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ABSTRACT. Let X*® = (X, Dx) be a pointed stable curve of topological type (gx,nx)
over an algebraically closed field of characteristic p > 0.

Under certain assumptions, we prove that, if X*® is component-generic, then the first
generalized Hasse-Witt invariant of every prime-to-p cyclic admissible covering of X*®
attains maximum. This result generalizes a result of S. Nakajima concerning the or-
dinariness of prime-to-p cyclic étale coverings of smooth projective generic curves to
the case of (possibly ramified) admissible coverings of (possibly singular) pointed stable
curves.

Moreover, we prove that, if X*® is an arbitrary pointed stable curve, then there exists a
prime-to-p cyclic admissible covering of X*® whose first generalized Hasse-Witt invariant
attains maximum. This result generalizes a result of M. Raynaud concerning the new-
ordinariness of prime-to-p cyclic étale coverings of smooth projective curves to the case
of (possibly ramified) admissible coverings of (possibly singular) pointed stable curves.

As applications, we obtain an anabelian formula for (gx,nx), and prove that the field
structures associated to inertia subgroups of marked points can be reconstructed group-
theoretically from open continuous homomorphisms of admissible fundamental groups.
Those results generalize A. Tamagawa’s results concerning an anabelian formula for
topological types and reconstructions of field structures associated to inertia subgroups
of marked points of smooth pointed stable curves to the case of arbitrary pointed stable
curves.
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1. INTRODUCTION

Let X* = (X, Dx) be a pointed stable curve over an algebraically closed field k, where X
denotes the underlying curve, and Dy denotes the (finite) set of marked points. Write gx
for the arithmetic genus of X and ny for the cardinality #(Dx) of Dx. We call (gx,nx)
the topological type (or type for short) of X*. By choosing a suitable base point of X*, we
have the admissible fundamental group [1y. of X*®. The admissible fundamental groups
of pointed stable curves are natural generalizations of the tame fundamental groups of
smooth pointed stable curves. In particular, Il y. is isomorphic to the tame fundamental
group of X* if X*® is smooth over k.

Suppose that the characteristic char(k) of k is 0 (resp. p > 0). Then the structure
of Iys (resp. the maximal prime-to-p quotient H’)’é. of Mye) is well-known, and it is
isomorphic to the profinite completion (resp. prime-to-p completion) of the topological
fundamental group of a Riemann surface of type (gx,nx) (2.1.6). In particular, ITye

(resp. TI%.) is a free profinite group with 2gx +ny — 1 generators if ny > 0. We see that
the type (gx,nx) cannot be determined group-theoretically from the isomorphism class

(as a profinite group) of Ixe if char(k) = 0 (resp. I1%. if char(k) = p).
1.1. Fundamental groups of curves in positive characteristic.

1.1.1. If char(k) = p > 0, the situation is quite different from that in characteristic 0,
and the structure of Ilx. is no longer known. In the remainder of the introduction, we
assume char(k) = p > 0. In the case of positive characteristic, the admissible fundamental
group Ilxe. is very mysterious. After M. Raynaud and D. Harbater proved Abhyankar’s
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conjecture, Harbater asked whether or not the geometric information of a curve over in
positive characteristic can be carried out from its geometric fundamental groups ([H]).
Some developments of F. Pop-M. Saidi ([PS]), M. Raynaud ([R2]), A. Tamagawa ([T1],
[T2], [T3]), and the author of the present paper ([Y1], [Y4]) showed evidence for very
strong anabelian phenomena for curves over algebraically closed fields of characteristic
p > 0. In this situation, the Galois group of the base field is trivial, and the arithmetic
fundamental group coincides with the geometric fundamental group, thus there is a total
absence of a Galois action of the base field. These kinds of anabelian phenomena go
beyond Grothendieck’s anabelian geometry (since no Galois actions), and show that the
admissible (or tame) fundamental group of a pointed stable curve over an algebraically
closed field of characteristic p must encode“moduli” of the curve. This is the reason why
we do not have an explicit description of the admissible (or tame) fundamental group of
any pointed stable curve in positive characteristic.

1.1.2.  Furthermore, the theory developed in [T2] and [Y3] implies that the isomorphism
class of X* (as a scheme) can possibly be determined by not only the isomorphism class
of Iy« but also the isomorphism class of the maximal pro-solvable quotient of IIx.. On
the other hand, since all the admissible coverings (see Definition 2.3) of X* can be lifted
to characteristic 0 ([V, Théoreme 2.2 (c)]), we obtain that IIx. is topologically finitely
generated. This implies that the isomorphism class of Ilxe is determined by the set of
finite quotients of Ilxe ([FJ, Proposition 16.10.6]). Then to understand the anabelian
phenomena of curves in positive characteristic, we may ask the following question: Which
finite solvable groups can appear as quotients of Ilxe ¢

1.1.3. Let H C Ily. be an arbitrary open normal subgroup and X}, = (Xy, Dx,,) the
pointed stable curve of type (gx,,, nx, ) over k corresponding to H. We have an important
invariant oy,, associated to X3, (or H) which is called p-rank (or Hasse- Witt invariant, see
2.2.2). Roughly speaking, oy, controls the finite quotients of IIy. which are extensions
of the group Ily«/H by p-groups.

Since the structures of maximal prime-to-p quotients of admissible fundamental groups
are known, to find all the solvable quotients of IIy., we need to compute the p-rank ox,,
when Ilxe /H is abelian. If llxs/H is a p-group, then oy, can be computed by using the
Deuring-Shafarevich formula ([C], [Su]). If IIx./H is not a p-group, the situation of oy,
is very complicated. Moreover, the Deuring-Shafarevich formula implies that, to compute
0x,, we only need to assume that IIxe/H is a prime-to-p group (i.e., the order of IIx«/H
is prime to p).

1.2. Generalized Hasse-Witt invariants for generic curves.

1.2.1. Nakajima, Zhang, and Ozman-Pries’ results. Firstly, let us consider the case of
generic curves. Suppose that nx = 0, and that X*® is smooth over k. If X*® is a curve
corresponding to a geometric generic point of the moduli space (i.e., a geometric generic
curve), S. Nakajima ([N, Proposition 4]) proved that, if IIxe/H is a prime-to-p cyclic
group, then oy, attains the maximum gy, (i.e., X} is ordinary). Moreover, B. Zhang
([Z]) generalized Nakajima’s result to the case where IIxe /H is an arbitrary abelian group.
Recently, E. Ozman and R. Pries ([OP]) generalized Nakajima’s result to the case where
IIye/H is a cyclic group with a prime order distinct from p, and where X* is a curve
corresponding to a geometric point over a generic point of p-rank stratum of the moduli
space.
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Let m € N be an arbitrary positive natural number prime to p. In other words, the
results of Nakajima, Zhang, and Ozman-Pries say that the “first” generalized Hasse- Witt
invariant (see [N] or 2.2.4 of the present paper) of every Galois étale covering of X* with
Galois group Z/mZ attains the maximum gy — 1.

1.2.2.  Let Mgz be the moduli stack over Spec Z parameterizing smooth pointed stable
curves of type (g,0) and M, the coarse moduli space of Moz xz k. Let ¢ € Myoy, X3
a smooth pointed stable curve determined by a geometric point over ¢ (i.e., a morphism
Speck’ — M, whose image is ¢, where k' is an algebraically closed field containing
k), and m € N an arbitrary positive natural number prime to p . We denote by U,, C
M, 1 the subset of points of M, such that for ¢ € U,,, the “first” generalized Hasse-
Witt invariant of every Galois étale covering of X with Galois group Z/mZ attains the
maximum. By applying [N, Proposition 4|, Nakajima proved that U, is a non-empty
Zariski open subset of M, ([N, Theorem 2]). Note that we have U,, # M, in general
(see 4.6.3).

1.2.3. The first main result of the present paper is as follows (see Theorem 4.13 for a
more precise statement):

Theorem 1.1. Let X*® be a component-generic pointed stable curve (see 2.1.2 for the
definition) over an algebraically closed field k of characteristic p > 0. Then the “first”
generalized Hasse-Witt invariant of every prime-to-p cyclic admissible covering of X*
attains maximum under certain assumptions.

If nxy =0 and X* is smooth over k, then Theorem 1.1 is equivalent to [N, Proposition
4]. Thus, Theorem 1.1 generalizes Nakajima’s result to the case of (possibly ramified)
admissible coverings of (possibly singular) pointed stable curves. Moreover, by applying
Theorem 1.1, we generalize [N, Theorem 2] to the case of tame coverings (see Proposition
4.15 (i)).

1.3. Generalized Hasse-Witt invariants for arbitrary curves. Next, let us consider
the case where X* is an arbitrary pointed stable curve. Let m be a positive natural number
prime to p, and let f*: Y*® — X* be a Galois admissible covering over k£ with Galois group
Z/mZ and D the ramification divisor associated to f°®. Note that the degree deg(D) of
D is divisible by m, and that 0 < deg(D) < (nx — 1)m if nx # 0.

1.3.1. Raynaud and Tamagawa’s results. 1f X* is not generic, the computation of oy, is
very difficult in general. Suppose that X*® is smooth over k, and that ny = 0. Raynaud
([R1]) developed his theory of theta divisors and proved that, if m >> 0 is a natural
number prime to p, then there exists a Galois étale covering f* of X*® with Galois group
Z/mZ whose “first” generalized Hasse-Witt invariant attains the maximum gx — 1 ([R1,
Théoreme 4.3.1]). Moreover, as a consequence, Raynaud obtained that IIy. is not a prime-
to-p profinite group. This is the first deep result concerning the global structures of étale
fundamental groups of curves over algebraically closed fields of characteristic p > 0.
Suppose that X* is smooth over k, and that nxy > 0. The computations of generalized
Hasse-invariants of admissible coverings of X*® (i.e., tame coverings of X*) are much more
difficult than the case of ny = 0. Tamagawa observed that Raynaud’s theory of theta
divisors can be generalized to the case of tame coverings, and he established a tamely
ramified version of the theory of Raynaud’s theta divisors. By applying the theory of
theta divisors, Tamagawa proved that, if ny # 0 and m >> 0, then there ezists a Galois
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admissible covering (i.e., Galois tame covering) f* of X* with Galois group Z/mZ such
that deg(D) = m, and that the “first” generalized Hasse-Witt invariants of f* is as large
as possible, namely equal to gx.

1.3.2. In the present paper, we study maximum generalized Hasse-Witt invariants for
arbitrary (possibly singular) pointed stable curves. The second main theorem of the
present paper is as follows (see Theorem 5.4 for a more precise statement):

Theorem 1.2. We maintain the notation introduced above. Let X*® be an arbitrary pointed
stable curve over an algebraically closed field k of characteristic p > 0. Suppose that
m >> 0. Then there exists a Galois admissible covering f® of X*® with Galois group
Z/mZ such that deg(D) = (nx — 1)m if nx # 0, and that the “first” generalized Hasse-
Witt invariant (see 2.2.4 for the definition) attains the mazimum (see Definition 3.10 for

YRex)

max __ gx — 17 anX = Oa
X gX+nX—2, Z'fnx%o.

Remark 1.2.1. If nx = 3, we prove a strong version of Theorem 1.2 (see Theorem 5.7)
which is the key tool for reconstructing field structures associated to marked points from
[Ty under certain conditions (see Theorem 6.4 and Remark 6.4.1).

If ny = 0 and X* is smooth over k, then Theorem 1.2 is equivalent to [R1, Théoreme
4.3.1]. Thus, Theorem 1.2 generalizes Raynaud’s result to the case of (possibly ramified)
admissible coverings of arbitrary (possibly singular) pointed stable curves. On the other
hand, Theorem 1.2 can be regarded as an analogue of Tamagawa’s result in the case
of arbitrary (possibly singular) pointed stable curves when deg(D) attains maximum,
namely equal to (nx — 1)m.

1.4. An anabelian formula for topological types. As we mentioned above, the gen-
eralized Hasse-Witt invariants can help us to analyze the structures of admissible fun-
damental groups in positive characteristic, and moreover, to understand the anabelian
phenomena of curves in positive characteristic.

1.4.1. By applying the result explained in 1.3.1, Tamagawa obtained a group-theoretical
formula for the type (gx,nx) by using the tame fundamental group IIyx. when X* is
smooth over k (see 6.1.6). In particular, gy and ny are group-theoretical invariants
associated to IIxe ([T2, Theorem 0.1]). This result is the main goal of [T2], which plays
a key role in the theory of tame anabelian geometry of curves over algebraically closed
fields of characteristic p > 0 (e.g. [T2], [Y3]).

On the other hand, we mention that Tamagawa’s method for finding a group-theoretical
formula for topological types is difficult to generalize to the case of arbitrary pointed stable
curves (see 6.1.7). If X* is an arbitrary pointed stable curve over k, we ask the following
question:

Does there exist a group-theoretical formula for (gx,nx) when X*® is an
arbitrary pointed stable curve over k?

This problem can be completely solved by applying Theorem 1.2 as explained below.
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1.4.2. Let Fp be an arbitrary algebraic closure of FF,,, IT an abstract profinite group such
that II = Ilxe as profinite groups, xy € Hom(H,ﬁ;) such that x # 1, and I, C II the
kernel of x. The profinite group II, admits a natural action of II via the conjugation

action. We put

Hy, < Hom(Il,, Z/pZ) x, F,,

N, def {mreH,, |7 -m=x(r)r for all 7 € II},

def 5.
TN, = dlmﬁp(NX%

where (7 - 7)(x) o (r71 - 2) for all z € II,. Moreover, we put

7™ < max{y, | x € Hom(ILF, ) such that x # 1}.

Since the prime number p is a group-theoretical invariant associated to II (Lemma 6.1

max

(ii)), we see that y1** is also a group-theoretical invariant associated to II. Moreover, we

max max

have Y = v¥3* (Lemma 6.2). Then we obtain the following formula (see also Theorem
6.3):

Theorem 1.3. Let X* be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k of characteristic p > 0 and 11 an abstract profinite group such
that 11 = Tl xe as profinite groups. Then we have (see 0.1.3 for the definitions of group-
theoretical invariants by and b¥ associated to 11)

gx = by — Y — 1, nx = 29 — by, — b + 3.
In particular, gx and nx are group-theoretical invariants associated to 11.

Remark 1.3.1. If W* is a pointed stable curve of type (gw,nw) over an arithmetic
field (e.g. a number field, a p-adic field, a finite field), then a group-theoretical formula
for (gw,nw) can be deduced immediately by computing “weight” (e.g. by applying the
weight monodromy conjecture or p-adic Hodge theory, see [Y2, Proposition 1.2]).

1.5. Some further applications to anabelian geometry. Let us explain some further
applications of Theorem 1.2 (and Theorem 5.7) that motivated the theory developed in
the present paper.

Theorem 1.2 and Theorem 5.7 are the main ingredients in the proof a critical step
towards proving the main theorems of [Y7], [Y8]. We explain briefly as follows. Let
ﬂg,nz be the moduli stack over SpecZ parameterizing pointed stable curves of type
(g,n) and M, the coarse moduli space of M,z xz F,. Moreover, we may define an
equivalence relation ~f, on M,, induced by Frobenius actions (roughly speaking, for
any qi,qs € Mgm, @1 ~fe @2 if the curve corresponding to a geometric point over ¢
is a Frobenius twist of the curve corresponding to a geometric point over ¢z). In [Y7],
the author introduced a topological space ﬁg,n whose points are isomorphism classes (as
profinite groups) of admissible fundamental groups of pointed stable curves of type (g,n)
over algebraically closed fields of characteristic p > 0, which we call the moduli space of
admissible fundamental groups of type (g,n). Moreover, the author proved that there is
a natural continuous surjective homomorphism

adm . A7 T
Tgmn - Mg,n/ ~fe=> Ilgn,
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and formulated the so-called Homeomorphism Conjecture which says that 72dm

om 1s a home-
omorphism. The Homeomorphism Conjecture shows a new kind of anabelian phenome-
non which cannot be explained by using Grothendieck’s original anabelian philosophy, and
which means that the moduli spaces of pointed stable curves in positive characteristic
can be reconstructed group-theoretically as topological spaces from admissible fundamental
groups of curves (see [Y7, Introduction]). Furthermore, the main theorems of [Y7], [Y§]

say that the Homeomorphism Conjecture holds when dim(M,,) <1 (i.e., (g,n) = (0, 3),

(0,4), (1,1)).

1.6. Structure of the present paper. The present paper is organized as follows.

In Section 2, we recall some definitions and properties of admissible coverings, admis-
sible fundamental groups, generalized Hasse-Witt invariants, and Raynaud-Tamagawa
theta divisors.

In Section 3, we study the relation of generalized Hasse-Witt invariants between a
pointed stable curve and the smooth pointed stable curves associated to its irreducible
components. Moreover, we introduce maximum generalized Hasse-Witt invariants and
prove our main results in the case of ny < 1.

In Section 4, we study maximum generalized Hasse-Witt invariants when X*° is a
component-generic pointed stable curve and prove the first main result.

In Section 5, we study maximum generalized Hasse-Witt invariants when X*® is an
arbitrary pointed stable curve and prove the second main result.

In Section 6, by applying the results obtained in previous sections, we prove an an-
abelian formula for types of arbitrary pointed stable curves, and prove that the field
structures associated to inertia subgroups of marked points can be group-theoretically
reconstructed from admissible fundamental groups.

1.7. Acknowledgements. The main results of the present paper were obtained in Jan-
uary, 2019. The author would like to thank the referees very much for carefully reading
the manuscript and for giving me many comments which substantially helped improving
the quality of the paper. This work was supported by JSPS KAKENHI Grant Number
20K14283, and by the Research Institute for Mathematical Sciences (RIMS), an Interna-
tional Joint Usage/Research Center located in Kyoto University.

2. PRELIMINARIES

2.1. Admissible coverings and admissible fundamental groups. In this subsection,
we recall some definitions and results concerning admissible coverings and admissible
fundamental groups.

2.1.1. We recall some notation concerning semi-graphs ([M, Section 1]). Let
def
G = (v(G),e(G), ()
be a semi-graph. Here, v(G), e(G), and (¢ denote the set of vertices of G, the set of
edges of G, and the coincidence map of G, respectively.

Let e € ¢(G) be an edge. Then e % {bL, 52} is a set of cardinality 2 for each e € e(G).
The set e(G) consists of closed edges and open edges. If e is a closed edge, then the
coincidence map (%(e) is the set of vertices to which e abuts. If e is an open edge, then
(% (e) is the set which consists of the unique vertex to which e abuts and the one element

set {v(G)} (i.e., either ¢%(b!) or ¢&(b?) is not contained in v(G)).
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We shall write e?(G) C e(G) for the set of open edges of G and e(G) C e(G) for the
set of closed edges of G. Note that we have

e(G) = eP(G) U e(G).

Moreover, we denote by e?(G) C e(G) the subset of closed edges such that #((%(e)) = 1
for each e € €'?(G) (i.e., a closed edge which abuts to a unique vertex of G), where “Ip”

means “loop”. For each e € e(G), we denote by v%(e) o CG(e)Nv(G) C v(G) the set of
vertices of G to which e abuts. For each v € v(G), we denote by €% (v) C e(G) the set of
edges of G to which v is abutted.

We shall say that G is a tree if the Betti number dimg(H'(G,Q)) of G is equal to 0,
where Q denotes the rational number field.

Example 2.1. Let us give an example of semi-graph to explain the above definitions. We
use the notation “e” and “o with a line segment” to denote a vertex and an open edge,
respectively.

Let G be a semi-graph as follows:

€1

G: €3 ‘ U2 o €4

Then we see that v(G) = {v1, 02}, e(G) = {e1, 2, €3}, eP(G) = {es}, (C(e1) = {v1,v2},
(C(er) = {v1, v}, (C(e3) = {wn}, and (%(es) = {v2,{v(G)}}. Moreover, we have
e?(G) = {es}, v(e1) = {vi, v}, v¥(e2) = {vi, 02}, v(es) = {vi}, v4(ea) = {va},

e (v1) = {e1, €2, e3}, and e (vy) = {ey, €2, €4}
2.1.2.  Let p be a prime number, and let
X* = (X, DX)

be a pointed stable curve over an algebraically closed field k of characteristic p, where
X denotes the underlying curve, Dy denotes a finite set of marked points satisfying [K,
Definition 1.1 (iv)]. Write gx for the arithmetic genus (or genus for short) of X and ny
for the cardinality #(Dx) of Dx. We call the pair (gx,ny) the topological type (or type
for short) of X*.

Recall that the dual semi-graph T'xs (v(Txs),e(Txe),¢tx*) of X*® is a semi-graph
associated to X* defined as follows: (i) v(I'ys) is the set of irreducible components of X;
(ii) e°P(T'ye) is the set of marked points Dyx; (iii) e?(I'xe) is the set of nodes of X; (iv)
('x*(e), e € e°P(I'xs), consists of the unique irreducible component containing e and the
set {v(Txe)}; (v) ¢Px*(e), e € e (I'xs), consists of the irreducible components containing
e.

Moreover, we write ry = dimg(H*(T'xe,Q)) for the Betti number of the semi-graph
[xe.

Example 2.2. We give an example to explain dual semi-graphs of pointed stable curves.
Let X* be a pointed stable curve over k& whose irreducible components are X,, and X,,,,
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whose node is z.,, and whose marked point is z., € X,,. We use the notation “e” and
“0” to denote a node and a marked point, respectively. Then X* is as follows:

Te, X,
X

Xy

2

We write v; and v, for the vertices of I'ye corresponding to X,, and X,,, respectively,
e; for the closed edge corresponding to z.,, and e, for the open edge corresponding to

Ze,. Moreover, we use the notation “e” and “o with a line segment” to denote a vertex
and an open edge, respectively. Then the dual semi-graph I'xe of X* is as follows:

e (%
FX‘: e 1 Py 2 0€2

2.1.3. Letv e v(I'xe) and e € e(I'xs). We write X, for the irreducible component of X
corresponding to v, . for the node of X corresponding to e if e € ¢?(I'ye), and x, for the
marked point of X corresponding to e if e € e®®(I'xe). Note that X* is allowed to have

components with self-intersections in general (i.e., e(I'x+) # 0). Moreover, write X, for

the smooth compactification of Uy, % X, \ X5, where (—)*"8 denotes the singular locus

of (—). We call

Xy = (X, Dg, € (X, \Ux,)U(Dx N X))

the smooth pointed stable curve of type (g,,n,) over k associated to v (or the smooth
pointed stable curve associated to v for short). Note that X, is the normalization of X,.

2.1.4. Let Hg,n,Z be the moduli stack parameterizing pointed stable curves of type (g, n)

over Spec Z, Fp the algebraic closure of I, in k, Mg,n &t Mg,mZ XZFP, and Mgm the coarse

moduli space of M,,,. Then X* — Spec k determines a morphism cy : Speck — M, ny

and X’; — Speck, v € v(['ys), determines a morphism ¢, : Speck — ﬂgv,m. Moreover,
we have a clutching morphism of moduli stacks ([K, Definition 3.8])

c: H Mgvynv - ng,nx
vev(Dye)

such that co (Hvev(rx.) ¢y) = cx. We shall say that X*® is a component-generic pointed
stable curve over k if the image of

H ¢y : Speck — H Mgv,nv

vev(Ixe) vev(Txe)

is a generic point in [[,c, o) Mg,
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2.1.5.  We recall the definition of admissible coverings of pointed stable curves. Let
Y* = (Y, Dy) be a pointed stable curve over k and I'ye the dual semi-graph of Y. Let

foyt o X

be a surjective, generically étale, finite morphism of pointed stable curves over k such
that f(y) is a smooth (resp. singular) point of X if y is a smooth (resp. singular) point
of Y. Write f : Y — X for the morphism of underlying curves induced by f* and
f%¢ : T'ye — I'xe for the map of dual semi-graphs induced by f°*. Let v € v(I'x.) and
w € (f*%)~1(v) Cv(Tys). Then f* induces a morphism of smooth pointed stable curves

Jow: Yoo X3
associated to w and v (2.1.3).

Definition 2.3. We shall say that f®:Y*® — X*®is a Galoits admissible covering over k
with Galois group G if the following conditions are satisfied: (i) There exists a finite group
G C Autg(Y*) such that Y*/G = X*, and f* is equal to the quotient morphism Y* —
Y*/G; (ii) ﬁ:,v is a tame covering over k for each v € v(I'x+) and each w € ()~ (v); (iii)
For each y € Y8 we write D, C G for the decomposition group of y and 7 a generator
of Dy. Then the local morphism between singular points induced by f is

Ox st = kllu, o) Juv = Oy, = k[s,1])/st
v — #(Dy)

and 7(s) = Cx(p,)s and 7(t) = Q#(lpy)@ where (4(p,) is a primitive #(D,)th root of unity.

