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Abstract. For pointed stable curves over algebraically closed fields of positive
characteristic, we investigate a new kind of anabelian phenomenon that cannot be
explained by Grothendieck’s original anabelian philosophy.

We introduce a topological space that is determined by the isomorphism classes
of admissible fundamental groups of pointed stable curves of type (g, n) over al-
gebraically closed fields of positive characteristic. We show that there is a natural
continuous map from the moduli space of pointed stable curves of type (g, n) to
the above topological space. Moreover, we conjecture that the above continuous
map is a homeomorphism (which we call the homeomorphism conjecture). The
homeomorphism conjecture can be regarded as a dictionary between the geom-
etry of curves and the anabelian properties of curves, and it supplies a point of
view to see what anabelian phenomena that we can reasonably expect from curves
over algebraically closed fields of positive characteristic. One of the main results
of the present series of papers says that the homeomorphism conjecture holds for
one-dimensional moduli spaces.

In the present paper, we establish precise connections between the geometric
behaviors of curves and open continuous homomorphisms of their admissible fun-
damental groups, which play central roles in the theory developed in the series of
papers. By using the precise connections, we prove the homeomorphism conjec-
ture for closed points of moduli spaces when g = 0. In particular, we obtain the
homeomorphism conjecture for one-dimensional moduli spaces when g = 0.
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Introduction

0.1. Grothendieck’s anabelian philosophy. In the 1980s, A. Grothendieck sug-
gested a theory of arithmetic geometry called anabelian geometry ([G]), roughly
speaking, which focuses on the following question: Can we reconstruct the geomet-
ric information of a variety group-theoretically from various versions of its algebraic
fundamental group? The varieties which can be completely determined by their
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fundamental groups are called “anabelian varieties” by Grothendieck. To classify
the anabelian varieties in all dimensions over all fields is called “anabelian dream” of
him. In the particular case of dimension 1, he conjectured that all smooth pointed
stable curves (defined over certain fields) are anabelian varieties.

0.1.1. Let p be a prime number and #(−) the cardinality of (−). Let
X• = (X,DX)

be a pointed stable curve of type (gX , nX) over a field k of characteristic char(k),
where X denotes the underlying curve which is a semi-stable curve over k, DX

denotes the (finite) set of marked points satisfying [K, Definition 1.1 (iv)], gX denotes

the genus of X, and nX
def
= #(DX). In the introduction, “curves” means pointed

stable curves unless indicated otherwise.

0.1.2. Suppose that X• is smooth over k. When k is an “arithmetic” field (e.g. a
number field, a p-adic field, a finite field, etc.), Grothendieck’s anabelian conjectures
for curves (or the Grothendieck conjectures for short), roughly speaking, are based
on the following anabelian philosophy ([G]):

Weak Isom-version: The isomorphism class of X• can be deter-
mined group-theoretically from the isomorphism class of its algebraic
fundamental group.

Isom-version: The sets of isomorphisms of smooth pointed stable
curves can be determined group-theoretically from the sets of isomor-
phisms of their algebraic fundamental groups.

Hom-version: The sets of dominant morphisms of smooth pointed
stable curves can be determined group-theoretically from the sets
of open continuous homomorphisms of their algebraic fundamental
groups.

Grothendieck’s anabelian conjectures have been proven in many cases. For instance,
we have the following results: When k is a number field, the conjecture was proved
by H. Nakamura (weak Isom-version) ([Nakam1], [Nakam2]), A. Tamagawa (Isom-
version) ([T1]), and S. Mochizuki (Hom-version) ([M2]). When k is a finitely gen-
erated field over the finite field Fp, the Isom-version of the Grothendieck conjecture
was proved by Tamagawa ([T1]), Mochizuki ([M4]), J. Stix ([Sti1], [Sti2]), and M.
Säıdi-Tamagawa ([ST1], [ST3]). All the proofs of the Grothendieck conjectures for
curves over arithmetic fields mentioned above require the use of the non-trivial outer
Galois representations induced by the fundamental exact sequences of fundamental
groups.

0.2. Beyond the arithmetical actions. Next, we consider the case where X• is
an arbitrary pointed stable curve, and suppose that k is an algebraically closed field.
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0.2.1. By choosing a suitable base point x of X•, we have the admissible funda-
mental group πadm

1 (X•, x) of X• (see 1.2.2). For simplicity, we shall write πadm
1 (X•)

for πadm
1 (X•, x), since we only focus on the isomorphism class of πadm

1 (X•, x). In
particular, if X• is smooth over k, then πadm

1 (X•) is naturally isomorphic to the
tame fundamental group πt

1(X
•).

When char(k) = 0, since the isomorphism class of πadm
1 (X•) depends only on the

type (gX , nX), the anabelian geometry of curves does not exist in this situation.
On the other hand, if char(k) = p, the situation is quite different from that in
characteristic 0. The admissible fundamental group πadm

1 (X•) is very mysterious
and its structure is no longer known. In the remainder of the introduction, we
assume that k is an algebraically closed field of characteristic p.

0.2.2. After M. Raynaud ([R1]) and D. Harbater ([Ha1]) proved Abhyankar’s con-
jecture, Harbater asked whether or not the geometric information of a curve over
k can be carried out from its geometric fundamental groups ([Ha2], [Ha3]). Since
the late 1990s, some developments of Raynaud ([R3]), F. Pop-Säıdi ([PS]), Tam-
agawa ([T2], [T4], [T5]), and the author of the present paper ([Y2], [Y6]) showed
evidence for very strong anabelian phenomena for curves over algebraically closed
fields of positive characteristic (see [T3] for more about this conjectural world based
on Grothendieck’s anabelian philosophy mentioned in 0.1.2). In this situation, the
arithmetic fundamental group coincides with the geometric fundamental group, thus
there is a total absence of a Galois action of the base field. This kind of anabelian
phenomenon is the reason why we do not have an explicit description of the geometric
fundamental group of any pointed stable curve in positive characteristic. Moreover,
we may think that the anabelian geometry of curves is a theory based on the fol-
lowing rough consideration: The admissible fundamental group of a pointed stable
curve over an algebraically closed field of characteristic p must encode “moduli” of
the curve.

0.3. A moduli version of the weak Isom-version conjecture. We reformulate
the anabelian geometry of curves over algebraically closed fields of positive charac-
teristic from the point of view of moduli spaces.

0.3.1. Firstly, we fix some notation concerning moduli spaces of curves and admissi-
ble fundamental groups associated to points of moduli spaces. Let Fp be an algebraic

closure of Fp, and let Mg,n be the moduli stack over Fp classifying pointed stable
curves of type (g, n) (i.e. the quotient stack of the moduli stack of n-pointed stable
curves in the sense of [K] by the natural action of n-symmetric group),Mg,n ⊆Mg,n

the open substack classifying smooth pointed stable curves, M g,n the coarse moduli
space ofMg,n, and Mg,n the coarse moduli space ofMg,n.

Let q ∈ M g,n be a point, k(q) the residue field of M g,n, and kq an algebraically
closed field containing k(q). Then the composition of natural morphisms Spec kq →
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Spec k(q) → M g,n determines a pointed stable curve X•
kq

of type (g, n) over kq.

In particular, if kq is an algebraic closure of k(q), we shall write X•
q for X•

kq
. Let

πadm
1 (X•

kq
) be the admissible fundamental group of X•

kq
. Since the isomorphism class

of πadm
1 (X•

kq
) does not depend on the choice of kq (1.2.4), we shall write πadm

1 (q) for

the admissible fundamental group πadm
1 (X•

kq
).

Let Πg,n be the set of isomorphism classes (as profinite groups) of admissible
fundamental groups of pointed stable curves of type (g, n) over algebraically closed
fields of characteristic p. Then the fundamental group functor πadm

1 induces a natural
sujective map from the underlying topological space |M g,n| ofM g,n to Πg,n as follows:
[πadm

1 ] : |M g,n|↠ Πg,n, q 7→ [πadm
1 (q)], where [πadm

1 (q)] denotes the isomorphism class
of πadm

1 (q).
Since the existence of Frobenius twists of pointed stable curves, the map [πadm

1 ]
is not a bijection in general. We introduce an equivalence relation ∼fe on |M g,n|
which we call Frobenius equivalence (see [Y4, Definition 3.4] or Definition 3.1 of the
present paper). Moreover, [Y4, Proposition 3.7] shows that [πadm

1 ] factors through

the following quotient set Mg,n
def
= |M g,n|/ ∼fe . Then we obtain a natural surjective

map

πadm
g,n : Mg,n ↠ Πg,n, [q] 7→ [πadm

1 (q)],

induced by [πadm
1 ], where [q] denotes the image of q of the natural quotient map

|M g,n| →Mg,n.

0.3.2. The “Weak Isom-version” mentioned in 0.1.2 can be successfully formulated
for pointed stable curves over algebraically closed fields of characteristic p (see [T2],
[T3] for the case of smooth pointed stable curves, and [Y4] for the case of arbitrary
pointed stable curves). We shall refer to the formulation as the weak Isom-version
conjecture:

Weak Isom-version Conjecture . We maintain the notation introduced above.
Then the surjective map

πadm
g,n : Mg,n ↠ Πg,n

is a bijection.

The weak Isom-version conjecture is one of the main conjectures in the theory of
anabelian geometry of curves, which was only completely proved in the case where
(g, n) = (0, 3) or (0, 4) (see [T4, Theorem 0.2], [Y4, Theorem 3.8], or Theorem 3.4
of the present paper).

Until now, the weak Isom-version conjecture is the ultimate goal of the anabelian
geometry of curves over algebraically closed fields of characteristic p, all of the re-
searches focus on this conjecture (e.g. [PS], [R3], [Sar], [ST2], [T2], [T4], [T5],
[Y2], [Y6]). Essentially, the weak Isom-version conjecture shares the same anabelian
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philosophy as Grothendieck originally suggested (i.e. the “Weak Isom-version” men-
tioned in 0.1.2), and this conjecture cannot give us any new insight into the anabelian
phenomena of curves over algebraically closed fields of characteristic p.

0.3.3. The “Isom-version” mentioned in 0.1.2 can be also successfully formulated
for pointed stable curves over algebraically closed fields of characteristic p (e.g. see
[T3, Conjecture 1.33] for the case of smooth pointed stable curves). At the time of
writing, no results are known for this conjecture.

0.4. A new kind of anabelian phenomenon.

0.4.1. When Tamagawa tried to formulate a “Hom-version” conjecture for curves
over algebraically closed fields of characteristic p based on Grothendieck’s anabelian
philosophy mentioned in 0.1.2 (i.e. an analogue of the conjecture posed in [G, p289
(6)]), he noted that the following phenomenon exists:

Let qi ∈ Mg,n, i ∈ {1, 2}, be a smooth pointed stable curve over an
algebraically closed field ki of characteristic p > 0 and πadm

1 (qi) the
admissible fundamental group (=the tame fundamental group) of X•

qi
.

Then we have (e.g. specialization homomorphisms of a non-isotrivial
family of pointed stable curves)

Homdom(X•
q1
, X•

q2
) = ∅, Homop

pg(π
adm
1 (q1), π

adm
1 (q2)) 6= ∅,

where Homdom(−,−) denotes the set of dominant morphisms of pointed
stable curves, and Homop

pg(−,−) denotes the set of open continuous
homomorphisms of profinite groups. This means that

Homdom(X•
q1
, X•

q2
) 6 ∼→ Homop

pg(π
adm
1 (q1), π

adm
1 (q2)).

The above phenomenon means that if we only consider anabelian philosophy sug-
gested originally by Grothendieck mentioned in 0.1.2, the relation of two pointed
stable curves cannot be determined by the set of open continuous homomorphisms
of their admissible fundamental groups, and the “Hom-version” conjecture (in the
sense of 0.1.2) for curves over algebraically closed fields of characteristic p does not
exist.

In fact, the existence of specialization homomorphisms is the reason that Tama-
gawa cannot formulate a “Hom-version” conjecture for tame fundamental groups of
smooth pointed stable curves in general ([T3, Remark 1.34]).

0.4.2. On the other hand, the author of the present paper considered the following
the fundamental question:

Does there exist a geometric explanation (i.e. an anabelian explana-
tion) for the group-theoretical object Homop

pg(π
adm
1 (q1), π

adm
1 (q2))?
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We observed a new phenomenon that has never been seen before: It is possible
that the sets of deformations of a smooth pointed stable curve can be reconstructed
group-theoretically from open continuous homomorphisms of their admissible fun-
damental groups. Let q1, q2 ∈Mg,n. This mean is that, roughly speaking, a smooth
pointed stable curve corresponding to a geometric point over q2 can be deformed
to a smooth pointed stable curve corresponding to a geometric point over q1 if and
only if the set of open continuous homomorphisms of admissible fundamental groups
Homop

pg(π
adm
1 (q1), π

adm
1 (q2)) is not empty.

Moreover, the above observation implies a new kind of anabelian phenomenon that
cannot be explained by using Grothendieck’s original anabelian philosophy mentioned
in 0.1.2:

The topological structures of moduli spaces of curves in positive char-
acteristic are encoded in the sets of open continuous homomorphisms
of geometric fundamental groups of curves in positive characteristic.

This new kind of anabelian phenomenon can be precisely captured by using the
so-called moduli spaces of admissible fundamental groups and the homeomorphism
conjecture introduced in the present paper. Let us briefly explain them in the next
subsection of the introduction.

