• is a singular curve of type (1, 1) (i.e., #(Xsing) = 1). Since f • is étale,
the proposition follows immediately from Lemma 3.1 (i). Thus, to verify the proposition,
we may assume (gX , nX) ̸= (1, 1). Now, we can use the degeneration data introduced in
4.3.2.

SinceX• is a component-generic pointed stable curve, X• admits a (DEG). We maintain
the notation introduced in 4.3.2. Furthermore, we write Qη (resp. Qs) for the effective
divisor on Xη (resp. Xs) induced by D and αη ∈ RevadmQη

(X •
η ) for the element induced by α.

Then we have γ(α,D) = γ(αη ,Qη). Write ΠX •
η
and ΠX •

s
for the admissible fundamental groups

of X •
η and X •

s , respectively. Then we have a specialization surjective homomorphism

spR : ΠX •
η
↠ ΠX •

s
.

We suppose that X• satisfies (DEG)-(ii)-(c) (4.3.2). Moreover, we suppose that C1 ̸= ∅
and nX ≥ 5 (see Example 4.5 (c)).

Step 1: We define certain smooth pointed stable curves associated to irreducible com-
ponents of X •

s .

We write yv,v+1, zv,v+1, v ∈ {2, . . . , nX − 2}, for the inverse image of Pv ∩ Pv+1 of the
natural closed immersion Pv ↪→ Xs and the inverse image of Pv ∩ Pv+1 of the natural
closed immersion Pv+1 ↪→ Xs, respectively. We define

P •
2 = (P2, DP2

def
= {es,1, es,2, y2,3} ∪ (C1 ∩ P2)),

P •
nX−1 = (PnX−1, DPnX−1

def
= {znX−2,nX−1, es,nX−1, es,nX

}),

P •
v = (Pv, DPv

def
= {zv−1,v, es,v, yv,v+1}), v ∈ {3, . . . , nX − 2},

to be smooth pointed stable curves of types (0, 4), (0, 3), and (0, 3) over kR, respectively.
Moreover, we define

C•
1 = (C1, DC1

def
= (C1 ∩ P2) ∪ ((

∪
T∈T

T ) ∩ C1)),

T • = (T,DT
def
= T ∩ C1), T ∈ T ,
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to be a smooth pointed stable curve of type (gX −#(Xsing), 1+#(Xsing)) and a singular
pointed stable curve of type (1, 1) over kR, respectively. Note that since C1 is generic, we
have σC1 = gX −#(Xsing) (i.e., C•

1 is ordinary (2.2.2)).

Step 2: We construct a Galois admissible covering of X •
s by using specialization iso-

morphisms of maximal prime-to-p quotients of admissible fundamental groups.

Let f •
η

def
= f • ×k KR : Y•

η = (Yη, DYη
)

def
= Y • ×k KR → X •

η be the Galois admissible

covering over KR with Galois group Z/nZ induced by f •, and ΠY•
η
⊆ ΠX •

η

∼= ΠX• the

admissible fundamental group of Y•
η . By the specialization theorem of maximal prime-to-p

quotients of admissible fundamental groups ([V, Théorème 2.2 (c)]), we have

spp
′

R : Πp′

X •
η

∼→ Πp′

X •
s
.

Then we obtain a normal open subgroup Πp′

Y•
s

def
= spp

′

R(Π
p′

Y•
η
) ⊆ Πp′

X •
s
. Write ΠY•

s
⊆ ΠX •

s
for

the inverse image of Πp′

Y•
s
of the natural surjection ΠX •

s
↠ Πp′

X •
s
. Then ΠY•

s
determines a

Galois admissible covering

f •
s : Y•

s = (Ys, DYs)→ X •
s

over kR with Galois group Z/nZ. We denote by αs ∈ RevadmQs
(X •

s ) the element induced

by the composition homomorphism Πp′,ab
X •

s

(spp
′,ab

R )−1

∼→ Πp′,ab
X •

η

αη→ Z/nZ.

Step 3: We compute the generalized Hasse-Witt invariant γ(αs,Dαs ) by applying The-
orem 3.9, Lemma 4.3, and Lemma 4.4.

The structure of Πp′

X •
s
(2.1.6) implies that fs is étale over (

∪
T∈T T ) ∩ C1. Then we

obtain that fs is étale over C1 ∩ P2. Thus, fs is étale over DC1 . Let Yv
def
= f−1

s (Pv),
v ∈ {2, . . . , nX − 1}. We put

Y •
v

def
= (Yv, DYv

def
= f−1

s (DPv)), v ∈ {2, . . . , nX − 1}.

Then f •
s induces a Galois multi-admissible covering

f •
v : Y •

v → P •
v , v ∈ {2, . . . , nX − 1},

over kR with Galois group Z/nZ. We maintain the notation introduced in Lemma 4.3.
Then we see that the ramification divisor on Pv, v ∈ {2, . . . , nX − 1}, induced by f •

v and
αs is as follows:

Q2
def
= dx1es,1 + dx2es,2 + a2,3y2,3,

QnX−1
def
= bnX−2,nX−1znX−2,nX−1 + dxnX−1es,nX−1 + dxnX

es,nX
,

Qv
def
= bv−1,vzv−1,v + dxves,v + av,v+1yv,v+1, v ∈ {3, . . . , nX − 2}.

Since fs is étale over C1 ∩ P2, we see that f •
v , v ∈ {2, . . . , nX − 1}, induces a pair

([Lv], Qv) ∈ P̃P •
v ,n. Moreover, the kR[µn]-module H1

ét(Yv,Fp) ⊗ kR admits the following
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canonical decomposition

H1
ét(Yv,Fp)⊗ kR =

⊕
j∈Z/nZ

MYv(j),

where ζ ∈ µn acts on MYv(j) as the ζj-multiplication. On the other hand, Lemma 4.3

implies deg(Q
(i)
v ) = deg(Qv) = 2n, i ∈ {0, . . . , t − 1}. Then by applying Lemma 4.4, we

have
γ([Lv ],Qv) = dimkR(MYv(1)) = dimkR(H

1(Pv,Lv)) = 1.

Let Z1
def
= f−1

s (C1). Then f •
s induces a Galois étale covering (not necessarily connected)

f •
C1

: Z•
1 = (Z1, DZ1

def
= f−1

s (DC1))→ C•
1

over kR with Galois group Z/nZ. Write αC1 ∈ Revadm0 (C•
1) for the element induced by f •

C1

and αs. The kR[µn]-module H1
ét(Z1,Fp)⊗kR admits the following canonical decomposition

H1
ét(Z1,Fp)⊗ kR =

⊕
j∈Z/nZ

MZ1(j),

where ζ ∈ µn acts on MZ1(j) as the ζj-multiplication. Then Proposition 3.11 (i) implies

γ(αC1
,0) =

{
gX −#(Xsing), if αC1 = 0,
gX −#(Xsing)− 1, if αC1 ̸= 0.

Let VT
def
= f−1

s (T ), T ∈ T , and T̃ the smooth compactification of UT
def
= T \T sing. Then

f •
s induces a Galois multi-admissible covering

f •
T : V •

T = (VT , DVT

def
= f−1

s (DT ))→ T •

over kR with Galois group Z/nZ. Then f •
T induces a Galois multi-admissible covering

f •
T̃
: V •

T̃
= (VT̃ , DV

T̃
)→ T̃ •

over kR. Write αT̃ ∈ Rev0(T̃
•) for the element induced by f •

T̃
and αs. By using the

proposition of the case where X• is a singular curve of type (gX , nX) = (1, 1), we obtain
that γ(α

T̃
,0) = 0. Thus, Theorem 3.9 implies that

γ(αs,Qs) = gX + nX − 2.

Step 4: We compute γ(αη ,Qη) by using specialization surjective homomorphisms of
admissible fundamental groups.

The kR[µn]-modules H1
ét(Yη,Fp)⊗kR and H1

ét(Ys,Fp)⊗kR admit the following canonical
decompositions

H1
ét(Yη,Fp)⊗ kR =

⊕
j∈Z/nZ

MYη
(j),

H1
ét(Ys,Fp)⊗ kR =

⊕
j∈Z/nZ

MYs(j),

respectively. Moreover, we have an injection as kR[µn]-modules

H1
ét(Ys,Fp)⊗ kR ↪→ H1

ét(Yη,Fp)⊗ kR
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induced by the specialization map ΠY•
η
↠ ΠY•

s
. Thus, we have

gX + nX − 2 = γ(αs,Qs) = dimkR(MYs(1))

≤ γ(αη ,Qη) = dimkR(MYη
(1)) ≤ gX + nX − 2.

This means γ(αη ,Qη) = gX + nX − 2. We complete the proof of the proposition when X•

satisfies (DEG)-(ii)-(c), C1 ̸= ∅, and nX ≥ 5.
By applying similar arguments to the arguments given in the proof above, one can

prove the proposition when X• satisfies (DEG)-(ii)-(c) and either C1 = ∅ or nX ≤ 4
holds. Moreover, similar arguments to the arguments given in the proof above imply
that the proposition holds when X• satisfies either (DEG)-(ii)-(a) or (DEG)-(ii)-(b). We
complete the proof of the proposition. □

Remark 4.6.1. Suppose that X• is a smooth component-generic pointed stable curve
over k. By applying [Y6, Proposition 3.4], we obtain a necessary and sufficient condition
for ordinariness (i.e., the genus and the p-rank of coverings are equal, see 2.2.2) of prime-
to-p cyclic admissible coverings of X• (see [Y6, Theorem 1.2]). On the other hand, in the
theory of anabelian geometry, we expect that the geometric information of X• (e.g. the
type (gX , nX), the dual semi-graph ΓX• , the isomorphism class ofX•) can be reconstructed
group-theoretically from its fundamental group. From this point of view, the generalized
Hasse-Witt invariants of coverings are much better than the p-rank of coverings since they
contain the information concerning the type (gX , nX) of X

•. This is the reason why we
focus on the maximum generalized Hasse-Witt invariants in the present paper.

In the remainder of this section, under certain assumptions, we generalize Proposition
4.6 to the case where X• is not necessary to be irreducible.

4.4. Minimal quasi-trees. In this subsection, we introduce the so-called minimal quasi-
trees which play an important role in the remainder of the present paper.

4.4.1. Settings. Let W • = (W,DW ) be a pointed stable curve of type (gW , nW ) over k
and ΓW • the dual semi-graph of W •.

4.4.2. Before we give the definition of minimal quasi-trees, we introduce some notation
concerning sub-semi-graphs. Let G′ be a connected semi-graph. We shall call G′ a sub-
semi-graph of G if the following conditions hold:

(i) v(G′) ̸= ∅ and v(G′) ⊆ v(G).
(ii) ecl(G′) ⊆ ecl(G) is the subset of closed edges such that v(e) ⊆ v(G′).
(iii) eop(G′) ⊆ (ecl(G) ∪ eop(G)) \ ecl(G′) is the subset of edges such that
#(v(e) ∩ v(G′)) = 1.

Note that the definition of G′ implies that G′ can be completely determined by v(G′) if
v(G′) ̸= ∅. The conditions (ii), (iii) imply that, if e ∈ elp(G) is a loop and v(e) ⊆ v(G′),
then e ∈ ecl(G′).
Suppose that G′ is a sub-semi-graph of G such that v(G′) ̸= ∅. Let L ⊆ ecl(G′) be

a subset of closed edges of G′ such that G′ \ L (i.e., removing L from G′) is connected.

For any e
def
= {b1e, b2e} ∈ L, we put ei

def
= {b1ei , b2ei}, i ∈ {1, 2}, and shall call ei the i-edge

associated to e. We shall call G′
L the semi-graph associated to G′ and L if the following

conditions hold:
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(i) v(G′
L)

def
= v(G).

(ii) eop(G′
L)

def
= eop(G′) ∪ {e1, e2}e∈L such that ζG

′
L(e) = ζG

′
(e) if e ∈

eop(G′), that ζG
′
L(e1)

def
= {ζG′

(b1e), {v(G′
L)}} if e1 is the 1-edge associated to

e ∈ L, and that ζG
′
L(e2)

def
= {ζG′

(b2e), {v(G′
L)}} if e2 is the 2-edge associated

to e ∈ L.
(iii) ecl(G′

L)
def
= ecl(G′) \ L such that ζG

′
L(e)

def
= ζG

′
(e) if e ∈ ecl(G′) \ L.

Example 4.7. We give some examples of semi-graphs to explain the above notation. We
use the notation “ • ” and “ ◦ ” to denote a vertex and an open edge, respectively.

Let G be a semi-graph and G′ a sub-semi-graph of G whose set of vertices is {v1, v2}
as follows:

v1

e2

e3

e1 v2
e4

v3G:

v1

e2

e3

e1 v2 e4G′:

Moreover, let L
def
= {e2} ⊆ ecl(G′) be a subset of edges of G′ and {e12, e22} the set of 1-edge

and 2-edge associated to e2. Then we have the following:

v1

e12

e1
e3

v2

e22

e4G′
L:

4.4.3. Definition of minimal quasi-trees associated to DW .

Definition 4.8. We maintain the notation introduced above. Let Γ′ be a sub-semi-graph
(4.4.2) of ΓW • and L ⊆ ecl(Γ′)\ elp(Γ′) (see 2.1.1 for elp(Γ′)). We shall call the semi-graph
Γ′
L associated to Γ′ and L (4.4.2) a quasi-tree associated to DW if the following conditions

are satisfied:

• Γ′
L \ elp(Γ′

L) is a tree.
• eop(ΓW •) is contained in eop(Γ′

L).

Moreover, we shall call a semi-graph

ΓDW
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a minimal quasi-tree associated to DW if either ΓDW
= ∅ when nW = 0 or the following

conditions are satisfied when nW ̸= 0:

• ΓDW
is a quasi-tree associated to DW .

• Suppose that Γ′′ is a quasi-tree associated to DW such that Γ′′ ⊆ ΓDW
. Then we

have Γ′′ = ΓDW
.

Note that by the definition of ΓDW
, we have that ΓDW

\ elp(ΓDW
) is a tree.