Moreover, we shall say that f® is an admissible covering if there exists a morphism of
pointed stable curves h® : W* — Y* over k such that the composite morphism f® o hA® :
W* — X* is a Galois admissible covering over k.

Let Z* be a disjoint union of finitely many pointed stable curves over k. We shall say
that a morphism f) : Z®* — X*® over k is a multi-admissible covering if the restriction of
f7 to each connected component of Z° is admissible. Moreover, we shall say that f5 is
étale if the underlying morphism of curves f7 induced by f7 is an étale morphism.

2.1.6. By choosing a base point z € X \ X*"8 we have the admissible fundamental group
madm(xe x) of X* (see [Y7, 1.2.1] for the definition of admissible fundamental groups).
Since we only focus on the isomorphism class of 724M(X* ) in the present paper, for

simplicity of notation, we omit the base point and denote by
ITxe.

the admissible fundamental group 7#4™(X*® x). Note that, by the definition of admissible
coverings, the admissible fundamental group of X*® is naturally isomorphic to the tame
fundamental group of X*® when X*® is smooth over k. The structure of the maximal prime-
to-p quotient of Ilxe is well-known, and is isomorphic to the prime-to-p completion of the
following group ([V, Théoreme 2.2 (c)])

9x nx
(a1, ... 005,01, . bgy,C1ye ot Cny | H[ai,bi] ch =1).
i=1 j=1
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We denote by TI¢. and IT% the étale fundamental group of the underlying curve X of
X* and the profinite completion of the topological fundamental group of I y., respectively.
We have the following natural continuous surjective homomorphisms (for suitable choices
of base points)

Mxe — 5. — II%%.
Moreover, for each v € v(I'ys), we denote by

Iz,
the admissible fundamental group of 55; (i.e., the tame fundamental group of the smooth
pointed stable curve associated to v). Then we have a natural (outer) injective homomor-
phism IIg, < IIx..

2.2. Generalized Hasse-Witt invariants. In this subsection, we recall some notation
concerning generalized Hasse-Witt invariants of cyclic admissible coverings of arbitrary
pointed stable curves. On the other hand, in the case of smooth pointed stable curves, the
generalized Hasse-Witt invariants of cyclic tame coverings have been studied by I. Bouw
([B, Section 2]) and Tamagawa ([T2, Section 3]).

2.2.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, let [Ty« be the
admissible fundamental group of X*°.

2.2.2.  We define the p-rank (or Hasse- Witt invariant) of X*® to be
ox & dimg, (H (X, F,)) = dimg, (I35 @ F,),

where I13, denotes the abelianization of I1x.. We shall say that X*® is ordinaryif gx = ox.
Moreover, we have the following:

where rx denotes the Betti number of I'xe (2.1.2).

2.2.3. Let n be an arbitrary positive natural number prime to p and pu,, C k> the group
of nth roots of unity. Fix a primitive nth root ¢, we may identify p, with Z/nZ via the
homomorphism ¢ — i. Let o € Hom(II3%,Z/nZ). We denote by X2 = (X,, Dx,) — X*
the Galois multi-admissible covering with Galois group Z/nZ corresponding to . Write
Fx, for the absolute Frobenius morphism on X,. Then there exists a decomposition ([S1,
Section 9])

HI(XOU OXQ) = Hl(XOM OXQ>St @ HI(XCH OXa)niﬂ

where Fy, is a bijection on H'(X,, Ox,)* and is nilpotent on H'(X,, Ox,)". Moreover,

we have H'(X,, Ox,)* = H'(Xa, Ox, )™ @5, k, where H'(X,, Ox, )" denotes the

subspace of H!(X,, Ox,) on which Fy_ acts trivially. Then Artin-Schreier theory implies
that we may identify

def

H, = Hgt(Xme) ®F, k

with the largest subspace of H'(X,,Ox,) on which F,_ is a bijection.
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The finite dimensional k-linear space H, is a finitely generated k[u,]-module induced
by the natural action of p,, on X,. Then we have the following canonical decomposition

Ha: @ Ha,ia

1€L/nL

where ¢ € p, acts on H,; as the (*-multiplication.

2.2.4. We call
Yoi & dimy(H,,), i € Z/nZ

a generalized Hasse- Witt invariant (see [B], [N], [T2] for the case of étale or tame coverings
of smooth pointed stable curves) of the cyclic multi-admissible covering X2 — X*. In
particular, we call

Va,1

the first generalized Hasse-Witt invariant of the cyclic multi-admissible covering X3 —
X*. Note that the above decomposition implies that

dimy(H,) = Z Vovi-

1€Z/nL

In particular, if X, is connected, then dimy(H,) = ox,.

2.2.5. We write Z[Dx] for the group of divisors whose supports are contained in Dy.
Note that Z[Dx] is a free Z-module with basis Dx. We put

Z/nZ|Dx] = Z|Dx] ® Z/nZ,

¢ :Z/nZ|Dx] — Z/nZ, D mod n — deg(D) mod n.

Write (Z/nZ)~ for the set {0,1,...,n — 1} and (Z/nZ)~[Dx] for the subset of Z[Dx]
consisting of the elements whose coefficients are contained in (Z/nZ)~. Then we have a
natural bijection v, : (Z/nZ)~[Dx] = Z/nZ[Dx].

We put

(Z/n2)"[Dx) = i (ker(c}).
Note that we have n|deg(D) for all D € (Z/nZ)~[Dx]°. Moreover, we put

aer deg(D)
n

S(D) S ZZO‘

Since every D € (Z/nZ)~[Dx]° can be regarded as a ramification divisor associated to
some cyclic admissible covering, the structure of the maximal prime-to-p quotient of Ty
(2.1.6) implies the following:

0, if nx < 1,
nx —1, ifny > 2.

ogs(D)g{
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2.2.6. We put
X< lm Xy D= lm Dy, Iee ™ lm Ty,
HClIIxe open HClIIxe open HCIIxe open
We call
X* = (X, Dg)

the universal admissible covering of X*® corresponding to Ilx., and I'¢, the dual semi-
graph of X*. Note that Aut(X°®/X*) = Ilx., and that Iy, admits a natural action of
IIxe.

Let X* = (X, Dg) — X* be a universal admissible covering corresponding to IIx.. For
every e € e®(I'ys), write € € e®®(I'g,) for an open edge over e and z. for the marked
point corresponding to e.

We denote by Iz C Ilxe the stabilizer of €. The definition of admissible coverings
(2.1.5) implies that Iz is isomorphic to the Galois group Gal(K! /K, ) = Z(1)?, where
K, denotes the quotient field of Oy, , K} denotes a maximal tamely ramified extension,
and Z(1)?" denotes the maximal prime-to-p quotient of Z(1). Suppose that z, is contained
in X,. Then we have an injection

pe 1 I — I35,
which factors through Iz — Hi%’. induced by the composition of (outer) injective homo-
morphisms [z — Ilg, < Ilxe, where I 5o denotes the admissible fundamental group of

the smooth pointed stable curve )Z'; associated to v (2.1.3). Since the image of ¢z de-
pends only on e, we may write I, for the image ¢¢(Iz). Moreover, the structure of maximal
prime-to-p quotients of admissible fundamental groups of pointed stable curves (2.1.6) im-
plies that the following holds: There exists a generator [s.] of I, for each e € e°?(I"x.)

such that
> s =0

e€e’P(I'xe)

in T13%.. In the remainder of the present paper, we fiz a set of generators {[se]}eccor(rys)
of I, satisfying the above condition.

Definition 2.4. We maintain the notation introduced above.
(i) For a € Hom(II3%, Z/nZ), we put

def ~
Da = § Oé([Se]) Le,
ece’P(I'xe)

where «a([se])™ denotes the element of (Z/nZ)~ corresponding to «([sc]) via the natural
bijection (Z/nZ)~ = Z/nZ. Note that we have D, € (Z/nZ)~[Dx]°. On the other hand,
for each D € (Z/nZ)~[Dx]°, we put

Reviy™(X*) < {o € Hom(I13, Z/nZ) | Do = D}.

Moreover, we put

def
(1) VD) = Va1 (2:2.4).



14 YU YANG

(ii) Let t € N be an arbitrary positive natural number, and n e pt — 1. For u €

{0,...,n}, we write
t—1
u = Z ujpj
=0
for the p-adic expansion with u; € {0,...,p — 1}. We identify {0,...,t — 1} with Z/tZ

naturally. Then {0,...,¢t — 1} admits an additional structure induced by the natural
additional structure of Z/tZ. We put

t—1
u® D uigp’, i€{0,..t— 1}
j=0

Let D € (Z/nZ)~[Dx]°. Fori € {0,...,t — 1}, we put
DI S (ord, (D)) Ve
z€Dx

which is an effective divisor on X.

Roughly speaking, D® is the ramification divisor associated to a suitable Frobenius
action of a Galois admissible covering whose ramification divisor is D (see the “in partic-
ular” part of Lemma 2.5 below for the relationship between the generalized Hasse-Witt
invariants associated to D and D®).

Lemma 2.5. We maintain the notation introduced above. Letl € {1,...,n—1}. We put
def [- Ordw(D)
D = — N I S
()= 1D —( Z n [ - ] z),
z€Dx

where [(—)] denotes the largest integer < (—). Then the following holds (see 2.2.4 for the
definition of Ya,1)
Yol = Yia,1 = Y(la,D(1))-

In particular, if n & p' — 1, we have Y(a,p) = Va1 = Yapi-i = Ypi~ia] = Vpt—ia,D(p'~i)) =
V(pt—ia,D@)s 1€ {0, ot = 1}

2.3. Generalized Hasse-Witt invariants via line bundles. The generalized Hasse-
Witt invariants can be also described in terms of line bundles and divisors.

2.3.1. Settings. We maintain the settings introduced in 2.2.1. Moreover, in the present
subsection, we suppose that X* is smooth over k.

2.3.2. Let n € N be an arbitrary natural number prime to p. We denote by Pic(X) the
Picard group of X. Consider the following complex of abelian groups:

Z[Dx] % Pic(X) @ Z[Dx] 2 Pic(X),
where a,(D) = ([Ox(—D)],nD), b,(([£], D)) = [L" @ Ox(D)]. We denote by

def

Pxen = ker(b,)/Im(ay,)

the homology group of the complex. Moreover, we have the following exact sequence

0 = Pic(X)[n] & Pye,, 2 Z/nZ[Dy] & Z/0Z,
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where Pic(X)[n] denotes the n-torsion subgroup of Pic(X), and
a,([£]) = ([£],0) mod Im(a,),

b, (([£], D)) mod Im(a,)) = D mod n,
a (D modn) = deg(D) mod n.
We shall define -
Pxen Cker(b,) C Pic(X) @ Z[Dx]

to be the inverse image of (Z/nZ)~[Dx|° C (Z/nZ)~[Dx] C Z|Dx] under the projection
ker(b,) — Z[Dx]. It is easy to see that Px.,, and Px., are free Z/nZ-modules with
rank 2¢gx + nx — 1if nx # 0 and with rank 2¢gy if nx = 0, and that there is a natural
isomorphism Hxe.,, 5 Pxon.

On the other hand, let o € Hom(II34,Z/nZ) and f2 : X2 — X* the Galois multi-
admissible covering over k with Galois group Z/nZ corresponding to «. Fix a primitive
nth root ¢, we may identify y, with Z/nZ via the map ¢* — i. Then we see

foz,*OXa = @ £o¢,i7
1€Z/nZ
where locally £, ; is the eigenspace of the natural action of ¢ with eigenvalue ¢*. Moreover,
we have the following natural isomorphism ([T2, Proposition 3.5]):

Hom(II3%, Z/nZ) = Pxen, a v ([Lail, D).

Then every element of é’TX.,n induces a Galois multi-admissible covering of X*® over k
with Galois group Z/nZ.

2.3.3. Assumptions. In the remainder of the present paper, we may assume that

ndéfpt—l

for some positive natural number t € N unless indicated otherwise.

2.3.4. Let ([£],D) € égxovn. We fix an isomorphism £8" = Ox(—D). Note that D is an
effective divisor on X. We have the following composition of morphisms of line bundles

LU L =90 L% Ox(—D) & L s L.
This composite morphism induces a homomorphism ¢z py : H'(X, £) — H'(X, £). We
denote by
def . r
Y(le),p) = dlmk(ﬂ m(é{z,)))-
r>1

Write € Hom(II3%,Z/nZ) for the element corresponding to ([£], D) and Fy for the
absolute Frobenius morphism on X. Then we see that v,,.1 (2.2.4) is equal to the di-

mension over k of the largest subspace of H'(X, L) on which F% “ Fyo.--0Fyisa
bijection. Moreover, we have

Yae = dimy(H (X, L)% @g, k),

where H'(X,£)"* denotes the subspace of H'(X,£) on which F acts trivially. Then
we have the following lemmas.
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Lemma 2.6. We maintain the notation introduced above. Then we have Y(z),p) = Ya,,1-
Moreover, since D,, = D, we have

(def

Y(£.0) = Y(ae.D) (= Yag.1)-

Proof. The lemma follows immediately from H'(X, L)% @, k = oo Im(dfg py). O

Lemma 2.7. We maintain the notation introduced above. Suppose that X*® is smooth
over k. Then we have

9x, Zf([£]7D> = ([OX]70)7
Y(ez,D) < dilnk(Hl(X7 ‘C)) = gx — 17 ZfS(D) = 07 [ ] [OXL
gx +s(D) =1, ifs(D) =1,

where s(D) is the integer defined in 2.2.5.

Proof. The first inequality follows from the definition of generalized Hasse-Witt invariants.
On the other hand, the Riemann-Roch theorem implies that

dim(H' (X, L)) = gx — 1 — deg(L) + dim,(H°(X, £))

1
=gy — 1+ Edeg(D) + dim (HY(X, £)) = gx — 1+ s(D) + dim,(H°(X, £)).
This completes the proof of the lemma. 0
2.4. Raynaud-Tamagawa theta divisors. In this subsection, we recall the theory of

theta divisors which was introduced by Raynaud in the case of étale coverings ([R1]), and
which was generalized by Tamagawa in the case of tame coverings ([T2]).

2.4.1. Settings. We maintain the settings introduced in 2.3.1.

2.4.2. Let F}, be the absolute Frobenius morphism on Spec k, Fx/j, the relative Frobenius

morphism X — X, defXxkakoverk and F,ﬁ = Fko -0 Fy. We put Xt XxkFtk'
and define a morphism

Fip:X — X,

over k to be FX/k o Fx, koo Fx o Fx.

Let ([£],D) € @X'WH and let £; be the pulling back of £ by the natural morphism
X; — X. Note that £ and L; are line bundles of degree —s(D) (2.2.5). We put

Bl = (Fiu)-(Ox(D)) [Ox; &p % By & L.
Write rk(Ep) for the rank of £p. Then we obtain
X(Ep) = deg(det(Ep)) — (9x — rk(€p).
Moreover, we have x(Ep) = 0 ([T2, Lemma 2.3 (ii)]).
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2.4.3. Let Jx, be the Jacobian variety of X; and Lx, a universal line bundle on X; x Jx,.
Let pry, : Xy x Jx, — X; and pry,,  Xe X Jx, = Jx, be the natural projections. We
denote by F the coherent Ox,-module pr’,(£p) ® Lx,, and by

xS ding(HO(X, i k() F © K(y) = dimg(H' (X, x5 b(y), F @ k(y))
for each y € Jx,, where k(y) denotes the residue field of y. Note that since pr;  is flat,
XF is independent of y € Jx,. Write (—xx)" for max{0, —x#}. We denote by
Oc¢p, C Jx,
the closed subscheme of Jy, defined by the (—xz)"th Fitting ideal Fitt_, .+ (R" (pry, )«(F)).

The definition of Og,, is independent of the choice of £;. Moreover, we have codim(O¢,,) <
1.

2.4.4. In [R1], Raynaud investigated the following property of the vector bundle £p on
X.

Condition 2.8. We shall say that £p satisfies (%) if there exists a line bundle £} of degree
0 on X; such that

0= Iﬂln{dlmk(HO(Xt, SD X ﬁ;)),dlmk<H1<Xt, gD & /;;))}

Moreover, [T2, Proposition 2.2 (i) (ii)] implies that [£'] € O¢,, if and only if £p satisfies
(x) for L', where [£'] denotes the point of Jy, corresponding to £'. Namely, Og, is a
divisor of Jx, when &p satisfies (x). Then we have the following definition:

Definition 2.9. We shall say that ©¢, C Jx, is the Raynaud-Tamagawa theta divisor
associated to Ep if Ep satisfies ().

Remark 2.9.1. Suppose that Ep satisfies (%) (i.e., Condition 2.8). [R1, Proposition
1.8.1] implies that O, is algebraically equivalent to rk(€p)O, where O is the classical
theta divisor (i.e., the image of XX~ in Jy,).

Remark 2.9.2. Note that (see [Y6, Lemma 2.8]) if
Veo,p) = dimg(H' (X, L ® 7))

for some [Z] € Pic(X)[n], then the Raynaud-Tamagawa theta divisor ©¢, associated to
Ep exists (i.e., [Z;] € Og,).

2.4.5. Let N be an arbitrary non-negative integer. We define a constant concerning N
as following:

def | O, if N =0,
CN) = { SVINY, if N 0.

Then we have the following proposition.
Proposition 2.10. We maintain the notation introduced above. Suppose that
n=p —1>0C(gx)+1,

and that the Raynaud-Tamagawa theta divisor associated to Ep exists. Then there exists
a line bundle T of degree 0 on X such that [Z] # [Ox], that [I°"] = [Ox], and that

Y(eom,p)) = dimp(HY(X, L ® 1)) (i.e., [I;] & Oc¢,).
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Proof. By applying similar arguments to the arguments given in the proof of [T2, Corollary
3.10], the proposition follows from Remark 2.9.2. U

Namely, if n >> 0 and the Raynaud-Tamagawa theta divisor associated to £p exists,
then there exists a line bundle Z of degree 0 with order n such that the following hold:
® [It] ¢ ®5D
e the first generalized Hasse-Witt invariant (2.2.4) of the Galois multi-admissible
covering with Galois group Z/nZ corresponding to ([£ ® Z], D) (2.3.2) is as large
as possible.

2.4.6. The following fundamental theorem of theta divisors was proved by Raynaud when
s(D) =0 ([R1, Théoreme 4.1.1]), and by Tamagawa when s(D) < 1 ([T2, Theorem 2.5]).

Theorem 2.11. Suppose that s(D) € {0,1} (2.2.5). Then the Raynaud-Tamagawa theta
divisor associated to Ep exists.

We may ask whether or not the Raynaud-Tamagawa theta divisor O¢, exists for an
arbitrary s(D) when X* is smooth over k. However, the following example shows that
the Raynaud-Tamagawa theta divisor does not exist in general.

Example 2.12. Let p > 2, n=p—1, X =P}, Dx = {0,1, 00, A} such that A € £\ {0, 1},
and

an effective divisor on X. Then we have s(D) = 2. Let ([£], D) be an arbitrary element
of Pxe,. We see that &p satisfies (x) if and only if the elliptic curve defined by the
equation

' =x(r—1)(z— )

is ordinary. Thus, we cannot expect that Og, exists in general.

3. MAXIMUM GENERALIZED HASSE-WITT INVARIANTS

In this section, we introduce the maximum generalized Hasse-Witt invariants for cyclic
prime-to-p admissible coverings. The main result of the present section is Theorem 3.9
which says that the first generalized Hasse-Witt invariant of a prime-to-p cyclic admissible
covering attains maximum if and only if the first generalized Hasse-Witt invariants of the
induced admissible coverings of irreducible components attain maximum.

By the formula mentioned in 2.2.2 and the definition of generalized Hasse-Witt invari-
ants (2.2.3), to prove Theorem 3.9 for a cyclic prime-to-p admissible covering f* : Y*® —
X* of degree n, the most difficult part is to compute the following:

e The generalized Hasse-Witt invariants arising from the covering of dual semi-
graphs
ng Tye = I'ye
induced by f* (i.e., the dimensions of irreducible representations
Z)nZ — GL(H'(Ty+,F,) ® k)

induced by the natural action of Z/nZ on I'y.).
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Note that the computations concerning generalized Hasse-Witt invariants of coverings of
dual semi-graphs are not easy since f*8 is not a topological covering in general (i.e., f* is
ramified over singular points and marked points of X*).

In Section 3.1, we will compute generalized Hasse-Witt invariants of coverings of dual
semi-graphs and prove two technical propositions (Proposition 3.5 and Proposition 3.8).
In Section 3.2, we will use the propositions to obtain Theorem 3.9.

3.1. Generalized Hasse-Witt invariants for coverings of dual semi-graphs. The
readers who would like to start the proofs of Theorem 3.9 quickly may skip this subsection,
after glancing at the statements of Proposition 3.5 and Proposition 3.8.

3.1.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, in this sub-
section, let n be an arbitrary positive natural number prime to p and u, C k* the group
of nth roots of unity. Fix a primitive nth root ¢, we may identify p, with Z/nZ via the
homomorphism ¢? 5 i. Let

oy =X

be a Galois admissible covering over k with Galois group Z/nZ, f the underlying morphism
of f¢, A" the set of nodes of X over which f is étale, and

ng : Fyo — FXO

the map of dual semi-graphs of Y* and X* induced by f*, where “sg” means “semi-graph”.
Note that Y* is connected.

We put My« & 1 4(Y,F,) @5, k. Then My is a k[u,]-module and admits the following
canonical decomposition

where ¢ € p, (or 1 € Z/nZ) acts on My+(j) as the (‘-multiplication. Note that
dimy(My«(j)), j € Z/nZ, is a generalized Hasse-Witt invariant of the Galois admissi-
ble covering f* (2.2.4).

3.1.2. The dual semi-graph I'ys admits a natural action of Z/nZ induced by the Ga-
lois admissible covering f*. We write Mp,,, Mr,,, and My | for H'(Tx.,F,) ® k,
H'(Ty.,F,) ® k, and the dual vector space %P (Tye ) ®z F, ®p, k of Mp,,, respec-
tively. Moreover, we fiz a basis {\;}, for Mr ,. Then we have a dual basis {)\;}, for
My,

Let { C I'ye be a loop and o o Zq agA,, aq € k, the vector of My, corresponding to
[. We shall call

def
ap = Z agAg € My,

q

the vector of Mr,, corresponding to l.
Moreover, we shall say that [ is a minimal loop of I'y. if, for any loop I’ C [ C I'ye such
that [ and I’ are homotopic, then [ = ['.
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3.1.3. Let r € Z/nZ. We denote by r -l and 7 - o) the natural actions of r on [ and «;,
respectively. Note that we have r - o) = o)/,
On the other hand, we denote by r * oy the action of r € Z/nZ on «; € My, induced
by the action of Z/nZ on My ,. Then we have (—r) * a; = a,.;. For convenience, we put
rea (—r) * .
Then we have 7+ oy = o,y and " - (' - ay) = (r' +71") - o for all ', r" € Z/nZ. Moreover,
My, is a k[u,]-module and admits the following canonical decomposition

MFY' = @ MF}MU);

JEZ/NZ

where ¢ € p, (or 1 € Z/nZ) acts on Mr,.(j) as the ¢/-multiplication.

3.1.4. Firstly, we have the following lemma.

Lemma 3.1. We maintain the notation introduced above. Then the following statements
hold:

(1) Suppose that f*: X* — Y* is a Galois étale covering (i.e., f is étale) with Galois
group Z/nZ, and that X* and Y* are ordinary (2.2.2). Then we have

: S\ gx, ifj ::Oa
dimy,(My(7)) = { gx — 1, ifje{l,...,n—1},
(i1) Suppose that f%¢ : T'ye — T'xe is a Galois topological covering with Galois group
Z/nZ. Then we have

. . r 9 Zf.]:07
dimy (Mr,. (j)) = { Ti -1, ifje{l,....n—1},

where rx denotes the Betti number of I'xe (2.1.2).

Proof. (i) Since the underlying morphism f is étale, there exists a line bundle £ on X
whose degree is 0, and whose order is n, such that

[0y = @ £,

JEZ/NZ

Then we have dimy(My+(5)) = dimg(H' (X, L)) = gx — 1 for all j € {1,...,n — 1} and
dimy,(My+(0)) = dimy(H*' (X, Ox)) = gx. This completes the proof of (i).