0.5. The homeomorphism conjecture. We maintain the notation introduced in
0.3. Moreover, from now on, we shall regard Mg,n as a topological space whose
topology is induced naturally by the Zariski topology of |M g,n|.

0.5.1. Let G be the category of finite groups and G ∈ G a finite group. We put

UΠg,n,G
def
= {[πadm

1 (q)] ∈ Πg,n | Homsurj(π
adm
1 (q), G) 6= ∅},

where Homsurj(−,−) denotes the set of surjective homomorphisms of profinite groups.
We define a topological space (Πg,n, OΠg,n

) group-theoretically from Πg,n as follows:

The underlying set is Πg,n, and the topology OΠg,n
is generated by {UΠg,n,G

}G∈G as

open subsets. For simplicity of notation, we still use Πg,n to denote the topological
space (Πg,n, OΠg,n

), and call the topological space

Πg,n

the moduli space of admissible fundamental groups of type (g, n).

0.5.2. Theorem 3.6 of the present paper shows that the surjective map πadm
g,n :

Mg,n ↠ Πg,n is a continuous map. Moreover, we pose the following conjecture,
which is the main conjecture of the theory developed in the present series of papers:
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Homeomorphism Conjecture . We maintain the notation introduced above. Then
we have that the natural map

πadm
g,n : Mg,n ↠ Πg,n

is a homeomorphism.

0.5.3. Remark. The homeomorphism conjecture has a simpler form if we only con-
sider smooth pointed stable curves. Let Fp be the prime field of characteristic p,
Mg,n,Fp the coarse moduli space of the moduli stack Mg,n,Fp over Fp classifying

smooth pointed stable curves of type (g, n). Let Πg,n ⊆ Πg,n be the subset of iso-
morphism classes of admissible fundamental groups (=tame fundamental groups)
of smooth pointed stable curves of type (g, n). The subset Πg,n can be regarded
as a topological space whose topology is induced by the topology of Πg,n (in fact,
Πg,n is an open subset of Πg,n (see Proposition 3.10 (b)). In this situation, the
homeomorphism conjecture is equivalent to the following form: The natural map
Mg,n,Fp ↠ Πg,n, q 7→ [πadm

1 (q)], is a homeomorphism.

0.6. Weak Isom-version Conjecture vs. Homeomorphism Conjecture.

0.6.1. Firstly, let us explain the difference between the the weak Isom-version con-
jecture and the homeomorphism conjecture from the aspect of anabelian philosophy.

The weak Isom-version conjecture means that the moduli spaces of curves in
positive characteristic can be reconstructed group-theoretically as sets from isomor-
phism classes of admissible fundamental groups of pointed stable curves in positive
characteristic.

On the other hand, the homeomorphism conjecture generalizes all the conjectures
appeared in the theory of admissible (or tame) anabelian geometry of curves over
algebraically closed fields of characteristic p, and means that the moduli spaces of
curves in positive characteristic can be reconstructed group-theoretically as topolog-
ical spaces from sets of open continuous homomorphisms of admissible fundamental
groups of pointed stable curves in positive characteristic.

The moduli spaces of admissible fundamental groups and the homeomorphism
conjecture shed some new light on the theory of the anabelian geometry of curves
over algebraically closed fields of characteristic p based on the following new an-
abelian philosophy:

The anabelian properties of pointed stable curves over algebraically
closed fields of characteristic p are equivalent to the topological prop-
erties of the topological space Πg,n.

Since Tamagawa discovered that there also exists the anabelian geometry for cer-
tain smooth pointed stable curves over the algebraically closed fields of characteristic
p, almost 30 years have passed. However, the weak Isom-version conjecture is still
the only anabelian phenomenon that we know in this situation, and we cannot even
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imagine what phenomena arose from curves and their fundamental groups should
be anabelian.

The above philosophy supplies a point of view to see what anabelian phenomena
that we can reasonably expect for pointed stable curves over algebraically closed fields
of characteristic p. This means that the homeomorphism conjecture is a dictionary
between the geometry of pointed stable curves (or moduli spaces of curves) and the
anabelian properties of pointed stable curves. For instance, it has raised a host of
new questions (e.g. Section 3.4) concerning anabelian phenomena which cannot be
seen if we only consider the weak Isom-version conjecture.

0.6.2. Next, let us explain the difference between the weak Isom-version conjec-
ture and the homeomorphism conjecture from the aspect of group theory. The mean
of anabelian geometry around the weak Isom-version conjecture (i.e. the theory
developed in [PS], [R3], [Sar], [T2], [T4], [T5], [Y2], [Y6]) is the following: Let
Fi, i ∈ {1, 2}, be a geometric object in a certain category and ΠFi

the funda-
mental group associated to Fi. Then the set of isomorphisms of geometric objects
Isom(F1,F2) can be understood from the set of isomorphisms of group-theoretical
objects Isom(ΠF1 ,ΠF2). The term “anabelian” means that the geometric properties
of a geometric object which can be determined by the isomorphism classes of its
fundamental group. On the other hand, we do not know the relation of F1 and F2

if ΠF1 is not isomorphic to ΠF2 .
In the theory developed in the present series of papers, we consider anabelian ge-

ometry in a completely different way. The mean of anabelian geometry around
the homeomorphism conjecture is the following: The relation of F1 and F2 in
a certain moduli space can be understood from a certain set of homomorphisms
Hom(ΠF1 ,ΠF2). Moreover, Hom(ΠF1 ,ΠF2) contains the deformation information of
F2 along F1. The term “anabelian” means the geometric properties of a certain
moduli space of geometric objects (i.e. not only a single geometric object but also
the moduli space of geometric objects) which can be determined by the set of open
continuous homomorphisms of fundamental groups of geometric objects.

Thus, roughly speaking, the weak Isom-version conjecture is an “Isom-version”
problem, and the homeomorphism conjecture is a “Hom-version” problem. Similar
to other theory in anabelian geometry, Hom-version problems are so much harder
than the Isom-version problems.

0.7. Main result.

0.7.1. Our main result of the present paper is as follows:

Theorem 0.1 (Theorem 6.7). We maintain the notation introduced above. Let

[q] ∈M
cl

0,n be an arbitrary closed point. Then πadm
0,n ([q]) is a closed point of Π0,n. In

particular, the homeomorphism conjecture holds when (g, n) = (0, 3) or (0, 4).
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Denote by Isompg(−,−) the set of isomorphisms of profinite groups. Then Theo-
rem 0.1 follows from the following strong (Hom-version) anabelian result.

Theorem 0.2 (Theorem 6.6). Let q1, q2 ∈ M0,n be arbitrary points. Suppose that
q1 is closed. Then we have that

Homop
pg(π

adm
1 (q1), π

adm
1 (q2)) 6= ∅

if and only if q1 ∼fe q2. In particular, if this is the case, we have that q2 is a closed
point, and that

Homop
pg(π

adm
1 (q1), π

adm
1 (q2)) = Isompg(π

adm
1 (q1), π

adm
1 (q2)).

Remark 0.2.1. In fact, in the present paper, we will prove a slightly stronger
version of Theorem 0.2 by replacing πadm

1 (q1) and πadm
1 (q2) by the maximal pro-

solvable quotients πadm
1 (q1)

sol and πadm
1 (q2)

sol of πadm
1 (q1) and π

adm
1 (q2), respectively.

Then we obtain a solvable version of Theorem 0.1 which is slightly stronger than
Theorem 0.1. In particular, we obtain that the solvable homeomorphism conjecture
(see 3.3) holds when (g, n) = (0, 3) or (0, 4).

0.7.2. We will prove directly Theorem 0.1 (or Theorem 0.2) without the use of
results concerning the weak Isom-version conjecture obtained in [T2], [T4], [Y2],
and its proof is much harder than the proofs of the main results of [T2], [T4], [Y2]
since we need to establish new connections between geometry of arbitrary (possibly
singular) pointed stable curves and arbitrary open continuous homomorphisms of
their fundamental groups which are not isomorphisms in general ([T5, Theorem 0.3],
[Y2, Theorem 7.9]).

0.8. Strategy of proof. We briefly explain the method of proving Theorem 0.2 (or
Theorem 0.1), whose tools are based on formulas concerning generalized Hasse-Witt
invariants proved in [Y3], [Y5] and the theory of combinatorial anabelian geometry
of curves in positive characteristic developed in [Y2], [Y6].

0.8.1. Firstly, we establish precise connections between the geometric behaviors of
curves and open continuous homomorphisms of their admissible fundamental groups,
which play central roles in the theory of moduli spaces of admissible fundamental
groups in positive characteristic.

The first result is the following, which is the main theorems of Section 4 (see
Theorem 4.11 and Theorem 4.13 for more precise statements):

Theorem 0.3. Let X•
i , i ∈ {1, 2}, be a pointed stable curve of type (gXi

, nXi
)

over an algebraically closed field ki of characteristic p, and ΓX•
i
the dual semi-graph

of X•
i . Let ΠX•

i
be either the admissible fundamental group πadm

1 (X•
i ) of X•

i or

the maximal pro-solvable quotient πadm
1 (X•

i )
sol of πadm

1 (X•
i ), and Ii ⊆ ΠX•

i
a closed

subgroup associated to an open edge of ΓX•
i
(i.e. a closed subgroup which is (outer)



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 11

isomorphic to the inertia subgroup of the marked point corresponding to an open
edge of ΓX•

i
). Suppose that (gX1 , nX1) = (gX2 , nX2). Let

φ : ΠX•
1
→ ΠX•

2

be an arbitrary open continuous homomorphism of profinite groups. Then the fol-
lowing statements hold:

(i) φ(I1) ⊆ ΠX•
2
is a closed subgroup associated to an open edge of ΓX•

2
, and

there exists a closed subgroup I ′ ⊆ ΠX•
1
associated to an open edge of ΓX•

1
such that

φ(I ′) = I2.
(ii) The field structures associated to inertia subgroups of marked points can be re-

constructed group-theoretically from ΠX•
i
, and φ induces a field isomorphism between

the fields associated to I1 and φ(I1) group-theoretically.

Theorem 0.3 says that the inertia subgroups and field structures associated to iner-
tia subgroups of marked points can be reconstructed group-theoretically from arbi-
trary surjective open continuous homomorphisms of admissible fundamental groups.
One of the main ingredients in the proof of Theorem 0.3 is an explicit formula for
the maximum generalized Hasse-Witt invariant γmax(ΠX•

i
) of an arbitrary pointed

stable curve X•
i , which was proved by the author by using the theory of Raynaud-

Tamagawa theta divisors ([Y5, Theorem 5.4]).
The second result is a generalized version of combinatorial Grothendieck conjec-

ture in positive characteristic. One of the main results of Section 5 is as follows,
which says that the combinatorial Grothendieck conjecture for open continuous ho-
momorphisms holds for pointed stable curves of type (0, n) (see Theorem 5.30 for a
more precise statement):

Theorem 0.4. Let X•
i , i ∈ {1, 2}, be a pointed stable curve of type (0, n) over

an algebraically closed field ki of characteristic p, and ΓX•
i
the dual semi-graph of

X•
i . Let ΠX•

i
be the maximal pro-solvable quotient πadm

1 (X•
i )

sol of the admissible

fundamental group πadm
1 (X•

i ) of X
•
i and Πi ⊆ ΠX•

i
a closed subgroup associated to a

vertex (i.e. a closed subgroup which is (outer) isomorphic to the solvable admissible
fundamental group of the smooth pointed stable curve associated to a vertex of ΓX•

i
),

and Ii ⊆ ΠX•
i
a closed subgroup associated to a closed edge (i.e. a closed subgroup

which is (outer) isomorphic to the inertia subgroup of the node corresponding to
a closed edge of ΓX•

i
). Suppose that #(v(ΓX•

1
)) = #(v(ΓX•

2
)) and #(ecl(ΓX•

1
)) =

#(ecl(ΓX•
2
)), where v(−) denotes the set of vertices of (−) and ecl(−) denotes the

set of closed edges of (−) (see 1.1.1). Let

φ : ΠX•
1
→ ΠX•

2

be an arbitrary open continuous homomorphism of profinite groups. Then the fol-
lowing statements hold:
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(i) φ(Π1) ⊆ ΠX•
2
is a closed subgroup associated to a vertex of ΓX•

2
, and there exists

a closed subgroup Π′ ⊆ ΠX•
1
associated to a vertex of ΓX•

1
such that φ(Π′) = Π2.

(ii) φ(I1) ⊆ ΠX•
2
is a closed subgroup associated to a closed edge of ΓX•

2
, and

there exists a closed subgroup I ′ ⊆ ΠX•
1
associated to a closed edge of ΓX•

1
such that

φ(I ′) = I2.
(iii) φ induces an isomorphism

φsg : ΓX•
1

∼→ ΓX•
2

of dual semi-graphs group-theoretically.

Theorem 0.4 says that the geometry (i.e. topological and combinatorial data) of
pointed stable curves can be completely reconstructed group-theoretically from open
continuous homomorphisms of admissible fundamental groups. One of the main
ingredients in the proof of Theorem 0.4 is an explicit formula for the limit of p-
averages Avrp(ΠX•

i
) of the admissible fundamental group of X•

i , which was proved
by Tamagawa ([T4, Theorem 0.5]) and the author ([Y3, Theorem 1.3]) by using the
theory of Raynaud-Tamagawa theta divisors .