In particular, when elp(ΓW •) = ∅, minimal quasi-trees are very simple. Namely, a
minimal quasi-tree ΓDW

is a minimal tree-like semi-graph contained in ΓW • such that
ΓDW

contains all of the open edges of ΓW • .

We will see that there exists a minimal quasi-tree associated to DW for an arbitrary
pointed stable curve W • (see 4.4.5 below).

4.4.4. Before we start to explain the constructions of minimal quasi-trees defined above,
we introduce some notation. Let Z• be a pointed stable curve over k, ΓZ• the dual semi-
graph of Z• such that ΓZ• \ elp(ΓZ•) is a tree, and that EZ ⊆ eop(ΓZ•) is a subset of open
edges.

Firstly, we introduce a subset of vertices VZ ⊆ v(ΓZ•) which consists of terminal ver-
tices (i.e., the vertex v such that #(Zv ∩ (

∪
v′∈v(ΓZ• )\{v} Zv′)) ≤ 1, where Zv denotes the

irreducible component corresponding to v) of ΓZ• such that for each v ∈ VZ , v is not
abutted to e ∈ EZ . Namely, we put (see 2.1.1 for eΓZ• (v))

VZ
def
= {v ∈ v(ΓZ•) | #(eΓZ• (v) ∩ (ecl(ΓZ•) \ elp(ΓZ•))) ≤ 1, eΓZ• (v) ∩ EZ = ∅} ⊆ v(ΓZ•).

Note that #(eΓZ• (v) ∩ (ecl(ΓZ•) \ elp(ΓZ•))) = 0 < 1 if and only if Z• is irreducible. We
call VZ the set of terminal vertices avoiding to EZ .

Example 4.9. We give an example of VZ . Suppose that the dual semi-graph ΓZ• is as
follows:

v1 a2c

b1

e1

v2

e2

a3 v3

b2

ΓZ• :

We see that elp(ΓZ•) = {c}, and that the set of terminal vertices is {v1, v3}. Then
ΓZ• \ elp(ΓZ•) is as follows, which is a tree:

v1 a2

b1

e1

v2

e2

a3 v3

b2

ΓZ• \ elp(ΓZ•):

Let EZ
def
= eop(ΓZ•). Since eΓZ• (v1) = {e1, b1} and eΓZ• (v2) = {e2, b2}, we have VZ = {v3}.
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4.4.5. Constructions of minimal quasi-trees associated to DW and their associated pointed
stable curves. Next, we define a minimal quasi-tree associated to DW . Let E ⊆ ecl(ΓW •)\
elp(ΓW •) be a (possibly empty) subset of closed edges such that ΓW • \ (E ∪ elp(ΓW •)) is
a connected tree. Note that it is easy to see that E exists.
Write N for the set of nodes ofW corresponding to the closed edges which are contained

in E, and write normN : WN → W for the normalization morphism of the underlying
curve W over N . We define a pointed stable curve over k to be

W •
1 = (W1, DW1)

def
= W •

N = (WN , DWN

def
= norm−1

N (DW ∪N)).

Note that the above construction implies DW ⊆ DW1 (i.e., eop(ΓW •) ⊆ eop(ΓW •
1
)). Write

ΓW •
1
for the dual semi-graph of W •

1 . Then the construction of W •
1 implies that ΓW •

1
\

elp(ΓW •
1
) is a tree.

Suppose that nW ̸= 0. Then for all i ∈ N, if W •
i has already been defined, we may

define W •
i+1 as follows: Let Vi ⊆ v(ΓW •

i
) be the subset of terminal vertices avoiding to

eop(ΓW •) ⊆ eop(ΓW •
i
). If Vi = ∅, then we put W •

i+1
def
= W •

i . If Vi ̸= ∅, we write Wi+1 for
the topological closure of

Wi \ (
∪
v∈Vi

Wv)

in Wi. Note that the definition of Vi implies that Wi+1 is connected, and that DW is
contained in Wi+1. Then we define a pointed stable curve over k to be

W •
i+1

def
= (Wi+1, DWi+1

def
= (DWi

∩Wi+1) ∪ ((
∪
v∈Vi

Wv) ∩Wi+1))).

Note that we have eop(ΓW •) ⊆ eop(ΓW •
i+1

).

Let i0 be the minimal natural number such that Vi0 = ∅. Note that the above construc-
tion implies that W •

i0
= W •

j for all j ≥ i0. We put

W •
Γ = (WΓ, DWΓ

)
def
= W •

i0
,

Γ
def
= ΓW •

i0
.

Then ΓDW

def
= Γ is a minimal quasi-tree associated to DW . We shall call W •

Γ the pointed
stable curve associated to Γ.

Note that we have that DW ⊆ DWΓ
, and that Γ \ elp(Γ) is a tree. Moreover, we see

v(Γ) ⊆ v(ΓW •) and e(Γ) ⊆ e(ΓW •), where e(−) denotes the set of edges of (−) (2.1.1).
Note that an open edge of Γ is not an open edge of ΓW • in general, and that a closed edge
of Γ is a closed edge of ΓW • .

Moreover, the construction of Γ depends on the choice of E (i.e., a subset of closed
edges of ecl(ΓW •) \ elp(ΓW •) such that ΓW • \ (E ∪ elp(ΓW •)) is a tree).

4.4.6. We maintain the notation introduced in 4.4.5. Let us give some examples to
explain the above constructions.

Example 4.10. (a) Let W • be a pointed stable curve over k such that the following
conditions hold: (i) The set of irreducible components of W is {Wv1 ,Wv2 ,Wv3}; (ii)
DW = {wb1 , wb2}; (iii) The set of nodes is {wc, wa1 , wa2 , wa3}; (iv) Wv1 is a singular
curve with the unique node wc; (v) wb1 ∈ Wv1 and wb2 ∈ Wv2 ; (vi) wa1 , wa2 ∈ Wv1 ∩Wv2 ;
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(vii) wa3 ∈ Wv2 ∩Wv3 . We use the notation “•” and “◦” to denote a node and a marked
point, respectively. Then W • is as follows:

Wv1 Wv3

Wv2

wc

wb1
wb2

wa1

wa2

wa3W •:

The dual semi-graph ΓW • of W • such that the following conditions hold: (i) v(ΓW •)
def
=

{v1, v2, v3}; (ii) ecl(ΓW •) \ elp(ΓW •)
def
= {a1, a2, a3} such that a1 and a2 abut to v1 and

v2, respectively, and that a3 abuts to v2 and v3; (iii) e
lp(ΓW •)

def
= {c} and c abuts to v1;

(iv) eop(ΓW •)
def
= {b1, b2} such that b1 and b2 abut to v1 and v2, respectively. We use

the notation “ • ” and“ ◦ with a line segment” to denote a vertex and an open edge,
respectively. Then ΓW • is as follows:

v1

a1

a2

c

b1

v2 a3 v3

b2

ΓW • :

(b) Let E
def
= {a1}. Then we see that the dual semi-graph ΓW •

1
of W •

1 is as follows:

v1 a2c

b1

a11

v2

a21

a3 v3

b2

ΓW •
1
:

Note that the set of terminal vertices avoiding to eop(ΓW •) of W •
1 is {v3}.

(c) We obtain a minimal quasi-tree ΓDW

def
= Γ associated to DW is as follows:

v1 a2c

b1

a11

v2

a21

a3

b2

ΓDW

def
= Γ:

On the other hand, W •
Γ is as follows:
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wa11 wb2

wa21
wa3

Wv1

Wv2wc

wb1

W •
Γ :

(d) Next, we give an example Γ′ ⊆ ΓW • , which is a tree containing all open edges of
ΓW • , and which is not a (minimal) quasi-tree associated to DW

v1 a2

b1

v2

b2

Γ′:

If Γ′′ is a quasi-tree, then by the definition of quasi-trees (Definition 4.8), Γ′ is equal
to a semi-graph Γ′′

L′′ (4.4.2) associated to a sub-semi-graph Γ′′ of ΓW • and a subset of

closed edges L′′ ⊆ ecl(Γ′′) \ elp(Γ′′). Thus, the definition of Γ′′
L′′ implies that eΓ

′′
L′′ (v1) =

{c, b1, a11, a2}. This means that Γ′ is not a quasi-tree.

4.4.7. We maintain the notation introduced in 4.4.5. Suppose that nW ̸= 0, and that
Γ = ΓDW

is a minimal quasi-tree associated to DW .
The construction of WΓ implies that there is a natural morphism

fΓ : WΓ → W

over k. We denote by

ϕΓ : Γ→ ΓW •

the map of dual semi-graphs induced by fΓ. Note that the construction of WΓ implies
that fΓ induces an injection of sets of irreducible components f irr

Γ : Irr(WΓ) ↪→ Irr(W )
(or equivalently, ϕΓ induces an injection of sets of vertices v(Γ) ↪→ v(ΓW •)). By the
construction of Γ, we see that the set of marked points DWΓ

of W •
Γ can be divided into

the following three parts:

• The set of marked points DW of W • (then fΓ(DWΓ
\DW ) ⊆ W sing).

• Let w ∈ DWΓ
\ DW and Ww the unique irreducible component of WΓ containing

w. Since fΓ(w) ∈ W sing, we have fΓ(w) ∈ fΓ(Ww) ∩ W ′
w, where W ′

w ∈ Irr(W )
is the unique irreducible component containing fΓ(w) if fΓ(w) ∈ fΓ(Ww)

sing (i.e.,
W ′

w = fΓ(Ww)), and is the unique irreducible component such that fΓ(Ww) ̸= W ′
w

if fΓ(w) ∈ fΓ(Ww) \ fΓ(Ww)
sing. Then we put

DE1

def
= {w ∈ DWΓ

\DW | W ′
w ̸∈ Im(f irr

Γ )}.

• We put

DE2

def
= {w ∈ DWΓ

\DW | W ′
w ∈ Im(f irr

Γ )}.
Note that we have DWΓ

= DW ⊔DE1 ⊔DE2 , where ⊔ means disjoint union.
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Note that fΓ : WΓ \ DE2

∼→ fΓ(WΓ). Namely, the semi-stable sub-curve fΓ(WΓ) ⊆ W is
glued by WΓ along DE2 (or WΓ is the normalization of fΓ(WΓ) at fΓ(DE2)), and fΓ|WΓ\DE2

is an isomorphism.
We define (for instance, see Example 4.11 below)

W •
Γim = (WΓim

def
= fΓ(WΓ), DW

Γim

def
= fΓ(DW ∪DE1))

to be a pointed stable curve over k. Then we see that the dual semi-graph of W •
Γim

coincides with the image Im(ϕΓ). We call

Γim def
= ΓW •

Γim

the image of the map ϕΓ (for instance, see Example 4.11 below). Moreover, we denote by

normΓ : WΓ → WΓim

the natural morphism induced by fΓ which coincides with the normalization morphism of
WΓim over the set of nodes fΓ(DE2).

4.4.8. We maintain the notation introduced in Example 4.10 and give an example of Γim.

Example 4.11. We see that the set of open edges of W •
Γ corresponding to DE1 is {a3}

(Example 4.10 (c)), and that the set of open edges of W •
Γ corresponding to DE2 is {e1, e2}

(Example 4.10 (c)). Then the image Γim of the map ϕΓ : Γ→ Γ•
W is as follows:

v1

a1

a2

c

b1

v2 a3

b2

Γim:

On the other hand, W •
Γim is as follows:

Wv1

Wv2

wc

wb1
wb2

wa1

wa2

wa3

W •
Γim :

Note that DE1 = {wa3} and DE2 = {we1 , we2}, where wa3 , wei , i ∈ {1, 2}, denote the
marked points of W •

Γ corresponding a3, ei, respectively. We have fΓ(Wwa3
) = Wv2 ,

fΓ(Wwe1
) = Wv1 , fΓ(Wwe2

) = Wv2 , W
′
we1

= Wv2 , and W ′
we2

= Wv1 .

4.5. The first main theorem. We are going to prove the first main theorem of the
present paper.

4.5.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption in-

troduced in 2.3.3 (i.e., n
def
= pt− 1). Moreover, we assume that X• is a component-generic

pointed stable curve over k.



MAXIMUM GENERALIZED HASSE-WITT INVARIANTS 51

4.5.2. As we have mentioned before (Example 3.12), Proposition 3.11 (i) does not hold
in general. The key is that the ramifications over nodes cannot be completely determined
by the ramifications over marked points if the dual semi-graphs are not tree-like. Then
by Proposition 4.6, we see that, to generalize Proposition 3.11 (i) to the case of (possi-
bly reducible and possibly singular) pointed stable curves, we need a tree-like structure
concerning ΓX• \ elp(ΓX•). Note that, if nX ̸= 0, the ramifications over marked points
can completely determine the ramifications over nodes contained in minimal quasi-trees.
Then we introduce the following conditions: ΓX• is a tree if nX = 0, and ΓX• is a minimal
quasi-tree associated to DX if nX ̸= 0. Moreover, we have the following proposition.

Proposition 4.12. Let D ∈ (Z/nZ)∼[DX ]
0 be an effective divisor on X such that

s(D) = nX − 1 if nX ̸= 0, and that D is Frobenius stable (i.e., deg(D(i)) = deg(D), i ∈
{0, 1, . . . , t− 1}). Then the following statements hold:
(i) Suppose that one of the following conditions is satisfied:

• nX = 0 and ΓX• \ elp(ΓX•) is a tree.
• nX ̸= 0 and ΓX• = ΓDX

is a minimal quasi-tree associated to DX (see Definition
4.8).

Then γ(α,D) attains maximum for all α ∈ RevadmD (X•) \ {0}. Namely, the following holds:

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

(ii) There exists an element β ∈ RevadmD (X•) \ {0} such that γ(β,D) attains maximum.
Namely, the following holds:

γ(β,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Proof. (i) Let f • : Y • = (Y,DY )→ X• be a Galois multi-admissible covering over k with
Galois group Z/nZ induced by α. To verify (i), we may assume that Y • is connected.

Suppose that nX = 0. Since ΓX• \ elp(ΓX•) is a tree, we see immediately that f is étale.
Then (i) follows from Theorem 3.9 and Proposition 4.6.