(ii) Since this is a topological question, to verify (ii), by adding certain marked points,
we may assume that X*® is an ordinary pointed stable curve such that the normalization
of every irreducible component is isomorphic to P.. Then Y* is also an ordinary pointed
stable curve such that the normalizations of irreducible components are isomorphic to P}.
Then (ii) follows immediately from (i). This completes the proof of the lemma. O

3.1.5. By using admissible coverings, we compute the dimensions of irreducible represen-
tations of a certain representation of Z/nZ. We have the following linear algebra result
which follows immediately from Lemma 3.4 below (i.e., by replacing V, o, by Mr,.,
, ,, respectively).
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Proposition 3.2. Let s,t,n € N be positive natural numbers prime to p such that n = st,
and let V,,, b € {1,...,t}, be a k-linear space of dimension s —1 and {a1p,...,as_1} a
basis for V. We put

t
VE P,
b=1

and let 1 € Z/nZ. We define an action of Z/nZ on V as follows: 1 - aup = qgpr1 if
1<a<s—=1andl1 <b<t—-1,1 0 =0gr11ifl1<a<s—2 and

s—1
1- Og_1¢ = — E Qg 1-
a=1

Then we have the following:

. . 07 ific 0,8,257"'7t_18’
dimg (V' (%)) :{ 1, gt}]wru;{ise, ( o

where V(j) C V denotes the k-linear subspace on which 1 € Z/nZ acts as the (’-
multiplication.

We give an algebraic geometric proof of the above proposition. We maintain the no-
tation introduced above. Suppose that f* : Y* — X*® is a Galois étale covering with
Galois group Z/nZ, that the set of irreducible components of X*® is {X;, X5}, and that
X1, X5 are non-singular. Write v; and vy for the vertices of I'xe corresponding to X;
and Xy, respectively. Let f? o fo Y o Y — X7 = Xy, i€ {1,2}, be the Galois
multi-admissible covering over k induced by f* (see 2.1.3 for X ). Moreover, we suppose
that the following conditions are satisfied:

e X? and X3 are ordinary pointed stable curves of type (1, 1). This implies that the
connected components of Y; are non-singular curves of genus (resp. p-rank) 1.

e Y7 is connected and #(my(Y2)) = ¢, where m(Y2) denotes the set of connected
components of Y5. Then the decomposition group of a connected component of Y5

is a subgroup of Z/nZ with order s o n/t.

Note that the structures of maximal prime-to-p quotients of admissible fundamental
groups (2.1.6) imply that the above Galois admissible covering exists.

Write wy € v(Lys) for the vertex corresponding to Y; and wyy, € v(Iys), b€ {1,...,t}
for the vertex corresponding to a connected component of Y. Then we see v(I'ye) =
{wy,wa1,...,wes}. Moreover, we write {e1p,...,esp} for the set of closed edges of I'ye
connecting wy and wsy ;. We define a minimal loop as following (for instance, see Example
3.3 below):

def
la,b -

Then we have 1-«y,, =y, i1 <b<t—1,and 1 -y, =, ,, if 1 <a<s—2, and

s—1
L Qg = — E Qg r-
a=1

Note that the set of vectors {au, , }aeq1,....s-1} bef1....1} is linearly independent and is a basis
for Mr.,,.

Wieq pWapearpWi, a € {1,...,s =1}, be {l,... t}.
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Example 3.3. We maintain the notation introduced above. If n = 4 and b = 2, we have
the following

€11 €1,2
I
[ye: W2 w1 W22 — + I'ye: &——@
U1 Vg
€21 €22

By replacing V', a,p by Mr, ., oy, ,, respectively, to verify Proposition 3.2, it is sufficient
to prove the following lemma:

Lemma 3.4. We maintain the notation introduced above. Then we have the following:

. . 0, if 7 € 0757287""t_187
dimy (Mr,.. (j)) :{ 1, £ierl{1{ise. ( "

Proof. We put

t
M,y = Hgt(YLFP) R, k, M> = @ Hélt(Yw2,b7FP) ®r, k-

b=1
Then since all the connected components of Y; and Y5 are non-singular curves of genus
(resp. p-rank) 1, we obtain

dlmk(Ml(J)) = { 0. otherwise

. . 1, if j €40,s,2s,...,(t —1)s},
dimy (Ma(7)) = { 0 otﬂervjise ( ) }

where M (7) o Mr,.(j) N My and Ms(j) o Mr,.(j) N M,. On the other hand, Lemma

3.1 (i) implies
dimy (My-(j)) = dimy,(My(1)) + dimy.(M2(j)) + dimy.(Mr,.. (7))
(2 ifj=o0,
| 1, otherwise.

Then we complete the proof of the lemma. 0

3.1.6. Next, we calculate generalized Hasse-Witt invariants of dual semi-graphs when
X* is irreducible.

Proposition 3.5. We maintain the notation introduced above. We maintain the notation
introduced above. Recall that A5 C X5 (3.1.1) is the subset of nodes over which f is
étale. Suppose that v(T'xe) = {vx}. Then we have

| B — 1, i #(Tye) = n,
diny (Mr,.. (1)) = { #(NS), if #w(Tye) £ n.
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Proof. We compute dimy(Mr,.. (1)) by analyzing the minimal loops of I'ye. Let [ C I'y. be
an arbitrary minimal loop of I'ye and V; C Mr,,, the subspace spanned by {j - &} jez/nz.
Firstly, we note that

vic @ Mr.(m)

0<j<n/m, mln

for some natural number m > 1 if all the decomposition groups of the elements of e!(T'y+)N
[ are not trivial (i.e., there exists a closed edge e contained in [ such that f is étale at the
node of Y corresponding to e). Then to compute dimy,(Mr,.. (1)), it is sufficient to consider
the subspaces of Mr,,, which are generalized by the corresponding vectors (3.1.2) of the
minimal loops of I'y« such that the decomposition groups of the closed edges contained
in the minimal loops are trivial (see Me,, Mz, , M;, and M; defined below).

We prove the proposition by dividing into various cases.

Case 1: Suppose #(v(I'ye)) = n. Then we have that f% : I'ye — I'xe is a Galois
topological covering with Galois group Z/nZ. Then Lemma 3.1 (ii) implies

dimy (Mry. (1)) = rx —1 = #(e(X*) = #(v(Txe)) +1—1 = # (e (X*)) =1 = #(A5") 1

for alli € {1,...,n—1} and dimy(Mr,.(0)) = rx. Thus, we obtain the proposition when
#(U(Fyo)) =n.

Case 2: Suppose #(v(I'ys)) # n. Since #(v(I'xs)) = 1, we have that the linear
space Mr,, is spanned by the vectors corresponding to the closed edges of I'ye, and that
dimy (Mr,.) = #(e?(Cxe)) = #(®(Cxs)). Write E C e(I'x+) for the subset of closed

edges such that (f)"1(E®) C e®(I'y.) and B ¥ e(I'y.) \ E, where “tr” means

“tree”. Note that for every ex € E', every closed edge ey € (f*¢)~!(ex) abuts exactly to
two different vertices of I'ys. Moreover, we write E'™° (resp. E™°) for the subset of E'P

(resp. E') such that f is étale over all the nodes corresponding to the elements of E'P<t
(resp. E™°Y).

The subspace M., : Roughly speaking, this kind of subspace is generated
by the corresponding vectors of the following minimal loops: Let [ be a
minimal loop of I'y«; Then [ N e (Ty+) is an element of €'P(T'y-).

Let ex € E™, ey € (f*®)7!(ex), and let D,, C Z/nZ be the decomposition group of
ey and m,, the order of D., . Note that ey is a minimal loop of I'ye, and that D,., does
not depend on the choice of ey (i.e., D = Dey for all ey, e € (f*8) " (ex)). Write ne,
for n/m., and M., for the subspace of Mrp,, spanned by {ce, }e, e(se)-1(ey)- Then we
see that M., is a k[(Z/nZ)/D., ]-module, that

MEX g @ MFy- (jmey)7

0<j<ney —1

and that dimg (M., ) = n.,. Write M., (1) C M., for the subspace on which ¢ € u, acts
as the (-multiplication. Thus, we obtain dimy (M., N Mr,,. (1)) = 1 if and only if m., =1
(i.e., f is étale over the node of X corresponding to ey).
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Case 2A: Suppose E" = ). We have
Mr.(1)= @ M., (1)

ex cE'pset

Then we obtain
dimy (Mr,. (1)) = #(EP) = #(A5")
if E" =0 and #(v(T'ye)) # n.

Case 2B: Suppose E™ # (). Then we have n # 2. Let vy € (%) '(vx), and let

D,, be the decomposition group of vy which does not depend on the choice of vy (i.e.,

Dy, = Dy for all vy, vy € (f8)7'(vx)), 1 < my, o #(D,, ), and n,, = n/my,. We

put

(%) ox) € {ov, - vy 1},
which admits a natural action of r € Z/nZ such that r - vyy = vyz, where 7 denotes
the image of Z/nZ — (Z/nZ)/D,, — Z/n,,Z. Moreover, without loss of generality,
we may assume Yy, NY,, ., # 0 forallie {0,...,n, —2}, Y, , NY, #0 and
Yoo, MY, = 0 for all j/, 5" € {0,...,n,, —1}.
The subspace Mr,, : Roughly speaking, this kind of subspace is gener-
ated by the corresponding vectors of the minimal loops constructed by the
following minimal loops via Galois actions: Let [, ; be a minimal loop
of I'ys; Then I, ; N e?(Tye) is stable under the actions of decomposition
groups of vertices o, ; N v(['y+), and the images of l., ; N e (T'ys) in Txe
is an element of E'™°t,

ex,t

We put

def _
TY,eX = {eyyo, R 7€Y7mvy_1} - (fsg) 1<€X) C ecl(FY.)’ ex € Etr,et7

the subset of closed edges such that v'v*(ey;) = {vyg, vy} for all i € {0,...,m,, — 1}
(see 2.1.1 for v"v*(ey;)). Then

def .
leX,i = Uy706y7i0y71€y7i+1?}y70, 1€ {0, ey My — 2},

can be regarded as a minimal loop of I'y. (for instance, see Example 3.6 (a) below).
Moreover, the set of vectors
{7 - u, i bieo, muy —2},5€10... oy —1} exemiet © Mpy,
is linearly independent. We denote by My, C Mr,., ex € E™, the subspace spanned
by
{j : Cﬁlex,i}z‘e{o,...,mw —2},7€{0,...;nuy, —1} -
Then we see that Mr,, , ex € ™, is a k[u,]-module. Moreover, we have
L- (.7 : aleX,i) = (] + 1) T
if0<j3<n,, —2and 0 <i<m,, —2

Y

1 ’ ((an - 1) ’ Oélexﬂ'): OélﬁX’H'1
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it 0 << m,, —3, and

mvy —

2
L ((nvy - 1) ’ aley,mvy—2): - Z Oélex,i-
=0

Then Proposition 3.2 implies
dim(May, (1)) = 1,

where Mr, (1) denotes the subspace on which ¢ € i, acts as the (-multiplication.

The subspace M;: Roughly speaking, this kind of subspace is generated by
the corresponding vectors of the minimal loops constructed by the following
minimal loops via Galois actions: Let [; be a minimal loop of I'ye; Then
the images of [; N e(I'y+) in I'ye is two different elements of E'et,

Let m & #(E™) and E™° o {exi, .. exm} Let €}y € Ty, ,, i €{1,...,m}, be

an arbitrary element. Note that v'*(e},) = {vyo,vy1}. Then

def

I,

vy ey vy e tuyg, i€ {1,...,m — 1},
can be regarded as a minimal loop of I'y. (for instance, see Example 3.6 (b) below). Note
that e}/' € Ty, ,,,. Let
mvyfl
def :
o = Z TNy + Q.
=0

Note that the decomposition group of «; is D,,.. Then the set of vectors

{7 - qitieqr, m-1}.5e{0,.muy —13 © Mry.

is linearly independent. We denote by M; C Mr,., i € {1,...,m — 1}, the subspace
spanned by {j - @i}jef0,..n,, —13- Then M; is a k[(Z/nZ)/ D,y ]-module. Thus, we obtain
that

MiC P M.(m) i€f{l,...,m—1}.

0<j<np, —1

Moreover, we see that the set of vectors

{] : ai}ie{l,...,mfl},jE{O,...,an71} U {J : OézeX,i}ie{o,...,mvy72},je{0,...,nvy71},eXeEtraet - Mry.

is linearly independent.

The subspace M, : Roughly speaking, this kind of subspace is generated by
the corresponding vectors of the minimal loops constructed by the following
minimal loops via Galois actions: Let Iy be a minimal loop of I'ye; Then
ly N e (Ty.) is not stable under the actions of decomposition groups of
vertices ly Nv(T'y.), and the images of Iy N e(T'y.) in I'xe is an element
Of Etr,et'
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Let ey € Ty., for some ex € E™. Then we see that j-ey, j € {0,...,n, — 2},
abuts to vy; and vy ;11 (i.e., V'Y (j - ey) = {vy;, vy 41}), and that (n,, — 1) - ey abuts
to vy, 1 and vy (Le., V'Y ((ny, — 1) -ey) = {v¥n,, —1,vv0}). Thus, we have that

def
ly = vyo(0-ey)vys - vyny_1((ny — 1) - ey )vyg

can be regarded as a minimal loop of 'y« (for instance, see Example 3.6 (c¢) below). Note
that 0 - ey = ey. We put

Moy —1

def .
Oy = E JNyy * Qqy € Mpy,.
=0

Let us prove that the decomposition group of v is Z/nZ. Note that «, corresponds to

the loop

T L Uy (noy - ly) - (Mg — Dy - Iy).

Let e be an arbitrary closed edge which is contained in 7. Then there exists r € Z/n,, Z
such that e abuts to vy, and vy,1;. Thus, e can be regraded as an oriented edge induced
by the oriented loop 7 as follows:

o If 0 <7 < ny — 2, the starting of e is vy, and the ending of e is vy, 4.
e [f r =ny — 1, the starting of e is vy, -1, and the ending of e is vy;.

Consider the action of 1 € Z/nZ on e. We see that 1- e is an oriented edge which is
contained in 7. Moreover, the starting of 1 - e is vy,41, and the ending of 1 - e is vy, 42,
where r + 1,7 + 2 € Z/n,,Z. Namely, we have 1 -7 = 7. Thus, the stabilizer of «, is
Z/nZ. Write M, C Mrp,, for the subspace spanned by . Then we have that

Mﬂ' g MFy. (O>7
and that

{J : ai}ie{l,...,m—l},jE{O,...,an—1} U {] : OézeX,i}z‘e{l,...,mvy—1},je{0,...,nvy—1},eXeEtr,et U {Oéw}

is linearly independent.

Let [ C I'ye be an arbitrary minimal loop of I'y. and V; C Mr,,, the subspace spanned
by {j - au}jez/nz. Then if dimy(V;(1)) # 0, we have

vihc( € My, )o( P M )e(@ M)eM,.

CXEEtr,et 6)(EE‘lp,ct =1

Thus, we obtain

This implies

dimg(Mr,. (1)) = #(E) + #(EP) = #(A5")
if B 2 () and #(v(T'y+)) # n. We complete the proof of the proposition. O
Example 3.6. We maintain the notation introduced in the proof of Proposition 3.5.
Suppose n = 4, m,, = 2 and #(E™°") = 2.

def .
a) The case of Mr, : We have ., g = Vyo€yoly 1€y 1Vyo, where 8 is as follows:
Yex X y ; y ) sJ
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€y, 0
€y,1

FY. . UKO

[

Ux

(

Here, vy = 1 - vy.

def .
(b) The case of M;: We have l; = vyges vy €30y, where f% is as follows:

1
Cy

)

Fy- : Uy

I
Vy,1 - . I‘X.:€X,1C><>€X,2

Ux

(@

Here, vy = 1 - vyy.

(c) The case of M,: We have [y def vy (0 - ey)vy1(1-ey)vyp, where f%8 is as follows:

0'€y:6y

[
UY,I _— FX.Z QXCE

Ux

2'€y

Fy- : Uy

10

Here, vy = 1 - vy.

3.1.7. We calculate generalized Hasse-Witt invariants of dual semi-graphs when X* is
not irreducible.

Lemma 3.7. We maintain the notation introduced above. Suppose that the set of irre-

ducible components of X*® is {X1, Xo}, and that X1, Xy are non-singular. Write vy and

vy for the vertices of I'xe corresponding to X, and X, respectively. Let f? o f; (Y def

)N/v: — X! of )N(;l, i € {1,2}, be the Galois multi-admissible covering over k induced by

f*. Then the following statements hold:
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(i) Suppose that there exists i € {1,2} such that #(v(I'ys)) = n. Then we have
dime(Mr, o (1)) = #(A) — 1

(i) Suppose that #(X1 N X3) =1 (i.e., #(e?(Cxe)) = 1) and #(v(T'ys)) # n for each
i € {1,2}. Then we have
dinng (M, (1)) = #(A5).

Proof. (i) Suppose that either #(v(I'ye)) = 1 or #(v(I'y;)) = 1 holds. Then either f} or
f5 is a trivial Galois multi-admissible covering with Galois group Z/nZ. Then we see

diH1k<Mry.(1)) =Tx —Tx, —Tx, =Tx = #(Xl N X2) —1= #(JVXet) - 17

where ry,, i € {1,2}, denotes the Betti number of the dual semi-graph of X?.
Suppose #(v(I'ye)) = #(v(Typ)) = n. Then f* is a Galois topological covering of I'x.
with Galois group Z/nZ. Then Lemma 3.1 (ii) implies

dimy, (M, (1)) = rx — 1 = #(A) — 1.

This completes the proof of (i).

(i) Let wy € (f%8)~(vy) and wy € (f*8)~(vy) be arbitrary vertices of I'ye.. We denote
by Dy C Z/nZ and Dy C Z/nZ the decomposition groups of w; and wy, respectively,
which do not depend on the choices of w; and ws. Since #(X; N X3) = 1 (i.e., I'xe is
a tree), the Galois topological coverings of I'ys with cyclic Galois groups do not exist.
Namely, either Dy = Z/nZ or Dy = Z/nZ holds. Without loss of generality, we may

assume that Dy = Z/nZ 2O D,. We put msy def #(D3) and ngy def n/ms.

Let ex be the unique closed edge of T'xe, ()1 (vy) o {wi}, wap € (f%8)7(v2), and
eyo € (f*8)"!(ex) such that ey abuts to wy and waq (i.e., v'v*(ey) = {w1,wap}). Let
D, , be the decomposition group of ey,o, Mey., = #(Dey.,) and ne,., & n/Mey,. Then we
see that

Mr,. = @ My, (jmey,o)'
0<j<ney o1
Then we obtain that dimy,(Mr,.(1)) = 0 if #(A5") = 0.
Suppose that #(A5") = 1. Then f*8 : I'ye — ['xe is equal to the covering of dual semi-

graphs induced by the Galois admissible covering constructed in 3.1.5. Thus, Lemma 3.4
implies dimg(Mr,., (1)) =1 = #(A5"). This completes the proof of the lemma. O

Proposition 3.8. We maintain the notation introduced above. Suppose that the set of
irreducible components of X* is {X1, Xo}, and that Xy, X5 are non-singular. Then we
have

dimy(Mr,. (1)) =

#(ANK') =1, if there exists i € {1,2} such that #(v(I'ys)) = n,
H(ANEY), if for each i € {1,2}, #(v(T'ys)) # n.

Proof. Suppose that there exists i € {1,2} such that #(v(I'ys)) = n. Then the proposition
follows from Lemma 3.7 (i). To verify the proposition, we may assume that #(v(I'ys)) # n
for all i € {1,2}. Moreover, if #(X; N X5) = 1, then the proposition follows from Lemma
3.7 (ii). Thus, we may assume that #(X; N Xs) > 2.

First, let us construct two Galois admissible coverings associated to f® : Y* — X°.
Let R be a complete discrete valuation ring with residue field k£, K the quotient field of
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R, K an algebraic closure of K, e € e(I'x.) an arbitrary closed edge, and z, the node
of X corresponding to e. By deforming X along x., we obtain a pointed stable curve X
over R whose special fiber is X°®, and whose generic fiber X}. is an irreducible pointed
stable curve over K such that #(e(I'xs )) = #(e(I'xs ) = #(e”(I'x+)) — 1, where I'ys
denotes the dual semi-graph of X73.. Moreover, since the specialization homomorphism of
admissible fundamental groups is a surjection, by replacing R by a finite extension of R,
f* can be lifted to a finite morphism f : Yg — X% over K such that

CE Xk K YL E YR xg K X0, S Xy xg K

€

is a Galois admissible covering over K with Galois group Z/nZ. Note that X\6 is

irreducible. We write Fy\- for the dual semi-graph of Y\'e and denote by Mr . et
e \e

H 1(Fy\.e,IFp) ® k. Then MFY\'E is a k[u,]-module and admits the following canonical de-
composition
My, = B Mry. (5),
JEZ/nZ
where ¢ € pu, acts on Mpy\.e (7) as the ¢/-multiplication.

On the other hand, let norm, : X, — X be the normalization morphism of X over the
nodes corresponding to the closed edges which are contained in e(I'y.) \ {e}. Then we
obtain a pointed stable curve

° ef _ _
X = (Xea DXe d: IlOI'IIle I(DX) U {norm l(xe,)}eleed(rx')\{e}>

e

over k. Note that X, has two non-singular irreducible components X; and X, and that
X1 N Xy ={x.} in X.. Then f* induces a Galois multi-admissible covering

fe Yo = X2
over k with Galois group Z/nZ. We write I'ys for the dual semi-graph of Y.* and denote
by Mr,. def H'(T'ys,F,) ® k. Then My, is a k[u,])-module and admits the following
canonical decomposition

My, = @ Mr,,(5),

JEZ/nZ
where ¢ € p,, acts on Mr,,(j) as the ¢/-multiplication.

Write (/VXez and JVft for the sets of nodes of X\, and X, over which f\. and f, are étale,
respectively. Then we see immediately # (A% ) + #(A%) = #(Ax"). The constructions
of Fy\oe and I'ye imply My, = MFY\,e &) MFy; as k[p,]-modules. Then we obtain

Mr,.(1) = MFY\' ()& Mpye,(l).
On the other hand, Proposition 3.5 and Lemma 3.7 imply that
dimy(Mr,. (1)) = dimk(MpY\, (1)) + dimk(MpYe, (1))

= B + A = S,
This completes the proof of the proposition. 0
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3.2. Generalized Hasse-Witt invariants of curves and their irreducible compo-
nents.

3.2.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption in-
troduced in 2.3.3 (i.e., n et — 1).

3.2.2. The main result of the present section is as follows:

Theorem 3.9. Let D € (Z/nZ)~[Dx]° (2.2.5) and a € Reviy™(X*)\ {0} (Definition 2.4
(i)). Let Ilxe be the admissible fundamental group of X* and

f*Y*=(Y,Dy) = X*

the Galois multi-admissible covering over k with Galois group Z/nZ induced by c«. For
each v € v(L'xs), f* induces a Galois multi-admissible covering for the smooth pointed
stable curve of type (gy,ny) associated to v (2.1.3)

oY X
over k with Galois group Z/nZ. Let &, € Hom(l’[“]Lb Z/nZ) be the homomorphism Hab

13k % Z/nZ, where Hab_ — 185 s the natural homomOTphzsm induced by the natuml

(outer) injection g, — My.. Then we have (see Definition 2.4 (i)-(1) for Y,py and
2.2.5 for s(D))

[, if Supp(D) = 0.
@B gx +s(D) =1, if Supp(D) # 0,
if and only if, for each v € v(T'xs),
g’U7 Zf 5211 = 07
V@w0s,) = 90— 1L, if a, # 0, Supp(Dsz,)

g+ s(Da,) — 1, ifa, #0, Supp(Dgz,) #
where Supp(—) denotes the support of (—).