In anabelian geometry, the geometric data of an geometric object can be rep-
resented by various subgroups of its fundamental group. Then, roughly speaking,
Theorem 0.3 and Theorem 0.4 mean that the geometric data of X•

2 can be controlled
by the geometric data of X•

1 if there exists an open continuous homomorphism
between their admissible fundamental groups.

Remark. In fact, Theorem 0.4 is a consequence of a generalized result (see Theo-
rem 5.26) which says that Theorem 0.4 also holds for arbitrary types under certain
assumptions. Moreover, the author believes that the methods developed in Section
5 can be used to prove the combinatorial Grothendieck conjecture for open con-
tinuous homomorphisms without any assumptions (see Remark 5.26.1 and Remark
5.26.2), and that Theorem 0.3, Theorem 0.4, and Theorem 5.26 will play important
roles in the proof of the homeomorphism conjecture for higher dimensional moduli
spaces. For instance, in [Y8], we use Theorem 0.3 and Theorem 5.26 to prove the
homeomorphism conjecture for (g, n) = (1, 1).

0.8.2. By applying Theorem 0.3 and Theorem 0.4, we briefly sketch the proof of
Theorem 0.2 as follows:

Case I: q1 ∈M0,n. Over Fp, the scheme structure of a smooth pointed stable curve of
type (0, n) can be completely determined by its inertia subgroups of marked points
and the field structures associated to the inertia subgroups via generalized Hasse-
Witt invariants. By constructing certain admissible coverings for X•

q1
and X•

q2
, we

apply Theorem 0.3 to prove that, when X•
q1

is nonsingular, the scheme structure
of X•

q2
can be determined by the scheme structure of X•

q1
via an open continuous
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homomorphism between their admissible fundamental groups (see Proposition 6.2
and Proposition 6.5).

Case II: q1 ∈ M0,n \ M0,n. By applying Theorem 0.3, the geometric operation
(=removing a subset of marked points of a pointed stable curve and contracting the
(−1)-curves and the (−2)-curves of a pointed semi-stable curve) can be translated
to the group-theoretical operation (=quotient of a closed subgroup of the admissible
fundamental group of a pointed stable curve, where the closed subgroup is generated
by the inertia subgroups corresponding to a subset of marked points of the pointed
stable curve). Then we can reduce Theorem 0.2 to the case where #(v(ΓX•

q1
)) =

#(v(ΓX•
q2
)) and #(ecl(ΓX•

q1
)) = #(ecl(ΓX•

q2
)). Moreover, by applying Theorem 0.4,

we can reduce Theorem 0.2 further to the case where q1 and q2 are contained inM0,n

(i.e. X•
q1

and X•
q2

are nonsingular). Then Theorem 0.2 follows from the case where
q1 ∈M0,n.

0.9. Structure of the present paper. The present paper is organized as follows.
Part I (Formulations of moduli spaces of admissible fundamental groups) consists

of Section 1∼3. In Section 1, we fix some notation concerning admissible cover-
ings and admissible fundamental groups. In Section 2, we recall the definition of
generalized Hasse-Witt invariants, a formula for maximum generalized Hasse-Witt
invariants of prime-to-p admissible coverings, and a formula for limits of p-averages
of admissible fundamental groups. In Section 3, we introduce the moduli spaces
of admissible fundamental groups (resp. the moduli spaces of solvable admissible
fundamental groups) and formulate the homeomorphism conjecture. We also pose
some open problems that are of particular interest of the author. In particular, we
formulate a generalized version of Tamagawa’s essential dimension conjecture from
the point of view of the theory of moduli spaces of fundamental groups (Section
3.4.1). Moreover, we prove some basic properties concerning the topology of Πg,n.

Part II (Reconstructions of geometric data from open continuous homomorphisms)
consists of Section 4∼5. In Section 4, we prove Theorem 0.3. In Section 5, we prove
the combinatorial Grothendieck conjecture for open continuous homomorphisms un-
der certain conditions. As a consequence, by applying Theorem 0.3, we obtain
Theorem 0.4.

Part III (Main result) consists of Section 6, and we prove our main theorem in
this part.
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PART I: FORMULATIONS OF MODULI SPACES OF ADMISSIBLE
FUNDAMENTAL GROUPS

1. Admissible coverings and admissible fundamental groups

In this section, we set up notation and terminology concerning admissible cover-
ings and admissible fundamental groups.

1.1. Admissible coverings.

1.1.1. Let Γ be a semi-graph (see [Y5, 2.1.1] for a rough explanation).
(a) We shall denote by v(Γ), eop(Γ), and ecl(Γ) the set of vertices of Γ, the set of

open edges of Γ, and the set of closed edges of Γ, respectively.
(b) The semi-graph Γ can be regarded as a topological space with natural topology

induced by R2. We define an one-point compactification Γcpt of Γ as follows: if
eop(Γ) = ∅, we put Γcpt = Γ; otherwise, the set of vertices of Γcpt is the disjoint union

v(Γcpt)
def
= v(Γ) t {v∞}, the set of closed edges of Γcpt is ecl(Γcpt)

def
= eop(Γ) ∪ ecl(Γ),

the set of open edges of Γ is empty, and every edge e ∈ eop(Γ) ⊆ ecl(Γcpt) connects
v∞ with the vertex that is abutted by e.

(c) Let v ∈ v(Γ). We shall say that Γ is 2-connected at v if Γ\{v} is either empty
or connected. Moreover, we shall say that Γ is 2-connected if Γ is 2-connected
at each v ∈ v(Γ). Note that, if Γ is connected, then Γcpt is 2-connected at each
v ∈ v(Γ) ⊆ v(Γcpt) if and only if Γcpt is 2-connected. We put

b(v)
def
=

∑
e∈eop(Γ)∪ecl(Γ)

be(v),

where be(v) ∈ {0, 1, 2} denotes the number of times that e meets v. We put

v(Γ)b≤1 def
= {v ∈ v(Γ) | b(v) ≤ 1},

and denote by ecl(Γ)b≤1 the set of closed edges of Γ which meet some vertex of
v(Γ)b≤1.
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1.1.2. Let p be a prime number, and let

X• = (X,DX)

be a pointed semi-stable curve of type (gX , nX) over an algebraically closed field k
of characteristic p, where X denotes the underlying curve, DX denotes the (finite)
set of marked points, gX denotes the genus of X, and nX denotes the cardinality
#(DX) of DX . Write ΓX• for the dual semi-graph of X• (see [Y1, Definition 3.1]

for the definition of the dual semi-graph of a pointed semi-stable curve) and rX
def
=

dimQ(H
1(ΓX• ,Q)) for the Betti number of the semi-graph ΓX• . We shall say that

X• is a pointed stable curve over k if DX satisfies [K, Definition 1.1 (iv)].

1.1.3. Let v ∈ v(ΓX•) and e ∈ eop(ΓX•)∪ ecl(ΓX•). We write Xv for the irreducible
component of X corresponding to v, write xe for the node of X corresponding to e
if e ∈ ecl(ΓX•), and write xe for the marked point of X corresponding to e if e ∈
eop(ΓX•). Moreover, write X̃v for the smooth compactification of UXv

def
= Xv \Xsing

v ,
where (−)sing denotes the singular locus of (−). We define a smooth pointed semi-
stable curve of type (gv, nv) over k to be

X̃•
v = (X̃v, DX̃v

def
= (X̃v \ UXv) ∪ (DX ∩Xv)).

We shall call X̃•
v the smooth pointed semi-stable curve of type (gv, nv) associated to

v, or the smooth pointed semi-stable curve associated to v for short. In particular,

we shall say that X̃•
v is the smooth pointed stable curve associated to v if X̃•

v is a
pointed stable curve over k.

1.1.4. We recall the definition of Mochizuki’s admissible coverings of pointed stable
curves (see also [M1, §3]). Let Y • = (Y,DY ) be a pointed semi-stable curve over k
and ΓY • the dual semi-graph of Y •. Let

f • : Y • → X•

be a surjective, generically étale, finite morphism of pointed semi-stable curves over
k such that f(y) is a smooth (resp. singular) point of X if y is a smooth (resp.
singular) point of Y . Write f : Y → X for the morphism of underlying curves
induced by f •, and f sg : ΓY • → ΓX• for the map of dual semi-graphs induced by
f •, where “sg” means “semi-graph”. Let v ∈ v(ΓX•) and w ∈ (f sg)−1(v) ⊆ v(ΓY •).
Then f • induces a morphism of smooth pointed semi-stable curves

f̃ •
w,v : Ỹ

•
w → X̃•

v

over k associated to w and v.

Definition 1.1. We shall say that f • : Y • → X• is a Galois admissible covering
over k with Galois group G if the following conditions are satisfied:
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(i) There exists a finite group G ⊆ Autk(Y
•) such that Y •/G = X•, and f • is

equal to the quotient morphism Y • → Y •/G.

(ii) f̃ •
w,v is a tame covering over k for each v ∈ v(ΓX•) and each w ∈ (f sg)−1(v).

(iii) For each y ∈ Y sing, we write Dy ⊆ G for the decomposition group of y and τ
for a generator of Dy. Then the local morphism between singular points induced by
f is

ÔX,f(y) ∼= k[[u, v]]/uv → ÔY,y ∼= k[[s, t]]/st
u 7→ s#Dy

v 7→ t#Dy ,

and that τ(s) = ζ#(Dy)s and τ(t) = ζ−1
#(Dy

)t, where ζ#(Dy) is a primitive #(Dy)th

root of unity.
Moreover, we shall say that f • is an admissible covering if there exists a mor-

phism of pointed semi-stable curves h• : W • → Y • over k such that the composite
morphism f • ◦ h• : W • → X• is a Galois admissible covering over k.

Let Z• be a disjoint union of finitely many pointed semi-stable curves over k. We
shall say that a morphism f •

Z : Z• → X• over k is a multi-admissible covering if the
restriction of f •

Z to each connected component of Z• is admissible, and that f •
Z is

étale if the underlying morphism of curves fZ induced by f •
Z is an étale morphism.

Remark 1.1.1. In [M1, §3.9 Definition], the admissible coverings defined in Defi-
nition 1.1 are called HM-admissible coverings (i.e. Harris-Mumford admissible cov-
erings).

1.1.5. Let f • : Y • → X• be an admissible covering over k of degree m. Let
e ∈ eop(ΓX•) ∪ ecl(ΓX•) and xe the closed point of X corresponding to e. We put

ecl,raf

def
= {e ∈ ecl(ΓX•) | #(f−1(xe)) = 1},

ecl,étf

def
= {e ∈ ecl(ΓX•) | #(f−1(xe)) = m},

eop,raf

def
= {e ∈ eop(ΓX•) | #(f−1(xe)) = 1},

eop,étf

def
= {e ∈ eop(ΓX•) | #(f−1(xe)) = m},

vraf
def
= {v ∈ v(ΓX•) | #(Irr(f−1(Xv))) = 1},

vspf
def
= {v ∈ v(ΓX•) | #(Irr(f−1(Xv))) = m},

where Irr(−) denotes the set of irreducible components of (−), “ra” means “rami-
fication”, and “sp” means “split”. Note that if the Galois closure of f • is a Galois
admissible covering whose Galois group is a p-group, then the definition of admissible
coverings implies #(ecl,raf ) = #(eop,raf ) = 0.
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1.2. Admissible fundamental groups. In this subsection, we recall some well-
known properties concerning admissible fundamental groups of pointed semi-stable
curves. There are many approaches to define admissible fundamental groups of
pointed semi-stable curves (e.g. constructing Galois categories of admissible covering
(by equipping certain isomorphisms of tangent base points of branches of nodes),
Mochizuki’s theory of semi-graphs of anabelioids, geometric log étale fundamental
groups, etc.). In the present paper, we define admissible fundamental groups of
pointed stable curves by using log geometry (see also [T6, §2]).

1.2.1. We maintain the notation introduced in 1.1.2. LetMgX ,nX ,Z be the moduli
stack over SpecZ parameterizing pointed stable curves of type (gX , nX) (i.e. the
quotient stack of the moduli stack of n-pointed stable curves in the sense of [K]
by the natural action of n-symmetric group) and MgX ,nX ,Z the open substack of

MgX ,nX ,Z parameterizing smooth pointed stable curves. Write Mlog

gX ,nX ,Z for the

log stack obtained by equippingMgX ,nX ,Z with the natural log structure associated
to the divisor with normal crossings MgX ,nX ,Z \ MgX ,nX ,Z ⊂ MgX ,nX ,Z relative to
SpecZ.

Write X•
st for the pointed stable curve associated to X• (i.e. the pointed stable

curve obtained by contracting the (−1)-curves and (−2)-curves of X•). Then we

obtain a morphism s
def
= Spec k →MgX ,nX ,Z determined by X•

st → s. Write slogXst
for

the log scheme whose underlying scheme is Spec k, and whose log structure is the
pulling-back log structure induced by the morphism s → MgX ,nX ,Z. We obtain a

natural morphism slogXst
→Mlog

gX ,nX ,Z induced by the morphism s→MgX ,nX ,Z and a
stable log curve

X log
st

def
= slogXst

×Mlog
gX,nX,Z

Mlog

gX ,nX+1,Z

over slogXst
whose underlying scheme is Xst. Then there exists a log blow-up X log →

X log
st such that the underlying scheme of X log is X.