Suppose that nX ̸= 0. Let v ∈ v(ΓX•) and π0(X \Xv) the set of connected components

of X \Xv, where X \Xv denotes the topological closure of X \Xv in X. We put

Dv
def
= (DX ∩Xv) ∪ (

∪
C∈π0(X\Xv)

(C ∩Xv)).

Let X•
v = (Xv, DXv

def
= Dv), v ∈ v(ΓX•), be a pointed stable curve of type (gXv , nXv) over

k. Then f • induces a Galois multi-admissible covering

f •
v : Y •

v → X•
v , v ∈ v(ΓX•),

over k with Galois group Z/nZ.
Note that since ΓX• is a minimal quasi-tree associated to DX , we have that C ∩Xv =
{xC} is a closed point of X for all C ∈ π0(X \Xv). We put

Qv
def
=

∑
x∈DX∩Xv

ordx(Qv)x+
∑

C∈π0(X\Xv)

ordxC
(Qv)xC ∈ (Z/nZ)∼[Dv]

0, v ∈ v(ΓX•),
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the ramification divisor on Xv induced by fv. Since ΓX• \ elp(ΓX•) is a tree, then Qv

satisfies the following:

ordx(Qv)
def
= ordx(D), x ∈ DX ∩Xv,

ordxC
(Qv)

def
= [

∑
c∈DX∩C

ordc(D)], C ∈ π0(X \Xv),

where [(−)] denotes the integer which is equal to the image of (−) in Z/nZ when we iden-
tify {0, . . . , n− 1} with Z/nZ naturally. By applying similar arguments to the arguments
given in the proof of Lemma 4.3, we have

deg(Qv) = (#(Dv)− 1)n and deg(Q(i)
v ) = deg(Qv), i ∈ {0, . . . , t− 1}.

Let ΠX•
v
, v ∈ v(ΓX•), be the admissible fundamental group of X•

v . Write αv ∈
RevadmQv

(X•
v ) for the composition of the natural homomorphisms ΠX•

v
→ Πab

X•
α→ Z/nZ.

Note that αv ̸= 0 for all v ∈ v(ΓX•). Then Proposition 4.6 implies

γ(αv ,Qv) =

{
gXv − 1, if Supp(Qv) = ∅,
gXv + s(Qv)− 2, if Supp(Qv) ̸= ∅.

Thus, Theorem 3.9 implies that

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

This completes the proof of (i).
(ii) Suppose that nX ≤ 1. (ii) follows from Proposition 3.11 (ii). Then to verify (ii), we

may assume that nX ≥ 2.

Let Γ
def
= ΓDX

be a minimal quasi-tree associated to DX , Γ
im the image of the natural

morphism ϕΓ : Γ→ ΓX• , and

X•
Γ = (XΓ, DXΓ

), X•
Γim = (XΓim , DX

Γim
)

the pointed stable curves over k associated to Γ, Γim, respectively (4.4.5, 4.4.7). Note
that D is also an effective divisor on XΓim .
Write DΓ for the pulling back divisor norm∗

Γ(D) (see 4.4.7 for the definition of normΓ).
Let αΓ ∈ RevadmDΓ

(X•
Γ) be an arbitrary element such that αΓ ̸= 0. Then similar arguments

to the arguments given in (i) imply γ(αΓ,DΓ) = gXΓ
+nX − 2, where gXΓ

denotes the genus
of XΓ. We denote by

g•Γ : Z•
Γ → X•

Γ

the Galois multi-admissible covering over k with Galois group Z/nZ induced by αΓ. By
gluing Z•

Γ along g−1
Γ (DXΓ

\ norm−1
Γ (DX

Γim
)) in a way that is compatible with the gluing

of X•
Γ that gives rise to X•

Γim , we obtain a pointed stable curve Z•
Γim over k. Moreover, g•Γ

induces a Galois multi-admissible covering

g•Γim : Z•
Γim → X•

Γim

over k with Galois group Z/nZ. Let ΠX•
Γ
, ΠX•

Γim
be the admissible fundamental groups

of X•
Γ, X

•
Γim , respectively. Write αΓim for an element of Hom(Πab

X•
Γim

,Z/nZ) induced by
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g•Γim such that the composition of the natural homomorphisms Πab
X•

Γ
→ Πab

X•
Γim

α
Γim→ Z/nZ

is equal to αΓ. We put DΓim
def
= Dα

Γim
. Then Theorem 3.9 implies that

γ(α
Γim ,D

Γim ) = gX
Γim

+ nX − 2,

where gX
Γim

denotes the genus of XΓim .

On the other hand, we write π0(X \XΓim) for the set of connected components of

X \XΓim , where X \XΓim denotes the topological closure of X \ XΓim in X. We define
the following pointed stable curve

C• = (C,DC
def
= C ∩XΓim), C ∈ π0(X \XΓim),

over k. Note that since X• is component-generic, we have that C• is also component-
generic. Then the p-rank σC is equal to the genus of C•.
Let C ∈ π0(X \XΓim). We put

Z•
C

def
=

⊔
i∈Z/nZ

C•
i ,

where C•
i is a copy of C•, and ⊔ means disjoint union. Then we obtain a Galois multi-

admissible covering

g•C : Z•
C → C•

over k with Galois group Z/nZ, where the restriction morphism g•C |C•
i
is an identity, and

the Galois action is j(Ci) = Ci+j for all i, j ∈ Z/nZ. By gluing Z•
Γim and {Z•

C}C∈π0(X\X
Γim )

along

g−1
Γim(XΓim ∩ (

∪
C∈π0(X\X

Γim )

C)) and {g−1
C (XΓim ∩ C)}C∈π0(X\X

Γim )

in a way that is compatible with the gluing of {X•
Γim} ∪ {C•}C∈π0(X\X

Γim ) that gives rise

to X•, we obtain a Galois multi-admissible covering

g• : Z• → X•

over k with Galois group Z/nZ.
Let ΠX• be the admissible fundamental group ofX•. Moreover, we write β ∈ RevadmD (X•)

for an element induced by g• such that the composition of the natural homomorphisms

Πab
X•

Γim
→ Πab

X•
β→ Z/nZ is equal to αΓim . By applying Theorem 3.9, we see

γ(β,D) = γmax
X• = gX + nX − 2.

We complete the proof of (ii). □

4.5.3. Now, the main result of the present section is as follows.

Theorem 4.13. Let X• = (X,DX) be a component-generic pointed stable curve over k.
Let m ∈ N be an arbitrary positive natural number prime to p and D ∈ (Z/mZ)∼[DX ]

0

(2.2.5). Let t ∈ N be a positive natural number such that pt = 1 in (Z/mZ)×. Write n for
pt− 1, m′ for n/m, and D′ for the divisor m′D ∈ (Z/nZ)∼[DX ]

0 when we identify Z/mZ
with the unique subgroup of Z/nZ of order m. Then the following statements hold:
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(a) We have (see 2.2.5 and Definition 2.4 for (D′)(i))

s(D) =

{
0, if nX = 0,
nX − 1, if nX ̸= 0

and D′ is Frobenius stable (i.e., deg((D′)(i)) = deg(D′), i ∈ {0, 1, . . . , t −
1}).
(b) There exists an element β ∈ RevadmD (X•)\{0} (Definition 2.4 (i)) such
that γ(β,D) attains maximum (Definition 3.10 (ii)). Namely, the following
holds (see Definition 3.10 (i) for γmax

X• ):

γ(β,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Moreover, suppose that one of the following conditions is satisfied:

• nX = 0 and ΓX• \ elp(ΓX•) is a tree.
• nX ̸= 0 and ΓX• = ΓDW

is a minimal quasi-tree associated to DX (4.4.5).

Then (a) and (b) are equivalent to the following statement:

(c) γ(α,D) attains maximum for all α ∈ RevadmD (X•) \ {0}. Namely, the
following holds:

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Proof. “(b)⇒(a)” follows from Lemma 4.2. We prove “(a)⇒(b)”. Let Γ
def
= ΓDX

be a
minimal quasi-tree associated to DX , Γ

im the image of the natural morphism ϕΓ : Γ →
ΓX• , X•

Γim = (XΓim , DX
Γim

) the pointed stable curve over k associated to Γim (4.4.7), and
ΠX•

Γim
the admissible fundamental group ofX•

Γim . Note thatD is also an effective divisor on

XΓim . Let βΓim be an arbitrary element of RevadmD (X•
Γim)\{0}. Write β′

Γim ∈ RevadmD′ (X•
Γim)

for the element induced by βΓim .
Let ΠX• be the admissible fundamental group of X•. Proposition 4.12 (ii) implies that

there exists β′ ∈ RevadmD′ (X•) such that the composition of the natural homomorphisms

Πab
X•

Γim
→ ΠX•

β′
→ Z/nZ is equal to β′

Γim , and that γ(β′,D′) attains maximum. Moreover,

the construction of β′ given in the proof of Proposition 4.12 (ii) (i.e., the Galois multi-

admissible covering of X̃•
v , v ∈ v(ΓX•)\v(Γim), induced by β′ is trivial) implies that β′ can

be induced by an element of β ∈ RevadmD (X•). Then γ(β,D) = γ(β′,D′) attains maximum.
This completes the proof of “(b)⇔(a)”.

Next, we prove the “moreover” part of the theorem. Write α′ ∈ RevadmD′ (X•) for the
element induced by α. Then we have γ(α,D) = γ(α′,D′). “(c)⇒(a)” follows from Lemma
4.2. Moreover, “(a)⇒(c)” follows immediately from Proposition 4.12 (i). This completes
the proof of the theorem. □

4.6. (m,nX)-ordinary curves.

4.6.1. We maintain the notation introduced in 2.1.2. Moreover, letMgX ,nX
be the moduli

stack parameterizing pointed stable curves of type (gX , nX) (2.1.4) andMgX ,nX
⊆MgX ,nX

the open substack parameterizing smooth pointed stable curves of type (gX , nX). We
denote by M gX ,nX

, MgX ,nX
the coarse moduli spaces ofMgX ,nX

,MgX ,nX
, respectively.
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4.6.2. Let m ∈ N be an arbitrary positive natural number prime to p, and let D ∈
(Z/mZ)∼[DX ]

0 be an effective divisor on X such that deg(D) = (nX − 1)m if nX ̸= 0.

Definition 4.14. We shall say that X• is (m,nX)-ordinary if, for all α ∈ RevadmD (X•) \
{0}, we have

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Note that, if nX = 0 and X• is non-singular, then the definition of (m,nX)-ordinary
coincides with the definition of m-ordinary introduced by Nakajima ([N, §4]).

On the other hand, let t ∈ N be a positive natural number such that pt = 1 in (Z/mZ)×.
Write n for pt − 1, m′ for n/m, and D′ for the divisor m′D ∈ (Z/nZ)∼[DX ]

0 when we
identify Z/mZ with the unique subgroup of Z/nZ of order m. If nX ̸= 0 and X• is
(m,nX)-ordinary, then Lemma 4.2 (ii) implies that D′ is Frobenius stable. Namely, we
have

deg((D′)(i)) = deg(D′) = (nX − 1)n, i ∈ {0, 1, . . . , t− 1}.

4.6.3. We denote by

U (m,nX)
def
= {q ∈M gX ,nX

| curves corresponding to q is (m,nX)-ordinary} ⊆M gX ,nX
.

Moreover, we put U(m,nX)
def
= U (m,nX) ∩MgX ,nX

(i.e., the set of points corresponding to
smooth (m,nX)-ordinary curves). Then we have the following result.

Proposition 4.15. The set U(m,nX) is a non-empty open subset of MgX ,nX
.

Proof. By applying similar arguments to the arguments given in the proof of [N, Theorem
2], the proposition follows from Theorem 4.13 (i). □

If nX ≤ 1, then Proposition 4.15 was proved by Nakajima ([N, Theorem 2]). Then
Proposition 4.15 is a generalized version of Nakajima’s result to the case of admissible
coverings of smooth pointed stable curves. Moreover, Nakajima ([N, §4 Remark]) asked
whether or not ∩

m∈N s.t. (m,p)=1

U(m,nX)

is a non-empty open subset of MgX ,nX
. By applying the theory of Raynaud-Tamagawa

theta divisors and [R2, Proposition 1.2.1], we see that the following holds:

Suppose that nX ≤ 1. Then we have

M cl
gX ,nX

∩ (
∩

m∈N s.t. (m,p)=1

U(m,nX)) = ∅,

where M cl
gX ,nX

denotes the set of closed points of MgX ,nX
.

This gives a negative answer of Nakajima’s question. On the other hand, we may ask the
following question:

Problem 4.16. (i) Suppose that X• is a component-generic pointed stable curve over
k. Can we find a necessary and sufficient condition that X• is (m,nX)-ordinary for all
m ∈ N prime to p?
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(ii) Does

M cl
gX ,nX

∩ (
∩

m∈N s.t. (m,p)=1

U(m,nX)) = ∅

hold for an arbitrary non-negative integer nX? Moreover, does

M
cl

gX ,nX
∩ (

∩
m∈N s.t. (m,p)=1

U (m,nX)) = ∅

hold for an arbitrary non-negative integer nX?

5. Maximum generalized Hasse-Witt invariants for arbitrary curves

In the present section, we discuss the maximum generalized Hasse-Witt invariants of
cyclic admissible coverings for arbitrary pointed stable curves. The main result of this
section is Theorem 5.4.

5.1. Idea. We briefly explain the idea of our proof of Theorem 5.4.

5.1.1. Settings. We maintain the notation introduced in 2.1.2.

5.1.2. An easy case. Firstly, let us prove an easy case (i.e., X• is irreducible) of the main
result of the present section.

Proposition 5.1. Suppose that X• is irreducible. Then there exist a positive natural

number n
def
= pt − 1 ∈ N, an effective divisor D ∈ (Z/nZ)∼[DX ]

0 (2.2.5) on X of degree
(nX − 1)n if nX ̸= 0 (resp. degree 0 if nX = 0), and an element α ∈ RevadmD (X•) \ {0}
(Definition 2.4 (i)) such that γ(α,D) attains maximum (Definition 3.10 (ii)). Namely, the
following holds:

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Proof. Since X• is irreducible, we write X̃• for the smooth pointed stable curve of type
(gX̃ , nX̃) over k associated to the unique vertex of the dual semi-graph ΓX• of X• (2.1.3).
Note that we have

gX̃ = gX −#(Xsing), nX̃ = nX + 2#(Xsing).