Proof. We prove the theorem by induction on the cardinality #(v(I'xe)) of v(I'xe). Sup-
pose that #(v(I'xe)) = 1 (i.e., X is irreducible). Then we have Dz, |y, = D and

o = gx — #(X™E),
where Uy, is the open subset of X, defined in 2.1.3. Moreover, since )N(; is smooth over
k, we write ([£5,], Da,) € P, , for the pair induced by @, (2.3.2). Write Ay* C X*"e
for the subset of nodes over which f is ramified and A5 C X sing for the subset of nodes

over which f is étale. Then we have s(Dgz,) = s(D) + #(A5).
On the other hand, by Lemma 2.7, we have

- 9o if &, =0,
dimy (H'(X,, £a,)) =4 g0 — 1, if &, # 0, Supp(Dgz,) =
gu +s(Dgz,) — 1, if a, #0, Supp(Dg,) #

Write I'y. for the dual semi-graph of Y*. The natural k[u,]-submodule
HI(FY"IFP) ®kC Hélt(Y7 Fp) ®k

0,
0
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admits the following canonical decomposition
H'(Ty.,F)) @k = @@ Mr,.()),
JELZ/NZ
where ¢ € pu,, acts on M, (j) as the ¢(?-multiplication. By Proposition 3.5, we have

. oty — fv:a
din (1, (1)) = { L)1 HE 20

Thus, we obtain

gx +s(D) — 1, if Supp(D) #
Since Ya,p) = V(ica,),Da,) + dimg(Mp,, (1)) and #(X58) = #(AY?) + #(A5"), we have

gy =4 9x L if Supp(D) =

@B gx +s(D) — 1, if Supp(D) #

if and only if v@,,ps,) = V(£a,).0s,) = dimk(Hl()?v, Lz,)). This completes the proof of
the proposition when #(v(I'xs)) = 1.

Suppose m & #(v(Txe)) > 2. Let vy € v(I'xe) be a vertex such that T'xe\{vg, e!x* (vg)}

(see 2.1.1 for e'x*(vg)) is connected (note that vy always exists). Write X, for the topo-

logical closure of X \ X,, in X and X, for X,,. Note that X is connected. We define a
pointed stable curve

&mﬂﬂiM@D%mMMmﬂD:{w_L if Supp(D) =
)

0,
0

X? = (Xi, Dx, & (XN Dx) U (X1 N Xa)), i € {1,2},

of type (gx,,nx,) over k. Then f* induces a Galois multi-admissible covering

Yt — X2 i e{l1,2},
over k with Galois group Z/nZ. Moreover, we denote by «; € Hom(II5%,Z/nZ), i €
{1,2}, the composition of the natural homomorphisms I13% — T13% % Z/nZ, where II Xe
denotes the admissible fundamental group of X?.

Write A%y, € X1NX, for the subset of nodes over which f is ramified and A"y, C
X1 N X, for the subset of nodes over which f is étale. Then we have #( A% x,) +
H#(AN x,) = #(X1 N X3). Moreover, we have

9x;, if a; = Oa
Y(as,Dar;) < gx; — L, if 0%} 7& Oa Supp(Dal) = @7
9x; + 3<Da¢) - 17 if 0% 7& 07 Supp<Dal) 7& ®7
for all i € {1,2}. Note that the definition of admissible coverings implies that s(D,,) +

$(Da,) = (D) + #(ANxnx,)-
On the other hand, the natural k[u,]-modules H*(I'y+,F,) ® k and H'(I'ys,F,) ® k,
i € {1,2}, admit the following canonical decomposition

H'(Ty+,F)®k= P Mr,.(j).

JEZ/NZ

H'(Iye,F) o k= P Mr,.(j), i € {12},

JEZ/NZ
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respectively, where I'ye denotes the dual semi-graph of Y;*, and ¢ € p, acts on Mr_,(j)
and Mpy,( ), i€ {1, 2} as the ¢7-multiplication, respectively. We put

dimy (Mry, .y, (1)) € dimg(Mr,. (1)) — dimy (Mr,, (1)) — dimy.(Mr., (1)).

Let us compute dimy(Mr,, ., (1)). Without loss of generality, we may assume that X,
and Xy are non-singular. Then Proposition 3.8 implies that the following holds:

dimy (Mry, .y, (1)) =
{ H#( AN x,) — 1, if there exists ¢ € {1,2} such that o; = 0,
#H( N x,)s if for each 7 € {1,2}, «o; # 0.
Since a # 0, we obtain
V@,D) = V(a1,Day) T Vaz,Day) T dimp(Mry, -y, (1))
< gx, +5(Day) + 9x, + 5(Day) + #( A nx,) — 2 =gx +5(D) — 1

fogx -1, if Supp(D) =0,
"] gx +s(D)—1, if Supp(D) #

Thus, we have

_fax—1, if Supp(D) = 0,
o) = { gx +s(D) —1, if Supp(D) # 0
if and only if
9x;s if a; =0,
Y(@i,Day) = § 9% — 1, if a; # 0, Supp(Da,) =0,

9x; + S<D06i) - 1’ if Q; 7£ 07 Supp(DOéz) 7& (Z)a

for all i € {1,2}. By induction, the theorem follows from the theorem when #(v(I'xe)) =
m — 1 and #(v(I'xs)) = 1. This completes the proof of the theorem. O

3.2.3.  We define maximum generalized Hasse-Witt invariants as follows:

Definition 3.10. (i) We put
7 maxien{Van, | @ € Hom(Il3%, Z/(p' — 1)Z) and a # 0}

= MAXmeN st. (mp)=11V(@,pa) | @ € Hom(II¥., Z/mZ) and a # 0},
and call Y& the mazimum generalized Hasse-Witt invariant of prime-to-p cyclic admais-
sible coverings of X*®. Note that Theorem 3.9 implies that

max - gX_lv lan:Oa
X =\ gy +nx —2, ifny #0.

(ii) Let m be a natural number prime to p and a € Hom(II3%,Z/mZ). We shall say
that v(a,p,) attains mazimum if

. gX_17 lan :Oa
Y(e,Do) = gx +nx — 2, ifny 75 0.

We shall say that v5%8* attains mazimum if there exist a prime-to-p natural number m’
and an element o/ € Hom(II§%, Z/m'Z) such that (o p_,) attains maximum.
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3.3. An easy case of main results.
3.3.1. Settings. We maintain the notation introduced in 2.1.2.

3.3.2. By applying Nakajima and Raynaud’s results concerning ordinariness of cyclic
étale coverings, we have the following result.

Proposition 3.11. (i) Let n € N be an arbitrary natural number prime to p, D €
(Z/nZ)~[Dx]°, and o € Revi™(X*) \ {0}. Suppose that X* is a smooth component-
generic pointed stable curve over k, and that nx < 1. Then 7yq,p) attains mazimum.
Namely, the following holds:
Ya,0) = 9gx — L.
(ii) Let X* be an arbitrary pointed stable curve over k. Suppose that ny < 1. Then

VX attains maximum. Namely, the following holds:

max

Proof. Since nx < 1, the structures of maximal prime-to-p quotients of admissible funda-
mental groups (2.1.6) imply D = 0. Namely, all of the prime-to-p cyclic Galois admissible
coverings of X* are étale over Dy (in particular, are étale if X*® is smooth over k).

(i) This follows immediately from [N, Proposition 4].

(i) Let v € v(I'xs), and let X be the smooth pointed stable curve of type (g, n,) over
k associated to v (2.1.3). We denote by

¥ v evlxe) | g > 0}

Suppose that ¥ = (). Then nx < 1 implies that I'y. is not a tree. Namely, Hg?l.) is not
trivial. Let o/ : II'Y* — Z/nZ be a surjection and a : I13% — Z/nZ the composite of

the homomorphisms 132, — IT'%0*" %7 /nZ. Then the theorem follows from Lemma 3.1
ii
‘ >Suppose that ¥ # (). Let v € ¥. Then Proposition 2.10 and Theorem 2.11 imply that
there exists an element «, € Revadm(X ) such that a, : H‘}}} — Z/nZ is a surjection, and
that
Y@.0) = 9o — 1.
Write f;’ : 37; — )?; for the connected Galois étale covering with Galois group Z/nZ

induced by a,.
Let % be the set of connected components of X \ (J,o, X, and C' € €, where X \ |,y X

veY
denotes the topological closure of X \ [J,c, Xy in X. We define
C* = (C,Dc = (Cn | X,)U(DxNC))
veY

to be a pointed stable curve over k. Note that the normalization of each irreducible
component of C' is isomorphic to P;. We put

v def |_|

1€EZ/nZ

where C} is a copy of C'*. Then we obtain a Galois multi-admissible covering f& : Y5 — C*
over k with Galois group Z/nZ, where the restriction morphism f2 ¢+ 1s an identity, and

the Galois action is j(C;) = Cyy; for all i,j € Z/nZ. By gluing (Yo ey and {Y}cew
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along {Dx }uey and {Dc}oey in a way that is compatible with the gluing of {)’E;}Ueay U

{C*}cee that gives rise to X*®, we obtain a Galois (étale) admissible covering
foryt—Xx°

over k with Galois group Z/nZ.

Write o € Revi®™(X*) for an element induced by f* such that the composition of the
natural homomorphisms H“}?’ — I3 = Z/nZ is equal to @&, constructed above if v € ¥,

and is equal to a, “0if o ¢ 7. This means that the following holds:

) a1, ifve?,
Y(@v,Dz,) = Gy = O, if v g V.

Then (ii) follows from Theorem 3.9. O

3.3.3. If X* is an arbitrary component-generic pointed stable curve (i.e., reducible and
the dual semi-graph is not a tree) over k, we see that Proposition 3.11 (i) does not hold
in general. For instance, we have the following example:

Example 3.12. Let X* be a component-generic pointed stable curve of type (gyx,0) over
k with two smooth irreducible components X; and X, of genus g; and g, respectively.
Moreover, suppose that X; N Xy = {x1, 9, 23}. We put
. ef .
X3 = (X;,Dx, € XinXy), j€{1,2}.
Let n % pt — 1, and let D, € (Z/nZ)~[Dx,]° be an effective divisor on X; such that
s(Dq) = 2, and that s(Dgz)) =1 < s(Dy) =2 forsome i€ {1,...,t — 1} (see Definition
2.4 (ii) for D{"). We put

Dy ™ (n— ordy, (Dy))z1 + (n — ordy,(D1))xs + (n — ordg,(D1))xs.

Then Dy € (Z/nZ)~[Dx,]° is an effective divisor on X, with degree n (i.e., s(Dy) = 1).
Let o € Rev%ijm(X;), J €{1,2}, and let f7 : Y — X3 be the Galois multi-admissible

covering induced by ;. Then by gluing {X7}j—12 and {Y}'};=12, we obtain a Galois
multi-admissible covering

Yt o X
over k. Write a € Revi®™(X*) for the element induced by f*. Then Theorem 3.9 implies
that 0 = gx —1 = g1 + g2 + 1 if and only if vy, p,) = g1 + 1 and y(ay,p,) = g2. On
the other hand, since s(Dgi)) =1 for some 7 € {1,...,t — 1}, we have that vy, p,) = g1
Then we have

Y0) # 9x — 1.
Namely, v(a,0) does not attain maximum.

On the other hand, if X*® is not a component-generic pointed stable curve, then Propo-
sition 3.11 (i) does not hold in general. In fact, if k is an algebraic closure of F,, then
Proposition 3.11 (i) does not hold for an arbitrary pointed stable curve over k (see Propo-
sition 4.15 (ii)).

3.3.4. The main goals of the next two sections are to generalize Proposition 3.11 to the
case of (possibly singular) pointed stable curves of an arbitrary type (gx,nx). More
precisely, we will generalize Proposition 3.11 as follows:
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The first main theorem: a generalization of Proposition 3.11 (i). Let n be a natural

number prime to p and D € (Z/nZ)~[Dx]". In order for v p) to attain the maximum

for some o € Revs™(X*), it is necessary for D to satisfy a certain condition, which we

call being Frobenius stable (see [Y6, Definition 3.3] or 4.1.2 below). For a Frobenius stable

divisor D, we will prove that 7, p) attains maximum for all o € Rev™(X*) when X* is

a certain component-generic pointed stable curve (Theorem 4.13 (i)). Moreover, we will
adm

prove that 7 p) attains maximum for some § € Reviy™(X*®) when X* is an arbitrary
component-generic pointed stable curve (Theorem 4.13 (ii)).

The second main theorem: a generalization of Proposition 3.11 (i1). We will prove that

VR8¥ attains maximum for arbitrary pointed stable curve of type (gx,nx) over k (Theorem

5.4).

4. MAXIMUM GENERALIZED HASSE-WITT INVARIANTS FOR GENERIC CURVES

In the present section, we discuss the maximum generalized Hasse-Witt invariants of
cyclic admissible coverings for generic curves. The main result of this section is Theorem
4.13.

4.1. Idea. We briefly explain the idea of our proof of Theorem 4.13.

4.1.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, we suppose
that X* is a component-generic pointed stable curve over k (2.1.4).

4.1.2. Let n be a natural number prime to p, D € (Z/nZ)~[Dx]° (2.2.5), a € Revii™(X*)
(Definition 2.4 (i)), and f2 : X2 — X* the Galois multi-admissible covering corresponding
to a. Note that there exists a natural number ¢ € N such that p* = 1 in (Z/nZ)*. Write
m' for (p* — 1)/n. To compute 7, py, by replacing o and D by the composition of

homomorphisms I35 = Z/nZ ™7z /(p" —1)Z and m’ D, we may assume that n ©pt—1.
A necessary condition: The generalized Hasse-Witt invariant (., py attains maximum
(Definition 3.10 (ii)) if the following holds (see Definition 2.4 (ii) for D®):

deg(DW) = deg(D) = (nx — 1)n, i € {0,...,t —1}.

The above condition concerning D is a special case of Frobenius stable ([Y6, Definition
3.3]) when deg(D) = (nx — 1)n. Then to verify our main result of this section, we may
assume that D satisfies the above condition.

4.1.3. Irreducible case. Suppose that X*® is irreducible. Moreover, by Proposition 3.11,
we may assume ny > 2. First, if (9x,nx) = (0,3), then the first main result follows
from a result of I. Bouw (Lemma 4.4). Next, for the case of an arbitrary (gx,nx), since
X* is component-generic, we introduce certain degeneration data (i.e., degenerations of
X*) concerning X* (see 4.3.2) such that, for instance, the irreducible components of the
degeneration data are either type of (0,3) or (1,0). Then by applying Lemma 4.4, Propo-
sition 3.11 (i), and Theorem 3.9, we see that the first generalized Hasse-Witt invariants
(2.2.4) of Galois multi-admissible coverings of the degenerations of X* induced by f2 at-
tain maximum. Moreover, the specialization homomorphisms of admissible fundamental
groups implies that 7y, p) attains maximum. This completes the proof of Theorem 4.13
(1) when X* is irreducible (Proposition 4.6).
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4.1.4. General case. We have seen that 7y ,p) does not attain maximum for all o €
Revi™(X*) in general if X* is an arbitrary component-generic pointed stable curve (e.g.
Example 3.12). To avoid such situation, we introduce a kind of semi-graph associated
to the sets of marked points of pointed stable curves, which we call a minimal quasi-tree
associated to Dx (4.4). Roughly speaking, a minimal quasi-tree is a minimal tree-like
semi-graph contained in the dual semi-graph of a pointed stable curve which contains all
open edges.

Firstly, we see that, if the dual semi-graph I"y. is a minimal quasi-tree, then the rami-
fications over nodes of a Galois multi-admissible covering can be completely determined
by the ramifications over the marked points Dx. To explain this observation, let us see
the following example.

Example 4.1. Let X* be a pointed stable curve of type (gx,2) over k with two smooth
irreducible components X; and X5. Moreover, we assume that X1NDx = {21}, XoNDx =
{zo}, and X; N Xy, = X8 = {z}. Let f*: Y* — X* be a Galois admissible covering

over k with Galois group Z/nZ and D = az; + bxy € (Z/nZ)~[Dx]° the ramification

divisor associated to f*. Note that we have a +b = 0 mod n. Write f? : YV;* — X? o

(X, Dy, o {z;,2}), i € {1,2}, for the Galois multi-admissible covering induced by
f* and D; € (Z/nZ)~[Dx,]° for the ramification divisor associated to f. Note that
ord,, (Dy) = a and ord,, (D) = b. Moreover, since ord,, (D;) + ord,(D;) = 0 mod n and
ord,(Ds) + ord,,(D2) = 0 mod n, we obtain

ord, (D) = b, ord,(Ds) = a.

Namely, we have Dy = axy + bx, Dy = ax + bxy. This means that the ramification of f*
over the node z can be determined completely by the ramification of f*.

Secondly, by applying Theorem 3.9, we can reduce Theorem 4.13 (i) to the case where
X* is irreducible. This completes Theorem 4.13 (i) (Proposition 4.12). Moreover, by
gluing certain Galois multi-admissible coverings, Theorem 4.13 (ii) follows from Theorem
3.9, Proposition 3.11 (i), and Theorem 4.13 (i).

4.2. A necessary condition.

4.2.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption in-
troduced in 2.3.3 (i.e., n % pt — 1). Moreover, let D € (Z/nZ)~[Dx]°, and let

t—1
ord, (D) = dy;p’, € Dx
=0

be the p-adic expansion. For any 2 € Dy, we put dy = ord, (D) and 4« (ord,(D))®

(Definition 2.4 (ii)).

4.2.2. First, we have the following necessary condition that the first generalized Hasse-
Witt invariants attain maximum.

Lemma 4.2. We maintain the notation introduced above. Suppose that ny > 2. Then
the following statements hold:
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(i) Suppose that s(D) = nx — 1. Then deg(D®) > deg(D) for all i € {0,1,...,t — 1}
if and only if D is Frobenius stable. Moreover, D is Frobenius stable if and only if

Y dey=(nx—1)(p—1), j€{0,... .t —1}.

ze€Dx

(ii) Suppose that there exists an element o € Reviy™(X®) such that Ya,p) attains
mazimum. Then we have D is a Frobenius stable divisor with degree (nx — 1)n.

(iii) Suppose that n > nx — 1. Then there exists D' € (Z/nZ)~[Dx]° such that s(D’) =
nx — 1, and that D’ is Frobenius stable.

Proof. (i) Since deg(D®) > deg(D) = (nx — 1)n is equivalent to deg(D®) = deg(D) =
(nx — 1)n, (i) follows immediately from [Y6, Lemma 3.2] and the definition of Frobenius
stable.

(i) This follows from Definition 3.10 (ii) and Lemma 2.5.

(iii) Note that there exists D" € (Z/nZ)~[Dx]" such that s(D”) = (nx — 1)n if n >
nx — 1. Then (iii) follows from (i). We complete the proof of the lemma. O

4.2.3. The following lemma will be used in the constructions of Galois admissible cover-
ings of degenerations of X°.

4.2.4. The following lemma will be used in the constructions of Galois admissible cover-
ings of degenerations of X*.

Lemma 4.3. We maintain the notation introduced above. Suppose that nx > 3, and
that deg(DW) = deg(D) = (nx — 1)n for alli € {0,1,...,t — 1}. Moreover, we put

def
Dx = {z1,...,7,,} and

nx
def
ari+1 = [Z dg, ],

r=l+1
l
def
bl,l+1 = [Z da:r]a e {27 s — 2}7
r=1

where [(—)] denotes the integer which is equal to the image of (=) in Z/nZ when we

identify {0, ...,n — 1} with Z/nZ naturally. Then, for each i € {0,...,t — 1}, we have
al(fl)ﬂ + bl(,il)+1 = n,le{2,...,nx —2},

49 4 d 1+l = 2,

(@ i _
an —2nx—1 +dxnx 1 +d§c,2x - 2”7
bl l-‘rl + d‘ngJrl + al(217l+2 = 2”, l E {2, .o ’,n/X - 3}.

Proof. First, let us treat the first equality. Let [ € {2,... ., nx —2} and i € {0,...,t—1}.

Since
Z d,, + de deg(D) = (nx — 1)n,

r=Il+1
we see n|(api+1 + bi41). Note that 1f ari+1 + b1 = 0, then deg(D) < (nx — 1)n. Thus,
agi+1 + 01141 # 0. Moreover, since a; 41+ by41 < n, we obtain that a; ;41 + 0,41 = n, and
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that al(fl) t+ bl(,il) 41 is divided by n. On the other hand, since 0 < al(fl) 1) b;fl) 41 < n, we have
al(fl) gt bz(,iz) 41 = n. This completes the proof of the first equality.
Let i € {0,...,t —1}. We denote by

SO g0 4 ) 4 qfi),
3)  def i i (
SPE b +dD al) L, 1e{2,.. . nx — 3},

Ti+1

i def i 3 i
ST(L))(—2 = bii_znx_ﬁdiix,ﬁ iﬁx

We have Sl(i) <2n, le{l,...,nx —2}. Moreover, if i = 0, the definitions of a;;4; and
biy41 imply

SO =on, le{l,... ny—2}
Then we have that Sl(i) is divided by n for all i € {0,...,t — 1}. Since s(DW) = nx — 1,
the first equality implies that

nx—2

> 8 = nlnx = 3) + (nx = n = 2n(nx - 2).
=1

On the other hand, since Sl(i) < 2n, we have
S =on 1e{l,... ,nx—2}, ie{0,... t—1}.

This completes the proof of the lemma. 0

4.2.5. The following lemma follows immediately from [B, Corollary 6.8].

Lemma 4.4. We maintain the notation introduced above. Suppose that X* = (X, Dx)
is a smooth component-generic pointed stable curve of type (gx,nx) = (0,3) over k.
Moreover, we suppose that D is a Frobenius stable divisor with degree 2n (i.e., deg(D(i)) =
deg(D) = (nx — 1)n = 2n for all i € {0,1,...,t —1}). Then the Raynaud-Tamagawa
theta divisor O, associated to Ep exists (see Definition 2.9). Moreover, we have (see
2.3.4 for v(z1,p))

Yienp) = dimg(H(X, £)), ([£], D) € Pxe .
Remark 4.4.1. Note that, if nx = 3, then we have s(D) € {0, 1, 2}.

4.3. Degenerations. In this subsection, we introduce certain degenerations of X*® and
prove the first main result in the case of irreducible component-generic pointed stable
curves (Proposition 4.6).

4.3.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption intro-

duced in 2.3.3 (i.e., n o p'—1). Moreover, we assume that X* = (X, Dy of {1, Tny })

is an irreducible component-generic pointed stable curve over k.
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4.3.2. Degeneration data. We introduce some degeneration data for X°. Let R be a

discrete valuation ring with algebraically closed residue field ki, Kr the quotient field

of R, and K an algebraic closure of K. Suppose that k C Kg. Let X* = (X, Dy def

{e1,...,eny}) be a pointed stable curve of type (gx,nx) over R. We put

° def def ,,q
XW = (XWDXn = {67]717...,6777”)(}) = X* Xp KR,

o def def ° 7
Xﬁ = (Xﬁ7DXﬁ = {eﬁ’l,...,eﬁynx}) - X XRKR7

X0 = (X Dy, ©{ear, o esny ) 2 X X kn

We shall say that X* admits a (DEG) if (gx,nx) # (1,1) and there exists X®* such
that the following conditions hold, where “(DEG)” means “degeneration”:

(i) We have that A7 is K g-isomorphic to X*® x; K, and that X? is a component-
generic pointed stable curve over kr. Then without loss of generality, we may identify
emr, 7 €{1,...,nx}, with z, x; K i via this isomorphism.

(ii) Let J be a set with cardinality #(7) = #(X®"8) which consists of irreducible
singular projective semi-stable curves of genus 1 (i.e., the normalizations are IP’}CR). Let &
be a set which consists of smooth semi-stable curves of genus 0 (i.e., a set of ]P’}CR). Let C4
be either an empty set or a smooth semi-stable curve of genus gx — #(X*"8). We have
the set of irreducible components of X is

{T}rez U{C1} U{P}pes.

Moreover, one of the following conditions is satisfied (see Example 4.5 below for examples
of (a) (b) (c)):
(a) Suppose that nx < 1 and # (X&) > 1. Then the following conditions
hold:
o C; =) when nxy = 0 and #(X®"8) = 2: otherwise, C # 0.
e When C; = 0, we have 7 & {T,T5} such that #(1T3 N T3) = 1.
e When C; # ), we have that 7" NT" # 0 if and only if 7" = T" for all
77" € 7, that #(T'NCy) =1 for all T € 7, and that Dy, C C}.
o 7 =
(b) Suppose that nx = 2. Then the following conditions hold:
e T'NT" #Pif and only if 7" =T" for al T, T" € 7.
e () = () when gx — #(X®"¢) = 0; otherwise, C; # () when gy —
#<Xsing) > 1.
o« 7 {P} such that Dy, C P.
e When C; =0, we have #(PNT)=1forall T € 7.
e When C; # (), we have that #(C; NT) = 1, that #(C; N P) =1, and
that PNT =0 forall T € 7.
(c) Suppose that ny > 3. Then the following conditions hold:
e The first and the second conditions of (b) hold.

o« 7Y {Ps}ve2,...nx—13 such that Dy, C UU€{2 ..... -1} o -
e When C} =), we have # (P, NT)=1and Pb,NT =0 forall T €
and all v # 2.

e When C; # ), we have #(C1NT) =1, #(C1NP) =1, C;N P, = 0,
and P,NT = for all T € .7 and all v # 2.
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o If nxy > 4, for each v € {2,...,nx — 2}, we have #(P, N Pyy1) = 1
and P, N P, = () when v' & {v — 1,v,v + 1}.

o If nx =3, we have Dy, N Py = {e51,€s2, €53}

o If nx =4, we have Dy, N Py = {es1,€s2} and Dy, N Py = {es3, €54}

o If nyx > 5, wehave Dx,NPy = {es1,€s2}, Dx.NPry—1 = {€sny—1,Csnx |
and Dy, N P, = {es,}, v e {3,...,nx —2}.