1.2.2. Let x̃log → X log be a log geometric point and x̃log → X log → X log
st the

composition morphism of the natural morphisms of log schemes. Moreover, suppose
that the image of the morphism of underlying schemes of x̃log → X log

st is a smooth
point of Xst. Write x → X and x → Xst for the geometric points induced by
the log geometric points. Then we have a surjective homomorphism of log étale
fundamental groups π1(X

log, x̃log) ↠ π1(s
log
Xst
, x̃log) (see [I] for the general theory of

log étale fundamental groups). We call

πadm
1 (X•, x)

def
= ker(π1(X

log, x̃log) ↠ π1(s
log
Xst
, x̃log))

the admissible fundamental group of X• (i.e. the geometric log étale fundamental
group of X log). It is well known that πadm

1 (X•, x) independents the log structures
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of X log, and that there is a bijection between the set of open (resp. open normal)
subgroups of πadm

1 (X•, x) and the set of isomorphism classes of admissible (resp.
Galois admissible) coverings of X• over k.

On the other hand, by applying similar arguments to the arguments given above,
we obtain the admissible fundamental group πadm

1 (X•
st, x) of X•

st. Moreover, by [I,
Theorem 6.10], we have πadm

1 (X•, x) ∼= πadm
1 (X•

st, x).
Since we only focus on the isomorphism class of πadm

1 (X•, x) in the present paper,
for simplicity of notation, we omit the base point and denote by

πadm
1 (X•)

the admissible fundamental group πadm
1 (X•, x). Note that, by the definition of ad-

missible coverings, the admissible fundamental group of X• is naturally isomorphic
to the tame fundamental group of X• when X• is smooth over k.

1.2.3. Remark. Unlike [T2], we do not consider the étale fundamental group of X \
DX in general for the following reasons: (i) The étale fundamental group is not a
good invariant ifX• is singular (since it does not contain the ramification information
of singular points of X•), and if we consider anabelian geometry from the point of
view of moduli spaces (since there does not exist a good deformation theory for
étale coverings of X \ DX in positive characteristic if DX 6= ∅). (ii) The results
of anabelian geometry of curves concerning étale fundamental groups are weaker
than the results of anabelian geometry of curves concerning tame (or admissible)
fundamental groups ([T2, Corollary 1.5]).

1.2.4. Let k′ be an arbitrary algebraically closed field containing k. Then it is
well known that πadm

1 (X•) ∼= πadm
1 (X• ×k k′). Moreover, by applying [V, Théorème

2.2 (c)], we obtain that πadm
1 (X•) is topologically finitely generated, and that the

maximal pro-prime-to-p quotient πadm
1 (X•)p

′
of πadm

1 (X•) is isomorphic to the pro-
prime-to-p completion of the following group

〈a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1〉.

1.2.5. Let v ∈ v(ΓX•). Write πadm
1 (X̃•

v ) for the admissible fundamental group (=the

tame fundamental group) of the smooth pointed semi-stable curve X̃•
v associated to

v. Then we have a natural (outer) injection

πadm
1 (X̃•

v ) ↪→ πadm
1 (X•).

We shall denote by πadm
1 (X), πét

1 (X), πtop
1 (ΓX•) the admissible fundamental group

of the pointed semi-stable curve (X, ∅), the étale fundamental group of the under-
lying curve X of X•, and the profinite completion of the topological fundamental
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group of ΓX• , respectively. Then we have the following natural surjective open
continuous homomorphisms (for suitable choices of base points):

πadm
1 (X•) ↠ πadm

1 (X) ↠ πét
1 (X) ↠ πtop

1 (ΓX•).

Note that the isomorphism classes of πadm
1 (X•), πadm

1 (X), πét
1 (X), and πtop

1 (ΓX•)
depend only on the pointed stable curve associated to X•.

1.2.6. Let πadm
1 (X•)sol, πadm

1 (X)sol, πét
1 (X)sol, πtop

1 (ΓX•)sol be the maximal pro-
solvable quotients of πadm

1 (X•), πadm
1 (X), πét

1 (X), πtop
1 (ΓX•), respectively. Then we

obtain the following natural surjective open continuous homomorphisms

πadm
1 (X•)sol ↠ πadm

1 (X)sol ↠ πét
1 (X)sol ↠ πtop

1 (ΓX•)sol.

We shall call

πadm
1 (X•)sol

the solvable admissible fundamental group of X•.

Let v ∈ v(ΓX•). Write πadm
1 (X̃•

v )
sol for the solvable admissible fundamental group

of the smooth pointed semi-stable curve X̃•
v associated to v. Then the natural

(outer) injection πadm
1 (X̃•

v ) ↪→ πadm
1 (X•) induces an (outer) homomorphism

πadm
1 (X̃•

v )
sol → πadm

1 (X•)sol.

We see that this homomorphism is an injection. Indeed, it follows immediately from

the following: Let f̃ •
v : Ỹ •

v → X̃•
v be a Galois admissible covering over k whose Galois

group is an abelian group. Then we see that there exists a Galois admissible covering
g• : Z• → X• over k whose Galois group is a solvable group such that the following
is satisfied: let Zv be an irreducible component of Z• such that g(Zv) = Xv; then

the Galois admissible covering Z̃•
v → X̃•

v over k induced by g• factors through f̃ •
v .

This means that the homomorphism πadm
1 (X̃•

v )
sol → πadm

1 (X•)sol mentioned above is
an injection.

1.2.7. In the remainder of the present paper, we shall denote by

ΠX•

either πadm
1 (X•) or πadm

1 (X•)sol unless indicated otherwise. If ΠX• = πadm
1 (X•), we

denote by

Πcpt
X•

def
= πadm

1 (X), Πét
X•

def
= πét

1 (X), Πtop
X•

def
= πtop

1 (ΓX•).

If ΠX• = πadm
1 (X•)sol, we denote by

Πcpt
X•

def
= πadm

1 (X)sol, Πét
X•

def
= πét

1 (X)sol, Πtop
X•

def
= πtop

1 (ΓX•)sol.
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1.2.8. Let H ⊆ ΠX• be an arbitrary open subgroup. We write X•
H for the pointed

semi-stable curve of type (gXH
, nXH

) over k corresponding to H, ΓX•
H
for the dual

semi-graph of X•
H , and rXH

for the Betti number of ΓX•
H
. Then we obtain an

admissible covering

f •
H : X•

H → X•

over k induced by the natural injection H ↪→ ΠX• , and obtain a natural map of dual
semi-graphs

f sg
H : ΓX•

H
→ ΓX•

induced by f •
H , where “sg” means “semi-graph”. Moreover, if H is an open normal

subgroup, then ΓX•
H

admits an action of ΠX•/H induced by the natural action of
ΠX•/H on X•

H . Note that the quotient of ΓX•
H
by ΠX•/H coincides with ΓX• , and

that H is isomorphic to the admissible fundamental group (resp. solvable admissible
fundamental group) ΠX•

H
of X•

H if ΠX• = πadm
1 (X•) (resp. ΠX• = πadm

1 (X•)sol). We
also use the notation

Hcpt, H ét, Htop

to denote Πcpt
X•

H
, Πét

X•
H
, and Πtop

X•
H
, respectively.

1.2.9. Let ` be a prime number. Let α ∈ Hom(ΠX• ,Z/`Z) be a non-trivial element.
Then α induces a Galois admissible covering f •

α : X•
α → X• over k with Galois

group Z/`Z (i.e. the Galois admissible covering of X• corresponding to the open
normal subgroup ker(α) ⊆ ΠX•). We call f •

α the Galois admissible covering of X•

corresponding to α.
On the other hand, let f • : Y • → X• be a Galois admissible covering with Galois

group Z/`Z. Then there exists a non-trivial element α ∈ Hom(ΠX• ,Z/`Z) such that
f •
α = f •. We call α an element corresponding to (or induced by) f •.

1.2.10. We put

X̂
def
= lim←−

H⊆ΠX• open

XH , DX̂

def
= lim←−

H⊆ΠX• open

DXH
, ΓX̂•

def
= lim←−

H⊆ΠX• open

ΓX•
H
.

We shall say that

X̂• = (X̂,DX̂)

is the universal admissible covering (resp. universal solvable admissible covering) of
X• corresponding to ΠX• if ΠX• = πadm

1 (X•) (resp. ΠX• = πadm
1 (X•)sol), and that

ΓX̂• is the dual semi-graph of X̂•. Note that we have that Aut(X̂•/X•) = ΠX• , and
that ΓX̂• admits a natural action of ΠX• .
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1.2.11. Let v ∈ v(ΓX•), e ∈ eop(ΓX•) ∪ ecl(ΓX•), v̂ ∈ v(ΓX̂•) a vertex over v, and
ê ∈ eop(ΓX̂•) ∪ ecl(ΓX̂•) an edge over e. We denote by

Πv̂ ⊆ ΠX• , Iê ⊆ ΠX•

the stabilizer subgroups of v̂ and ê, respectively. We see immediately that Πv̂ is

(outer) isomorphic to ΠX̃•
v
of X̃•

v , and that Iê is (outer) isomorphic to an inertia
subgroup associated to the closed point of X corresponding to e. Then we have

Iê ∼= Ẑ(1)p′ , where (−)p′ denotes the maximal pro-prime-to-p quotient of (−). We
put

Ver(ΠX•)
def
= {Πv̂}v̂∈v(Γ

X̂• ),

Edgop(ΠX•)
def
= {Iê}ê∈eop(Γ

X̂• ),

Edgcl(ΠX•)
def
= {Iê}ê∈ecl(Γ

X̂• ).

Moreover, if ê abuts on v̂, then we have the following injections

Iê ↪→ Πv̂ ↪→ ΠX• .

Note that Ver(ΠX•), Edgop(ΠX•), and Edgcl(ΠX•) admit natural actions of ΠX• (i.e.
the conjugacy actions), and that we have the following natural bijections

Ver(ΠX•)/ΠX•
∼→ v(ΓX•),

Edgop(ΠX•)/ΠX•
∼→ eop(ΓX•),

Edgcl(ΠX•)/ΠX•
∼→ ecl(ΓX•)

induced by Iv̂ 7→ v, Iê 7→ e, Iê 7→ e, respectively.

2. Maximum and averages of generalized Hasse-Witt invariants

In this section, we recall some results concerning Hasse-Witt invariants (or p-rank)
and generalized Hasse-Witt invariants.

2.1. Hasse-Witt invariants and generalized Hasse-Witt invariants.

2.1.1. Let Z• be a disjoint union of finitely many pointed semi-stable curves over
k. We define the p-rank (or Hasse-Witt invariant) of Z• to be

σZ
def
= dimFp(H

1
ét(Z,Fp)).

In particular, if Z• is a pointed semi-stable curve, then we have σZ = dimFp(Π
ab
Z• ⊗

Fp), where ΠZ• is either the admissible fundamental group or the solvable admissible
fundamental group of Z•, and (−)ab denotes the abelianization of (−).
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2.1.2. Let X• be a pointed stable curve of type (gX , nX) over an algebraically closed
field k of characteristic p > 0, ΓX• the dual semi-graph of X•, and ΠX• either the
admissible fundamental group or the solvable admissible fundamental group of X•.
Let n be an arbitrary positive natural number prime to p and µn ⊆ k× the group of
nth roots of unity. Fix a primitive nth root ζn, we may identify µn with Z/nZ via
the map ζ in 7→ i.

2.1.3. Let α ∈ Hom(Πab
X• ,Z/nZ). We denote by X•

α = (Xα, DXα) the Galois multi-
admissible covering with Galois group Z/nZ corresponding to α. Write FXα for
the absolute Frobenius morphism on Xα. Then there exists a decomposition ([Ser,
Section 9])

H1(Xα,OXα) = H1(Xα,OXα)
st ⊕H1(Xα,OXα)

ni,

where FXα is a bijection on H1(Xα,OXα)
st and is nilpotent on H1(Xα,OXα)

ni. More-
over, we have H1(Xα,OXα)

st = H1(Xα,OXα)
FXα ⊗Fp k, where (−)FXα denotes the

subspace of (−) on which FXα acts trivially. Then Artin-Schreier theory implies that

we may identify Hα
def
= H1

ét(Xα,Fp)⊗Fp k with the largest subspace of H1(Xα,OXα)
on which FXα is a bijection.

The finite dimensional k-linear space Hα is a finitely generated k[µn]-module in-
duced by the natural action of µn on Xα. We have the following canonical decom-
position

Hα =
⊕
i∈Z/nZ

Hα,i,

where ζn ∈ µn acts on Hα,i as the ζ
i
n-multiplication. We call

γα,i
def
= dimk(Hα,i), i ∈ Z/nZ,

a generalized Hasse-Witt invariant (see [Nakaj], [T4] for the case of smooth pointed
stable curves) of the cyclic multi-admissible covering X•

α → X•. Note that the above
decomposition implies

σXα = dimk(Hα) =
∑

i∈Z/nZ

γα,i.

2.1.4. Let t ∈ N be an arbitrary positive natural number, Kpt−1 the kernel of the
natural surjection ΠX• ↠ Πab

X• ⊗ Z/(pt − 1)Z, and X•
Kpt−1

the pointed stable curve

over k determined by Kpt−1. Next, we define two important invariants associated to
X•.