Moreover, DX ⊆ DX̃ implies (Z/nZ)∼[DX ]
0 ⊆ (Z/nZ)∼[DX̃ ]

0.
By applying Theorem 3.9, to verify the proposition, it is sufficient to prove that there

exist a positive natural number n
def
= pt − 1 ∈ N, an effective divisor D̃ ∈ (Z/nZ)∼[DX ]

0

of degree (nX − 1)n if nX ̸= 0 (resp. degree 0 if nX = 0) on X̃, and an element α̃ ∈
Revadm

D̃
(X̃•) \ {0} such that the following holds:

γ(α̃,D̃) =

{
gX̃ − 1, if nX = 0,
gX̃ + nX − 2, if nX ̸= 0.

Suppose that nX ≤ 1. Then the proposition follows immediately from Proposition 3.11
(ii).

Suppose that nX ≥ 2. Let DX
def
= {x1, . . . , xnX

} and ni
def
= pti − 1, i ∈ {1, . . . , nX − 1},

such that the following conditions are satisfied (see 2.4.5 for C(gX)):

• ni > max{C(gX) + 1,#(e(ΓX•))}.
• 0 < ai,1, ai,2 < ni and ai,1 + ai,2 = ni for all i ∈ {1, . . . , nX − 1}.
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Furthermore, we put

Di
def
= ai,1xi + ai,2xi+1 +

∑
x∈DX\{xi,xi+1}

nix, i ∈ {1, . . . , nX − 1},

which is an effective divisor on X̃ of degree (nX − 1)ni. Moreover, we put

D̃
def
=

nX−1∑
i=1

p
∑i−1

j=0 tjDi,

n
def
= p

∑nX−1
i=0 tj − 1 =

nX−1∑
i=1

p
∑i−1

j=0 tj(pti − 1),

where t0
def
= 0. We see that D̃ is an effective divisor on X̃ of degree (nX − 1)n such that

D̃ ∈ (Z/nZ)∼[DX ]
0.

Let LD̃ be a line bundle on X̃ such that L⊗n

D̃
∼= OX(−D̃), and LD̃,t the pulling back of

LD̃ by the natural morphism X̃t → X̃ defined in 2.4.2. Then by applying [T2, Corollary
2.6, Lemma 2.12 (ii), and Corollary 2.13], we see that the Raynaud-Tamagawa theta
divisor associated to Bt

D̃
⊗LD̃,t exists (Definition 2.9). Moreover, Proposition 2.10 implies

that there exists a line bundle Ĩ of degree 0 on X̃ such that [Ĩ] ̸= [OX̃ ], that [Ĩ⊗n] = [OX̃ ],
and that (see 2.3.4 for γ([L

D̃
⊗Ĩ],D̃))

γ([L
D̃
⊗Ĩ],D̃) =

{
gX̃ − 1, if nX = 0,
gX̃ + nX − 2, if nX ̸= 0.

Let α̃ ∈ Revadm
D̃

(X̃•) be the element corresponding to the pair ([LD̃ ⊗ Ĩ], D̃) ∈ P̃X̃•,n

(2.3.2). Then we have γ(α̃,D̃) = γ([L
D̃
⊗Ĩ],D̃). This completes the proof of the proposition.

□

5.1.3. Strategy of the proof of Theorem 5.4. In the remainder of this section, we will
generalize Proposition 5.1 to the case where X• is an arbitrary pointed stable curve over
k (i.e., Theorem 5.4 below).
Let X• be an arbitrary pointed stable curve over k. For simplicity, we assume that

every irreducible component of X• is non-singular. Moreover, by Proposition 3.11 (ii), we
assume nX ≥ 2. We maintain the notation introduced in the statement of Theorem 3.9.
To verify Theorem 5.4, by applying Theorem 3.9, it is sufficient to construct a prime-to-p

cyclic Galois multi-admissible covering f̃ •
v : Ỹ •

v → X̃•
v with Galois group Z/nZ for every

v ∈ v(ΓX•) such that the following conditions are satisfied:

• γ(α̃v ,Dα̃v )
satisfies the conditions mentioned in the statement of Theorem 3.9.

• The ramification divisor D ∈ (Z/nZ)∼[DX ]
0 associated to f • is such that s(D) =

nX − 1 (2.2.5).

• {f̃ •
v }v∈v(ΓX• ) can be glued together. This means that Dα̃v , v ∈ v(ΓX•), is com-

pletely determined by D such that the following gluing condition holds (e.g. see
Example 5.2 Goal below):

Let x be a node of X contained in the intersection Xv1∩Xv2 of irreducible
components Xv1 and Xv2 . Then we have

ordx(Dα̃v1
) + ordx(Dα̃v2

) = 0 mod n.
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Thus, by the definition of admissible coverings (Definition 2.3), we obtain a prime-
to-p cyclic Galois multi-admissible covering f • : Y • → X• with Galois group Z/nZ.

If X• is not irreducible, the constructions of desired Galois multi-admissible coverings of
X• are very difficult in general.

The main difficulty. We cannot determine the ramifications over nodes of a Galois admis-
sible covering in a unique way when the ramifications over DX are fixed. Then we have
the following:

(i) Let f • be a Galois admissible covering whose ramification divisor satisfies the third
condition mentioned above. Since the Raynaud-Tamagawa theta divisor concerning Dα̃v ,
v ∈ v(ΓX•), does not exist in general, γ(α̃v ,Dα̃v )

does not satisfy the first condition men-
tioned above.

(ii) Even though we can construct f̃ •
v for every v ∈ v(ΓX•) (by applying Proposition

5.1) such that γ(α̃v ,Dα̃v )
satisfies the conditions mentioned in the statement of Theorem

3.9, {f̃ •
v }v∈v(ΓX• ) cannot be glued together (as admissible coverings) in general.

To overcome this difficulty, we observe that, when ΓX• is a minimal quasi-tree (Defi-
nition 4.8), the ramifications over nodes of a Galois admissible covering can be uniquely
determined if the ramifications over DX are fixed. Then for every v ∈ v(ΓX•), we may

construct certain effective divisors on X̃v for every marked point of DX ∩ X̃v and ev-

ery node of Xsing ∩ X̃v. Furthermore, by similar arguments to the arguments given in

the proof of Proposition 5.1, we may construct an effective divisor on X̃v such that the
Raynaud-Tamagawa theta divisor concerning this effective divisor exists. Then we can
obtain Galois multi-admissible coverings for all v ∈ v(ΓX•) whose first generalized Hasse-
Witt invariants attain maximum. On the other hand, since the ramifications over nodes
of a Galois admissible covering can be uniquely determined by the ramifications of marked
points when ΓX• is a minimal quasi-tree, then we also obtain an effective divisor on X

whose restriction on X̃v, v ∈ v(ΓX•), is the effective divisor constructed above. Then we
may construct a desired Galois multi-admissible covering f • (e.g. see Example 5.2 below).

In the general case (i.e., ΓX• is not a tree), we take a minimal quasi-tree Γ
def
= ΓDX

associated to DX (Definition 4.8) and the pointed stable curve X•
Γ (4.4.7) associated

to Γ. Then we may construct a desired Galois multi-admissible covering for X•
Γ (see

Lemma 5.3). In fact, this is the motivation of the definition of minimal quasi-trees.
Moreover, Raynaud’s theorem (i.e., [R1, Théorème 4.1.1] or Theorem 2.11) implies that we
may construct a Galois (étale) multi-admissible covering for each irreducible component
corresponding to w ∈ v(ΓX•) \ v(Γ) whose first generalized Hasse-Witt invariant (2.2.4)
attains maximum. Then by gluing the Galois multi-admissible coverings together, we
obtain a desired Galois multi-admissible covering of X•.

5.2. A key lemma.

5.2.1. Settings. We maintain the notation introduced in 2.1.2.

5.2.2. In order to convince the reader to follow the constructions given in the proof of
Lemma 5.3 below, we give an example for constructing effective divisorsDα̃v ∈ (Z/nZ)∼[DX̃v

]0,

v ∈ v(ΓX•), andD ∈ (Z/nZ)∼[DX ]
0 such that {Dα̃v}v∈v(ΓX• ) satisfies the gluing condition.
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Example 5.2. Let X• be a pointed stable curve of type (gX , 3) over k. Suppose that

X has two non-singular irreducible components X1 and X2, that X1 ∩ X2
def
= {x−},

that DX ∩ X1
def
= {x1,1, x1,2}, and that DX ∩ X2

def
= {x2,1}. Let n0

def
= pt0 − 1 >> 0,

DX1

def
= {x1,1, x1,2, x

−}, DX2

def
= {x2,1, x

−}, X•
1 = (X1, DX1) a pointed stable curve of

type (gX1 , 3), and X•
2 = (X2, DX2) a pointed stable curve of type (gX2 , 2). Note that

gX = gX1 + gX2 . Then we have the following:

X2

X1x2,1

x−
x1,2

x1,1

X•:

Goal: We will construct effective divisors D1 ∈ (Z/nZ)∼[DX1 ]
0, D2 ∈ (Z/nZ)∼[DX2 ]

0,
and D3 ∈ (Z/nZ)∼[DX ]

0 on X1, X2, and X, respectively, for some n = pt − 1 such that
the Raynaud-Tamagawa theta divisors associated to D1 and D2 exist, and that D|x1,1 =
D1|x1,1 , D|x1,2 = D1|x1,2 , D|x2,1 = D2|x2,1 , and the gluing condition (as an admissible
covering) D1|x− +D2|x− = 0 mod n hold.

Step 1: We construct effective divisors of degree 2n0 (resp. n0) on X1 (resp. X2) such
that the Raynaud-Tamagawa theta divisors concerning the divisors exist.

We put

Q1,1
def
= a1x1,1 + a2x1,2 + n0x

− ∈ Div(X1),

Q1,2
def
= n0x2,1 ∈ Div(X2),

Q1
def
= a1x1,1 + a2x1,2 + n0x2,1 ∈ Div(X),

where 0 < a1, a2 < n0 are such that a1 + a2 = n0. Moreover, we put

Q2,1
def
= n0x1,1 + b1x1,2 + b2x

− ∈ Div(X1),

Q2,2
def
= b1x

− + b2x2,1 ∈ Div(X2),

Q2
def
= n0x1,1 + b1x1,2 + b2x2,1 ∈ Div(X),

where 0 < b1, b2 < n0 are such that b1 + b2 = n0.
Since n0 >> 0, by applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 2.13],

the Raynaud-Tamagawa theta divisors concerning Q1, Q2, Q1,1, Q1,2, Q2,1, Q2,2 exist,
respectively.

Note that since ΓX• is a tree, Q1,1 and Q1,2 (resp. Q2,1 and Q2,2) can be completely
determined by Q1 (resp. Q2). On the other hand, at present, we cannot construct Galois
multi-admissible coverings whose ramification divisors are the above divisors since the
degrees of Q1, Q1,1, Q1,2 (resp. Q2, Q2,1, Q2,2) are not multiples of n (i.e., they are not
contained in (Z/nZ)∼[DX1 ]

0 (resp. (Z/nZ)∼[DX2 ]
0)).
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Step 2: By using the effective divisors constructed in Step 1, we construct a global
effective divisor D ∈ (Z/nZ)∼[DX ]

0 on X and Di ∈ (Z/nZ)∼[DXi
]0, i ∈ {1, 2}, on Xi

such that Di is completely determined by D.

Write v1 and v2 for the vertices of v(ΓX•) corresponding to X1 and X2, respectively.
We define the following sets of effective divisors

Divirr-mp
vi

def
= {Q1,i}, Divirr-ndvi

def
= {Q2,i},

RTirr
X

def
=

⊔
i=1,2

(Divirr-mp
vi

⊔Divirr-ndvi
), RTX

def
= {Q1, Q2},

where ⊔ means disjoint union, and “RT” means “Raynaud-Tamagawa” since we use the
divisors to construct certain divisorsD1, D2, andD whose associated Raynaud-Tamagawa

divisors exist (see Step 3 below), respectively. Let n
def
= pt

0 − 1 + pt0(pt0 − 1) = p2t0 − 1.
We put

D1
def
= Q1,1 + pt0Q2,1 ∈ (Z/nZ)∼[DX1 ]

0,

D2
def
= Q1,2 + pt0Q2,2 ∈ (Z/nZ)∼[DX2 ]

0,

D
def
= Q1 + pt0Q2 ∈ (Z/nZ)∼[DX ]

0.

Then we have

D|{x1,1,x1,2} = D1|{x1,1,x1,2}, D|{x2,1} = D2|{x2,1}.

Note that, it is easy to check that D1, D2, and D are Frobenius stable.

Step 3: We construct a desired Galois multi-admissible covering of X•.

By applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 2.13], the Raynaud-
Tamagawa theta divisors concerning D1 and D2 exist. By Proposition 2.10, if t0 >> 0,
then there exists αvi ∈ RevadmDi

(X•
i ) \ {0}, i ∈ {1, 2}, such that γ(αv1 ,D1) = gX1 + 1 and

γ(αv1 ,D1) = gX2 . Moreover, since ΓX• is a tree, ordx−(D1) and ordx−(D2) can be completely
determined by D. Namely, we have

D1|x− = [
∑

x∈DX\{x1,1,x1,2}

ordx(D)]x− = ordx2,1(D)x− = (n0 + pt0b2)x
−,

D2|x− = ordx−(D2)x
− = [

∑
x∈DX\{x2,1}

ordx(D)]x− = (n− ordx2,1(D2))x
− = (n− n0 − pt0b2)x

−,

where [(−)] denotes the image of (−) in Z/nZ. Namely, the Galois multi-admissible
coverings induced by αv1 and αv2 can be glued (as admissible coverings) since ordx−(D1)+
ordx−(D2) = 0 mod n. Then we obtain a desired Galois multi-admissible covering of X•.