Note that since generic curves admit all degeneration types, we have that X*® admits a
(DEG) when X* is a component-generic pointed stable curve of type (gx,nx) # (1,1).

4.3.3. Next, we give some examples to explain the degeneration data introduced above.
For simplicity, we assume that #(X*"8) =2, C) # (), and nx # 0.

[P

Example 4.5. We use the notation “e” and “o with a line segment” to denote a vertex
and an open edge, respectively. Moreover, we use v(_) to denote the vertex corresponding
to the irreducible component (—).

(a) If ny = 1, then the dual semi-graph I'ys of X7 is as follows (see 4.3.2 (ii)-(a)):

r xe: Ty
U01
UT2

(b) If nx = 2, then the dual semi-graph I'ye of X is as follows (see 4.3.2 (ii)-(b)):

[xe: vy
Uy vp
(%

(c) If nx =5, then the dual semi-graph I'ye of A} is as follows (see 4.3.2 (ii)-(c)):

T Xso: vy
v v v
Ve, Pyl VP3| UPy

UT2

4.3.4. Proposition 4.6 below was obtained by the author of the present paper when
X* is smooth over k (see [Y6, Proposition 3.4]), and its proof is similar to the proof of
[Y6, Proposition 3.4]. On the other hand, the degenerations appeared in the proof of
Proposition 4.6 are different from that of the proof of [Y6, Proposition 3.4]. Then for
convenience of the reader, we give the proof here.
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Proposition 4.6. Let X* = (X, Dy o {z1,.. . 20y }) be an irreducible component-
generic pointed stable curve over k, D € (Z/nZ)~[Dx]°, and a € Revi™(X*) \ {0}.
Suppose that deg(D) = (nx — 1)n (i.e., s(D) = nx — 1) if nx # 0, and that D is
Frobenius stable (i.e., deg(D®) = deg(D) = (nx — 1)n for alli € {0,1,...,t—1}). Then
Y(a,p) attains mazimum. Namely, the following holds:

~ _ ,ymax — 9x — ]-7 Zf nx = 07
(b) = hxe gx +nx —2, if nx #0.

Proof. Let f*:Y* = (Y,Dy) — X* be the Galois multi-admissible covering over k with
Galois group Z/nZ induced by «. Firstly, we note that, to verify the proposition, we may
assume that Y* is connected.

Suppose that X*® is smooth over k, and that nxy < 1. Then the proposition follows
immediately from Proposition 3.11 (i). Thus, to verify the proposition, it is sufficient to
assume that one of the following conditions holds: (1) #(X®1¢) > 1 and nx < 1; (2)
nx Z 2.

Suppose that X* is a singular curve of type (1,1) (i.e., #(X*18) = 1). Since f* is étale,
the proposition follows immediately from Lemma 3.1 (i). Thus, to verify the proposition,
we may assume (gx,ny) 7# (1,1). Now, we can use the degeneration data introduced in
4.3.2.

Since X * is a component-generic pointed stable curve, X* admits a (DEG). We maintain
the notation introduced in 4.3.2. Furthermore, we write Q5 (resp. @) for the effective
divisor on A5 (resp. &) induced by D and a5 € Rev%‘;m()(ﬁ' ) for the element induced by «.
Then we have v(a,0) = V(ar,Q,)- Write 11 xs and Ilys for the admissible fundamental groups

of A7 and A7, respectively. Then we have a specialization surjective homomorphism
SPR - HXW. —» HXS‘-

We suppose that X* satisfies (DEG)-(ii)-(c) (4.3.2). Moreover, we suppose that C; # ()
and nx > 5 (see Example 4.5 (¢)).

Step 1: We define certain smooth pointed stable curves associated to irreducible com-
ponents of X?.

We write Yy pt1, Zoot1, 0 € {2,...,nx — 2}, for the inverse image of P, N P,y of the
natural closed immersion P, — X, and the inverse image of P, N P,,; of the natural
closed immersion P,,; — X, respectively. We define

Py = (P, Dp, o {es1:€52,231 U (C1 N BR)),

o _ def
PnX—l - (an*1>DPnX—1 - {ZHX*Z,nX*beSmX*l:es,nx}>7

° def
Pv = (vaDPU = {zv,lyv,esyv,ywﬂ}), v E {3, oo,y — 2},

to be smooth pointed stable curves of types (0,4), (0,3), and (0, 3) over kg, respectively.
Moreover, we define

Ct = (C1, D, = (CrnP) U (| )Ny,
TeT

T*=(I,Dr ¥ TNnCy), Te T,
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to be a smooth pointed stable curve of type (gx — #(X518), 1+ #(X*"8)) and a singular
pointed stable curve of type (1, 1) over kg, respectively. Note that since C is generic, we
have oc, = gx — #(X®"8) (i.e., C} is ordinary (2.2.2)).

Step 2: We construct a Galois admissible covering of X? by using specialization iso-
morphisms of maximal prime-to-p quotients of admissible fundamental groups.

Let fp def o x, Kp - Ve = (W, Dy,) ©ye 5, K — Xz be the Galois admissible

covering over K p with Galois group Z/nZ induced by f*, and Hy% C H;%- = [Iy. the
admissible fundamental group of J7. By the specialization theorem of maximal prime-to-p
quotients of admissible fundamental groups ([V, Théoreme 2.2 (c)]), we have

~

/ / /
sphy Hg%. — 1.

Then we obtain a normal open subgroup Hé’;. o sp%/(H’;.) C H’};.. Write Ilys C Ilye for
s 7 s s s

the inverse image of Hg,/. of the natural surjection Iy — H’/’Y/.. Then IIye determines a
Galois admissible covering

fe: V0= (Vs Dy,) = &7
over kr with Galois group Z/nZ. We denote by ay € Rev%im(/\fs‘) the element induced

/
,aby —
(splgp ™)1

o . . /’ b /7 b fe %4
by the composition homomorphism Hg’(s.a — H’)’%.a — Z/nZ.

Step 3: We compute the generalized Hasse-Witt invariant 7y(a,,p,,) by applying The-
orem 3.9, Lemma 4.3, and Lemma 4.4.

The structure of Hg;s. (2.1.6) implies that f, is étale over ([Upes 7)) N Ci. Then we

obtain that fs is étale over Cy N P,. Thus, f, is étale over D¢,. Let Y, def ITHPR,),

ve{2,...,nx —1}. We put

Y fNDR)), ve {2, nx — 1},

Then f? induces a Galois multi-admissible covering

Y € (Y, Dy,

fo:Ye =Py ved{2,...,nxy — 1},

over kg with Galois group Z/nZ. We maintain the notation introduced in Lemma 4.3.
Then we see that the ramification divisor on P,, v € {2,...,nx — 1}, induced by f? and
a is as follows:

Q2 = d$165,1 + d:cz €s,2 + a2.3Y2.3,
def
QnX—l = an—Q,nX—lan—Z,nX—l + dmnxfles,nx—l + dmnX Csnxs
def b d
QU = v—1,02v—1,0 + 2, Cs,0 + Ay v+1Yvw+1, U € {37 cee, N — 2}
Since fs is étale over C} N Py, we see that f2 v € {2,...,nx — 1}, induces a pair

([L.], Q) € ﬁp;w Moreover, the kg[u,]-module H} (Y,,F,) ® kg admits the following
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canonical decomposition
HY(Y,,Fy) @ ke = @ My, ()),
JEZ/nZ
where ¢ € pu, acts on My, (j) as the (/-multiplication. On the other hand, Lemma 4.3
implies deg(QﬁZ)) = deg(Q,) = 2n,i € {0,...,t —1}. Then by applying Lemma 4.4, we
have
V(£),@u) = dity, (My, (1)) = dimy, (H'(P,, £,)) = 1.

def

Let Z; = f;7}(C1). Then f? induces a Galois étale covering (not necessarily connected)

def

f(./‘l : Zl. = (Zl7DZ1 = fs_l(DC1)) - Cl.
over kg with Galois group Z/nZ. Write ac, € Revi™™(C?) for the element induced by f&,
and a. The kg[u,]-module H (Z;,F,)®kp admits the following canonical decomposition
H}\(Z,F,) @ kr= €D Mz (),
JEZ/nZ
where ¢ € pi,, acts on Mz, (j) as the ¢(/-multiplication. Then Proposition 3.11 (i) implies
_ ] gx — (X, if ag, =0,
T O = gy — #(X) — 1, if ag, #0.
Let VT = f o

—UT), T € 7, and T the smooth compactification of Uy < T'\ 75", Then
fs induces a Galois multi-admissible covering

def ,_

f2: Ve = (Ve, Dy & f7Y(Dp)) — T

over kg with Galois group Z/nZ. Then f7 induces a Galois multi-admissible covering
fo:Ve= (Vs Dy,) = T

over kr. Write az € Revo(f') for the element induced by f% and a,. By using the

proposition of the case where X*® is a singular curve of type (gx,nx) = (1,1), we obtain
that (a0 = 0. Thus, Theorem 3.9 implies that

,7(0‘37@3) = gX + nx — 2

Step 4: We compute 7(a;,q,) by using specialization surjective homomorphisms of
admissible fundamental groups.

The kg[p,]-modules H} (Y5, F,) ®@kr and HE, (Vs, F,) ® kg admit the following canonical
decompositions

Hét(yﬁ7 FP) ® kR = @ M)%(])a

JEZ/NZ
Hélt(y&Fp) ® kr = @ My, (7).
JEZ/nTZ
respectively. Moreover, we have an injection as kg[u,]-modules

Hélt(ys’Fp) ® kR — Hélt(y@ Fp) ® kR
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induced by the specialization map ITys — Ily.. Thus, we have
gx +1x = 2= Y(a,.Qs) = dimg, (My, (1))

< VemQy) = dimkR(Myﬁ(l)) <gx+nx —2.
This means (a,.q.) = 9x + nx — 2. We complete the proof of the proposition when X*
satisfies (DEG)-(ii)-(c), C; # 0, and nx > 5.

By applying similar arguments to the arguments given in the proof above, one can
prove the proposition when X* satisfies (DEG)-(ii)-(c) and either C; = 0 or nx < 4
holds. Moreover, similar arguments to the arguments given in the proof above imply
that the proposition holds when X* satisfies either (DEG)-(ii)-(a) or (DEG)-(ii)-(b). We
complete the proof of the proposition. O

Remark 4.6.1. Suppose that X*® is a smooth component-generic pointed stable curve
over k. By applying [Y6, Proposition 3.4], we obtain a necessary and sufficient condition
for ordinariness (i.e., the genus and the p-rank of coverings are equal, see 2.2.2) of prime-
to-p cyclic admissible coverings of X* (see [Y6, Theorem 1.2]). On the other hand, in the
theory of anabelian geometry, we expect that the geometric information of X* (e.g. the
type (gx,nx), the dual semi-graph I"x., the isomorphism class of X*®) can be reconstructed
group-theoretically from its fundamental group. From this point of view, the generalized
Hasse-Witt invariants of coverings are much better than the p-rank of coverings since they
contain the information concerning the type (gx,nx) of X°®. This is the reason why we
focus on the maximum generalized Hasse-Witt invariants in the present paper.

In the remainder of this section, under certain assumptions, we generalize Proposition
4.6 to the case where X* is not necessary to be irreducible.

4.4. Minimal quasi-trees. In this subsection, we introduce the so-called minimal quasi-
trees which play an important role in the remainder of the present paper.

4.4.1. Settings. Let W* = (W, D) be a pointed stable curve of type (gw,nw) over k
and I'ye the dual semi-graph of W*.

4.4.2. Before we give the definition of minimal quasi-trees, we introduce some notation
concerning sub-semi-graphs. Let G’ be a connected semi-graph. We shall call G" a sub-
semi-graph of G if the following conditions hold:

(i) v(G') # 0 and v(G') C v(G).

(ii) e(G’) C e (G) is the subset of closed edges such that v(e) C v(G’).

(iii) eP(G') C (e?(G) U eP(GQ)) \ e(G’) is the subset of edges such that

#(v(e)Nov(G)) =1.
Note that the definition of G’ implies that G’ can be completely determined by v(G’) if
v(G’) # (0. The conditions (ii), (iii) imply that, if e € €?(G) is a loop and v(e) C v(G’),
then e € e (G).

Suppose that G’ is a sub-semi-graph of G such that v(G’) # 0. Let L C ¢“(G’) be

a subset of closed edges of G’ such that G’ \ L (i.e., removing L from G’) is connected.

For any e % {p! b2} € L, we put ¢! & {bL, 0%}, i € {1,2}, and shall call ¢’ the i-edge

associated to e. We shall call G/, the semi-graph associated to G’ and L if the following
conditions hold:
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(i) v(Gh) = v(G).

(i) eP(G)) & eP(G) U {e!,e2}.er, such that (Si(e) = (F'(e) if e €
e%P(G'), that ¢GL(e!) X {¢G'(b1), {v(G})}} if e! is the 1-edge associated to
e € L, and that (%% (e2) & {¢& (82), {v(G))}} if €2 is the 2-edge associated
toee€ L.

(if) e/(G,) & el(G') \ L such that (G%(e) % (% (e) if e € e(G') \ L.

Example 4.7. We give some examples of semi-graphs to explain the above notation. We
use the notation “e” and “o” to denote a vertex and an open edge, respectively.
Let G be a semi-graph and G’ a sub-semi-graph of G whose set of vertices is {v1,v2}

as follows:
€2

G/I 61 U2 0 €4

Moreover, let L & {es} C e(G') be a subset of edges of G’ and {e3, €3} the set of 1-edge
and 2-edge associated to e;. Then we have the following:

| )
es j62
G’ eloi (G} V2 ey
€3

4.4.3. Definition of minimal quasi-trees associated to Dyy .

Definition 4.8. We maintain the notation introduced above. Let I"” be a sub-semi-graph
(4.4.2) of Tye and L C (1) \ e!P(IV) (see 2.1.1 for eP(T)). We shall call the semi-graph
I, associated to I" and L (4.4.2) a quasi-tree associated to Dy, if the following conditions
are satisfied:

o I\ elP(I)) is a tree.

e ¢°?(T'y.) is contained in e°P(T'}).
Moreover, we shall call a semi-graph

I'p
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a minimal quasi-tree associated to Dy if either I'p,, = () when ny = 0 or the following
conditions are satisfied when ny, # 0:

e I'p, is a quasi-tree associated to Dyy.
e Suppose that [ is a quasi-tree associated to Dy such that I/ C I'p, .. Then we
have I =T'p,, .

Note that by the definition of I'p,,, we have that T'p,, \ e®(T'p,, ) is a tree.

In particular, when e®(I'ye) = ), minimal quasi-trees are very simple. Namely, a
minimal quasi-tree I'p,, is a minimal tree-like semi-graph contained in I'yye such that
I'p,, contains all of the open edges of I'yye.

We will see that there exists a minimal quasi-tree associated to Dy, for an arbitrary
pointed stable curve W* (see 4.4.5 below).

4.4.4. Before we start to explain the constructions of minimal quasi-trees defined above,
we introduce some notation. Let Z*® be a pointed stable curve over k, I'ze the dual semi-
graph of Z*® such that ['ze \ e!P(I'z.) is a tree, and that E; C e°P(I'zs) is a subset of open
edges.

Firstly, we introduce a subset of vertices V; C v(I'ze) which consists of terminal ver-
tices (i.e., the vertex v such that #(Z, N (U, ey o)\ o} Zv)) < 1, where Z, denotes the
irreducible component corresponding to v) of I'ze such that for each v € Vy, v is not
abutted to e € Fz. Namely, we put (see 2.1.1 for e!'#* (v))

Vy v ev(lge) | #(52 (0) N (eI ze) \ eP(ze))) < 1, €72 (v) N Ey = 0} € v(I'ze).
Note that #(efz* (v) N (e?(T'ze) \ €P(I'z¢))) = 0 < 1 if and only if Z* is irreducible. We
call Vi the set of terminal vertices avoiding to E.

Example 4.9. We give an example of V. Suppose that the dual semi-graph I'z. is as

follows:
€1 €2
b
by ?

We see that eP(I'ze) = {c}, and that the set of terminal vertices is {v;,v3}. Then
[z \ eP(I'ze) is as follows, which is a tree:

€1 €2

FZ' \elp(FZ.): V1 A9 Vg A3 oU3

Let E; & eP(T'z+). Since e'2* (v) = {e1, b1} and €'2* (vy) = {eg, by}, we have V; = {v3}.
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4.4.5. Constructions of minimal quasi-trees associated to Dy, and their associated pointed
stable curves. Next, we define a minimal quasi-tree associated to Dyy. Let E C e(Tyye)\
e'P(I'yye) be a (possibly empty) subset of closed edges such that Tyye \ (E'U eP(Tyye)) is
a connected tree. Note that it is easy to see that E exists.

Write N for the set of nodes of W corresponding to the closed edges which are contained
in F, and write normy : Wy — W for the normalization morphism of the underlying
curve W over N. We define a pointed stable curve over k to be

def

W = (Wi, Dw,) = W5 = (Wy, D, = normy! (D U N)).

Note that the above construction implies Dy, C Dy, (i.e., e®(I'we) C e®(I'we)). Write
[we for the dual semi-graph of W?. Then the construction of W} implies that 'ys \
e (Tys) is a tree.

Suppose that ny # 0. Then for all © € N, if W? has already been defined, we may

define W, , as follows: Let V; C v(I'we) be the subset of terminal vertices avoiding to

e®(lye) C eP(De). If Vi = 0, then we put W7, = We. It V; # 0, we write W,y for

the topological closure of
wi\ (U )
veV;
in W;. Note that the definition of V; implies that W, is connected, and that Dy, is
contained in W;,;. Then we define a pointed stable curve over k to be

o def def
Y0 S (Wi, Dw,, € (Dw, 0 Win) U (L W) nWip).
veV;
Note that we have (') C (L, ).
Let ip be the minimal natural number such that V;, = (). Note that the above construc-
tion implies that W2 = W for all j > ig. We put

° def ®
WF = (WF7DWF) = VVioa
I
Then I'p,, © T is a minimal quasi-tree associated to Dy,. We shall call W the pointed

stable curve associated to I'.

Note that we have that Dy C Dy, and that T'\ eP(T') is a tree. Moreover, we see
v(I") C v(l'ye) and e(I') C e(I'ye), where e(—) denotes the set of edges of (—) (2.1.1).
Note that an open edge of I' is not an open edge of I'yye in general, and that a closed edge
of I' is a closed edge of I'yye.

Moreover, the construction of I' depends on the choice of F (i.e., a subset of closed

edges of e (T'ye) \ e(T'ye) such that T'yye \ (E U eP(Tye)) is a tree).

4.4.6. We maintain the notation introduced in 4.4.5. Let us give some examples to
explain the above constructions.

Example 4.10. (a) Let W* be a pointed stable curve over k such that the following
conditions hold: (i) The set of irreducible components of W is {W,, , W,,, W, }; (ii)
Dy = {wy,,ws, }; (iii) The set of nodes is {we, wq,, Way, wa, }; (iv) W, is a singular
curve with the unique node we; (v) wy, € Wy, and wy, € W, (Vi) Way, Way € Wo, N W,,;
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vil) wg, € Wy, N W,.. We use the notation “e” and “o” to denote a node and a marked
3 2 3
point, respectively. Then W* is as follows:

Way 17,
2

The dual semi-graph I'ye of W* such that the following conditions hold: (i) v(I'ye) def

{v1,v9,v3}; (ii) eN(Type) \ P (Tyye) aof {a1,as,az} such that a; and as abut to v; and
v9, Tespectively, and that az abuts to vy and wvs; (iii) e (Tyye) o {c} and ¢ abuts to vy;
(iv) e°P(Tyye) e {b1,b2} such that b; and by abut to vy and vy, respectively. We use
the notation “e” and“ o with a line segment” to denote a vertex and an open edge,
respectively. Then 'y is as follows:

[yye:
(b) Let £ o {ai}. Then we see that the dual semi-graph I'ye of W} is as follows:
ay af
Typs: c UL @y V2 a3z g,
b "

Note that the set of terminal vertices avoiding to e®?(I'ys) of W is {vs}.

(c) We obtain a minimal quasi-tree I'p,, I associated to Dyy is as follows:

aj ai
def
FDW =1 c V1 G2 V2 as
ba
by

On the other hand, W} is as follows:
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(d) Next, we give an example IV C I'yye, which is a tree containing all open edges of
['we, and which is not a (minimal) quasi-tree associated to Dy,

T V1 A9 )
I b
by ’

If I is a quasi-tree, then by the definition of quasi-trees (Definition 4.8), I is equal
to a semi-graph I'7, (4.4.2) associated to a sub-semi-graph I' of I'yye and a subset of
closed edges L" C e(I"”") \ e(I'). Thus, the definition of I, implies that e'z”(v;) =
{c,b1,al,as}. This means that I is not a quasi-tree.

4.4.7. We maintain the notation introduced in 4.4.5. Suppose that ny, # 0, and that
I'=TIp,, is a minimal quasi-tree associated to Dyy.
The construction of Wr implies that there is a natural morphism

fo Wr =W

over k. We denote by
or: ' — Dy

the map of dual semi-graphs induced by fr. Note that the construction of Wr implies
that fr induces an injection of sets of irreducible components fi™ : Trr(Wr) < Trr(W)
(or equivalently, ¢r induces an injection of sets of vertices v(I') < v(I'ws)). By the
construction of I', we see that the set of marked points Dy, of Wy can be divided into
the following three parts:

e The set of marked points Dy, of W* (then fr(Dy;. \ Dy) C Weine).

o Let w € Dy, \ Dw and W, the unique irreducible component of Wr containing
w. Since fr(w) € W8 we have fr(w) € fr(W,) N W., where W, € TIrr(W)

is the unique irreducible component containing fr(w) if fr(w) € fr(W,)s"8 (i.e.,

W, = fr(Wy)), and is the unique irreducible component such that fr(W,,) # W,

if fr(w) € fr(Wy)\ fr(W,)*8. Then we put
Dp, © {w € Dy, \ Dw | W, & Tm(fi)}.
e We put
Dy, © {w € Dy, \ Dw | W}, € Im(fi")}.

Note that we have Dy, = Dw U Dg, U Dp,, where LI means disjoint union.
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Note that fr : Wr \ Dg, — fr(Wr). Namely, the semi-stable sub-curve fr(Wr) C W is
glued by Wr along Dg, (or Wr is the normalization of fr(Wr) at fr(Dg,)), and fr|w\ Dy,
is an isomorphism.

We define (for instance, see Example 4.11 below)

Whim = (Wpim & £ (Wr), D m < fo(Dw U Dg,))

T

to be a pointed stable curve over k. Then we see that the dual semi-graph of W2,
coincides with the image Im(¢r). We call

= 'y
r‘lm
the image of the map ¢r (for instance, see Example 4.11 below). Moreover, we denote by
normr : Wr = Wrim

the natural morphism induced by fr which coincides with the normalization morphism of
Wrim over the set of nodes fr(Dpg,).

4.4.8. We maintain the notation introduced in Example 4.10 and give an example of '™,

Example 4.11. We see that the set of open edges of W corresponding to Dg, is {as}
(Example 4.10 (c)), and that the set of open edges of W corresponding to D, is {e1, e}
(Example 4.10 (c)). Then the image I'™ of the map ¢r : I' — T'Yy, is as follows:

[im.