We shall call

γmax(X•)
def
= maxm∈N s.t. (m,p)=1{γα,i | α ∈ Hom(Πab

X• ,Z/mZ),
α 6= 0, i ∈ (Z/mZ) \ {0}}

the maximum generalized Hasse-Witt invariant of prime-to-p cyclic admissible cov-
erings of X•.
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We shall call

Avrp(X
•)

def
= lim

t→∞

σXK
pt−1

#(Πab
X• ⊗ Z/(pt − 1)Z)

the limit of p-averages of X•.

2.2. Two group-theoretical formulas. In this subsection, we recall two group-
theoretical formulas for maximum and p-averages of generalized Hasse-Witt invari-
ants proved by Tamagawa and the author. We maintain the notation and settings
introduced in Section 2.1.

2.2.1. Let Fp be an algebraic closure of the finite field Fp, χ ∈ Hom(ΠX• ,F×
p ) such

that χ 6= 1, and Πχ ⊆ ΠX• the kernel of χ. The profinite group Πχ admits a natural
action of ΠX• via the conjugation action. We put

Hom(Πχ,Z/pZ)[χ]
def
= {a ∈ Hom(Πχ,Z/pZ)⊗Fp Fp | τ(a) = χ(τ)a

for all τ ∈ ΠX•},
γχ(Hom(Πχ,Z/pZ))

def
= dimFp

(Hom(Πχ,Z/pZ)[χ]).
We define the following group-theoretical invariants associated to ΠX• :

γmax(ΠX•)
def
= max{γχ(Hom(Πχ,Z/pZ)) | χ ∈ Hom(ΠX• ,F×

p ) such that χ 6= 1},

Avrp(ΠX•)
def
= lim

t→∞

dimFp(K
ab
pt−1 ⊗ Fp)

#(Πab
X• ⊗ Z/(pt − 1)Z)

.

We see immediately that

γmax(ΠX•) = γmax(X•), Avrp(ΠX•) = Avrp(X
•).

2.2.2. We have the following highly non-trivial formulas for γmax(ΠX•) and Avrp(ΠX•),
which were proved by applying the theory of Raynaud-Tamagawa theta divisors.

Theorem 2.1. We maintain the notation introduced above.
(a) We have

γmax(ΠX•) =

{
gX − 1, if nX = 0,
gX + nX − 2, if nX 6= 0.

(b) Suppose that Γcpt
X• is 2-connected (1.1.1 (b)). Then we have (see 1.1.1 (c) for

v(ΓX•)b≤1, ecl(ΓX•)b≤1)

Avrp(ΠX•) = gX − rX −#(v(ΓX•)b≤1) + #(ecl(ΓX•)b≤1).

Proof. (a) This is [Y5, Theorem 5.4]. (b) This follows immediately from the “in
particular” part of [Y3, Theorem 1.3]. Note that our notation differs from that of
[Y3, Theorem 1.3]. Moreover, if Γcpt

X• is 2-connected, then we have that #E>1
v ≤ 1

for each v ∈ v(ΓX•), and that #(V tre
X• ) = #(v(ΓX•)b≤1), #(V tre,gv=0

X• ) = 0, and
#(ecl(ΓX•)b≤1) = #(Etre

X•). □
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Remark 2.1.1. In the present paper, we will use the formula for Avrp(ΠX•) when
#(v(ΓX•)b≤1) = #(ecl(ΓX•)b≤1) = 0.

Lemma 2.2. Let X•
i , i ∈ {1, 2}, be a pointed stable curve of type (gXi

, nXi
) over

an algebraically closed field ki of characteristic p and ΠX•
i
either the admissible

fundamental group of X•
i or the solvable admissible fundamental group of X•

i . Let

φ : ΠX•
1
↠ ΠX•

2

be an arbitrary surjective open continuous homomorphism of profinite groups, H2 ⊆
ΠX•

2
an arbitrary open normal subgroup, and H1

def
= φ−1(H2). Then the following

statements hold:
(a) We have

γmax(H1) ≥ γmax(H2).

(b) Suppose that (gX , nX) = (gX1 , nX1) = (gX2 , nX2). Moreover, suppose that one
of the following conditions are satisified:

• G def
= ΠX•

2
/H2 is a p-group.

• (#(G), p) = 1.
• G is a solvable group.

Then we have
Avrp(H1) ≥ Avrp(H2).

Proof. (a) Let m ∈ Z>0 be a positive natural number prime to p such that there
exists α2 ∈ Hom(Hab

2 ,Z/mZ) satisfying α2 6= 0 and γα2,j
= γmax(H2) for some

j ∈ (Z/mZ) \ {0}. Write Q2 for the kernel of the composition of the following

homomorphisms H2 ↠ Hab
2

α2↠ Z/nZ, Q1
def
= φ−1(Q2), and α1 ∈ Hom(Hab

1 ,Z/nZ)
for the homomorphism induced by φ|H1 and α2. Let Fp be an algebraic closure of

Fp. Then Qp,ab
i ⊗Fp Fp admits a natural Fp[Z/nZ]-module structure. Moreover, we

see immediately that φ|H1 induces a surjective homomorphism of Fp[Z/nZ]-modules

Qp,ab
1 ⊗Fp Fp ↠ Qp,ab

2 ⊗Fp Fp.
Then we obtain that γα1,j ≥ γα2,j. Thus, we have γmax(H1) ≥ γmax(H2).

(b) Let t ∈ N be an arbitrary positive natural number, KHi,pt−1 the kernel of
the natural surjection Hi ↠ Hab

i ⊗ Z/(pt − 1)Z. Suppose that G is a p-group. We
have that Galois admissible covering X•

Hi
→ X•

i corresponding to Hi is étale. This
implies that X•

H1
and X•

H2
are equal types. We obtain

#(Hab
1 ⊗ Z/(pt − 1)Z) = #(Hab

2 ⊗ Z/(pt − 1)Z).

Suppose that (#(G), p) = 1. Since X•
1 and X•

2 are equal types, Hp′

1 is isomorphic to

Hp′

2 . We have

#(Hab
1 ⊗ Z/(pt − 1)Z) = #(Hab

2 ⊗ Z/(pt − 1)Z).
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Then φ|H1 implies

Avrp(H1)
def
= lim

t→∞

dimFp(K
ab
H1,pt−1 ⊗ Fp)

#(Hab
1 ⊗ Z/(pt − 1)Z)

≥ Avrp(H2)
def
= lim

t→∞

dimFp(K
ab
H2,pt−1 ⊗ Fp)

#(Hab
2 ⊗ Z/(pt − 1)Z)

if either G is a p-group, or (#(G), p) = 1 holds.
Suppose that G is solvable. Then the lemma follows immediately from the lemma

when either G is a p-group, or (#(G), p) = 1. This completes the proof of the
lemma. □

3. Moduli spaces of fundamental groups and the homeomorphism
conjecture

In this section, we define the moduli spaces of fundamental groups and formulate
the homeomorphism conjecture, which are main objects of the series of the present
papers.

3.1. The weak Isom-version conjecture. Let p be a prime number, Fp the prime

field of characteristic p, and Fp an algebraic closure of Fp. LetMg,n be the moduli

stack over Fp classifying pointed stable curves of type (g, n) andMg,n ⊆ Mg,n the
open substack classifying smooth pointed stable curves. Let M g,n and Mg,n be the
coarse moduli spaces ofMg,n andMg,n, respectively.

3.1.1. Let q ∈ M g,n be an arbitrary point, k(q) the residue field of M g,n, and
kq an algebraically closed field containing k(q). Then the composition of natural
morphisms Spec kq → Spec k(q) → M g,n determines a pointed stable curve X•

kq

of type (g, n) over kq. Write πadm
1 (X•

kq
) for the admissible fundamental group X•

kq

and πadm
1 (X•

kq
)sol for the solvable admissible fundamental group of X•

kq
. Since the

isomorphism classes of πadm
1 (X•

kq
) and πadm

1 (X•
kq
)sol do not depend on the choice of

kq, we shall write

πadm
1 (q), πsol

1 (q)

for πadm
1 (X•

kq
), πadm

1 (X•
kq
)sol, respectively. Moreover, we shall denote by

X•
q

the pointed stable curve X•
k(q)

and Γq the dual semi-graph of X•
q , where k(q) is an

algebraic closure of k(q). Let v ∈ v(Γq). Then the smooth pointed stable curve X̃•
q,v

of type (gv, nv) associated to v determines a morphism Spec k(q)→Mgv ,nv .We shall
write qv ∈Mgv ,nv for the image of the morphism and call qv the point of type (gv, nv)
associated to v.
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3.1.2. We recall an equivalent relation on the underlying topological space |M g,n|
of M g,n that was introduced in [Y4].

Definition 3.1. (a) Let qi ∈ Mg,n, i ∈ {1, 2}, be an arbitrary point. We shall say
that q1 is Frobenius equivalent to q2 if Xq1 \ DXq1

is isomorphic to Xq2 \ DXq2
as

schemes.
(b) Let qi ∈ M g,n, i ∈ {1, 2}, be an arbitrary point. We shall say that q1 is

Frobenius equivalent to q2 if the following conditions are satisfied:
(i) There exists an isomorphism ρ : Γq1

∼→ Γq2 of dual semi-graphs.

(ii) Let v1 ∈ v(Γq1), v2
def
= ρ(v1) ∈ v(Γq2), q1,v1 the point of type (gv1 , nv1) associated

to v1, and q2,v2 the point of type (gv2 , nv2) associated to v2. We have that q1,v1 is
Frobenius equivalent to q2,v2 .

(iii) Let ρv1,v2 : Γq1,v1
∼→ Γq2,v2 be the isomorphism of dual semi-graphs induced

by ρ. There exists an isomorphism φv1,v2 : πadm
1 (q1,v1)

∼→ πadm
1 (q2,v2) such that the

isomorphism of dual semi-graphs Γq1,v1
∼→ Γq2,v2 induced by φv1,v2 (cf. [T4, Theorem

5.2] or [Y2, Theorem 1.2 and Remark 1.2.1]) coincides with ρv1,v2 .
We shall denote by

q1 ∼fe q2
if q1 is Frobenius equivalent to q2. We see that ∼fe is an equivalence relation on the
underlying topological space |M g,n| of M g,n

(c) Let qi ∈ M g,n, i ∈ {1, 2}, be an arbitrary point, kqi an algebraically closed
field containing k(qi), and X

•
kqi

the pointed stable curve of type (g, n) over kqi . We

shall say that X•
kq1

is Frobenius equivalent to X•
kq2

if q1 is Frobenius equivalent to q2.

The following result was proved by the author.

Proposition 3.2. Let qi ∈ M g,n, i ∈ {1, 2}, be an arbitrary point. Suppose q1 ∼fe
q2. Then we have that πadm

1 (q1) is isomorphic to πadm
1 (q2) as profinite groups. In

particular, we have that πsol
1 (q1) is isomorphic to πsol

1 (q2) as profinite groups.

Proof. See [Y4, Proposition 3.7]. □
3.1.3. We put

Mg,n
def
= |Mg,n|/ ∼fe⊆Mg,n

def
= |M g,n|/ ∼fe,

Πg,n
def
= {[πadm

1 (q)] | q ∈Mg,n} ⊆ Πg,n
def
= {[πadm

1 (q)] | q ∈M g,n},
Πsol
g,n

def
= {[πsol

1 (q)] | q ∈Mg,n} ⊆ Π
sol

g,n
def
= {[πsol

1 (q)] | q ∈M g,n},
where [πadm

1 (q)] and [πsol
1 (q)] denote the isomorphism classes (as profinite groups) of

πadm
1 (q) and πsol

1 (q), respectively. Let q ∈ M g,n. We shall write [q] for the image of

q in Mg,n. Then there are natural surjective maps of sets as follows:

sol : Πg,n ↠ Π
sol

g,n, [π
adm
1 (q)] 7→ [πsol

1 (q)],
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πadm
g,n : Mg,n ↠ Πg,n, [q] 7→ [πadm

1 (q)],

πsol
g,n

def
= sol ◦ πadm

g,n : Mg,n ↠ Π
sol

g,n,

πt
g,n

def
= πadm

g,n |Mg,n : Mg,n ↠ Πg,n,

πt,sol
g,n

def
= πsol

g,n|Mg,n : Mg,n ↠ Πsol
g,n,

where “t” means “tame”. Moreover, we have the following commutative diagrams:

Mg,n

πt
g,n−−−→ Πg,ny y

Mg,n

πadm
g,n−−−→ Πg,n,

Mg,n
πt,sol
g,n−−−→ Πsol

g,ny y
Mg,n

πsol
g,n−−−→ Π

sol

g,n,

where all vertical arrows are natural injections.

Proposition 3.3. We maintain the notation introduced above. Then we have

πadm
g,n (Mg,n \Mg,n) = Πg,n \ Πg,n, π

sol
g,n(Mg,n \Mg,n) = Π

sol

g,n \ Πsol
g,n.

Proof. The proposition follows immediately from [Y2, Theorem 1.2, Remark 1.2.1,
Remark 1.2.2, and Proposition 6.1] (see also Theorem 4.2 of the present paper). □

3.1.4. We may formulate a moduli version of the weak Isom-version of the Grothendieck
conjecture for pointed stable curves over algebraically closed fields of characteristic
p > 0 (=the weak Isom-version conjecture) as follows:

Weak Isom-version Conjecture . We maintain the notation introduced above.
Then we have that

πadm
g,n : Mg,n ↠ Πg,n

is a bijection as sets.