5.2.3. Let G be a connected semi-graph and v ∈ v(G) an arbitrary vertex. Moreover,
we suppose that G is a tree. For each v′ ∈ v(G), there exists a path δv,v′ connecting v and
v′ in G. We shall call a path δ(G, v, v′) minimal if we have δv,v′ = δ(G, v, v′) for every
path δv,v′ ⊆ δ(G, v, v′) connecting v and v′. Moreover, since G is a tree, δ(G, v, v′) is the
unique minimal path connecting v and v′. On the other hand, we put

leng(δ(G, v, v′))
def
= #{δ(G, v, v′) ∩ v(G)} − 1



MAXIMUM GENERALIZED HASSE-WITT INVARIANTS 61

the length of the minimal path δ(G, v, v′).

5.2.4. Now, we are going to prove the key lemma of the present section.

Lemma 5.3. Let Γ
def
= ΓDX

be a minimal quasi-tree associated to DX , X
•
Γ = (XΓ, DXΓ

)
the pointed stable curve of type (gXΓ

, nXΓ
) associated to Γ (4.4.5), and ΠX•

Γ
the admissible

fundamental group of X•
Γ. Suppose that nX ≥ 2. Then there exist a positive natural

number n
def
= pt − 1 ∈ N, an effective divisor DΓ ∈ (Z/nZ)∼[DX ]

0 ⊆ (Z/nZ)∼[DXΓ
]0 on

XΓ, and an element αΓ ∈ RevadmDΓ
(X•

Γ) \ {0} such that the following holds:

γ(αΓ,DΓ) = gXΓ
+ nX − 2.

Proof. Since Γ is a minimal quasi-tree associated to DX , we obtain that Γ′ def
= Γ \ elp(Γ) is

a tree. Then we have v(Γ) = v(Γ′). Note that DX ⊆ DXΓ
. Let v ∈ v(Γ) be an arbitrary

vertex and n0 = pt0 − 1 ∈ N a positive natural number satisfying (see 2.4.5 for C(gX))

n0 > max{C(gX) + 1,#(e(ΓX•))}.

Outline of the proof: Before we start to prove the lemma, we give a brief outline of
the proof. The proof is divided into three steps. In Step 1, we construct certain effective
divisors associated to marked points and nodes on irreducible components of X. In Step
2, by using the effective divisors constructed in Step 1, we construct certain effective
divisors on irreducible components of X and an effective divisor on X. In Step 3, we
prove the existence of the Raynaud-Tamagawa theta divisors associated to the effective
divisors on irreducible components constructed in Step 2. Moreover, we prove that the
effective divisors satisfy “gluing conditions” (as admissible coverings). Then we obtain a
desired Galois multi-admissible covering of X•.

Step 1 (mp): Let v ∈ v(Γ). We construct a family of effective divisors Divirr-mp
v on the

irreducible component X•
v associated to the set of marked points DX ∩Xv, and construct

a family of effective divisors Divmp
v on XΓ, where “mp” means “marked point”.

We put

D′
v

def
= DX ∩Xv, mv

def
= #(D′

v), and D′
v

def
= {xv,1, . . . , xv,mv} if mv ̸= 0.

Note that D′
v ̸= DXΓ

∩Xv in general. Moreover, we put

Dv
def
= D′

v ∪ (Xv ∩ (XΓ \Xv)),

where XΓ \Xv denotes the topological closure of XΓ \Xv in XΓ. Note that since nX > 0,
we have #(Dv) > 0. Let w ∈ v(Γ) \ {v} be an arbitrary vertex distinct from v. Since Γ′

is a tree, there exists a unique node

x−
v,w ∈ Dw ⊆ Xw

such that the closed edge of Γ′ corresponding to x−
v,w is contained in the minimal path

δ(Γ′, v, w) (i.e., the minimal path connecting v and w in Γ′ defined in 5.2.3). On the other
hand, we define a set of nodes to be

Node+v,w
def
= {Xw ∩Xw′ , w′ ∈ v(Γ) | leng(δ(Γ′, v, w′)) = leng(δ(Γ′, v, w)) + 1}.
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Note that Node+v,w may possibly be an empty set, and that Dw = {x−
v,w} ∪Node+v,w ∪D′

w.
We define two sets of effective divisors

Divirr-mp
v , Divmp

v

associated to v on Xv and XΓ, as follows. Let i ∈ {1, . . . ,mv−1} and 0 < av,i,1, av,i,2 < n0

such that av,i,1 + av,i,2 = n0. Suppose that mv ≤ 1. Then we put

Divirr-mp
v

def
= ∅, Divmp

v
def
= ∅.

Suppose that mv ≥ 2. We define an effective divisor

Qv,v,i
def
= av,i,1xv,i + av,i,2xv,i+1 +

∑
x′∈D′

v\{xv,i,xv,i+1}

n0x
′ +

∑
x∈Dv\D′

v

n0x, i ∈ {1, . . . ,mv − 1},

on Xv whose support is Dv, and whose degree is equal to (#(Dv) − 1)n0. We define an
effective divisor

Qv,w,i
def
=

∑
x∈Dw\{x−

v,w}

n0x, w ∈ v(Γ) \ {v},

on Xw whose support is Dw \ {x−
v,w}, and whose degree is equal to (#(Dw)− 1)n0.

Moreover, we define

Qv
i

def
= av,i,1xv,i + av,i,2xv,i+1 +

∑
x∈DX\{xv,i,xv,i+1}

n0x,

to be an effective divisor on XΓ whose support is DX , and whose degree is (nX − 1)n0.
Note that Qv

i |D′
u
= Qv,u,i|D′

u
for all u ∈ v(Γ), and that Qv,w,i = Qv,w,i′ for all i, i′ ∈

{1, . . . ,mv − 1}.
We put

Divirr-mp
v,i

def
=

⊔
u∈v(Γ)

{Qv,u,i}, Divirr-mp
v

def
=

mv−1⊔
i=1

Divirr-mp
v,i , Divmp

v
def
=

mv−1⊔
i=1

{Qv
i },

where ⊔ means disjoint union.

Step 1 (nd): Let v ∈ v(Γ). We construct a family of effective divisors Divirr-ndv on the

irreducible component X•
v associated to the set of nodes Dv \D′

v = Xv ∩ (XΓ \Xv), and
construct a family of effective divisors Divndv on XΓ, where “nd” means “node”.

We define two families of effective divisors

Divirr-ndv , Divndv

associated to v on Xv and XΓ, respectively, as follows. Let z ∈ DX \ D′
v and 0 <

bv,z,1, bv,z,2 < n0 such that bv,z,1 + bv,z,2 = n0. Suppose that mv = 0. Then we put

Divirr-ndv
def
= ∅, Divndv

def
= ∅.

Suppose that mv ̸= 0. Let wz be the vertex such that the irreducible component Xwz

corresponding to wz contains z (i.e., z ∈ D′
wz

def
= DX ∩Xwz). Note that wz ̸= v. Moreover,

let δ(Γ′, v, wz) be the minimal path connecting v and wz in Γ′ and w ∈ v(Γ) an arbitrary
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vertex distinct from wz such that w ⊆ δ(Γ′, v, wz). Since Γ
′ is a tree, we have #(Node+v,w∩

δ(Γ′, v, wz)) = 1. Then we put

x+
v,w,wz

def
= Node+v,w ∩ δ(Γ′, v, wz) ∈ Dw ⊆ Xw.

For v and wz, we define

Qv,v,z
def
= bv,z,1xv,mv + bv,z,2x

+
v,v,wz

+
∑

x∈Dv\{xv,mv ,x
+
v,v,wz}

n0x,

Qv,wz ,z
def
= bv,z,1x

−
v,wz

+ bv,z,2z +
∑

x∈Dwz\{xv,wz ,z}

n0x

to be effective divisors on Xv and Xwz whose supports are Dv and Dwz , and whose degrees
are equal to (#(Dv)− 1)n0 and (#(Dwz)− 1)n0, respectively.
Let w ∈ v(Γ) \ {v, wz} be an arbitrary vertex such that w ⊆ δ(Γ′, v, wz). Then we

define

Qv,w,z
def
= bv,z,1x

−
v,w + bv,z,2x

+
v,w,wz

+
∑

x∈Dw\{x−
v,w,x+

v,w,wz}

n0x

to be an effective divisor on Xw whose support is Dw, and whose degree is equal to
(#(Dw)− 1)n0.
Let w′ ∈ v(Γ) be an arbitrary vertex such that w′ ̸⊆ δ(Γ′, v, wz). Then we define

Qv,w′,z
def
=

∑
x∈Dw′\{x−

v,w′}

n0x

to be an effective divisor on Xw′ whose support is Dw′ \{x−
v,w′}, and whose degree is equal

to (#(Dw′) − 1)n0. Note that, if w′′ ̸⊆ δ(Γ′, v, wz) ∪ δ(Γ′, v, wz′) for z, z
′ ∈ DX \ D′

v, we
have Qv,w′′,z = Qv,w′′,z′ .

Moreover, we define

Qv
z

def
= bv,z,1xv,mv + bv,z,2z +

∑
x∈DX\{xv,mv ,z}

n0x

to be an effective divisor on XΓ whose support is DX , and whose degree is equal to
(nX − 1)n0. Note that Qv

z|D′
u
= Qv,u,z|D′

u
for all u ∈ v(Γ).

We put

Divirr-ndv,z
def
=

⊔
u∈v(Γ)

{Qv,u,z}, Divirr-ndv
def
=

⊔
z∈DX\D′

v

Divirr-ndv,z , Divndv
def
=

⊔
z∈DX\D′

v

{Qv
z}.

Step 2: We construct an effective divisor Pu ∈ (Z/nZ)∼[Du]
0, v ∈ v(Γ), on Xu and an

effective divisor PΓ ∈ (Z/nZ)∼[DXΓ
]0 on XΓ for some n.

We put

RTirr
X

def
=

⊔
v∈v(Γ)

(Divirr-mp
v ⊔Divirr-ndv ),

RTX
def
=

⊔
v∈v(Γ)

(Divmp
v ⊔Divndv ).
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We denote by RTirr
X (Xu) ⊆ RTirr

X , u ∈ v(Γ), the subset whose elements are effective divisors

on Xu. Note that the above constructions imply d
def
= #(RTirr

X (Xu1)) = #(RTirr
X (Xu2)) =

#(RTX) for all u1, u2 ∈ v(Γ). Moreover, let

ou : {1, . . . , d} ∼→ RTirr
X (Xu)

def
= {Pu,1

def
= ou(1), . . . , Pu,d

def
= ou(d)}, u ∈ v(Γ),

be a bijection (as sets) such that, for all u1, u2 ∈ v(Γ) and all j ∈ {1, . . . , d}, the following
conditions are satisfied:

• if Pu1,j ∈ Divirr-mp
v,i for some v ∈ v(Γ) and some i ∈ {1, . . . ,mv − 1}, then Pu2,j ∈

Divirr-mp
v,i .

• If Pu1,j ∈ Divirr-ndv,z for some v ∈ v(Γ) and some z ∈ DX \D′
v, then Pu2,j ∈ Divirr-ndv,z .

Then, by the construction of RTX , we obtain a bijection

o : {1, . . . , d} ∼→ RTX
def
= {P1

def
= o(1), . . . , Pd

def
= o(d)}

induced by ou, u ∈ v(Γ).

Let t
def
= dt0 and n

def
=

∑d
j=1 p

(j−1)t0(pt0 − 1) = pt − 1. We define

Pu
def
=

d∑
j=1

p(j−1)t0Pu,j ∈ (Z/nZ)∼[Du]
0, u ∈ v(Γ),

PΓ
def
=

d∑
j=1

p(j−1)t0Pj ∈ (Z/nZ)∼[DX ]
0

to be effective divisors of degrees deg(Pu) = (#(Du) − 1)n and deg(PΓ) = (nX − 1)n on
Xu and XΓ, respectively. We see that the support of Pu, u ∈ v(Γ), is Du, and that the
support of PΓ is DX .

Let u ∈ v(Γ) and x′ ∈ D′
u. Then the above constructions imply PΓ|x′ = Pu|x′ . Moreover,

let x ∈ Du \D′
u. Since Γ \ {elp(Γ)} is a tree, XΓ \ {x} has two connected components C1,

C2. Let C2 be the connected component such that Xu \ {x} is not contained in C2. We

denote by Cx
def
= {C2} the topological closure of C2 in XΓ and Mx

def
= Cx ∩DX . Then the

above constructions imply

Pu|x = ordx(Pu)x = [
∑

x′∈Mx

ordx′(PΓ)]x,

where [(−)] denotes the image of (−) in Z/nZ.

Step 3: We construct a desired Galois multi-admissible covering of X•.

Let u ∈ v(Γ) and X̃•
u the smooth pointed stable curve of type (gu, nu) over k (2.1.3).

Write normu : X̃u → Xu for the normalization morphism. Then we obtain the pulling back

divisor norm∗
u(Pu) on X̃u. Note that since Supp(Pu) is contained in the smooth locus of

Xu, we have norm
∗
u(Pu) = Pu. Let LPu be a line bundle on X̃u such that L⊗n

Pu

∼= OX̃u
(−Pu),

and LPu,t the pulling back of LPu by the natural morphism X̃u,t → X̃ defined in 2.4.2.
Then by applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 2.13], we see that
the Raynaud-Tamagawa theta divisor associated to Bt

Pu
⊗ LPu,t exists (Definition 2.9).
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Moreover, Proposition 2.10 implies that there exists α̃u ∈ RevadmPu
(X̃•

u) such that

γ(α̃u,Pu) = gu +#(Du)− 2.

Then Theorem 3.9 implies that the element αu ∈ RevadmPu
(X•

u) induced by α̃u has the
following property:

γ(αu,Pu) = gXu +#(Du)− 2,

where gXu denotes the genus of Xu. Write

f •
u : Y •

u → X•
u

for the Galois multi-admissible covering over k with Galois group Z/nZ induced by αu.

Let u′ ∈ v(Γ) \ {u} such that Xu ∩Xu′ ̸= ∅. We denote by xu,u′
def
= Xu ∩Xu′ the unique

node. Then the above constructions imply

0 < ordxu,u′
(Pu), ordxu,u′

(Pu′) < n, ordxu,u′
(Pu) + ordxu,u′

(Pu′) = n.