On the other hand, W, is as follows:
W,

wa1 wa3
I.‘im : wC
wbl wa
w
@2 W,,

Note that D, = {w.} and Dg, = {we,, we,}, where w,,, we,, i € {1,2}, denote the
marked points of W corresponding as, e;, respectively. We have fr(Wwa3) = Wy,
fF(Wwel) = va fF(WwEQ) = Wv27 W{Uq = va and quueQ = Wvl-

4.5. The first main theorem. We are going to prove the first main theorem of the
present paper.

4.5.1. Settings. We maintain the notation introduced in 2.1.2 and the assumption in-

troduced in 2.3.3 (i.e., n aof p' —1). Moreover, we assume that X* is a component-generic
pointed stable curve over k.
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4.5.2.  As we have mentioned before (Example 3.12), Proposition 3.11 (i) does not hold
in general. The key is that the ramifications over nodes cannot be completely determined
by the ramifications over marked points if the dual semi-graphs are not tree-like. Then
by Proposition 4.6, we see that, to generalize Proposition 3.11 (i) to the case of (possi-
bly reducible and possibly singular) pointed stable curves, we need a tree-like structure
concerning I'ye \ e?(I'y.). Note that, if ny # 0, the ramifications over marked points
can completely determine the ramifications over nodes contained in minimal quasi-trees.
Then we introduce the following conditions: I'x. is a tree if nx = 0, and I'xe is a minimal
quasi-tree associated to Dy if ny # 0. Moreover, we have the following proposition.

Proposition 4.12. Let D € (Z/nZ)~[Dx]® be an effective divisor on X such that
s(D) =nx — 1 if nx # 0, and that D is Frobenius stable (i.e., deg(D®) = deg(D), i €
{0,1,...,t —1}). Then the following statements hold:

(i) Suppose that one of the following conditions is satisfied:

o ny =0 and I'x. \ e (T'xe) is a tree.
e ny # 0 and I'xe = I'p, is a minimal quasi-tree associated to Dx (see Definition

1.8).
Then Y(a.p) attains mazimum for all o € Revy™(X*®)\ {0}. Namely, the following holds:
_ _max __ gX_17 ’ianZO,
D) =X = gy +nx —2, if nx #0.

(ii) There exists an element B € Reviy™(X*®) \ {0} such that v py attains mazimum.
Namely, the following holds:

~ gx +nx —2, ifny #0.

Y(B,D) = Vxe =
Proof. (i) Let f*:Y* = (Y, Dy) — X* be a Galois multi-admissible covering over k with
Galois group Z/nZ induced by «. To verify (i), we may assume that Y'* is connected.
Suppose that nx = 0. Since I'xs \ e?(T'xe) is a tree, we see immediately that f is étale.
Then (i) follows from Theorem 3.9 and Proposition 4.6.
Suppose that ny # 0. Let v € v(I'xe) and mo(X \ X,) the set of connected components
of X\ X, where X \ X, denotes the topological closure of X \ X, in X. We put

max { gx — 17 anX - 07

D, = (DxnX,)u( |J (©nx,).
Cemo(X\Xy)

Let X3 = (X, Dx, o D,), v € v(I'xs), be a pointed stable curve of type (¢gx,,nx,) over
k. Then f* induces a Galois multi-admissible covering
fove X

v

v € v(lye),

over k with Galois group Z/nZ.
Note that since I'xe is a minimal quasi-tree associated to Dx, we have that C' N X, =
{z¢} is a closed point of X for all C' € mo(X \ X,). We put

Q= Y odi@rt D ordee(Qac € (Z/nZ) D, v € v(Tx).

z€DxNXy Cemo(X\Xy)
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the ramification divisor on X, induced by f,. Since I'xs \ eP(I'xs) is a tree, then Q,
satisfies the following:

ord, (Q,) % ord, (D), z € Dy N X,,

ord,.(Q,) def [ Z ord.(D)], C € (X \ X,),

ceDxNC

where [(—)] denotes the integer which is equal to the image of (—) in Z/nZ when we iden-
tify {0,...,n—1} with Z/nZ naturally. By applying similar arguments to the arguments
given in the proof of Lemma 4.3, we have

deg(Qy) = (#(D,) — Dn and deg(QY) = deg(Qu), i € {0,...,t —1}.

Let IIxs, v € v(I'ye), be the admissible fundamental group of X;. Write a, €

Revgim(X; ) for the composition of the natural homomorphisms ITys — IT3% % Z/nZ.
Note that a,, # 0 for all v € v(I'xs). Then Proposition 4.6 implies

| ogx, — 1, if Supp(Qv) =0,
Tew@) = i+ 5(Qu) — 2, if Supp(Qy) # 0.

Thus, Theorem 3.9 implies that

__ .max __ ax — 17 if nx = O’
’Y(OL,D)_,Y ¢ g)(—|—’)’l,)(—27 lfnx?éo

This completes the proof of (i).
(i) Suppose that ny < 1. (ii) follows from Proposition 3.11 (ii). Then to verify (ii), we

may assume that nyxy > 2.

Let T ¥ Dy be a minimal quasi-tree associated to Dx, I'™ the image of the natural

morphism ¢r : [' — I'xe, and
Xl: - (XF7 ‘DXF)7 Xl:lm - (XI‘im, DXFim)

the pointed stable curves over k associated to I', T™ respectively (4.4.5, 4.4.7). Note
that D is also an effective divisor on Xyim.

Write Dr for the pulling back divisor normy: (D) (see 4.4.7 for the definition of normy).
Let ar € Rev%irm(Xf) be an arbitrary element such that ar # 0. Then similar arguments
to the arguments given in (i) imply Y, pr) = 9xp +nx — 2, where gx,. denotes the genus
of Xr. We denote by

gy Zp — X7

the Galois multi-admissible covering over k£ with Galois group Z/nZ induced by ar. By
gluing Zp along gp' (Dx,. \ normg* (D X)) 0 @ way that is compatible with the gluing
of X that gives rise to X im, We obtain a pointed stable curve 27, over k. Moreover, gp
induces a Galois multi-admissible covering

gl:im : Zl:lm — Xl:lm
over k with Galois group Z/nZ. Let 11 xp, 11 Xt be the admissible fundamental groups

of Xp, X°

Pim» respectively. Write apim for an element of Hom(H%P;im,Z/ nZ) induced by
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grim such that the composition of the natural homomorphisms H%}’f — T135 7 /nZ
r‘lm
is equal to ar. We put Drim def D, - Then Theorem 3.9 implies that

P)/(apimaDFim) = gXFim + nX - 27

where gx ,, denotes the genus of Xpiu.

On the other hand, we write 7y(X \ Xrim) for the set of connected components of
X \ Xpim, where X \ Xpim denotes the topological closure of X \ Xpim in X. We define

the following pointed stable curve

C* = (C, D¢ def CﬂXFim>, Ce WO(X\Xpim),

over k. Note that since X*® is component-generic, we have that C* is also component-
generic. Then the p-rank o¢ is equal to the genus of C*.
Let C € mo(X \ Xpim). We put

ze= | e
1€EZ/nZ

where C7 is a copy of C*, and LI means disjoint union. Then we obtain a Galois multi-
admissible covering

9o Lo — C*

over k with Galois group Z/nZ, where the restriction morphism g¢|cs is an identity, and

the Galois action is j(C;) = Cy4; for all 4, j € Z/nZ. By gluing Z2,,, and {Z&}Ceﬂo(m)

along
g X (| ©)) and {gg' (Xpm N )} vemo (T
CET(O(X\X[‘im)
in a way that is compatible with the gluing of {Xf.} U {C‘}Ceﬂo(m) that gives rise
to X*, we obtain a Galois multi-admissible covering

PEPAIES ¢

over k with Galois group Z/nZ.
Let I1x« be the admissible fundamental group of X*. Moreover, we write 3 € Reviy™(X*)
for an element induced by ¢® such that the composition of the natural homomorphisms

s, — I35 LA Z/nZ is equal to apm. By applying Theorem 3.9, we see

Tim
Y(B,0) = Vxe = gx +nx — 2.
We complete the proof of (ii). O

4.5.3. Now, the main result of the present section is as follows.

Theorem 4.13. Let X* = (X, Dx) be a component-generic pointed stable curve over k.
Let m € N be an arbitrary positive natural number prime to p and D € (Z/mZ)~[Dx]°
(2.2.5). Lett € N be a positive natural number such that p* =1 in (Z/mZ)*. Write n for
p' =1, m' forn/m, and D’ for the divisor m'D € (Z/nZ)~[Dx|" when we identify Z/mZ
with the unique subgroup of Z/nZ of order m. Then the following statements hold:



54 YU YANG

(a) We have (see 2.2.5 and Definition 2.4 for (D")®)

0, ifnx =0,
S(D):{ nx — 1, ifni#()

and D' is Frobenius stable (i.e., deg((D)?) = deg(D’), i € {0,1,...,t —
1}).

(b) There exists an element 8 € Reviy™(X*)\ {0} (Definition 2.4 (i)) such
that v(g,py attains mazimum (Definition 3.10 (ii)). Namely, the following
holds (see Definition 3.10 (i) for %3

_ max gX—l, anXZO,
TB.D) = Txe = gx +nx —2, ifnx #0.

Moreover, suppose that one of the following conditions is satisfied:

o ny =0 and Ix. \ e®(I'xe) is a tree.
e nx #0 and I'xe = 'p,, is a minimal quasi-tree associated to Dx (4.4.5).

Then (a) and (b) are equivalent to the following statement:

(¢) Va,py attains mazimum for all « € Revy™(X*®) \ {0}. Namely, the
following holds:

_ _max __ gX_17 ian:07
TeD) =X = gy +ny —2, ifny £0.
Proof. “(b)=-(a)” follows from Lemma 4.2. We prove “(a)=-(b)”. Let I o I'p, be a
minimal quasi-tree associated to Dy, '™ the image of the natural morphism ¢p : I' —
Ixe, Xpiw = (Xpim, Dx_,,,) the pointed stable curve over k associated to I'™ (4.4.7), and
II Xt the admissible fundamental group of X?%... Note that D is also an effective divisor on
Xpim. Let Brim be an arbitrary element of Revis™(X2,..) \ {0}. Write Bl € Reviy™ (X fim)
for the element induced by Ppim.

Let ITxe be the admissible fundamental group of X*®. Proposition 4.12 (ii) implies that

there exists ' € Revia™(X*) such that the composition of the natural homomorphisms
H%}’.im — Il xe ﬂ Z/nZ is equal to ﬁ’rim, and that g py attains maximum. Moreover,
therconstruction of ' given in the proof of Proposition 4.12 (ii) (i.e., the Galois multi-
admissible covering of )?;, v € v(Cxe)\v(I'™), induced by 3 is trivial) implies that 3’ can
be induced by an element of 8 € Reviy™(X*®). Then vs.p) = Yo attains maximum.
This completes the proof of “(b)<(a)”.

Next, we prove the “moreover” part of the theorem. Write o/ € ReVaDd,m(X *) for the
element induced by a. Then we have va,py = Y(o,p1- “(c)=(a)” follows from Lemma
4.2. Moreover, “(a)=(c)” follows immediately from Proposition 4.12 (i). This completes
the proof of the theorem. O

4.6. (m,nx)-ordinary curves.

4.6.1.  We maintain the notation introduced in 2.1.2. Moreover, let M, ., be the moduli
stack parameterizing pointed stable curves of type (gx, nx) (2.1.4) and My, ny € My oy
the open substack parameterizing smooth pointed stable curves of type (gx,nx). We
denote by M M, the coarse moduli spaces of M, ., Mgy ny, Tespectively.

gx,mx» gx,nx
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4.6.2. Let m € N be an arbitrary positive natural number prime to p, and let D €
(Z/mZ)~[Dx]° be an effective divisor on X such that deg(D) = (nx — 1)m if nx # 0.

Definition 4.14. We shall say that X* is (m, nx)-ordinary if, for all & € Revi™(X*®)\
{0}, we have

. max gX—L ianZO,
Ye.D) = Txe = gx +nx — 2, ifny 7A 0.

Note that, if ny = 0 and X* is non-singular, then the definition of (m,ny)-ordinary
coincides with the definition of m-ordinary introduced by Nakajima ([N, §4]).

On the other hand, let ¢ € N be a positive natural number such that p* = 1 in (Z/mZ)*.
Write n for p! — 1, m’ for n/m, and D’ for the divisor m'D € (Z/nZ)~[Dx]® when we
identify Z/mZ with the unique subgroup of Z/nZ of order m. If nx # 0 and X* is
(m, nx)-ordinary, then Lemma 4.2 (ii) implies that D’ is Frobenius stable. Namely, we
have

deg((D")D) = deg(D') = (nx — 1)n, i € {0,1,...,t—1}.

4.6.3. We denote by

def

Upmny) = {q € Mgy ny | curves corresponding to g is (m, nx)-ordinary} C M,

gx,mx:

Moreover, we put Ugy ) & Uimnx) N Mgy ny (ie., the set of points corresponding to
smooth (m,nx)-ordinary curves). Then we have the following result.

Proposition 4.15. The set Uy, pny) is a non-empty open subset of M,

XX

Proof. By applying similar arguments to the arguments given in the proof of [N, Theorem
2], the proposition follows from Theorem 4.13 (i). O

If nx < 1, then Proposition 4.15 was proved by Nakajima ([N, Theorem 2]). Then
Proposition 4.15 is a generalized version of Nakajima’s result to the case of admissible
coverings of smooth pointed stable curves. Moreover, Nakajima ([N, §4 Remark]) asked
whether or not

m U(m,nx)

meN s.t. (m,p)=1

is a non-empty open subset of M, ,. . By applying the theory of Raynaud-Tamagawa

theta divisors and [R2, Proposition 1.2.1], we see that the following holds:
Suppose that nxy < 1. Then we have

Mg(,nx N ( ﬂ U(m,nx)) = ®’

meN s.t. (m,p)=1

where M¢! denotes the set of closed points of M,

gx.nx ax,mx-
This gives a negative answer of Nakajima’s question. On the other hand, we may ask the
following question:

Problem 4.16. (i) Suppose that X* is a component-generic pointed stable curve over
k. Can we find a necessary and sufficient condition that X* is (m,nx)-ordinary for all
m € N prime to p?



56 YU YANG

(ii) Does
Mf(]:i(,nx N ( ﬂ U(mvnx)) = @
meN s.t. (m,p)=1

hold for an arbitrary non-negative integer nx ? Moreover, does

_Cl J—
ng,nx N ( ﬂ U(m»nx)) = @

meN s.t. (m,p)=1

hold for an arbitrary non-negative integer nx ?

5. MAXIMUM GENERALIZED HASSE-WITT INVARIANTS FOR ARBITRARY CURVES

In the present section, we discuss the maximum generalized Hasse-Witt invariants of
cyclic admissible coverings for arbitrary pointed stable curves. The main result of this
section is Theorem 5.4.

5.1. Idea. We briefly explain the idea of our proof of Theorem 5.4.
5.1.1. Settings. We maintain the notation introduced in 2.1.2.

5.1.2. An easy case. Firstly, let us prove an easy case (i.e., X* is irreducible) of the main
result of the present section.

Proposition 5.1. Suppose that X* is irreducible. Then there exist a positive natural
number n < pt — 1 € N, an effective divisor D € (Z/nZ)~[Dx|° (2.2.5) on X of degree
(nx — )n if nx # 0 (resp. degree 0 if nx = 0), and an element a € Revis™(X*)\ {0}
(Definition 2.4 (1)) such that y(a,py attains mazimum (Definition 3.10 (ii)). Namely, the
following holds:

_ _max __ gx — 17 anX = 07
TeD) ZIX = gx +nx — 2, if ng #0.

Proof. Since X* is irreducible, we write X* for the smooth pointed stable curve of type
(g5,nz) over k associated to the unique vertex of the dual semi-graph I'ye of X* (2.1.3).
Note that we have
9% = gx — #(X™"E), ng = nx + 24(X"E).

Moreover, Dx C Dy implies (Z/nZ)~[Dx]° C (Z/nZ)~[Dz]°.

By applying Theorem 3.9, to verify the proposition, it is sufficient to prove that there
exist a positive natural number n % pt — 1 € N, an effective divisor D € (Z/nZ)~Dx]°
of degree (nx — 1)n if nx # 0 (resp. degree 0 if ny = 0) on X, and an element a €

Rev%im(X *) \ {0} such that the following holds:
o g)’z—l, ian:O,
T@D) T\ gg4+nx —2, ifnx #0.
Suppose that ny < 1. Then the proposition follows immediately from Proposition 3.11
(ii).
Suppose that ny > 2. Let Dy o {z1,..., 2, } and n; o pi—1,ie{l,...,nxy — 1},
such that the following conditions are satisfied (see 2.4.5 for C(gx)):

e n; >max{C(gx)+ 1,#(e(T'xs))}.
o 0<a;i,a;2 <n;and a;; +a;2=mn; forallie {1,...,ny —1}.
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Furthermore, we put

def .
D; —6a11$1+az2$z+1+ Z nix, i € {1,...,nx — 1},

zEDX\{aci,:ci+1}

which is an effective divisor on X of degree (nx — 1)n;. Moreover, we put

nx— 1
7 def Z i1
p=i=0 ]Div

nyx—1

n ﬁf pznx 1 t; 1 — Z pz;;})tj<ptl _ 1)7

where ¢ 0. We see that D is an effective divisor on X of degree (nx — 1)n such that
D € (Z/nZ)~[Dx]°.
Let L5 be a line bundle on X such that E@” ~ Ox(—D), and L, the pulling back of

L7 by the natural morphism X, > X deﬁned in 2.4.2. Then by applying [T2, Corollary
2.6, Lemma 2.12 (ii), and Corollary 2.13], we see that the Raynaud-Tamagawa theta
divisor associated to Bt5 QL D, €xists (Definition 2.9). Moreover, Proposition 2.10 implies

that there exists a line bundle Z of degree 0 on X such that [Z] # [O %), that [Z57) = [0 %5
and that (see 2.3.4 for 7([£5®f],13))

o g)}—l, ifﬂxzo,
TepeTD) =\ ge4+nx —2, if ny #0.

Let a € Rev%ﬂm(;{‘) be the element corresponding to the pair ([£5 ® 7),D) € QX.
(2.3.2). Then we have Yab) = Ve 5e.0)" This completes the proof of the proposﬂnora

5.1.3. Strategy of the proof of Theorem 5.4. In the remainder of this section, we will
generalize Proposition 5.1 to the case where X* is an arbitrary pointed stable curve over
k (i.e., Theorem 5.4 below).

Let X*® be an arbitrary pointed stable curve over k. For simplicity, we assume that
every irreducible component of X® is non-singular. Moreover, by Proposition 3.11 (ii), we
assume ny > 2. We maintain the notation introduced in the statement of Theorem 3.9.
To verify Theorem 5.4, by applying Theorem 3.9, it is sufficient to construct a prime-to-p
cyclic Galois multi-admissible covering f Y’ — X * with Galois group Z/nZ for every
v € v(['xs) such that the following condltlons are satlsﬁed

® Y@a,,ns,) satisfies the conditions mentioned in the statement of Theorem 3.9.

e The ramification divisor D € (Z/nZ)~[Dx]® associated to f*® is such that s(D) =
nx — 1 (2.2.5).

o {f3}vev(rye) can be glued together. This means that Dg,, v € v(I'xe), is com-
pletely determined by D such that the following gluing condition holds (e.g. see
Example 5.2 Goal below):

Let x be a node of X contained in the intersection X, N.X,, of irreducible
components X,, and X,,. Then we have

ord,(Dsg,, ) + ord,(Dg,,) = 0 mod n.
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Thus, by the definition of admissible coverings (Definition 2.3), we obtain a prime-
to-p cyclic Galois multi-admissible covering f* : Y* — X* with Galois group Z/nZ.

If X* is not irreducible, the constructions of desired Galois multi-admissible coverings of
X* are very difficult in general.

The main difficulty. We cannot determine the ramifications over nodes of a Galois admis-
sible covering in a unique way when the ramifications over Dx are fixed. Then we have
the following;:

(i) Let f* be a Galois admissible covering whose ramification divisor satisfies the third
condition mentioned above. Since the Raynaud-Tamagawa theta divisor concerning Dj,,
v € v(I'xe), does not exist in general, 7(a,,p,,) does not satisfy the first condition men-
tioned above. B

(ii) Even though we can construct fy for every v € v(I'xs) (by applying Proposition
5.1) such that 7@, ,p,, ) satisfies the conditions mentioned in the statement of Theorem

3.9, {f;}vev(px,) cannot be glued together (as admissible coverings) in general.

To overcome this difficulty, we observe that, when I'ys is a minimal quasi-tree (Defi-
nition 4.8), the ramifications over nodes of a Galois admissible covering can be uniquely
determined if the ramifications over Dx are fixed. Then for every v € v(I'xs), we may
construct certain effegtive divisors on X, for every marked point of Dx N X, and ev-
ery node of X®" N X,. Furthermore, by similar arguments to the arguments given in
the proof of Proposition 5.1, we may construct an effective divisor on X, such that the
Raynaud-Tamagawa theta divisor concerning this effective divisor exists. Then we can
obtain Galois multi-admissible coverings for all v € v(I"xe) whose first generalized Hasse-
Witt invariants attain maximum. On the other hand, since the ramifications over nodes
of a Galois admissible covering can be uniquely determined by the ramifications of marked
points when I'xe is a minimal quasi-tree, then we also obtain an effective divisor on X
whose restriction on X, v € v(I'xs), is the effective divisor constructed above. Then we
may construct a desired Galois multi-admissible covering f* (e.g. see Example 5.2 below).

In the general case (i.e., I'xe is not a tree), we take a minimal quasi-tree T’ o I'p,
associated to Dx (Definition 4.8) and the pointed stable curve X7 (4.4.7) associated
to I Then we may construct a desired Galois multi-admissible covering for X (see
Lemma 5.3). In fact, this is the motivation of the definition of minimal quasi-trees.
Moreover, Raynaud’s theorem (i.e., [R1, Théoreme 4.1.1] or Theorem 2.11) implies that we
may construct a Galois (étale) multi-admissible covering for each irreducible component
corresponding to w € v(I'xs) \ v(I") whose first generalized Hasse-Witt invariant (2.2.4)
attains maximum. Then by gluing the Galois multi-admissible coverings together, we
obtain a desired Galois multi-admissible covering of X*.

5.2. A key lemma.
5.2.1. Settings. We maintain the notation introduced in 2.1.2.

5.2.2. In order to convince the reader to follow the constructions given in the proof of
Lemma 5.3 below, we give an example for constructing effective divisors D5, € (Z/nZ)~[D )?1,]0’
v e v(Txs), and D € (Z/nZ)~[Dx]° such that { Dz, }reu(r.) satisfies the gluing condition.
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Example 5.2. Let X*® be a pointed stable curve of type (gx,3) over k. Suppose that

X has two non-singular irreducible components X; and X,, that X; N X5 def {z7},

that Dx N X; déf {$171,ZE172}, and that Dx N X, déf {1'271}. Let ng déf pto —1>>0,
Dy, o {z11,212,27}, Dx, def {z21,27}, X7 = (X1, Dx,) a pointed stable curve of

type (gx,,3), and X5 = (Xs, Dx,) a pointed stable curve of type (¢x,,2). Note that
gx = gx, + gx,. Then we have the following:

X1
X

Goal: We will construct effective divisors Dy € (Z/nZ)~[Dx,]°, D2 € (Z/nZ)~|Dx,)°,
and D3 € (Z/nZ)~[Dx|° on X, X5, and X, respectively, for some n = p' — 1 such that
the Raynaud-Tamagawa theta divisors associated to Dy and D, exist, and that D|,, , =
Diloyys Dlary = Dilars, Dlasy = D2las,, and the gluing condition (as an admissible
covering) D1~ + Ds|,— = 0 mod n hold.

Step 1: We construct effective divisors of degree 2ng (resp. ng) on X (resp. Xs) such
that the Raynaud-Tamagawa theta divisors concerning the divisors exist.

We put

def _ .
Q11 = a1r11 + a2 + noxr~ € Div(Xy),
def .
QLQ = npTo1 € DIV(XQ),

Q1 = w1+ axi o+ noray € Div(X),

where 0 < aq, as < ng are such that a; + ao = ng. Moreover, we put

Q2,1 o nox11 + b1z o + box~ € Div(Xy),

Q22 = bix” + byxey € Div(Xy),

Q2 déf noﬂj‘l’l + b1x172 + b2x2,1 € DIV(X>7

where 0 < by, by < ng are such that by + by = ny.

Since ng >> 0, by applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 2.13],
the Raynaud-Tamagawa theta divisors concerning Q1, Q2, Q11, Q12, @21, Q22 exist,
respectively.