Moreover, we have the following solvable version of the weak Isom-version conjecture
which is slightly stronger than the original version.

Solvable Weak Isom-version Conjecture . We maintain the notation introduced
above. Then we have that

πsol
g,n : Mg,n ↠ Π

sol

g,n

is a bijection as sets.
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3.1.5. Write M
cl

g,n for the set of closed points of M g,n and M
cl

g,n for the image of

M
cl

g,n of the natural map |M g,n|↠ Mg,n. Then we have the following result.

Theorem 3.4. We maintain the notation introduced above. Then the following
statements hold:

(a) We have that

πsol
g,n|Mcl

g,n
: M

cl

g,n → Π
sol

g,n

is quasi-finite (i.e. #((πsol
g,n|Mcl

g,n
)−1([πsol

1 (q)])) <∞ for every [πsol
1 (q)] ∈ Π

sol

g,n).

(b) Suppose that g = 0. Then we have that

πsol
g,n|Mcl

g,n
: M

cl

g,n → Π
sol

g,n

is an injection, and that

πsol
g,n(Mg,n \M

cl

g,n) ⊆ Π
sol

g,n \ πsol
g,n(M

cl

g,n).

In particular, the weak Isom-version conjecture and the Solvable Weak Isom-version
Conjecture hold if (g, n) = (0, 4).

Proof. Since [T4, Theorem 0.2] and [T5, Theorem 0.1] also hold for the maximal
pro-solvable quotients of tame fundamental groups, the theorem follows immediately
from [T4, Theorem 0.2], [T5, Theorem 0.1], [Y2, Theorem 1.2, Remark 1.2.1, Remark
1.2.2, and Proposition 6.1], and Proposition 3.3. □
Remark 3.4.1. The result (a) is called “finiteness theorem”. When q ∈ Mg,n, by
using the theory of Raynaud’s theta divisors, the finiteness theorem was proved
by Raynaud ([R3]), Pop-Säıdi ([PS]) under certain assumptions, and by Tama-
gawa ([T5]) in general case. Furthermore, Tamagawa’s result was generalized to
the case where q ∈M g,n by the author ([Y2]) as an application of the combinatorial
Grothendieck conjecture for curves in positive characteristic.

3.2. Moduli spaces of admissible fundamental groups. We maintain the no-
tation introduced in 3.1. Moreover, we regard Mg,n and Mg,n as topological spaces
whose topologies are induced by the Zariski topologies of |M g,n| and |Mg,n|, respec-
tively.

3.2.1. Let G be the category of finite groups, G ∈ G an arbitrary finite group, and
Homsurj(−,−) the set of surjective homomorphisms. We put

UΠg,n,G
def
= {[πadm

1 (q)] ∈ Πg,n | Homsurj(π
adm
1 (q), G) 6= ∅},

UΠg,n,G
def
= {[πadm

1 (q)] ∈ Πg,n | Homsurj(π
adm
1 (q), G) 6= ∅},

U
Π

sol
g,n,G

def
= {[πsol

1 (q)] ∈ Π
sol

g,n | Homsurj(π
sol
1 (q), G) 6= ∅},
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UΠsol
g,n,G

def
= {[πsol

1 (q)] ∈ Πsol
g,n | Homsurj(π

sol
1 (q), G) 6= ∅}.

Then we obtain the following topological spaces

(Πg,n, OΠg,n
), (Πg,n, OΠg,n), (Π

sol

g,n, OΠ
sol
g,n
), (Πsol

g,n, OΠsol
g,n
)

whose topologies OΠg,n
, OΠg,n , OΠ

sol
g,n
, and OΠsol

g,n
are generated by {UΠg,n,G

}G∈G ,

{UΠg,n,G}G∈G , {UΠ
sol
g,n,G
}G∈G , and {UΠsol

g,n,G
}G∈G as open subsets, respectively. For

simplicity of notation, we still use the notation

Πg,n, Πg,n, Π
sol

g,n, Π
sol
g,n

to denote the topological spaces (Πg,n, OΠg,n
), (Πg,n, OΠg,n), (Π

sol

g,n, OΠ
sol
g,n
), and (Πsol

g,n, OΠsol
g,n
),

respectively.

Definition 3.5. We call

Πg,n, (resp. Π
sol

g,n)

the moduli space of admissible fundamental groups of pointed stable curves (resp.
solvable admissible fundamental groups) of type (g, n) over algebraically closed fields
of characteristic p, or the moduli space of admissible fundamental groups (resp.
solvable admissible fundamental groups) of type (g, n) in characteristic p for short.

3.2.2. Continuous of the map πadm
g,n . LetMlog

g,n be the log stack obtained by equipping

Mg,n with the natural log structure associated to the divisor with normal crossings

Mg,n \Mg,n relative to SpecFp. Let Ad be the stack over SpecFp defined as follows:
For a scheme S, the objects of Ad(S) are HM-admissible coverings ([M1, §3.9 Defi-
nition]) C• → D• over S of degree d (note that if S is an algebraically closed field of
characteristic p, then HM-admissible coverings are equivalent to the HM-admissible
coverings defined in Definition 1.1), where C• is a pointed stable curve over S, and
D• is a pointed stable curve of type (g, n) over S. By [M1, §3.11 Proposition and
§3.22 Theorem], the stack Ad is a separated Deligne-Mumford stack of finite type
over SpecFp. Moreover, Ad is equipped with a canonical log structure MAd

→ OAd
,

together with a logarithmic morphism Alog
d

def
= (Ad,MAd

) → Mlog

g,n (obtained by
mapping C• → D• 7→ D•) which is log étale (not necessary proper).

Let G be an arbitrary finite group. For any HM-admissible covering C• → D• over
S, [M1, §3.10 and §3.11] imply that C• → D• can be extended to a log admissible
covering C log → Dlog over Slog ([M1, §3.5 Definition]). Since log admissible coverings
are finite Kummer log étale coverings, we shall say C• → D• over S a Galois HM-
admissible covering with Galois group G if C log → Dlog over Slog is a Galois Kummer
log étale covering with Galois group G. Note that if S is an algebraically closed field
k of characteristic p, then a Galois HM-admissible covering can be regarded as a
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Galois admissible covering in the sense of Definition 1.1 by equipping certain sets of
isomorphisms of k-isomorphisms of branches of singular points (1.1.4).

Let AG be the substack of A#(G) classifying Galois HM-admissible coverings with
Galois group G which is a union of some connected components of A#(G), and

which is a separated Deligne-Mumford stack of finite type over Spec Fp. Note that

AG may be empty. Moreover, we shall denote by Alog
G the log stack whose underlying

stack is AG, and whose log structure is the pulling-back log structure induced by

AG ↪→ A#(G). Furthermore, we have a logarithmic morphism Alog
G →M

log

g,n which is
log étale (not necessary proper).

Theorem 3.6. We maintain the notation introduced above. Then we have that

πadm
g,n : Mg,n → Πg,n, π

sol
g,n : Mg,n → Π

sol

g,n

are continuous maps.

Proof. We only need to treat the case πadm
g,n : Mg,n → Πg,n. To verify the theorem,

it is sufficient to prove that the composition of the natural maps

M g,n ↠ Mg,n

πadm
g,n↠ Πg,n

is continuous.
Let G be an arbitrary finite group. If UΠg,n,G

= ∅, then the theorem is trivial.

We may assume UΠg,n,G
6= ∅. Let q ∈ M g,n such that [πadm

1 (q)] ∈ UΠg,n,G
, k(q) an

algebraic closure of k(q), and

f •
q : Y •

q → X•
q

a Galois admissible covering over k(q) with Galois group G. Then we obtain a
morphism

[f •
q ] : Spec k(q)→ AG

determined by f •
q . Let U → AG be an étale altas. Then the morphism Spec k(q)→

AG factors through a morphism Spec k(q) → U . Write qU ∈ U for the image of

the morphism Spec k(q) → U . Let q′U ∈ U be a closed point (i.e. an Fp-rational
point) contained in the topological closure of qU in U and q′ ∈ M g,n the image of
q′U of U → AG → Mg,n → M g,n which is a closed point of M g,n. Then we have
[πadm

1 (q′)] ∈ UΠg,n,G
. By replacing q by q′, to verify the theorem, we only need to

prove the theorem when q is a closed point of M g,n.

Let O[f•q ] be the completion of strict henselization of AG at [f •
q ], S

def
= SpecO[f•q ],

and Slog the log scheme whose underlying scheme is S, and whose log structure is
the pulling-back log structure of Alog

G induced by the natural morphism S → AG
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(see [M1, §3.23] for explicit descriptions of S and Slog). Moreover, we have a Galois
log admissible covering

f log
S : Y log

S → X log
S

over Slog with Galois group G. On the other hand, by forgetting the log structure of
f log
S , we obtain a Galois HM-admissible covering f •

S : Y •
S → X•

S over S with Galois
group G whose closed fiber (i.e. the fiber over the closed point of S) is f •

q .

Since AG is a Deligne-Mumford stack of finite type over Spec Fp, by applying [V1,
Proposition 4.3 (1)], there exists a subring A ⊆ O[f•q ] which is of finite type over

Fp such that the Galois log admissible covering f log
S can be descended to a Galois

Kummer log étale covering
f log
E : Y log

E → X log
E

over E log with Galois group G, where E
def
= SpecA. By the construction, the pulling-

back f log
E ×Elog Slog via the natural morphism Slog → E log is f log

S . Moreover, by
replacing E by an open subset of E, we may assume that the underlying schemes
YE and XE are geometrically connected over each point e ∈ E. Then by forgetting
the log structure of f log

E , we obtain a Galois HM-admissible covering

f •
E : Y •

E → X•
E

over E with Galois group G, and a morphism E → AG determined by f •
E.

Since E is a scheme of finite type over Spec Fp, the image W of E → AG →
Mg,n → M g,n is a constructible subset of M g,n containing q. Moreover, since the
image of the composition of the natural morphisms S → AG → Mg,n → M g,n is
dense in M g,n, W is a dense constructible subset of M g,n containing q. Then we
have that

W =
r⊔
i=1

Wi

is a finite disjoint union of local closed subsets {Wi}i=1,...,r, of M g,n. Without loss
of generality, we may assume q ∈ W1. Since W1 contains the image of S, we obtain
that W1 is an open subset of M g,n. This completes the proof of the theorem. □
3.3. The homeomorphism conjecture. Next, we formulate the main conjectures
of the theory of moduli spaces of fundamental groups.

Homeomorphism Conjecture . We maintain the notation introduced above. Then
we have that the continous map

πadm
g,n : Mg,n ↠ Πg,n

is a homeomorphism.

Moreover, we have a solvable version of the homeomorphism conjecture as follows,
which is slightly stronger than the original version.
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Solvable Homeomorphism Conjecture . We maintain the notation introduced
above. Then we have that the continous map

πsol
g,n : Mg,n ↠ Π

sol

g,n

is a homeomorphism.

Remark. Note that the (solvable) homeomorphism conjecture is completely different
from Grothendieck’s anabelian conjecture for moduli spaces of curves (i.e. a con-
jecture of Grothendieck based on a similar anabelian philosophy mentioned in 0.1.2
says that moduli spaces of curves are anabelian varieties in the sense of 0.1). Fur-
thermore, the (solvable) homeomorphism conjecture contains “moduli” information
(i.e. classifications information) of curves, and Grothendieck’s anabelian conjecture
for moduli spaces of curves does not contain any “moduli” information of curves.

3.3.1. The main theorem of the present paper is the following, which will be proved
in Section 6.

Theorem 3.7 (Theorem 6.7). We maintain the notation introduced above. Let

[q] ∈ M
cl

0,n be an arbitrary closed point. Then πadm
0,n ([q]) and πsol

0,n([q]) are closed

points of Π0,n and Π
sol

0,n, respectively. In particular, the homeomorphism conjecture
and the solvable homeomorphism conjecture hold when (g, n) = (0, 3) or (0, 4).

3.4. Some open problems. Based on the homeomorphism conjecture, many new
open problems and new conjectures can be formulated. In the present subsection, we
outlines a few open problems and conjectures concerning Πg,n that are of particular
interest to the author. Note that we may also formulate the problems and the

conjectures mentioned below for Π
sol

g,n.

3.4.1. Dimension and the generalized essential dimension conjecture. Let V be an
irreducible closed subset of Πg,n, I ⊆ Z>0 a (possibly infinite) subset, and Vi ⊆
V, i ∈ I, an irreducible closed subset of Πg,n. We shall call C

def
= {Vi}i∈I a chain

of irreducible closed subsets of V if Vs ⊆ Vt and Vs 6= Vt hold for all s, t ∈ I such
that s > t. We sall call C a maximal chain of irreducible closed subsets of V if the
following holds:

• Let C ′ def
= {V ′

i }i∈I′ be a chain of irreducible closed subsets of V such that
C ⊆ C ′. Then we have C = C ′.

Moreover, we put length(C )
def
= #(I) when C is a maximal chain of irreducible

closed subsets of V .
Let C be a maximal chain of irreducible closed subsets of V . We define the

dimension of V to be

dim(V )
def
= max{length(C ) | C is a maximal chain
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of irreducible closed subsets of V }.
We have the following problem:

Problem 3.8. (i) Let V be an irreducible closed subset of Πg,n and Ci, i ∈ {1, 2},
an arbitrary maximal chain of irreducible closed subsets of V . Does

length(C1) = length(C2)

hold?
(ii) Let Z be an irreducible closed subset of Mg,n and [qZ ] the generic point of Z.