This means that we may glue (as admissible coverings) {Y •
u }u∈v(Γ) along {f−1

u (Du \
D′

u)}u∈v(Γ) in a way that is compatible with the gluing of {X•
u}u∈v(Γ) that gives rise to

X•
Γ. Then we obtain a Galois multi-admissible covering

f •
Γ : Y •

Γ → X•
Γ

over k with Galois group Z/nZ. Note that the construction of f •
Γ implies that fΓ is étale

over DXΓ
\DX .

Let ΠX•
u
, u ∈ v(Γ), be the admissible fundamental group of X•

u. We denote by αΓ ∈
Hom(Πab

X•
Γ
,Z/nZ) an element induced by f •

Γ such that the composition of the natural

homomorphisms Πab
X•

u
→ Πab

X•
Γ

αΓ→ Z/nZ is equal to αu for all u ∈ v(Γ). We put DΓ
def
= PΓ.

Then we see αΓ ∈ RevadmDΓ
(X•

Γ) \ {0}. Theorem 3.9 implies

γ(αΓ,DΓ) = gXΓ
+ s(PΓ)− 1 = gXΓ

+ nX − 2.

We complete the proof of the lemma. □

5.3. The second main theorem. Now, we prove the second main result of the present
paper.

Theorem 5.4. Let X• be an arbitrary pointed stable curve of type (gX , nX) over an
algebraically closed field k of characteristic p > 0. Then there exist a positive natural

number n
def
= pt − 1 ∈ N, an effective divisor D ∈ (Z/nZ)∼[DX ]

0 (2.2.5) on X of degree
(nX − 1)n if nX ̸= 0 (resp. degree 0 if nX = 0), and an element α ∈ RevadmD (X•) \ {0}
(Definition 2.4 (i)) such that γ(α,D) attains maximum (Definition 3.10 (ii)). Namely, the
following holds (see Definition 3.10 (i) for γmax

X• ):

γ(α,D) = γmax
X• =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX ̸= 0.

Proof. Suppose that nX ≤ 1. Then the theorem follows from Proposition 3.11 (ii). To
verify the theorem, we may assume nX ≥ 2.

Let Γ
def
= ΓDX

be a minimal quasi-tree associated to DX , Γ
im the image of the natural

morphism ϕΓ : Γ → ΓX• , X•
Γ = (XΓ, DXΓ

), X•
Γim = (XΓim , DX

Γim
) the pointed stable

curves over k of types (gXΓ
, nXΓ

), (gX
Γim

, nX
Γim

) associated to Γ, Γim, respectively (see
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4.4.5, 4.4.7 for the definitions of Γim, ϕΓ, X
•
Γ, and X•

Γim), and ΠX•
Γ
, ΠX•

Γim
the admissible

fundamental groups of X•
Γ, X

•
Γim , respectively.

Lemma 5.3 implies that there exist a natural number

n
def
= pt − 1 > max{C(gX) + 1,#(e(ΓX•))},

an effective divisor D
def
= DΓ ∈ (Z/nZ)∼[DX ]

0 ⊆ (Z/nZ)∼[DXΓ
]0 on XΓ of degree (nX −

1)n, and an element αΓ ∈ RevadmD (X•
Γ) \ {0} such that the following holds:

γ(αΓ,D) = gXΓ
+ nX − 2.

We denote by f •
Γ : Z•

Γ → X•
Γ the Galois multi-admissible covering over k with Galois

group Z/nZ induced by αΓ. Note that fΓ is étale over DXΓ
\DX . By gluing Z•

Γ along

f−1
Γ (DXΓ

\ (DX ∪ {xe}e∈ϕ−1
Γ (eop(Γim))))

in a way that is compatible with the gluing of X•
Γ that gives rise to X•

Γim , we obtain a
pointed stable curve Z•

Γim over k. Moreover, f •
Γ induces a Galois multi-admissible covering

f •
Γim : Z•

Γim → X•
Γim

over k with Galois group Z/nZ. Write αΓim for an element of Hom(Πab
X•

Γim
,Z/nZ) induced

by f •
Γim such that the composition of the natural homomorphisms Πab

X•
Γ
→ Πab

X•
Γim

α
Γim→ Z/nZ

is equal to αΓ. Note that we have Dα
Γim

= D. Then Theorem 3.9 implies

γ(α
Γim ,D) = gX

Γim
+ nX − 2.

On the other hand, we write π0(X \XΓim) for the set of connected components of the

topological closure X \XΓim of X \ XΓim in X. We define the following pointed stable
curve

E• = (E,DE
def
= E ∩XΓim), E ∈ π0(X \XΓim),

over k. Proposition 3.11 (ii) implies that there exists a Galois étale covering

f •
E : Z•

E = (ZE, DZE
)→ E•

over k with Galois group Z/nZ such that the following holds:

γ(αE ,0) =

{
gE, if gE = 0,
gX − 1, if gE ̸= 0,

where gE denotes the genus of E, and αE ∈ Revadm0 (E•) is an element induced by f •
E.

We may glue Z•
Γim and {Z•

E}E∈π0(X\X
Γim ) along

f−1
Γ (XΓim ∩ (

∪
E∈π0(X\X

Γim )

E)) and {f−1
E (XΓim ∩ E)}E∈π0(X\X

Γim )

in a way that is compatible with the gluing of {X•
Γim} ∪ {E•}E∈π0(X\X

Γim ) that gives rise

to X•, then we obtain a Galois multi-admissible covering

f • : Z• → X•

over k with Galois group Z/nZ.
Let ΠX• , ΠE• be the admissible fundamental groups of X•, E•, E ∈ π0(X \XΓim),

respectively. We write α ∈ Hom(Πab
X• ,Z/nZ) for an element induced by f • such that

the compositions of the natural homomorphisms Πab
X•

Γim
→ Πab

X•
α→ Z/nZ, Πab

E• → Πab
X•

α→
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Z/nZ, E ∈ π0(X \XΓim), are equal to αΓim and αE, respectively. We see α ∈ RevadmD (X•)\
{0}. By applying Theorem 3.9, we obtain

γ(α,D) = gX + nX − 2.

This completes the proof of the theorem. □

5.4. A stronger version when nX = 3. In the remainder of the present section, we
prove a slightly stronger version of Theorem 5.4 when nX = 3 (i.e., we prove Theorem
5.4 for a certain fixed effective divisor D ∈ (Z/nZ)∼[DX ]

0). The stronger version will be
used in the proof of reconstructions of field structures associated to inertia subgroups (cf.
Section 6.2). The main result of this subsection is Theorem 5.7.

5.4.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, we suppose
that nX = 3.

5.4.2. We generalize Lemma 5.3 to the case of certain fixed ramification divisors when

nX = 3. Let DX
def
= {x1, x2, x3}, and let Γ

def
= ΓDX

be a minimal quasi-tree associated to
DX ,

X•
Γ = (XΓ, DXΓ

)

the pointed stable curve of type (gXΓ
, nXΓ

) associated to Γ, and ΠX•
Γ
the admissible

fundamental group of X•
Γ. Let Dj ∈ Z[DX ] ⊆ Z[DXΓ

], j ∈ {1, 2, 3}, be an effective divisor
on XΓ such that the following conditions are satisfied:

• deg(Dj) = 2(ptj − 1).
• ordx(Dj) ≤ ptj − 1 for each x ∈ DX .
• #{x ∈ DX | ordx(Dj) = ptj − 1} ≥ 1.

Let n
def
= pt − 1

def
= pt1+t2+t3 − 1, and let

DΓ
def
= D1 + pt1D2 + pt1+t2D3 ∈ Z[DX ] ⊆ Z[DXΓ

]

be an effective divisor on XΓ with degree 2n. Then we have the following lemma.

Lemma 5.5. We maintain the notation introduced above. Suppose that DΓ ∈ (Z/nZ)∼[DX ]
0 ⊆

(Z/nZ)∼[DXΓ
]0 (i.e., ordx(DΓ) < n for all x ∈ DX), and that (see 2.4.5 for C(gX))

n > max{C(gX) + 1,#(e(ΓX•))}.

Then there exists an element αΓ ∈ RevadmDΓ
(X•

Γ) \ {0} such that the following holds:

γ(αΓ,DΓ) = gXΓ
+ 1.

Proof. Since Γ is a minimal quasi-tree associated to DX , we obtain that Γ′ def
= Γ \ elp(Γ)

is a tree. If DX ⊆ Xv for some v ∈ v(Γ), then the lemma follows from Proposition 5.1.
Without loss of generality, we may assume that one of the following conditions holds:

(i) Let w1, w2 ∈ v(Γ) be vertices distinct from each other such that x1,
x2 ∈ Xw1 , and x3 ∈ Xw2 (see Example 5.6 (i) below).
(ii) Let v1, v2, v3 ∈ v(Γ) be vertices distinct from each other such that
x1 ∈ Xv1 , x2 ∈ Xv2 , and x3 ∈ Xv3 (see Example 5.6 (ii) below).
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We put

D′
v

def
= DX ∩Xv, Dv

def
= D′

v ∪ (Xv ∩ (XΓ \Xv)), v ∈ v(Γ)

where XΓ \Xv denotes the topological closure of XΓ \Xv in XΓ. Next, we construct an
effective divisor Pv ∈ (Z/nZ)∼[Dv]

0 on Xv for all v ∈ v(Γ).
Suppose that (i) holds. Let yw1,w2 ∈ Dw1 be the unique node of XΓ such that the closed

edge of Γ′ corresponding to yw1,w2 is contained in the minimal path δ(Γ′, w1, w2) (5.2.3) and
zw1,w2 ∈ Dw2 the unique node of XΓ such that the closed edge of Γ′ corresponding to zw1,w2

is contained in the minimal path δ(Γ′, w1, w2). On the other hand, let w ∈ v(Γ)\{w1, w2}
be an arbitrary vertex (possibly empty). Note that nX = 3 implies that w is contained
in δ(Γ′, w1, w2). Since Γ′ is a tree, there exist a unique node xw1,w ∈ Dw and a unique
node xw2,w ∈ Dw such that the closed edges of Γ′ corresponding to xw1,w and xw2,w are
contained in δ(Γ′, w1, w) and δ(Γ′, w2, w), respectively.
Let j ∈ {1, 2, 3}. We put

Qw1,j
def
= ordx1(Dj)x1 + ordx2(Dj)x2 + ordx3(Dj)yw1,w2 ,

Qw2,j
def
= [deg(Dj)− ordx1(Dj)− ordx2(Dj)]zw1,w2 + ordx3(Dj)x3,

Qw,j
def
= [deg(Dj)− ordx1(Dj)− ordx2(Dj)]xw1,w + ordx3(Dj)xw2,w, w ∈ v(Γ) \ {w1, w2},

where [(−)] denotes the image of (−) in Z/(ptj − 1)Z. Then Qv,j, v ∈ v(Γ), is an
effective divisor on Xv whose degree is equal to (#(Dv)− 1)(ptj − 1). Moreover, we put

Pv
def
= Qv,1 + pt1Qv,2 + pt1+t2Qv,3 ∈ (Z/nZ)∼[Dv]

0, v ∈ v(Γ).

Then Pv is an effective divisor on Xv whose degree is equal to (#(Dv)− 1)n, and whose
support is equal to Dv.
Suppose that (ii) holds. Then one of the following conditions is satisfied:

(1) There exist a, b, c ∈ {1, 2, 3} distinct from each other such that δ(Γ′, va, vb)∩
δ(Γ′, vb, vc) ∩ ecl(Γ) = ∅ (i.e., δ(Γ′, va, vc) = δ(Γ′, va, vb) ∪ δ(Γ′, vb, vc)) (see
Example 5.6 (ii)-(1) below).
(2) For all a, b, c ∈ {1, 2, 3} distinct from each other, we have that δ(Γ′, va, vb)∩
δ(Γ′, vb, vc) ∩ ecl(Γ) ̸= ∅ (see Example 5.6 (ii)-(2) below).

Suppose that (1) holds. Without loss of generality, we may assume that a = 1, b = 2,
and c = 3. Note that δ(Γ′, v1, v3) = δ(Γ′, v1, v2) ∪ δ(Γ′, v2, v3). Write yv1,v3 ∈ Dv1 for the
unique node of XΓ such that the closed edge of Γ′ corresponding to yv1,v3 is contained
in δ(Γ′, v1, v3) and zv1,v3 ∈ Dv3 for the unique node of XΓ such that the closed edge
of Γ′ corresponding to zv1,v3 is contained in δ(Γ′, v1, v3). On the other hand, let v ∈
v(Γ) \ {v1, v3} be an arbitrary vertex. Since nX = 3, we see that v ∈ δ(Γ′, v1, v3), and
that either v ∈ δ(Γ′, v1, v2) or v ∈ δ(Γ′, v2, v3) holds. Since Γ′ is a tree, there exist a
unique node xv1,v ∈ Dv and a unique node xv3,v ∈ Dv such that the closed edges of Γ′

corresponding to xv1,v and xv3,v are contained in δ(Γ′, v1, v) and δ(Γ′, v, v3), respectively.
Let j ∈ {1, 2, 3}. We put

Qv1,j
def
= ordx1(Dj)x1 + [deg(Dj)− ordx2(Dj)− ordx3(Dj)]yv1,v3 ,

Qv2,j
def
= ordx1(Dj)xv1,v2 + ordx2(Dj)x2 + ordx3(Dj)xv3,v2 ,

Qv3,j
def
= [deg(Dj)− ordx1(Dj)− ordx2(Dj)]zv1,v3 + ordx3(Dj)x3.
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Morever, we put

Qv,j
def
= ordx1(Dj)xv1,v + [deg(Dj)− ordx2(Dj)− ordx3(Dj)]xv3,v

for all v ∈ (v(Γ) ∩ δ(Γ′, v1, v2)) \ {v1, v2}, and

Qv,j
def
= [deg(Dj)− ordx1(Dj)− ordx2(Dj)]xv1,v + ordx3(Dj)xv3,v

for all v ∈ (v(Γ) ∩ δ(Γ′, v2, v3)) \ {v2, v3}. Then Qv,j, v ∈ v(Γ), is an effective divisor on
Xv whose degree is equal to (#(Dv)− 1)(ptj − 1). Moreover, we put

Pv
def
= Qv,1 + pt1Qv,2 + pt1+t2Qv,3 ∈ (Z/nZ)∼[Dv]

0, v ∈ v(Γ).