Note that since I'xe is a tree, Q11 and Q2 (resp. Q21 and @Q22) can be completely
determined by @1 (resp. Q2). On the other hand, at present, we cannot construct Galois
multi-admissible coverings whose ramification divisors are the above divisors since the

degrees of Q1, Q11, Q12 (resp. Qa, Qa21, Q22) are not multiples of n (i.e., they are not
contained in (Z/nZ)~[Dx,]° (resp. (Z/nZ)~[Dx,]°)).
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Step 2: By using the effective divisors constructed in Step 1, we construct a global
effective divisor D € (Z/nZ)~[Dx]° on X and D; € (Z/nZ)~[Dx.]° i € {1,2}, on X;
such that D; is completely determined by D.

Write v; and vq for the vertices of v(I'xe) corresponding to X; and X, respectively.
We define the following sets of effective divisors

DiViUI;:I‘-mp déf {QI’Z’}, Divii,r-nd déf {Qz,i}7

irr def s irr-m :irr-nd def
RTY < | | (Divi ™ uDivir™), RTx = {Q1, Q2},
i=1,2
where LI means disjoint union, and “RT” means “Raynaud-Tamagawa” since we use the
divisors to construct certain divisors Dy, Dy, and D whose associated Raynaud-Tamagawa

divisors exist (see Step 3 below), respectively. Let n et Pt — 14 plo(plo — 1) = plo — 1.
We put

Dy = Qi1+ Q21 € (Z/nZ)[Dx,]°,

Dy = Qua+p"Qap € (Z/nZ)~[Dx,)",

D = Qi1+p"Qs € (Z/nZ)~[Dx]".
Then we have

D|{11,1,x1,2} = D1|{I1,1,w1,2}’ D|{$2,1} = D2|{562,1}'
Note that, it is easy to check that Dy, Ds, and D are Frobenius stable.

Step 3: We construct a desired Galois multi-admissible covering of X*°.

By applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 2.13], the Raynaud-
Tamagawa theta divisors concerning D; and D exist. By Proposition 2.10, if t; >> 0,
then there exists o, € Revis™(X?) \ {0}, i € {1,2}, such that Y, p,) = gx, + 1 and
Y(aw, .D1) = gx,- Moreover, since I'xe is a tree, ord,- (D;) and ord,- (Dz) can be completely
determined by D. Namely, we have

Dil = [ Y ordy(D)e =ordy,, (D)e” = (ng+pPbo)a,
z€Dx\{z1,1,71,2}
Doly = ord, (D)™ =[ Y ordu(D)Je” = (n = ordy,, (Da))x” = (n—ng — pba)a,

{L‘EDx\{:Ez’l}

where [(—)] denotes the image of (—) in Z/nZ. Namely, the Galois multi-admissible
coverings induced by «,, and «,, can be glued (as admissible coverings) since ord,- (D) +
ord,- (D) = 0 mod n. Then we obtain a desired Galois multi-admissible covering of X*.

5.2.3. Let G be a connected semi-graph and v € v(G) an arbitrary vertex. Moreover,
we suppose that G is a tree. For each v’ € v(G), there exists a path J,,, connecting v and
v" in G. We shall call a path 6(G,v,v") minimal if we have 6, , = 0(G,v,v") for every
path 0, C 0(G,v,v’) connecting v and v'. Moreover, since G is a tree, 6(G, v, v’) is the
unique minimal path connecting v and v’. On the other hand, we put

def

leng(0(G,v,v")) = #{6(G,v,v")Nv(G)} — 1
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the length of the minimal path §(G,v,v’).

5.2.4. Now, we are going to prove the key lemma of the present section.

Lemma 5.3. Let T I'p, be a minimal quasi-tree associated to Dx, X = (Xr, Dx;.)

the pointed stable curve of type (gx,., nx;.) associated to I' (4.4.5), and lxs the admissible
fundamental group of X7. Suppose that nx > 2. Then there exist a positive natural
number n % pt — 1 € N, an effective divisor Dr € (Z/nZ)~|Dx]° C (Z/nZ)~[Dx.]° on
Xr, and an element ar € Reviy™(Xp) \ {0} such that the following holds:

Yar,Dr) = 9xp T Nx — 2.

Proof. Since I is a minimal quasi-tree associated to Dy, we obtain that I" < T \ eP(T) is
a tree. Then we have v(I') = v(I"). Note that Dx C Dx,.. Let v € v(I') be an arbitrary
vertex and ng = p — 1 € N a positive natural number satisfying (see 2.4.5 for C'(gx))

no > max{C(gx) + 1,#(e(I'xe))}.

Outline of the proof: Before we start to prove the lemma, we give a brief outline of
the proof. The proof is divided into three steps. In Step 1, we construct certain effective
divisors associated to marked points and nodes on irreducible components of X. In Step
2, by using the effective divisors constructed in Step 1, we construct certain effective
divisors on irreducible components of X and an effective divisor on X. In Step 3, we
prove the existence of the Raynaud-Tamagawa theta divisors associated to the effective
divisors on irreducible components constructed in Step 2. Moreover, we prove that the
effective divisors satisfy “gluing conditions” (as admissible coverings). Then we obtain a
desired Galois multi-admissible covering of X*°.

Step 1 (mp): Let v € v(T"). We construct a family of effective divisors Divi"™™ on the
irreducible component X associated to the set of marked points Dx N X, and construct
a family of effective divisors Div,® on X, where “mp” means “marked point”.

We put

D, < Dx N X,, m, o #(D,,), and D, © {To1, - s Ty m, } if My # 0.

Note that D! # Dx. N X, in general. Moreover, we put
D) U (X, N (Xt \ X,)),

where X1\ X, denotes the topological closure of X1\ X, in Xr. Note that since nx > 0,
we have #(D,) > 0. Let w € v(T") \ {v} be an arbitrary vertex distinct from v. Since I'
is a tree, there exists a unique node

w;wEDngw

def
D, =

such that the closed edge of I corresponding to w;,, is contained in the minimal path
O(I'",v,w) (i.e., the minimal path connecting v and w in [ defined in 5.2.3). On the other
hand, we define a set of nodes to be

Node;, © {X,, N Xy, w' € v(T) | leng(8(T", v,w')) = leng(6(I", v, w)) + 1}.
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Note that Node:;w may possibly be an empty set, and that D,, = {z,,} U Node:;w uD.,.
We define two sets of effective divisors

: irr-mp :_.mp
Div,"™  Div,,

associated to v on X, and Xr, as follows. Let i € {1,...,m,—1} and 0 < a,; 1, a2 < No
such that a, ;1 + a,;2 = no. Suppose that m, < 1. Then we put

DIVLH mp def @ Div mp def
Suppose that m, > 2. We define an effective divisor

def , .
Q'U,v,i = a/u,i,leu,i + av,i,va,i_i_l —+ E Nox -+ E nox, 1 e {17 U - 1}7
' €DI\{Tv,i,T0,it1} xE€DY\ D!,

on X, whose support is D,, and whose degree is equal to (#(D,) — 1)ny. We define an
effective divisor

def
Q’U7’u}7i = Z nox, W € U(F) \ {U}7
€D \{zy,w}

on X,, whose support is D, \ {7}, and whose degree is equal to (#(D,) — 1)no.
Moreover, we define

def
v
Q = Ay 1Ty + ay, 4,2L0 i+1 + g nox,

€D Xx \{Zv,i,Tv,i+1}
to be an effective divisor on X1 whose support is Dy, and whose degree is (nx — 1)no.
Note that QF|p;, = Quulp;, for all u € v(I'), and that Quuwi = Quuw for all 7,4’
{1,...,m, — 1}.

We put

my—1 my—1

Div 1rrmpdef |_| {Qvuz} Div 1rrmpdef |_| Div 1rrmp Div pdef |_|{Qv

uev(T)

where LI means disjoint union.

irr-nd

Step 1 (nd): Let v € v(I"). We construct a family of effective divisors Div, "™ on the
irreducible component X* associated to the set of nodes D, \ D), = X, N (X7 \ X,), and
construct a family of effective divisors Div®! on Xp, where “nd” means “node”.

We define two families of effective divisors

. irr-nd :..nd
Div, ™, Div,

associated to v on X, and Xr, respectively, as follows. Let z € Dx \ D, and 0 <
by 1,by 22 < ng such that b, .1 + b, .2 = ng. Suppose that m, = 0. Then we put

Divirr-nd def Q) Div nd def
v

Suppose that m, # 0. Let w, be the vertex such that the irreducible component X,

corresponding to w, contains z (i.e., z € D!, aof DxNX,.). Note that w, # v. Moreover,

let (I, v,w,) be the minimal path connectlng v and w, in IV and w € v(I") an arbitrary
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vertex distinct from w, such that w C §(I”, v, w;). Since I is a tree, we have #(Node] N
(I, v,w,)) = 1. Then we put

AT ' No de;, NI, v,w,) € Dy C Xy

For v and w,, we define

def 4
Qv,v,z - bv,z,lmv,mv + b’u,z,QIv’v’wz + E no,
wGDv\{wv,mu’xiv,wz}
bv,z,lx;wz + bv,z,QZ + E nox
zeDwz\{xvxwz 72}

to be effective divisors on X, and X,,, whose supports are D, and D,,,, and whose degrees
are equal to (#(D,) — 1)ng and (#(D,,.) — 1)ng, respectively.

Let w € v(I") \ {v,w.} be an arbitrary vertex such that w C §(I",v,w,). Then we
define

Qv,wz,z

def _ +
va z — vz,lxuw + bv,z,Ql‘v’w’wz + E nox
T€Dw\{T 3 w52 w w0, }
to be an effective divisor on X,, whose support is D,,, and whose degree is equal to

(#(Dw) — 1)no.
Let w’ € v(I") be an arbitrary vertex such that v’ € §(I",v,w,). Then we define

def
Qv,w’,z = E nox

rEDw/\{x;w,}

to be an effective divisor on X, whose support is D, \ {z, ,}, and whose degree is equal
to (#(Dw) — 1)ng. Note that, if w” € 6(I",v,w,) Ud(I",v,w,) for z,2" € Dx \ D., we
have Qv,w”,z = Qv,w”,z"

Moreover, we define

def
v E
Qz = bv,z,lfpv,mv + bv,z,ZZ + nox
2€Dx \{Tv,my,2}

to be an effective divisor on X whose support is Dy, and whose degree is equal to
(nx — 1)ng. Note that QY|p, = Quu,:|p; for all u € v(T').
We put

Div irr- nd def |—| {Qv Y z} Div irr-nd def |—| Dlvlrr nd Div nd def |—| {QZ}

’U,E’U(F) ZEDx\D/ ZEDx\D;

Step 2: We construct an effective divisor P, € (Z/nZ)~[D,]°, v € v(T), on X, and an
effective divisor Pr € (Z/nZ)~[Dx,]° on Xt for some n.

We put
RTY o |_| (Divi}rr'mp U Divi}rr'nd),
veu(T)
RTx = || (Divi™ U Divi?),

veu(T)
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We denote by RT¥ (X,) € RT%, u € v(T'), the subset whose elements are effective divisors

on X,. Note that the above constructions imply d o #RTY (X)) = #(RTY(X,,)) =

#(RTx) for all uy,us € v(I'). Moreover, let

ou:{1,...,d} 3 RTT(X,) € (P o0,(1),..., Pua ™ 0u(d)}, u e v(I),
be a bijection (as sets) such that, for all uy,us € v(I') and all j € {1,...,d}, the following
conditions are satisfied:
oif P, ;€ Divif;'mp for some v € v(I') and some ¢ € {1,...,m, — 1}, then P, ; €
Div™ ™,

,% ) )
o If P,, ; € Divy;™ for some v € v(I') and some z € Dx \ D,, then P,,; € Divy2™".
Then, by the construction of RT x, we obtain a bijection

def def def

o:{1,...,d} S RTx = {P, = o(1),...,P; = o(d)}

induced by o, u € v(T).
Let t ¥ dtg and n & Z;l:lp(j’l)to (pto — 1) = p' — 1. We define

d
P, = 3" puop, ;e (Z/nZ)~[D,)°, u € v(I),

Jj=1

d
Pr = Y plimVp; e (Z/nZ)”[Dx]"
j=1

to be effective divisors of degrees deg(P,) = (#(D,) — 1)n and deg(Pr) = (nx — 1)n on
X, and Xy, respectively. We see that the support of P,, u € v(I'), is D,, and that the
support of Pris Dy.

Let u € v(I') and 2" € D!,. Then the above constructions imply Pr|,» = P,|,». Moreover,
let x € D, \ D.,. Since I'\ {e!?(I")} is a tree, Xr \ {x} has two connected components C1,

Cy. Let Cy be the connected component such that X, \ {z} is not contained in Cy. We

denote by C, dof {C5} the topological closure of Cy in Xt and M, dof C, N Dx. Then the

above constructions imply

P,|; = ord,(P,)x = | Z ord, (Pr)]z,

x'eM,

where [(—)] denotes the image of (—) in Z/nZ.
Step 3: We construct a desired Galois multi-admissible covering of X*°.

Let u € v(I') and X* the smooth pointed stable curve of type (gu,mn,) over k (2.1.3).
Write norm,, : )?u — X, for the normalization morphism. Then we obtain the pulling back
divisor norm?(P,) on X,. Note that since Supp(P,) is contained in the smooth locus of
Xy, we have norm}(P,) = P,. Let Lp, be a line bundle on )?u such that £%: > O)?u(_Pu)’
and Lp,; the pulling back of Lp, by the natural morphism )Z'M —+ X defined in 2.4.2.

Then by applying [T2, Corollary 2.6, Lemma 2.12 (ii), and Corollary 2.13], we see that
the Raynaud-Tamagawa theta divisor associated to By ® Lp, s exists (Definition 2.9).
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Moreover, Proposition 2.10 implies that there exists a,, € Rev}‘im()?;) such that

Ve, Pe) = Ju + #(Dy) — 2.

Then Theorem 3.9 implies that the element o, € Revis™(X?) induced by &, has the
following property:

V(ew,Py) = 9X, + #(Du> — 27
where gy, denotes the genus of X,,. Write

fo Y2 — X2

for the Galois multi-admissible covering over k with Galois group Z/nZ induced by «,.

Let ' € v(I') \ {u} such that X, N X, # (). We denote by ./ def X, N X, the unique

node. Then the above constructions imply
0 <ord,, ,(Pu), ordxu’u,(Pu/) <mn, ordxuyu,(Pu) +ord, ,(Pu) =n.

This means that we may glue (as admissible coverings) {Y,}ueor)y along {f; (D \
D;) buew(ry in a way that is compatible with the gluing of {X}}ucor) that gives rise to
X7. Then we obtain a Galois multi-admissible covering

Y = X0
over k with Galois group Z/nZ. Note that the construction of f2 implies that fr is étale
over Dx,. \ Dx.
Let IIxe, u € v(I'), be the admissible fundamental group of X;. We denote by ar €

Hom(H}‘E’E,Z/nZ) an element induced by f* such that the composition of the natural

homomorphisms H%}Dﬁ — H%PE I Z/nZ is equal to oy, for all u € v(T"). We put Dp def Pr.

Then we see ar € Revis™(X?) \ {0}. Theorem 3.9 implies

Y(ar,Dr) = 9Xr + S<PF) —1= Ixr +nx — 2.
We complete the proof of the lemma. O

5.3. The second main theorem. Now, we prove the second main result of the present
paper.

Theorem 5.4. Let X* be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k of characteristic p > 0. Then there exist a positive natural
number n %< pt — 1 € N, an effective divisor D € (Z/nZ)~[Dx]" (2.2.5) on X of degree
(nx — 1)n if nx # 0 (resp. degree 0 if nx = 0), and an element o € Revis™(X*)\ {0}
(Definition 2.4 (1)) such that v(,py attains mazimum (Definition 3.10 (ii)). Namely, the
following holds (see Definition 3.10 (i) for v%3):

_ _max __ gx — 17 Zf”X = 07
YD) = Vxe = gx +nx —2, ifnx #0.

Proof. Suppose that nxy < 1. Then the theorem follows from Proposition 3.11 (ii). To

verify the theorem, we may assume ny > 2.

Let T ¥ T py be a minimal quasi-tree associated to Dx, I'™ the image of the natural

morphism ¢p : I' = Ixe, Xp = (X, Dx.), Xpiw = (Xpm, Dx the pointed stable

curves over k of types (gx;,nxp), (9 m» X,um) associated to ', T'™, respectively (see

Tim )
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4.4.5, 4.4.7 for the definitions of '™, ¢p, X2, and X3

Firr)
fundamental groups of X7, X7, respectively.

Lemma 5.3 implies that there exist a natural number
n® pt— 1> max{Clgx) + 1, #(e(I'xs )},
an effective divisor D ¥ Dy € (Z/nZ)~[Dx]® C (Z/nZ)~[Dx.]° on Xr of degree (nx —
1)n, and an element ap € Revd™(Xp) \ {0} such that the following holds:
Ver.D) = gxp +1nx — 2.

We denote by f : Zp — X the Galois multi-admissible covering over k with Galois
group Z/nZ induced by ar. Note that fr is étale over Dx. \ Dx. By gluing Z? along

fF—I(DXF \ (DX U {[Ee}ee(bl:l(eop(r‘im))))

in a way that is compatible with the gluing of X that gives rise to X}.., we obtain a
pointed stable curve Z2;,, over k. Moreover, f? induces a Galois multi-admissible covering

fl’.‘im : Zr.‘im — XI:im

over k with Galois group Z/nZ. Write apim for an element of Hom(I15% ,Z/nZ) induced
rm

), and Ilxe, II Xt the admissible

by ffim such that the composition of the natural homomorphisms H%}} — H%P.A o Z/nZ
I‘lm
is equal to ar. Note that we have D, , = D. Then Theorem 3.9 implies

ﬁy(ar‘imyD) = gXFim + nx — 2

On the other hand, we write mo(X \ Xpim) for the set of connected components of the
topological closure X \ Xpim of X \ Xpim in X. We define the following pointed stable

curve

E*=(E,Dg ™ EN Xpm), E € mo(X \ Xpim),

over k. Proposition 3.11 (ii) implies that there exists a Galois étale covering
fé : ZZ? = (ZEyDZE) — FB*
over k with Galois group Z/nZ such that the following holds:

_J 9g, if gg =0,
V(aE,O) N gx — 1a lf 9dE 7& Oa

where gg denotes the genus of E, and ap € Revi®™(E*) is an element induced by f3,.
We may glue 7%, and {ZE}EEW()(m) along

fl—Tl(X]_“im N ( U E)) and {fE_l(XFim N E)}Eeﬂ'o(m)
EEﬂ'o(X\XFim)
in a way that is compatible with the gluing of {X%..} U {E*} Bero(X\Xoam) that gives rise
to X*, then we obtain a Galois multi-admissible covering
.z =X
over k with Galois group Z/nZ.

Let IIxe, IIgs be the admissible fundamental groups of X*, E* E € mo(X \ Xpim),
respectively. We write « € Hom(II3%,Z/nZ) for an element induced by f* such that
the compositions of the natural homomorphisms [13%% — T34 = Z/nZ, 113h — 1135 =

Flm
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Z/n7Z, E € mo(X \ Xpim), are equal to apim and ag, respectively. We see o € Reva™ (X *)\
{0}. By applying Theorem 3.9, we obtain

Ya,D) = gx T nx — 2.
This completes the proof of the theorem. O

5.4. A stronger version when ny = 3. In the remainder of the present section, we
prove a slightly stronger version of Theorem 5.4 when ny = 3 (i.e., we prove Theorem
5.4 for a certain fixed effective divisor D € (Z/nZ)~[Dx]"). The stronger version will be
used in the proof of reconstructions of field structures associated to inertia subgroups (cf.
Section 6.2). The main result of this subsection is Theorem 5.7.

5.4.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, we suppose
that nx = 3.

5.4.2.  We generalize Lemma 5.3 to the case of certain fixed ramification divisors when
nx = 3. Let Dx aef {1, 29,23}, and let T’ def I'p, be a minimal quasi-tree associated to
-DX7

Xp = (Xr, Dx,)
the pointed stable curve of type (gx;.,nx.) associated to I', and Ilxs the admissible
fundamental group of X?. Let D; € Z[Dx| C Z[Dx,], j € {1,2,3}, be an effective divisor
on Xt such that the following conditions are satisfied:
e deg(D;) =2(ph —1).
e ord,(D;) < p' — 1 for each x € Dy.
o #{x € Dx | ord,(D;) =p' —1} > L.

Let n & pt — 1% pittatts — 1 and let

def

Dr = D1+ p" Dy +p" 2Dy € Z[Dx] C Z[Dx,]

be an effective divisor on X with degree 2n. Then we have the following lemma.

Lemma 5.5. We maintain the notation introduced above. Suppose that Dy € (Z/nZ)~[Dx]° C
(Z/nZ)~Dx.]° (i-e., ord,(Dr) < n for all x € Dx ), and that (see 2.4.5 for C(gx))

n > max{C(gx) + 1,#(e(I'xs))}.
Then there exists an element ar € Reviy™(Xp) \ {0} such that the following holds:

’)/(OtF,DF) = ng + ]-

Proof. Since I' is a minimal quasi-tree associated to Dx, we obtain that I ©r \ e!P(T)
is a tree. If Dy C X, for some v € v(I'), then the lemma follows from Proposition 5.1.
Without loss of generality, we may assume that one of the following conditions holds:

(i) Let wy, we € v(I') be vertices distinct from each other such that z,
zy € Xy, and z3 € X, (see Example 5.6 (i) below).

(ii) Let vy, vg, v3 € v(I') be vertices distinct from each other such that
1 € Xy, 2 € X,,, and z3 € X, (see Example 5.6 (ii) below).
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We put
D\ DynX, D, D U(X,N(Xr\X,)), veuvl)
where Xt \ X, denotes the topological closure of Xr \ X, in Xr. Next, we construct an
effective divisor P, € (Z/nZ)~[D,]° on X, for all v € v(T).

Suppose that (i) holds. Let Yy, w, € Dy, be the unique node of Xr such that the closed
edge of I'" corresponding to Y., w, is contained in the minimal path 6(I", wy, ws) (5.2.3) and
Zwy s € D, the unique node of X such that the closed edge of I'' corresponding to 2y, w,
is contained in the minimal path 6(I", wy, ws). On the other hand, let w € v(I") \ {w1, we}
be an arbitrary vertex (possibly empty). Note that ny = 3 implies that w is contained
in (I, wy,wy). Since I' is a tree, there exist a unique node z, , € D, and a unique
node %, € D, such that the closed edges of I'" corresponding to ., ., and x,, are
contained in 6(I", wy,w) and §(I", we, w), respectively.

Let j € {1,2,3}. We put

Quy j © ordy, (Dj)xl + ord,, (Dj)wZ + Ordm(Dj)ywhww
def
ng,j = [deg(Dj) - Ordxl (DJ) - Ordm(Dj)]zwl,wz + Ordxs (Dj)xfiv
Qus = [deg(D;) = 0rdy, (D;) = 01y, (D))] 2, a0 + 08y (D), w € v(D) \ {wr, wn},

where [(—)] denotes the image of (=) in Z/(p" — 1)Z. Then @, , v € v(I'), is an
effective divisor on X,, whose degree is equal to (#(D,) — 1)(p" — 1). Moreover, we put

def

Pv - Qv,l +pt1Qv,2 +pt1+t2QU,3 S (Z/TLZ)N[DU]Oa (NS U(F)

Then P, is an effective divisor on X, whose degree is equal to (#(D,) — 1)n, and whose
support is equal to D,,.
Suppose that (ii) holds. Then one of the following conditions is satisfied:

(1) There exist a, b, ¢ € {1, 2,3} distinct from each other such that §(I", v, v5)N
ST vp,v.) Nel(T) = 0 (e, (I, va,ve) = 6(I,0a, vp) U ST, vp,0,)) (see
Example 5.6 (ii)-(1) below).

(2) For all a, b, ¢ € {1,2,3} distinct from each other, we have that §(T", v, v,)N
S(I vy, ve) N e (T) # O (see Example 5.6 (ii)-(2) below).