Does
dim(Z) = dim(V ([πadm

1 (qZ)]))

hold? In particular, do dim(Z) <∞, dim(Mg,n) = dim(Πg,n), and dim(V ([πadm
1 (q)])) =

0 for every [q] ∈M
cl

g,n hold? Moreover, Is πadm
g,n ([q]) a closed point of Πg,n for every

[q] ∈M
cl

g,n?

We maintain the notation introduced above. Tamagawa’s essential dimension
conjecture (see [T3, Conjecture 5.3 (ii)] for the case where [qi] ∈Mg,n) says that:

Let i ∈ {1, 2}, and let [qi] ∈ Mg,n and V ([qi]) the topological clo-

sure of [qi] in Mg,n. Then we have dim(V ([q1])) = dim(V ([q2])) if
[πadm

1 (q1)] = [πadm
1 (q2)].

We see immediately that Problem 3.8 (ii) is a generalized version of the essential
dimension conjecture. To more conveniently compare with Tamagawa’s essential
dimension conjecture, we formulate a new conjecture as following:

Generalized essential dimension conjecture . Let i ∈ {1, 2}, and let [qi] ∈Mg,n

and V ([qi]) the topological closure of [qi] in Mg,n. Then we have

dim(V ([q1])) ≥ dim(V ([q2]))

if Homop
pg(π

adm
1 (q1), π

adm
1 (q2)) 6= ∅, where Homop

pg(−,−) denotes the set of open con-
tinuous homomorphisms of profinite groups.

At present, the essential dimension conjecture has been proved when (g, n) ∈
{(0, n), (1, 1)} and [qi], i ∈ {1, 2}, is a closed point of Mg,n (see [Sar], [T4], [Y2]),
and the generalized essential dimension conjecture has been proved when (g, n) ∈
{(0, n), (1, n), (2, 0)} and q1 is a closed point of Mg,n (see Theorem 6.6 of the present
paper and [HY, Theorem 1.3]).

3.4.2. p-rank stratification and purity. Let 0 ≤ σ ≤ g be an integral number. We
put

Π
σ

g,n
def
= {[Π] ∈ Πg,n | dimFp(Π

ab ⊗Z Fp) ≤ σ},
and call Π

σ

g,n the p-rank stratum of Πg,n with p-rank σ. Note that Π
σ

g,n is a closed

subset of Πg,n. Then we have the following problem:
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Problem 3.9. (i) Let Si, i ∈ {1, 2}, be an arbitrary irreducible component of Π
σ

g,n.
Then does

dim(S1) = dim(S2)

hold?
(ii) Let 1 ≤ σ ≤ g, and let Sσ−1, Sσ be any irreducible components of Π

σ−1

g,n , Π
σ

g,n,
respectively. Then does

dim(Sσ−1) = dim(Sσ)− 1

hold?
(iii) Let S be an arbitrary irreducible component of Π

σ

g,n. Then does

dim(S) = 2g + n− 3 + σ

hold?

The above problem is an analogue of the purity of the p-rank strata of the moduli
stackMg,n (see [FG, Theorem 2.3]).

3.5. Some results about the topology of Πg,n. In this subsection, we prove
some basic properties concerning the topology of Πg,n.

3.5.1. Firstly, we have the following proposition.

Proposition 3.10. We maintain the notation introduced above. Then the following
statements hold.

(a) Let [πadm
1 (q)] ∈ Πg,n and [πsol

1 (q)] ∈ Π
sol

g,n be arbitrary points. Then we have

V ([πadm
1 (q)]) = {[πadm

1 (q′)] ∈ Πg,n | Homsurj(π
adm
1 (q), πadm

1 (q′)) 6= ∅},

V ([πsol
1 (q)]) = {[πsol

1 (q′)] ∈ Π
sol

g,n | Homsurj(π
sol
1 (q), πsol

1 (q′)) 6= ∅},
where V ([πadm

1 (q)]) and V ([πsol
1 (q)]) denote the topological closures of [πadm

1 (q)] and

[πsol
1 (q)] in Πg,n and Π

sol

g,n, respectively.
(b) We have that

Πg,n ⊆ Πg,n, Πsol
g,n ⊆ Π

sol

g,n

are open subsets.
(c) Let Z be an arbitrary irreducible closed subset of Mg,n. Then V (πadm

g,n (Z))

and V (πsol
g,n(Z)) are irreducible closed subsets of Πg,n and Π

sol

g,n, respectively, where

V (πadm
g,n (Z)) and V (πsol

g,n(Z)) denote the topological closures of πadm
g,n (Z) and πsol

g,n(Z)

in Πg,n and Π
sol

g,n, respectively. In particular, the topological spaces Πg,n and Π
sol

g,n are
irreducible.

(d) Let V be either an irreducible closed subset of Πg,n or an irreducible closed

subset of Π
sol

g,n. Then V has a unique generic point.
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(e) Let [q] ∈ M
cl

g,n. Then we have that dim(V (πadm
g,n ([q]))) = 0 if and only if

πadm
g,n ([q]) is a closed point of Πg,n.

Proof. (a) follows immediately from the definitions of OΠg,n
and O

Π
sol
g,n
, respectively.

(b) Let [πadm
1 (q)] ∈ Πg,n be an arbitrary point and πadm

A (q) the set of finite quo-
tients of πadm

1 (q). Moreover, since πadm
1 (q) is topologically finitely generated, we

have a subset of open normal subgroups {Hj}j∈N of πadm
1 (q) such that Hj1 ⊆ Hj2

for any j1 ≥ j2, and that

πadm
1 (q) ∼= lim←−

j∈N
πadm
1 (q)/Hj.

We put S(q)
def
= {πadm

1 (q)/Hj, j ∈ N} ⊆ πadm
A (q). We see that, in order to prove

that Πg,n is an open subset of Πg,n, it is sufficient to prove that, for every point
[q2] ∈ Mg,n, there exists a finite group G ∈ S(q2) such that UΠg,n,G

is contained in
Πg,n.

Suppose that UΠg,n,G
∩(Πg,n\Πg,n) 6= ∅ for all G ∈ S(q2). Since πadm

g,n is continuous

(i.e. Theorem 3.6) and the set of generic points of Mg,n \Mg,n is finite, there exists

a generic point [q1] of Mg,n \Mg,n such that

[πadm
1 (q1)] ∈

⋂
G∈S(q2)

UΠg,n,G
.

Then the set

Homsurj(π
adm
1 (q1), π

adm
1 (q2)) = lim←−

G∈S(q2)
Homsurj(π

adm
1 (q1), G)

is not empty. Thus, there is a surjective open continuous homomorphism φ :
πadm
1 (q1) ↠ πadm

1 (q2). Note that φ induces an isomorphism of maximal prime-to-

p quotients φp
′
: πadm

1 (q1)
p′ ∼→ πadm

1 (q2)
p′ .

By applying [Y2, Lemma 6.3], there exists an open characteristic subgroup H1 ⊆
πadm
1 (q1)

p′ such that the pointed stable curve X•
H1

of type (gXH1
, nXH1

) over kq1
corresponding to H1 satisfying the following conditions:

• Γcpt
X•

H1

is 2-connected;

• #(v(ΓX•
H1
)b≤1) = 0;

• the Betti number rXH1
of the dual semi-graph of X•

H1
is positive.

Let H2
def
= φp

′
(H1) ⊆ πadm

1 (q2)
p′ . Then we obtain a smooth pointed stable curve X•

H2

of type (gXH2
, nXH2

) over kq2 corresponding to H2. Since Hi is an open character-
istic subgroup, we obtain (gXH1

, nXH1
) = (gXH2

, nXH2
). Then Theorem 2.1 (b) and

Lemma 2.2 (b) imply rXH1
≤ 0. This contradicts rXH1

> 0.
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Similar arguments to the arguments given in the above proof imply that Πsol
g,n is

an open subset of Π
sol

g,n. This completes the proof of (b).
(c) is trivial.
(d) We only treat the case where V is an irreducible closed subset of Πg,n. Let

Gen(V ) be the set of generic points of V . Since every closed subset of Mg,n has a
non-empty set of generic points, we have Gen(V ) 6= ∅. Let [πadm

1 (q1)], [π
adm
1 (q2)] ∈

Gen(V ) be arbitrary generic points. Let πadm
A (−) be the set of finite quotinets

of πadm
1 (−) and G ∈ πadm

A (q1) an arbitrary finite group. Then UΠg,n,G
∩ V 6= ∅.

Thus, [πadm
1 (q2)] ∈ UΠg,n,G

∩ V . This means that πadm
A (q1) ⊆ πadm

A (q2). Similar

arguments to the arguments given in the above proof imply πadm
A (q1) ⊇ πadm

A (q2).
Then we have πadm

A (q1) = πadm
A (q2). Since admissible fundamental groups of pointed

stable curves are topologically finitely generated, [FJ, Proposition 16.10.6] implies
[πadm

1 (q1)] = [πadm
1 (q2)]. This completes the proof of the proposition.

(e) The “if” part of the proposition is trivial. We only need to prove the “only if”
part of the proposition.

Let [πadm
1 (q′)] ∈ V (πadm

g,n ([q])) be an arbitrary point and V ([πadm
1 (q′)]) the topolog-

ical closure of [πadm
1 (q′)] in Πg,n. Then we have that V ([πadm

1 (q′)]) is an irreducible
closed subset contained in V (πadm

g,n ([q])). Since V (πadm
g,n ([q])) is an irreducible closed

subset of dimension 0, we obtain

V (πadm
g,n ([q])) = V ([πadm

1 (q′)]).

This means that there exist surjective open continuous homomorphisms

πadm
1 (q) ↠ πadm

1 (q′), πadm
1 (q′) ↠ πadm

1 (q).

Then we obtain πadm
A (q) = πadm

A (q′). Since admissible fundamental groups of pointed
stable curves are topologically finitely generated, [FJ, Proposition 16.10.6] implies
[πadm

1 (q)] = [πadm
1 (q′)]. Thus, we obtain V (πadm

g,n ([q])) = [πadm
1 (q)]. This completes

the proof of the proposition. □

3.5.2. Next, we prove that the dimension of Πg,n has a low bound.

Proposition 3.11. The topological space Πg,n is noetherian and

3g − 3 + n ≤ dim(Πg,n).

Proof. The noetherian property of Πg,n follows immediately from the continuity of
the map πadm

g,n and the fact that M g,n is noetherian.
Let Γ be an arbitray semi-graph and ω : v(Γ) → Z≥0 a map such that (Γ, ω) =

(ΓX• , ωX•) for some pointed stable curve X• of type (g, n) over an algebraically
closed k, where ΓX• denotes the dual semi-graph of X•, and ωX• : v(ΓX•) →
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{gv}v∈v(ΓX• ) is the map defined as v 7→ gv (recall that gv is the genus of the smooth
pointed stable curve assoicated to v (1.1.3)). We put

C(Γ, ω)
def
= {q ∈M g,n | (ΓX•

q
, ωX•

q
) = (Γ, ω)}

We have the following combinatorial stratification (e.g. see [C, Section 4.1])

M g,n =
⊔
(Γ,ω)

C(Γ, ω)

such that C(Γ1, ω1) ⊆ C(Γ2, ω2) if and only if (Γ1, ω1) ≥ (Γ2, ω2) (i.e. (Γ2, ω2) is
a weighted contraction of (Γ1, ω1), see [C, (2.27)]). Then we see immediately that
there exists a chain of irreducible components

S3g−3+n ⊆ S3g−3+n−1 ⊆ · · · ⊆ S1 ⊆ S0 =M g,n,

where Si, i ∈ {0, . . . , 3g− 3 + n}, is an irreducible component of some C(Γ, ω) such
that Si 6= Sj if i 6= j, and Si denotes the topological closure of Si in M g,n.

Let qi, i ∈ {0, . . . , 3g − 3 + n}, be the generic point of Si. Then there exist
surjections of the admissible fundamental groups

πadm
1 (q0) ↠ πadm

1 (q1) ↠ . . .↠ πadm
1 (q3g−3+n−1) ↠ πadm

1 (q3g−3+n).

By [Y2, Theorem 1.2] or [Y6, Theorem 0.3], each surjection of admissible funda-
mental groups mentioned above is not an isomorphism since the dual semi-graphs
of {X•

qi
}i are not equal. We have

V ([πadm
1 (q3g−3+n)]) ⊆ · · · ⊆ V ([πadm

1 (q1)]) ⊆ Πg,n

such that

V ([πadm
1 (qi)]) ⊇ V ([πadm

1 (qj)]), V ([πadm
1 (qi)]) 6= V ([πadm

1 (qj)])

if i < j. We complete the proof of (b). □
Remark 3.11.1. At the time of writing this paper, the author still does not know
how to prove that dim(Πg,n) <∞.

PART II: RECONSTRUCTIONS OF GEOMETRIC DATA FROM
OPEN CONTINUOUS HOMOMORPHISMS

4. Reconstructions of inertia subgroups and field structures

In this section, we prove that the inertia subgroups and field structures associated
to marked points can be reconstructed group-theoretically from open continuous ho-
momorphisms of admissible fundamental groups (or solvable admissible fundamental
groups). The main results of the present section are Theorem 4.11 and Theorem
4.13.
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4.1. Anabelian reconstructions.