Then Pv is an effective divisor on Xv whose degree is equal to (#(Dv)− 1)n, and whose
support is equal to Dv.
Suppose that (2) holds. Then we have

{v0} = v(Γ) ∩ δ(Γ′, v1, v2) ∩ δ(Γ′, v2, v3) ∩ δ(Γ′, v3, v1).

Let v ∈ v(Γ). Since nX = 3, we obtain that either v ∈ δ(Γ′, v1, v0) or v ∈ δ(Γ′, v2, v0) or
v ∈ δ(Γ′, v3, v0) holds. Let yvi,v0 ∈ Dvi , i ∈ {1, 2, 3}, be the unique node of XΓ such that
the closed edge of Γ′ corresponding to yvi,v0 is contained in δ(Γ′, vi, v0) and zvi,v0 ∈ Dv0 ,
i ∈ {1, 2, 3}, be the unique node of XΓ such that the closed edge of Γ′ corresponding
to zvi,v0 is contained in δ(Γ′, vi, v0). Moreover, let v ∈ (v(Γ) ∩ δ(Γ′, vi, v0)) \ {vi, v0},
i ∈ {1, 2, 3}. Since Γ′ is a tree, there exist a unique node xvi,v ∈ Dv and a unique node
xv0,v ∈ Dv such that the closed edges of Γ′ corresponding to xvi,v and xv0,v are contained
in δ(Γ′, vi, v) and δ(Γ′, v0, v), respectively.
Let j ∈ {1, 2, 3}. We put

Qv1,j
def
= ordx1(Dj)x1 + [deg(Dj)− ordx2(Dj)− ordx3(Dj)]yv1,v0 ,

Qv2,j
def
= ordx2(Dj)x2 + [deg(Dj)− ordx1(Dj)− ordx3(Dj)]yv2,v0 ,

Qv3,j
def
= ordx3(Dj)x3 + [deg(Dj)− ordx1(Dj)− ordx2(Dj)]yv3,v0 ,

Qv0,j
def
= ordx1(Dj)zv1,v0 + ordx2(Dj)zv2,v0 + ordx3(Dj)zv3,v0 .

Moreover, we put

Qv,j
def
= ordx1(Dj)xv1,v + [deg(Dj)− ordx2(Dj)− ordx3(Dj)]xv0,v

for all v ∈ (v(Γ) ∩ δ(Γ′, v1, v0)) \ {v1, v0},

Qv,j
def
= ordx2(Dj)xv2,v + [deg(Dj)− ordx1(Dj)− ordx3(Dj)]xv0,v

for all v ∈ (v(Γ) ∩ δ(Γ′, v2, v0)) \ {v2, v0}, and

Qv,j
def
= ordx3(Dj)xv3,v + [deg(Dj)− ordx1(Dj)− ordx2(Dj)]xv0,v

for all v ∈ (v(Γ) ∩ δ(Γ′, v3, v0)) \ {v3, v0}. Then Qv,j, v ∈ v(Γ), is an effective divisor on
Xv whose degree is equal to (#(Dv)− 1)(ptj − 1). Moreover, we put

Pv
def
= Qv,1 + pt1Qv,2 + pt1+t2Qv,3 ∈ (Z/nZ)∼[Dv]

0, v ∈ v(Γ).

Then Pv is an effective divisor on Xv whose degree is equal to (#(Dv)− 1)n, and whose
support is equal to Dv.

Let v ∈ v(Γ), and let X̃•
v be the smooth pointed stable curve of type (gv, nv) over k

associated to v (2.1.3). Since DX is contained in the smooth locus of Xv, Pv can be also
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regarded as an effective divisor on X̃v. By applying similar arguments to the arguments

given in the proof of Proposition 5.1, there exists α̃v ∈ RevadmPv
(X̃•

v ) such that

γ(α̃v ,Pv) = gv +#(Dv)− 2.

Then Theorem 3.9 implies that the element αv ∈ RevadmPv
(X•

v ) induced by α̃v such that
the following holds:

γ(αv ,Pv) = gXv +#(Dv)− 2,

where gXv denotes the genus of Xv. Write f •
v : Y •

v → X•
v for the Galois multi-admissible

covering over k with Galois group Z/nZ induced by αv.
By applying similar arguments to the arguments given in Step 3 of the proof of Lemma

5.3, we may glue {Y •
v }v∈v(Γ) along {f−1

v (Dv \D′
v)}v∈v(Γ) (as admissible coverings) in a way

that is compatible with the gluing of {X•
v}v∈v(Γ) that gives rise to X•

Γ. Then we obtain a
Galois multi-admissible covering

f •
Γ : Y •

Γ → X•
Γ

over k with Galois group Z/nZ. Note that the construction of f •
Γ implies that fΓ is étale

over DXΓ
\DX . Moreover, there exists an element αΓ ∈ RevadmDΓ

(X•
Γ) \ {0} induced by f •

Γ

such that the following holds:

γ(αΓ,DΓ) = gXΓ
+ 1.

We complete the proof of the lemma. □

Example 5.6. We give some examples to explain the conditions considered in the proof of
Lemma 5.5. We maintain the notation introduced in the proof of Lemma 5.5. Moreover,
we suppose that ΓX• = Γ = Γ′ is a tree.

(i) Suppose that v(Γ) = {w1, w2}. Then we have

w1 w2

ex1

ex2

ex3

Γ:

(ii)-(1) Suppose that v(Γ) = {v1, v2, v3}. Then we have

v1 v2 v3

ex1 ex2 ex3

Γ:

(ii)-(2) Suppose that v(Γ) = {v0, v1, v2, v3}. Then we have
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v1 v0

v3

v2

ex1 ex2

ex3

Γ:

5.4.3. We generalize Theorem 5.4 to the case of certain fixed ramification divisors as
follows:

Theorem 5.7. Let X• be an arbitrary pointed stable curve of type (gX , 3) over an alge-

braically closed field k of characteristic p > 0. Let DX
def
= {x1, x2, x3}, and let Dj ∈ Z[DX ],

j ∈ {1, 2, 3}, be an effective divisor on X such that the following conditions are satisfied:

• deg(Dj) = 2(ptj − 1).
• ordx(Dj) ≤ ptj − 1 for each x ∈ DX .
• #{x ∈ DX | ordx(Dj) = ptj − 1} ≥ 1.

Let n = pt−1
def
= pt1+t2+t3−1, and let D

def
= D1+pt1D2+pt1+t2D3 ∈ Z[DX ] be an effective

divisor on X with degree 2n. Moreover, suppose that D ∈ (Z/nZ)∼[DX ]
0 (2.2.5), and

that
n > max{C(gX) + 1,#(e(ΓX•))}.

Then there exists an element α ∈ RevadmD (X•) \ {0} (Definition 2.4 (i)) such that the
following holds:

γ(α,D) = gX + 1.

Proof. By applying Lemma 5.5 and similar arguments to the arguments given in the proof
of Theorem 5.4, we obtain the theorem. □

6. Applications to anabelian geometry

In this section, we give some applications of results obtained in previous sections. The
main results of the present section are Theorem 6.3 and Theorem 6.4.

6.1. An anabelian formula for topological types. In this subsection, by using The-
orem 5.4, we prove a group-theoretical formula for the topological type of an arbitrary
pointed stable curve over an algebraically closed field of characteristic p > 0.

6.1.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, let ΠX• be the
admissible fundamental group of X•.

6.1.2. Let ∆ be an arbitrary profinite group, and let m ∈ N be a positive natural number
and ℓ a prime number. We denote by Dℓ(∆) ⊆ ∆ the topological closure of [∆,∆]∆ℓ,
where [∆,∆] denotes the commutator subgroup of ∆, and ∆ℓ denotes the maximal pro-ℓ

quotient of ∆. Moreover, we define the closed normal subgroup D
(m)
ℓ (∆) of ∆ inductively

by D
(1)
ℓ (∆)

def
= Dℓ(∆) and D

(i+1)
ℓ (∆)

def
= Dℓ(D

(i)
ℓ (∆)), i ∈ {1, . . . ,m − 1}. Note that

#(∆/D
(m)
ℓ (∆)) ≤ ∞ when ∆ is topologically finitely generated. On the other hand, we

denote by F ℓ
r,m the finite group F̂r/D

(m)
ℓ (F̂r), where F̂r denotes the free profinite group of

rank r.
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6.1.3. Let Π be an abstract profinite group which is isomorphic to ΠX• as profinite groups.
Moreover, we denote by πA(Π) the set of finite quotients of Π. We put

b1Π
def
= max{r | there exists a prime number ℓ such that (Z/ℓZ)⊕r ∈ πA(Π)},

b2Π
def
=

{
0, F ℓ

b1Π,2
∈ πA(Π) for some prime number ℓ,

1, otherwise.

Note that biΠ, i ∈ {1, 2}, is a group-theoretical invariant associated to Π (i.e., depends
only on the isomorphism class of Π). Firstly, we have the following lemma.

Lemma 6.1. (i) We have

b1Π = 2gX + nX − 1 + b2Π,

b2Π =

{
1, if nX = 0,
0, if nX ̸= 0.

(ii) There exists a unique prime number pΠ such that (Z/pΠZ)⊕b1Π ̸∈ πA(Π). In partic-
ular, we have p = pΠ.

Proof. (i) We put rΠ
def
= dimFℓ

(Πab ⊗ Fℓ), where ℓ is an arbitrary prime number P \ {p},
and P denotes the set of prime numbers. Then the structures of maximal prime-to-p
quotients of admissible fundamental groups (2.1.6) imply that (see 2.2.2 for σX)

Πab ∼= Z⊕σX
p ×

∏
ℓ∈P\{p}

Z⊕rΠ
ℓ .

Since X• is a pointed stable curve, we have that σX < rΠ. This implies that b1Π = rΠ.
Moreover, we have

b1Π =

{
2gX , if nX = 0,
2gX + nX − 1, if nX ̸= 0.

Suppose that nX > 0. Let ℓ1 ∈ P \ {p}. The specialization theorem of maximal pro-
ℓ1 quotients of admissible fundamental groups ([V, Théorème 2.2 (c)]) implies that the
maximal pro-ℓ1 quotient Πℓ1 of Π is a free pro-ℓ1 profinite group of rank b1Π. Then we
have F ℓ1

b1Π,2
∈ πA(Π). Thus, we obtain b2Π = 0 if nX > 0.

Conversely, we assume that F ℓ2
b1Π,2
∈ πA(Π) for some prime number ℓ2. Then we have

ℓ2 ̸= p. The Schreier index formula ([S2, Chapter I §3 3.4 Corollary]) implies the following
natural exact sequence

1→ (Z/ℓ2Z)⊕(ℓ
b1Π
2 (b1Π−1)+1) → F ℓ2

b1Π,2
→ (Z/ℓ2Z)⊕b1Π → 1.

Let ϕ : Π ↠ F ℓ2
b1Π,2

be a surjection. We denote by X•
ℓ2

the pointed stable curve over k

corresponding to the kernel of the natural surjection ΠX•
∼→ Π

ϕ
↠ F ℓ2

b1Π,2
↠ (Z/ℓ2Z)⊕b1Π

and by Πℓ2 ⊆ Π the kernel of the surjection Π
ϕ
↠ F ℓ2

b1Π,2
↠ (Z/ℓ2Z)⊕b1Π . Then we have

(Z/ℓ2Z)⊕(ℓ
b1Π
2 (b1Π−1)+1) ∈ πA(Πℓ2). This implies b1Πℓ2

≥ ℓ
b1Π
2 (b1Π − 1) + 1. If nX = 0, the

Riemann-Hurwitz formula implies gXℓ2
= ℓ

b1Π
2 (gX − 1) + 1, where gXℓ2

denotes the genus
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of X•
ℓ2
. Then we have b1Πℓ2

= 2(ℓ
b1Π
2 (gX − 1) + 1) = ℓ

b1Π
2 (b1Π − 2) + 2. On the other hand,

ℓ
b1Π
2 (b1Π − 2) + 2 < ℓ

b1Π
2 (b1Π − 1) + 1. This contradicts the fact that b1Πℓ2

≥ ℓ
b1Π
2 (b1Π − 1) + 1.

Then we obtain nX > 0 if b2Π = 0. Moreover, we see

b1Π = 2gX + nX − 1 + b2Π.

(ii) This follows immediately from the structure of Πab. This completes the proof of
the lemma. □
6.1.4. Let FpΠ be an arbitrary algebraic closure of FpΠ . Let χ ∈ Hom(Π,F×

pΠ
). We denote

by Πχ ⊆ Π the kernel of χ. The profinite group Πχ admits a natural action of Π via the
conjugation action. We put

Hχ,pΠ
def
= Hom(Πχ,Z/pΠZ)⊗FpΠ

FpΠ ,

Nχ
def
= {π ∈ Hχ,pΠ | τ · π = χ(τ)π for all τ ∈ Π},

γNχ

def
= dimFpΠ

(Nχ),

where (τ · π)(x) def
= π(τ−1 · x) for all x ∈ Πχ. We define a group-theoretical invariant

associated to Π as follows:

γmax
Π

def
= max{γNχ | χ ∈ Hom(Π,F×

pΠ
) and χ ̸= 1}.

Let µm
def
= χ(Π) ⊆ F×

pΠ
be the image of χ which is the group of mth roots of unity for

somem prime to pΠ, andX•
χ = (Xχ, DXχ)→ X• the Galois multi-admissible covering over

k with Galois group µm induced by χ. Then we have a natural Π-equivariant isomorphism

H1
ét(Xχ,FpΠ)⊗FpΠ

FpΠ
∼= Hχ,pΠ .