Suppose that (1) holds. Without loss of generality, we may assume that a = 1, b = 2,
and ¢ = 3. Note that §(I", v1,v3) = (1", vy, v2) U (17, va,v3). Write yy, o5 € D, for the
unique node of X such that the closed edge of I corresponding to y,, ., is contained
in §(I",v1,v3) and 2y, 4, € D,, for the unique node of Xr such that the closed edge
of I corresponding to z,, ., is contained in 6(I',vy,v3). On the other hand, let v €
v([') \ {v1,v3} be an arbitrary vertex. Since nx = 3, we see that v € §(I",vy,v3), and
that either v € 0(IV,vy,v9) or v € §(IV,v9,v3) holds. Since I' is a tree, there exist a
unique node z,, , € D, and a unique node z,,, € D, such that the closed edges of I"
corresponding to x,, , and x,,, are contained in (I, vy, v) and §(I", v, vs), respectively.

Let j € {1,2,3}. We put

thj - Ol“dzl (Dj)xl + [deg(Dj) - Ordm(Dj) - Ord$3 (Dj)]yvhvsa
Quyj = 0ordy, (Dj)Ty, vy + 0rdy, (Dj)ze + ordy, (Dj) X, v,,
Qusj = [deg(Dj> - Ordm(Dj) — ordy, (Dj)]zvl,vs + Ordx3(Dj)$3'
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Morever, we put

def
Qvﬁj = Ordxl (Dj)xvl,v + [deg(Dj) - Ordm(Dj) - Ordxs(Dj)]xvs,v

for all v € (v(I") N (I, vy, v2)) \ {v1,v2}, and

Qu,; = [deg(D;) — ordy, (Dj) — ordy, (D;)] @, 0 + 0rde, (D)) @, 0
for all v € (v(I') N (I, v2,v3)) \ {v2,v3}. Then Q, 5, v € v(I'), is an effective divisor on
X, whose degree is equal to (#(D,) — 1)(p% — 1). Moreover, we put

P, o Qui+ " Qua + " 2Qu 5 € (Z/nZ)7[D,)°, v € v(I).

Then P, is an effective divisor on X, whose degree is equal to (#(D,) — 1)n, and whose
support is equal to D,,.
Suppose that (2) holds. Then we have

{vo} = v(T) NI, v1,v2) NI, ve,v3) N (T, vs,v1).

Let v € v(I'). Since nxy = 3, we obtain that either v € §(I", vy, vg) or v € (I, v9,vg) or
v € 0(I",vs,v9) holds. Let yy, », € D, i € {1,2,3}, be the unique node of Xr such that
the closed edge of I corresponding to vy, 4, is contained in (I, v;, vg) and z,, 4, € Dy,
i € {1,2,3}, be the unique node of X such that the closed edge of I" corresponding
to 2,4, 1S contained in 0(I",v;,v). Moreover, let v € (v(I') N oI, v;,v0)) \ {vi,v0},
i € {1,2,3}. Since I" is a tree, there exist a unique node xz,,, € D, and a unique node
Tyyw € D, such that the closed edges of I corresponding to x,,, and w,,, are contained
in §(I", v;,v) and 0(I", vy, v), respectively.
Let j € {1,2,3}. We put

Quyj def ord,, (Dj)x1 + [deg(D;) — ordy, (D;) — ordyy (D;)] Y, v,

Qui 2 ordy,(D;)zs + [deg(D;) — ordy, (D;) — orde, (D;)]%us.w0;

Quey < 0rdyy (D;)as + [deg(D;) = ordy, (D;) — ordyy (DY o

Qu 2 ordy, (D})z, .0 + 0rday (D;) 20 + 0day (D}) Zus v0-
Moreover, we put

def
QUJ = Ordl”l (Dj)xvl,v + [deg(Dj) - Ordm (DJ) - OrdIS(Dj)]xvoyv

for all v € (v(I") N (I, v1,v9)) \ {v1, 00},

def
(v, = ordy, (Dj)xvz,v + [deg(Dj) - Ordxl(Dj) - Orda::s(Dj)]xvo,v

for all v € (v(I') N (1Y, ve,v9)) \ {v2,v0}, and

def
QUJ = Orde (DJ')J:US,U + [deg(Dj) - Ordxl (DJ) - Ordm(Dj)]xvo,U

for all v € (v(I') N (I, v3,v0)) \ {vs,v0}. Then @, ;, v € v(I'), is an effective divisor on
X, whose degree is equal to (#(D,) — 1)(p% — 1). Moreover, we put
def

Pv = Qv,l +pt1Qv,2 +pt1+t2Qv,3 € (Z/nZ)N[Dv]Oa (NS U<F)

Then P, is an effective divisor on X, whose degree is equal to (#(D,) — 1)n, and whose
support is equal to D,.

Let v € v(I'), and let X? be the smooth pointed stable curve of type (g,,n,) over k
associated to v (2.1.3). Since Dy is contained in the smooth locus of X,,, P, can be also
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regarded as an effective divisor on )?U. By applying similar arguments to the arguments
given in the proof of Proposition 5.1, there exists @, € Reviy™(X) such that

VY(Go,Py) = Go + #(Dy) — 2.

Then Theorem 3.9 implies that the element o, € Revis™(X?) induced by @, such that
the following holds:

”Y(Oémpv) = gx, + #(‘D”t)) - 27

where gx, denotes the genus of X,. Write f; : Y," — X for the Galois multi-admissible
covering over k with Galois group Z/nZ induced by c,,.

By applying similar arguments to the arguments given in Step 3 of the proof of Lemma
5.3, we may glue {Y,*},eom along {f, (D, \ D)) }ueo(r) (as admissible coverings) in a way
that is compatible with the gluing of {X}}ycur) that gives rise to Xp. Then we obtain a
Galois multi-admissible covering

Y = X7

over k with Galois group Z/nZ. Note that the construction of f2 implies that fr is étale
over Dy, \ Dx. Moreover, there exists an element ap € Revi™(X) \ {0} induced by fi
such that the following holds:

Var,Dr) = 9xp T L.
We complete the proof of the lemma. O

Example 5.6. We give some examples to explain the conditions considered in the proof of
Lemma 5.5. We maintain the notation introduced in the proof of Lemma 5.5. Moreover,
we suppose that I'ye = ' = 1" is a tree.

(i) Suppose that v(I') = {wy, ws}. Then we have

€4 €z

I wy W2

(S

(ii)-(1) Suppose that v(I') = {v1, v2,v3}. Then we have

€z, €2 €a5
I R P

(ii)-(2) Suppose that v(I") = {vg, v1, v2,v3}. Then we have
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€1, €1,
T: ivl Vo i’l}g

U3

€xq

5.4.3. We generalize Theorem 5.4 to the case of certain fixed ramification divisors as
follows:

Theorem 5.7. Let X* be an arbitrary pointed stable curve of type (gx,3) over an alge-
braically closed field k of characteristicp > 0. Let Dx o {z1, 29, 23}, and let D; € Z[Dx],
Jj €{1,2,3}, be an effective divisor on X such that the following conditions are satisfied:

e deg(D;) =2(ph —1).

e ord,(D;) <p' —1 for each x € Dx.

o #{v € Dx | ord,(D;) =p" —1} > 1.
Letn=p'— 1% pittetts 1 andlet DY Dy +piDy+phitta Dy € Z[Dx] be an effective
divisor on X with degree 2n. Moreover, suppose that D € (Z/nZ)~|Dx|® (2.2.5), and
that

n > max{C(gx) + L #(e(Tx)}
Then there exists an element o € Revis™(X*®) \ {0} (Definition 2.4 (i)) such that the
following holds:
Ya,p) = 9x + L.
Proof. By applying Lemma 5.5 and similar arguments to the arguments given in the proof
of Theorem 5.4, we obtain the theorem. O

6. APPLICATIONS TO ANABELIAN GEOMETRY

In this section, we give some applications of results obtained in previous sections. The
main results of the present section are Theorem 6.3 and Theorem 6.4.

6.1. An anabelian formula for topological types. In this subsection, by using The-
orem 5.4, we prove a group-theoretical formula for the topological type of an arbitrary
pointed stable curve over an algebraically closed field of characteristic p > 0.

6.1.1. Settings. We maintain the notation introduced in 2.1.2. Moreover, let 1y« be the
admissible fundamental group of X*°.

6.1.2. Let A be an arbitrary profinite group, and let m € N be a positive natural number
and ¢ a prime number. We denote by D,(A) C A the topological closure of [A, AJA?,
where [A, A] denotes the commutator subgroup of A, and A’ denotes the maximal pro-£
quotient of A. Moreover, we define the closed normal subgroup Dém) (A) of A inductively
by DAY € Dy(A) and DITV(A) € D,(DY(A)), i € {1,...,m — 1}. Note that
#(A/ Dém)(A)) < oo when A is topologically finitely generated. On the other hand, we

denote by F!, the finite group E. / Dém)(ﬁr), where F, denotes the free profinite group of
rank 7.
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6.1.3. Let Il be an abstract profinite group which is isomorphic to IIy. as profinite groups.
Moreover, we denote by m4(II) the set of finite quotients of II. We put

by oo max{r | there exists a prime number ¢ such that (Z/¢(Z)®" € w.(I)},

B2 def 0, szhg € m4(Il) for some prime number ¢,
1, otherwise.

Note that by, i € {1,2}, is a group-theoretical invariant associated to IT (i.e., depends
only on the isomorphism class of II). Firstly, we have the following lemma.

Lemma 6.1. (i) We have
b = 29x + nx — 1 + b,

b2 _ ]-7 anX - 07
= O, zan%O

(ii) There exists a unique prime number py such that (Z/puZ)®h & 7A(I1). In partic-
ular, we have p = py.

Proof. (i) We put ry = dimg, (I1*° @ Fy), where ¢ is an arbitrary prime number B\ {p},
and P denotes the set of prime numbers. Then the structures of maximal prime-to-p
quotients of admissible fundamental groups (2.1.6) imply that (see 2.2.2 for o)

= ziox < [z
(eP\ (v}

Since X* is a pointed stable curve, we have that ox < rr. This implies that bh = .
Moreover, we have

bl _ 29Xa if nx = 07
= 29x+nx—1, 1an7é0

Suppose that nx > 0. Let ¢, € B\ {p}. The specialization theorem of maximal pro-
{1 quotients of admissible fundamental groups ([V, Théoréme 2.2 (c¢)]) implies that the
maximal pro-f; quotient 11 of II is a free pro-f; profinite group of rank bj. Then we
have Fbell;2 € m4(IT). Thus, we obtain b4 = 0 if nx > 0.

Conversely, we assume that Fl’éﬁ? € ma(Il) for some prime number f5. Then we have

{5 # p. The Schreier index formula ([S2, Chapter I §3 3.4 Corollary]) implies the following
natural exact sequence

1 o (2/6,2) S e Fy, = (Z/6Z)% — 1.
Let ¢ : II — sz be a surjection. We denote by X7 the pointed stable curve over k
corresponding to the kernel of the natural SUI‘JeCtIOH [y = 11 4 F 62 — (Z/0,2,)%%
and by II,, C II the kernel of the surjection II i Flfllj2 —» (Z/KQZ)@’%I. Then we have

L 1
(Z/@Z)@(fgﬂ(bh—l)“) € 7ma(Ily,). This implies bhb > Zgn(bh — 1)+ 1. If ny = 0, the

1
Riemann-Hurwitz formula implies gx,, = Eg“ (9x — 1) + 1, where 9x,, denotes the genus



MAXIMUM GENERALIZED HASSE-WITT INVARIANTS 73

of X7,. Then we have by, = 25 (gx — 1) + 1) = £51(bY — 2) + 2. On the other hand,
e’;ﬁ(bh -2)4+2< Egh(bﬁ — 1) 4+ 1. This contradicts the fact that bllh2 > Eg‘%(bﬁ —1)+ 1L
Then we obtain ny > 0 if b3 = 0. Moreover, we see

bip = 2g9x +nx — 1+ b

(ii) This follows immediately from the structure of II**. This completes the proof of
the lemma. ]

6.1.4. Let Fpn be an arbitrary algebraic closure of F,,,. Let x € Hom(II, F;H). We denote
by II,, C II the kernel of x. The profinite group II, admits a natural action of II via the
conjugation action. We put

HXM’DH déf HOHI(HX, Z/pHZ) ®]Fpn F1Dr17

N, def {me Hyp, | 7-m=x(r)r for all T € II},

def .
Ny = dlmeH (NX)7

where (1 - 7)(z) & 7(r

associated to II as follows:

,ylr_rllax d:ef maX{VNX | X € HOIH(H,F;H) and X 7& ]‘}

-x) for all z € 1I,. We define a group-theoretical invariant

Let t, of x(IT) C F;H be the image of x which is the group of mth roots of unity for
some m prime to pr, and X7 = (Xy, Dx,) — X* the Galois multi-admissible covering over
k with Galois group p,, induced by x. Then we have a natural II-equivariant isomorphism

Hélt(an IF;Dn) ®1Fpn Fpn = Hx,pn-

Moreover, since the actions of I on H} (X, Fyy,) @, Fy, and H,,, factor through
/11y = firm, the isomorphism above is also jim,-equivariant. Namely, vy, is a generalized
Hasse-Witt invariant of a Z/mZ-cyclic admissible covering of X*® (2.2.4). Then we have
the following result.

max max

Lemma 6.2. We maintain the notation introduced above. Then we have Vi** = v¥s
(see Definition 3.10 (i) for vi**). In particular, we have

YR = gx +nx — 2+ b3

Proof. The first part of the lemma follows from the above explanation concerning vy, .

The “in particular” part of the lemma follows immediately from Theorem 5.4 and Lemma
6.1 (i). O

6.1.5.  We have the following anabelian formula for (gx,nx).

Theorem 6.3. Let X*® be an arbitrary pointed stable curve of type (gx,nx) over an
algebraically closed field k of characteristic p > 0, llxe the admissible fundamental group
of X*, and 11 an abstract profinite group such that I1 = Il xe. as profinite groups. Then we
have

gx = bll_I - Vlr_[nax - 17
nx = 295 — bl — b3 + 3.

In particular, gx and nx are group-theoretical invariants associated to 11.
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Proof. The theorem follows immediately from Lemma 6.1 and Lemma 6.2. U

6.1.6. We maintain the notation introduced above. Moreover, suppose that X*® is smooth
over k. In the remainder of this subsection, we discuss a formula for (gx,nx) which was

essentially obtained by Tamagawa. Let n o p'—1, and let K, be the kernel of the natural
surjection IT — [1** ® Z/nZ. In [T2], Tamagawa introduced
def ;.

dimy, (K" @ F,)
A = I i & 20z
which is called the limit of p-averages associated to II. Note that since p = py; (Lemma 6.1
(ii)), we have that Avr,(II) is a group-theoretical invariant associated to II. By applying

Theorem 2.11, Tamagawa proved the following result (i.e., Tamagawa’s p-average theorem,
see [T2, Theorem 0.5]):

Avi(IT) = { 9x, if ny > 2.

Let £ >> 0 be an arbitrary prime number distinct from pr. Write Nom,(II) for the set
of normal subgroups of IT of index ¢. Suppose that b = 0 (i.e., nx # 0). It is well-known
that

Avr,(II(¢)) — 1 = ¢(Avr,(1I))
for every ¢ € B\ {pn} and every II(¢) € Nom,(II) if and only if nx = 1. We may define
a group-theoretical invariant associated to II as follows:

1, ifby =1,
det | 1, if 0% =0, Avr,(I1(¢)) — 1 = £(Avr,(II)) for
ar = all ¢ € P\ {pu} and all TI(¢) € Nom,(II),

0, otherwise.
Then Tamagawa’s p-average theorem implies immediately the following formula:
gx = Avr,(I1) + cp, ny = by — 2Avr, (1) — 2¢y — b + 1.

In particular, gx and nx are group-theoretical invariants associated to II when X* is
smooth over k.

Before Tamagawa proved the above result, he also obtained an étale fundamental group
version formula for (gx,ny) in a completely different way (by using wildly ramified cov-
erings) which is much simpler than the case of tame fundamental groups (see [T1, §1]).
Note that, for any smooth pointed stable curve over an algebraically closed field of positive
characteristic, since the tame fundamental group can be reconstructed group-theoretically
from the étale fundamental group ([T1, Corollary 1.10]), the tame fundamental group
version is stronger than the étale fundamental group version. On the other hand, tame
fundamental groups are much better than étale fundamental groups if we study anabelian
geometry in positive characteristic from the point of view of moduli spaces (e.g. [T3],
[v3).

6.1.7. The approach to finding a group-theoretical formula for (gx,nx) by applying
the limit of p-averages associated to II explained above s difficult to generalize to the
case where X* is an arbitrary (possibly singular) pointed stable curve. The reason is
as follows. In [Y5], the author generalized Tamagawa’s p-average theorem to the case
of pointed stable curves ([Y5, Theorem 1.3 and Theorem 1.4]). The generalized formula
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concerning the limit of p-averages associated to II is very complicated in general when
X* is not smooth over k, and Avr,(II) depends not only on the topological type (gx,nx)
but also on the structure of dual semi-graph I'x..

6.2. Field structures associated to inertia subgroups of marked points. In this
subsection, we prove that the field structures associated to inertia subgroups of marked
points of arbitrary pointed stable curves can be reconstructed group-theoretically from
admissible fundamental groups and inertia subgroups of marked points, and that a sur-
jective open continuous homomorphism of admissible fundamental groups induces a field
isomorphism of the fields associated to inertia subgroups of marked points.

6.2.1. Settings. Let ¢ € {1,2}, and let X? be a pointed stable curve of type (gx,nx)
over an algebraically closed field k; of characteristic p > 0, I'xs the dual semi-graph of X?,

and Ilys the admissible fundamental group of X?. Let 55; = ()/(\'Z, Dz.) be the universal
admissible covering of X corresponding to Ilxs (2.2.6), I'g. the dual semi-graph of X :,

)

e; € eP(I'xs) an open edge, and z., the closed point of X; corresponding to e;. Note that
we have Aut()?i’/Xi') = Ilxe..
Let e; € eP(I'g.) be an open edge over e;. We denote by

I, 2 Z(1) C Txs
the stabilizer subgroup of e;.

6.2.2. Write F,; for the algebraic closure of F, in k;. We put

Fo, = (I, ®z (Q/Z))) U {*a.},

where {*z} is an one-point set, and (Q/Z)? denotes the prime-to-p part of Q/Z which
can be canonically identified with
U Mm(kZ)

(pm)=1

Moreover, Fg, can be identified with Fp,i as sets, hence, admits a structure of field, whose

multiplicative group is Is, ®7(Q/Z)?", and whose zero element is *z . We have the following
important result.

Theorem 6.4. We maintain the notation introduced above. Let ¢ : [xe — Ilxs be an
arbitrary surjective open continuous homomorphism of admissible fundamental groups.
Suppose that ¢(Is, ) = Iz,, and thatny = 3. Then there exists a group-theoretical algorithm
whose input data are llxs and Ig,, and whose output datum is Fg, (as a field). Moreover,

¢ induces a field isomorphism

fd
€1,62

:Fs, = Fa
° 1 €29
where “fd” means “field”.

Proof. Let t € Z~o. We denote by Iz, the unique subfield of Fg, whose cardinality is
equal to p'. On the other hand, we fix a finite field F,¢ of cardinality p' and an algebraic
closure I, of F, containing [F,:. Note that the field structure of F,: ¢, is equivalent to a
subset

Homyq(Fye g, Fpr) € Homgy (F) 5 F ),
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where “gp” means “group”, and “fd” means “field”. Then in order to prove the first part of
the theorem, it is sufficient to prove that there exists a group-theoretical algorithm whose
input data are Ilxs and Iz, and whose output datum is the subset Homg(Fy z,, Fp¢) for
t in a cofinal subset of N with respect to division.

Let n & p' — 1 and x; € Homg, (113 ® Z/nZ, IE‘;). Write H,, for the kernel of IIxs —
3% ® Z/nZ X% Fi. M, for H2 ®F,, and Xy = (Xu,,, Dx,, ) for the pointed stable

7

curve over k; induced by H,,. Note that M,, admits a natural action of lIxs via the
conjugation action. Moreover, this action factors through 1134 ® Z/nZ. We put

def

My [xi] = {a € My, @5, F, | 0-a=yx;(0)a for all 0 € % ® Z/nZ},

(M) = dimg, (M, ).
Note that v,,(M,,) is a generalized Hasse-Witt invariant of a cyclic multi-admissible
covering of X? with Galois group Z/nZ, and that Lemma 2.7 implies that v,,(M,,) <
gx + 1 if nx = 3. Moreover, we define two maps

Res;; : Homgy, (115 ® Z/nZ, ) — Homgy, (F . F7),
PP Homgp(Hz}‘}} ® ZnL,F ) = Lo, Xi— Vxi(My),
where the map Res;; is the restriction with respect to the natural inclusion
Fo =l @Z/nZ — X @ Z/nL.

Let mg be the product of all prime numbers < p — 2 if p £ 2,3 and mg = 1 if p = 2, 3.
Let ¢y be the order of p in the multiplicative group (Z/moZ)*. We have the following
claim (see [T2, Claim 5.4] for the case where X? is smooth over k;):

Claim A: There exists a constant C'(gx) which depends only on gx such that, for each
natural number ¢ > max{log,(C(gx) + 1),1og,(#(e"(T'x+)))} divisible by o, we have
Homga(Fpe g, Fye) = Homi (F - F20) \ Resy (T ({gx +1})), @ € {1,2},

where Homz‘;)”

Homgp(_’ _)'

(—,—) denotes the set of surjections whose elements are contained in

By applying similar arguments to the arguments given in the proof of [T2, Claim 5.4],
Claim A is equivalent to the following claim:

Claim B: Let m € (Z/nZ)~ (2.2.5). Then the following statements are equivalent:

(i) We have m € {p" | r=10,...,t —1}.

(ii) We have that (m,n) = 1, and that, there does not exist D € (Z/nZ)~[Dx]° (2.2.5)
and a € Revis™(X?) (Definition 2.4 (i)) such that ordy, (D) =m and Y(a,p) = gx + 1.

Let us prove Claim B. Firstly, we prove (i) = (ii). If s(D) = 1 (2.2.5), then Lemma
2.7 implies (o, p) < gx. Thus, we may assume that s(D) = 2. We put

def def
Dxi = {%’,1 = $e“$i,2,xi,3}-

By [T2, Proposition 2.21 (iv-a)], either ord,, (D) = n or ord,,,(D) = n holds. This
is impossible as D € (Z/nZ)~[Dx]°. Next, we prove (ii) = (i). Suppose that m ¢
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{p" | r=0,...,t—1}, and that (m,n) = 1. Since ¢ is divisible by ¢y, n is divisible by all
prime numbers < p — 2. Then the assumption (m,n) = 1 implies that m & {ap" | a =
0,...,p—2,r=0,...,t —1}. Then [T2, Proposition 2.21 (iv-c)] and Theorem 5.7 imply
that there exist D € (Z/nZ)~[Dx]° and o € Reviy™(X?) such that ordg, (D) = m and
Ya,p) = gx + 1. This completes the proof of the claim. Then we complete the proof of
the first part of the theorem.

Next, we prove the “moreover” part of the theorem. Let kg € Homgp(Hg};. QRZ/nZ, IE‘;).
Then we obtain a character

K1 € Homgp(Hgg- ® Z/nZ,F,)

induced by ¢. Moreover, the surjection ¢|pg, induces a surjection My, [k1] — My, [Ka].
Suppose that ks € I'yr({gx + 1}). The surjection M, [rk1] — My,[rs] implies that
Y (My,) = gx + 1. Namely, we have 1 € I'[}({gx + 1}). On the other hand, the
isomorphism ¢|r. : le; = Ig, induces an injection

Resy,, (I, ({gx +1})) = Resy, (T, ({gx + 1})).
Since #(Homyq(Fpr 2, Fyr)) = # (Homp (Fpr g, Fpr)), Claim A implies that ¢z, induces a
bijection Homea(Fyr ,, Fpr) = Homga(Fyr gy, Fyr). Thus, ¢|r. induces a bijection

Homg, (Fg,, Fp) = Homygy (Fs,, Fp).

If we choose F, = Fg,, then the image of idp,, via the above bijection induces a field
isomorphism

~

fd : Fg — ng.

/6\1 ,/6\2 ° 1

This completes the proof of the theorem. O

Remark 6.4.1. We maintain the notation introduced above. We would like to mention
that the condition

“Suppose that ¢(Iz,) = Iz,, and that nx = 3.”
appeared in Theorem 6.4 can be omitted (i.e., ¢(Iz,) is a stabilizer subgroup associated
to some open edge of e°P(T’ )?2.) for an arbitrary open continuous homomorphism ¢, see

[Y7, Theorem 4.13] for a more precise statement). This is one of the main results of [Y7,
Section 4] which is highly non-trivial, and which is proved by using Theorem 5.4.
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