Moreover, since the actions of Π on H1
ét(Xχ,FpΠ) ⊗FpΠ

FpΠ and Hχ,pΠ factor through
Π/Πχ

∼= µm, the isomorphism above is also µm-equivariant. Namely, γNχ is a generalized
Hasse-Witt invariant of a Z/mZ-cyclic admissible covering of X• (2.2.4). Then we have
the following result.

Lemma 6.2. We maintain the notation introduced above. Then we have γmax
Π = γmax

X•

(see Definition 3.10 (i) for γmax
Π ). In particular, we have

γmax
Π = gX + nX − 2 + b2Π.

Proof. The first part of the lemma follows from the above explanation concerning γNχ .
The “in particular” part of the lemma follows immediately from Theorem 5.4 and Lemma
6.1 (i). □
6.1.5. We have the following anabelian formula for (gX , nX).

Theorem 6.3. Let X• be an arbitrary pointed stable curve of type (gX , nX) over an
algebraically closed field k of characteristic p > 0, ΠX• the admissible fundamental group
of X•, and Π an abstract profinite group such that Π ∼= ΠX• as profinite groups. Then we
have

gX = b1Π − γmax
Π − 1,

nX = 2γmax
Π − b1Π − b2Π + 3.

In particular, gX and nX are group-theoretical invariants associated to Π.
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Proof. The theorem follows immediately from Lemma 6.1 and Lemma 6.2. □

6.1.6. We maintain the notation introduced above. Moreover, suppose that X• is smooth
over k. In the remainder of this subsection, we discuss a formula for (gX , nX) which was

essentially obtained by Tamagawa. Let n
def
= pt−1, and let Kn be the kernel of the natural

surjection Π ↠ Πab ⊗ Z/nZ. In [T2], Tamagawa introduced

Avrp(Π)
def
= lim

t→∞

dimFp(K
ab
n ⊗ Fp)

#(Πab ⊗ Z/nZ)
which is called the limit of p-averages associated to Π. Note that since p = pΠ (Lemma 6.1
(ii)), we have that Avrp(Π) is a group-theoretical invariant associated to Π. By applying
Theorem 2.11, Tamagawa proved the following result (i.e., Tamagawa’s p-average theorem,
see [T2, Theorem 0.5]):

Avrp(Π) =

{
gX − 1, if nX ≤ 1,
gX , if nX ≥ 2.

Let ℓ >> 0 be an arbitrary prime number distinct from pΠ. Write Nomℓ(Π) for the set
of normal subgroups of Π of index ℓ. Suppose that b2Π = 0 (i.e., nX ̸= 0). It is well-known
that

Avrp(Π(ℓ))− 1 = ℓ(Avrp(Π))

for every ℓ ∈ P \ {pΠ} and every Π(ℓ) ∈ Nomℓ(Π) if and only if nX = 1. We may define
a group-theoretical invariant associated to Π as follows:

cΠ
def
=


1, if b2Π = 1,
1, if b2Π = 0, Avrp(Π(ℓ))− 1 = ℓ(Avrp(Π)) for

all ℓ ∈ P \ {pΠ} and all Π(ℓ) ∈ Nomℓ(Π),
0, otherwise.

Then Tamagawa’s p-average theorem implies immediately the following formula:

gX = Avrp(Π) + cΠ, nX = b1Π − 2Avrp(Π)− 2cΠ − b2Π + 1.

In particular, gX and nX are group-theoretical invariants associated to Π when X• is
smooth over k.

Before Tamagawa proved the above result, he also obtained an étale fundamental group
version formula for (gX , nX) in a completely different way (by using wildly ramified cov-
erings) which is much simpler than the case of tame fundamental groups (see [T1, §1]).
Note that, for any smooth pointed stable curve over an algebraically closed field of positive
characteristic, since the tame fundamental group can be reconstructed group-theoretically
from the étale fundamental group ([T1, Corollary 1.10]), the tame fundamental group
version is stronger than the étale fundamental group version. On the other hand, tame
fundamental groups are much better than étale fundamental groups if we study anabelian
geometry in positive characteristic from the point of view of moduli spaces (e.g. [T3],
[Y3]).

6.1.7. The approach to finding a group-theoretical formula for (gX , nX) by applying
the limit of p-averages associated to Π explained above is difficult to generalize to the
case where X• is an arbitrary (possibly singular) pointed stable curve. The reason is
as follows. In [Y5], the author generalized Tamagawa’s p-average theorem to the case
of pointed stable curves ([Y5, Theorem 1.3 and Theorem 1.4]). The generalized formula
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concerning the limit of p-averages associated to Π is very complicated in general when
X• is not smooth over k, and Avrp(Π) depends not only on the topological type (gX , nX)
but also on the structure of dual semi-graph ΓX• .

6.2. Field structures associated to inertia subgroups of marked points. In this
subsection, we prove that the field structures associated to inertia subgroups of marked
points of arbitrary pointed stable curves can be reconstructed group-theoretically from
admissible fundamental groups and inertia subgroups of marked points, and that a sur-
jective open continuous homomorphism of admissible fundamental groups induces a field
isomorphism of the fields associated to inertia subgroups of marked points.

6.2.1. Settings. Let i ∈ {1, 2}, and let X•
i be a pointed stable curve of type (gX , nX)

over an algebraically closed field ki of characteristic p > 0, ΓX•
i
the dual semi-graph of X•

i ,

and ΠX•
i
the admissible fundamental group of X•

i . Let X̂•
i = (X̂i, DX̂i

) be the universal

admissible covering of X•
i corresponding to ΠX•

i
(2.2.6), ΓX̂•

i
the dual semi-graph of X̂•

i ,

ei ∈ eop(ΓX•
i
) an open edge, and xei the closed point of Xi corresponding to ei. Note that

we have Aut(X̂•
i /X

•
i ) = ΠX•

i
.

Let êi ∈ eop(ΓX̂•
i
) be an open edge over ei. We denote by

Iêi
∼= Ẑ(1)p′ ⊆ ΠX•

i

the stabilizer subgroup of êi.

6.2.2. Write Fp,i for the algebraic closure of Fp in ki. We put

Fêi
def
= (Iêi ⊗Z (Q/Z)p

′

i ) ⊔ {∗êi},

where {∗êi} is an one-point set, and (Q/Z)p
′

i denotes the prime-to-p part of Q/Z which
can be canonically identified with ∪

(p,m)=1

µm(ki).

Moreover, Fêi can be identified with Fp,i as sets, hence, admits a structure of field, whose

multiplicative group is Iêi⊗Z(Q/Z)p
′

i , and whose zero element is ∗êi . We have the following
important result.

Theorem 6.4. We maintain the notation introduced above. Let ϕ : ΠX•
1
↠ ΠX•

2
be an

arbitrary surjective open continuous homomorphism of admissible fundamental groups.
Suppose that ϕ(Iê1) = Iê2, and that nX = 3. Then there exists a group-theoretical algorithm
whose input data are ΠX•

i
and Iêi, and whose output datum is Fêi (as a field). Moreover,

ϕ induces a field isomorphism

ϕfd
ê1,ê2

: Fê1
∼→ Fê2 ,

where “fd” means “field”.

Proof. Let t ∈ Z>0. We denote by Fpt,êi the unique subfield of Fêi whose cardinality is
equal to pt. On the other hand, we fix a finite field Fpt of cardinality pt and an algebraic

closure Fp of Fp containing Fpt . Note that the field structure of Fpt,êi is equivalent to a
subset

Homfd(Fpt,êi ,Fpt) ⊆ Homgp(F×
pt,êi

,F×
pt),
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where “gp” means “group”, and “fd” means “field”. Then in order to prove the first part of
the theorem, it is sufficient to prove that there exists a group-theoretical algorithm whose
input data are ΠX•

i
and Iêi , and whose output datum is the subset Homfd(Fpt,êi ,Fpt) for

t in a cofinal subset of N with respect to division.

Let n
def
= pt − 1 and χi ∈ Homgp(Π

ab
X•

i
⊗ Z/nZ,F×

pt). Write Hχi
for the kernel of ΠX•

i
↠

Πab
X•

i
⊗ Z/nZ χi→ F×

pt , Mχi
for Hab

χi
⊗ Fp, and X•

Hχi
= (XHχi

, DXHχi
) for the pointed stable

curve over ki induced by Hχi
. Note that Mχi

admits a natural action of ΠX•
i
via the

conjugation action. Moreover, this action factors through Πab
X•

i
⊗ Z/nZ. We put

Mχi
[χi]

def
= {a ∈Mχi

⊗Fp Fp | σ · a = χi(σ)a for all σ ∈ Πab
X•

i
⊗ Z/nZ},

γχi
(Mχi

)
def
= dimFp

(Mχi
[χi]).

Note that γχi
(Mχi

) is a generalized Hasse-Witt invariant of a cyclic multi-admissible
covering of X•

i with Galois group Z/nZ, and that Lemma 2.7 implies that γχi
(Mχi

) ≤
gX + 1 if nX = 3. Moreover, we define two maps

Resi,t : Homgp(Π
ab
X•

i
⊗ Z/nZ,F×

pt)→ Homgp(F×
pt,êi

,F×
pt),

Γi,t : Homgp(Π
ab
X•

i
⊗ Z/nZ,F×

pt)→ Z≥0, χi 7→ γχi
(Mχi

),

where the map Resi,t is the restriction with respect to the natural inclusion

F×
pt,êi

= Iêi ⊗ Z/nZ ↪→ Πab
X•

i
⊗ Z/nZ.

Let m0 be the product of all prime numbers ≤ p− 2 if p ̸= 2, 3 and m0 = 1 if p = 2, 3.
Let t0 be the order of p in the multiplicative group (Z/m0Z)×. We have the following
claim (see [T2, Claim 5.4] for the case where X•

i is smooth over ki):

Claim A: There exists a constant C(gX) which depends only on gX such that, for each
natural number t > max{logp(C(gX) + 1), logp(#(ecl(ΓX•

i
)))} divisible by t0, we have

Homfd(Fpt,êi ,Fpt) = Homsurj
gp (F×

pt,êi
,F×

pt) \ Resi,t(Γ
−1
i,t ({gX + 1})), i ∈ {1, 2},

where Homsurj
gp (−,−) denotes the set of surjections whose elements are contained in

Homgp(−,−).

By applying similar arguments to the arguments given in the proof of [T2, Claim 5.4],
Claim A is equivalent to the following claim:

Claim B: Let m ∈ (Z/nZ)∼ (2.2.5). Then the following statements are equivalent:
(i) We have m ∈ {pr | r = 0, . . . , t− 1}.
(ii) We have that (m,n) = 1, and that, there does not exist D ∈ (Z/nZ)∼[DX ]

0 (2.2.5)
and α ∈ RevadmD (X•

i ) (Definition 2.4 (i)) such that ordxei
(D) = m and γ(α,D) = gX + 1.

Let us prove Claim B. Firstly, we prove (i) ⇒ (ii). If s(D) = 1 (2.2.5), then Lemma
2.7 implies γ(α,D) ≤ gX . Thus, we may assume that s(D) = 2. We put

DXi

def
= {xi,1

def
= xei , xi,2, xi,3}.

By [T2, Proposition 2.21 (iv-a)], either ordxi,1
(D) = n or ordxi,3

(D) = n holds. This
is impossible as D ∈ (Z/nZ)∼[DX ]

0. Next, we prove (ii) ⇒ (i). Suppose that m ̸∈
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{pr | r = 0, . . . , t− 1}, and that (m,n) = 1. Since t is divisible by t0, n is divisible by all
prime numbers ≤ p − 2. Then the assumption (m,n) = 1 implies that m ̸∈ {apr | a =
0, . . . , p− 2, r = 0, . . . , t− 1}. Then [T2, Proposition 2.21 (iv-c)] and Theorem 5.7 imply
that there exist D ∈ (Z/nZ)∼[DX ]

0 and α ∈ RevadmD (X•
i ) such that ordxei

(D) = m and
γ(α,D) = gX + 1. This completes the proof of the claim. Then we complete the proof of
the first part of the theorem.

Next, we prove the “moreover” part of the theorem. Let κ2 ∈ Homgp(Π
ab
X•

2
⊗Z/nZ,F×

pt).

Then we obtain a character

κ1 ∈ Homgp(Π
ab
X•

1
⊗ Z/nZ,F×

pr)

induced by ϕ. Moreover, the surjection ϕ|Hκ1
induces a surjection Mκ1 [κ1] ↠ Mκ2 [κ2].

Suppose that κ2 ∈ Γ−1
2,r({gX + 1}). The surjection Mκ1 [κ1] ↠ Mκ2 [κ2] implies that

γκ1(Mκ1) = gX + 1. Namely, we have κ1 ∈ Γ−1
1,r({gX + 1}). On the other hand, the

isomorphism ϕ|Iê1 : Iê1
∼→ Iê2 induces an injection

Res2,r(Γ
−1
2,r({gX + 1})) ↪→ Res1,r(Γ

−1
1,r({gX + 1})).

Since #(Homfd(Fpr,ê1 ,Fpr)) = #(Homfd(Fpr,ê2 ,Fpr)), Claim A implies that ϕ|Iẽ1 induces a

bijection Homfd(Fpr,ê2 ,Fpr)
∼→ Homfd(Fpr,ê1 ,Fpr). Thus, ϕ|Iê1 induces a bijection

Homfd(Fê2 ,Fp)
∼→ Homfd(Fê1 ,Fp).

If we choose Fp = Fê2 , then the image of idFê2
via the above bijection induces a field

isomorphism
ϕfd
ê1,ê2

: Fê1
∼→ Fê2 .

This completes the proof of the theorem. □
Remark 6.4.1. We maintain the notation introduced above. We would like to mention
that the condition

“Suppose that ϕ(Iê1) = Iê2, and that nX = 3.”

appeared in Theorem 6.4 can be omitted (i.e., ϕ(Iê1) is a stabilizer subgroup associated
to some open edge of eop(ΓX̂•

2
) for an arbitrary open continuous homomorphism ϕ, see

[Y7, Theorem 4.13] for a more precise statement). This is one of the main results of [Y7,
Section 4] which is highly non-trivial, and which is proved by using Theorem 5.4.
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