4.1.1. Let P be a category of profinite groups whose class of objects Ob(P) consists
of profinite groups, and whose class of morphisms HomP(Π,Π

′) is the class of open
continuous homomorphisms of Π and Π′. Let Π ∈ P , and letSΠ be a category whose
class of objects Ob(SΠ) is a set of subgroups of Π, and whose class of morphisms
HomSΠ

(H,H ′) for any H,H ′ ∈ SΠ is defined as follows: the unique element of
HomSΠ

(H,H ′) is the natural inclusion when H ⊆ H ′; otherwise, HomSΠ
(H,H ′) is

empty. We call SΠ a category associated to Π.

4.1.2. Let S be a category whose class of objects Ob(S) is the class of categories as-
sociated to profinite groups, and whose class of morphisms HomS(SΠ,SΠ′) consists
of the classes of functors defined as follows: θS ∈ HomS(SΠ,SΠ′) if there exists an

open continuous homomorphism θ : Π→ Π′ such that SΠ = {H def
= θ−1(H ′)}H′∈SΠ′ ,

and that θS : SΠ → SΠ′ , H 7→ H ′; otherwise, HomS(SΠ,SΠ′) is empty.
There is a natural functor π : S → P defined as follows: Let SΠ, SΠ′ ∈ S be

categories associated to profinite groups Π, Π′, respectively; we have π(SΠ) = Π,
π(SΠ′) = Π′, and π(θS) = θ. We see immediately that π : S → P is a fibered
category over P .

Definition 4.1. Let i ∈ {1, 2}, and let Fi be a geometric object (in a certain cate-

gory), ΠFi
a profinite group associated to the geometric object Fi, and Si

def
= SΠFi

a
category associated to ΠFi

. Let InvFi
be an invariant depending on the isomorphism

class of Fi (in a certain category) and AddFi
(Si) an additional structure associated

to Si (e.g. AddFi
(Si) = Si) on the profinite group ΠFi

depending functorially on
Fi and Si.

(a) We shall say that InvFi
can be reconstructed group-theoretically from ΠFi

(or
InvFi

can be induced group-theoretically from ΠFi
, or ΠFi

induces InvFi
group-

theoretically) if ΠF1
∼= ΠF2 implies InvF1 = InvF2 .

(b) We shall say that AddF2(S2) can be reconstructed group-theoretically from
ΠF2 (or AddF2(S2) can be induced group-theoretically from ΠF2 , or ΠF2 induces

AddF2(S2) group-theoretically) if every isomorphism θ : ΠF1

∼→ ΠF2 induces a

bijection θad : AddF1(S1)
∼→ AddF2(S2) which preserves the structures AddF1(S1)

and AddF2(S2), where S1
def
= ΠF1 ×θ,ΠF2

S2 (i.e. the fiber product in the fibered
category S over P).

(c) Let j1, j2 ∈ {1, 2} distinct from each other, and let θ : ΠF1 → ΠF2 be
an open continuous homomorphism of profinite groups and S1 = ΠF1 ×θ,ΠF2

S2.
We shall say that a map θad : AddFj1

(Sj1) → AddFj2
(Sj2) can be reconstructed

group-theoretically from θ : ΠF1 → ΠF2 (or θad : AddFj1
(Sj1) → AddFj2

(Sj2) can
be induced group-theoretically from θ : ΠF1 → ΠF2 , or θ : ΠF1 → ΠF2 induces
θad : AddFj1

(Sj1)→ AddFj2
(Sj2) group-theoretically) if the following holds: Let F ′

i ,
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i ∈ {1, 2}, be a geometric object, ΠF ′
i
a profinite group associated to the geometric

object F ′
i , θi : ΠF ′

i

∼→ ΠFi
an isomorphism of profinite groups, θ′ : ΠF ′

1
→ ΠF ′

2
,

S′
i
def
= ΠF ′

i
×θi,ΠFi

Si, AddF ′
i
(S′

i) the additional structure on the profinite group ΠF ′
i

induced by θi. Moreover, suppose that we have the following commutative diagram
of profinite groups:

ΠF ′
1

θ′−−−→ ΠF ′
2

θ1

y θ2

y
ΠF1

θ−−−→ ΠF2 .

Then the above commutative diagram of profinite groups induces the following com-
mutative diagram of additional structures

AddF ′
j1
(S′

j1
)

θ′ad−−−→ AddF ′
j2
(S′

j2
)

θj1,ad

y θj2,ad

y
AddFj1

(Sj1)
θad−−−→ AddFj2

(Sj2)

which preserves the structures of additional structures.

Remark 4.1.1. Let us explain the theory of mono-anabelian geometry introduced
by Mochizuki. The classical point of view of anabelian geometry (i.e. the anabelian
geometry considered in [G]) focuses on a comparison between two geometric objects
via their fundamental groups. Moreover, the term “group-theoretical”, in the clas-
sical point of view, means that “preserved by an arbitrary isomorphism between the
fundamental groups under consideration”. We shall refer to the classical point of
view as “bi-anabelian geometry”. Then Definition 4.1 is a definition from the point
of view of bi-anabelian geometry.

On the other hand, mono-anabelian geometry focuses on the establishing a group-
theoretic algorithm whose input datum is an abstract topological group which is
isomorphic to the fundamental group of a given geometric object of interest (resp.
a continuous homomorphism of abstract topological groups which are isomorphic to
a continuous homomorphism of the fundamental groups of given geometric objects
of interest), and whose output datum is a geometric object which is isomorphic to
the given geometric object of interest (resp. a morphism of geometric objects which
is isomorphic to a morphism of given geometric objects of interest). In the point of
view of mono-anabelian geometry, the term “group-theoretic algorithm” is used to
mean that “the algorithm in a discussion is phrased in language that only depends
on the topological group structures of the fundamental groups under consideration”.
Note that mono-anabelian results are stronger than bi-anabelian results.
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We maintain the notation introduced in Definition 4.1. Then the mono-anabelian
version of Definition 4.1 is as follows:

(a) We shall say that InvFi
can be mono-anabelian reconstructed from ΠFi

if there
exists a group-theoretical algorithm whose input datum is ΠFi

, and whose output
datum is InvFi

.
(b) We shall say that AddFi

(Si) can be mono-anabelian reconstructed from ΠFi

if there exists a group-theoretical algorithm whose input datum is ΠFi
, and whose

output datum is AddFi
.

(c) Let j1, j2 ∈ {1, 2} distinct from each other, and let θ : ΠF1 → ΠF2 be an
open continuous homomorphism of profinite groups and S1 = ΠF1 ×θ,ΠF2

S2. We
shall say that a map (or a morphism) θadd : AddFj1

(Sj1) → AddFj2
(Sj2) can be

mono-anabelian reconstructed from θ : ΠF1 → ΠF2 if there exists a group-theoretical
algorithm whose input datum is θ : ΠF1 → ΠF2 , and whose output datum is θadd :
AddFj1

(Sj1)→ AddFj2
(Sj2).

4.1.3. Let i ∈ {1, 2}, and let X•
i = (Xi, DXi

) be a pointed stable curve of type
(gXi

, nXi
) over an algebraically closed field ki of characteristic pi > 0, ΓX•

i
the dual

semi-graph of X•
i , and ΠX•

i
either the admissible fundamental group or the solvable

admissible fundamental group of X•
i . We have the following result:

Theorem 4.2. We maintain the notation introduced in 1.2.7 and 1.2.11. Then the
data

pi, (gXi
, nXi

), Πét
X•

i
, Πtop

X•
i
, Ver(ΠX•

i
), Edgop(ΠX•

i
), Edgcl(ΠX•

i
), ΓX•

i

can be reconstructed group-theoretically from ΠX•
i
.

Proof. See [Y2, Theorem 1.2, Remark 1.2.1, Remark 1.2.2, and Proposition 6.1] and
[Y5, Theorem 6.3]. □
Remark 4.2.1. [Y5, Theorem 1.3] gives a group-theoretical formula for (gXi

, nXi
).

Then we obtain that the characteristic pi of ki and the type (gXi
, nXi

) can be mono-
anabelian reconstructed from ΠX•

i
. In fact, we have that Πét

X•
i
, Πtop

X•
i
, Ver(ΠX•

i
),

Edgop(ΠX•
i
), Edgcl(ΠX•

i
), and ΓX•

i
can be mono-anabelian reconstructed from ΠX•

i

(see [Y6, Theorem 0.3]).
We do not use the term “mono-anabelian reconstruction” in the present paper.

On the other hand, all of the results proved in Section 4 and Section 5 can be
generalized to the case of mono-anabelian reconstructions.

4.1.4. The following lemma will be used in the remainder of the present paper.

Lemma 4.3. Suppose that p
def
= p1 = p2 and (gX , nX)

def
= (gX1 , nX1) = (gX2 , nX2).

Let φ : ΠX•
1
→ ΠX•

2
be an arbitrary open continuous homomorphism. Then φ is a

surjection.
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Proof. Let Πϕ
def
= φ(ΠX•

1
) ⊆ ΠX•

2
be the image of φ which is an open subgroup

of ΠX•
2
. Let X•

ϕ = (Xϕ, DXϕ
) be the pointed stable curve of type (gXϕ

, nXϕ
) over

k2 induced by Πϕ and X•
ϕ → X•

2 the admissible covering over k2 induced by the
natural inclusion Πϕ ↪→ ΠX•

2
. The Riemann-Hurwitz formula implies gXϕ

≥ gX
and nXϕ

≥ nX . Moreover, by considering the maximal prime-to-p quotients of
ΠX•

1
and Πϕ, the natural surjection ΠX•

1
↠ Πϕ induced by φ implies 2gX + nX ≥

2gXϕ
+ nXϕ

. Then we have (gX , nX) = (gXϕ
, nXϕ

). This means that the admissible
covering X•

ϕ → X•
2 is totally ramified over every marked point of DX2 . Moreover, the

Riemann-Hurwitz formula implies that [ΠX•
2
: Πϕ] 6= 1 and (gX , nX) = (gXϕ

, nXϕ
) if

and only if (gX , nX) = (0, 2). Since X•
i is a pointed stable curve over ki, we obtain

[ΠX•
2
: Πϕ] = 1. Thus, φ is a surjection. □

4.2. Reconstructions of inertia subgroups.

4.2.1. Settings. We maintain the notation introduced in 4.1.3. In the remainder

of this subsection, we suppose that p
def
= p1 = p2 and (gX , nX)

def
= (gX1 , nX1) =

(gX2 , nX2). Let

φ : ΠX•
1
→ ΠX•

2

be an arbitrary open continuous homomorphism. By Lemma 4.3, we see that φ is
a surjective open continuous homomorphism. Let i ∈ {1, 2}, and let P be the set
of prime numbers, Σ ⊆ P \ {p} a subset, ΠΣ

X•
i
the maximal pro-Σ quotient of ΠX•

i
,

prΣi : ΠX•
i
↠ ΠΣ

X•
i
the natural surjective homomorphism, and

φΣ : ΠΣ
X•

1

∼→ ΠΣ
X•

2

the isomorphism induced by φ. In particular, if Σ = P \ {p}, we use the notation

Πp′

X•
i
and φp

′
: Πp′

X•
1

∼→ Πp′

X•
2
to denote ΠΣ

X•
i
and φΣ, respectively.

4.2.2. Firstly, we have some lemmas concerning types of admissible coverings.

Lemma 4.4. We maintain the notation introduced above. Then we have that Πcpt
X•

i

(1.2.7) can be reconstructed group-theoretically from ΠX•
i
, and that the (surjective)

open continuous homomorphism φ : ΠX•
1
↠ ΠX•

2
induces a surjective open continu-

ous homomorphism

φcpt : Πcpt
X•

1
↠ Πcpt

X•
2

group-theoretically. Moreover, the following commutative diagram of profinite groups

ΠX•
1

ϕ−−−→ ΠX•
2y y

Πcpt
X•

1

ϕcpt−−−→ Πcpt
X•

2
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can be reconstructed group-theoretically from φ.

Proof. By Theorem 4.2, we have that (gX , nX) can be reconstructed group-theoretically
from ΠX•

i
. If nX = 0, the lemma is trivial. Then we may assume nX > 0.

Let Hi ⊆ ΠX•
i
be an open subgroup. Then the Riemann-Hurwitz formula implies

that the admissible covering X•
Hi
→ X•

i over ki induced by Hi ⊆ ΠX•
i
is étale over

DXi
if and only if gXHi

= [ΠX•
i
: Hi](gX − 1) + 1. We put

EtnormDXi
(ΠX•

i
)
def
= {Hi ⊆ ΠX•

i
is an open normal subgroup

| gXHi
= [ΠX•

i
: Hi](gX − 1) + 1}

⊆ EtDXi
(ΠX•

i
)
def
= {Hi ⊆ ΠX•

i
is an open subgroup

| gXHi
= [ΠX•

i
: Hi](gX − 1) + 1}.

By Theorem 4.2, we have that EtnormDXi
(ΠX•

i
) and EtDXi

(ΠX•
i
) can be reconstructed

group-theoretically from ΠX•
i
. Since

Πcpt
X•

i

def
= ΠX•

i
/

⋂
Hi∈EtnormDXi

(ΠX•
i
)

Hi = ΠX•
i
/

⋂
Hi∈EtDXi

(ΠX•
i
)

Hi,

we obtain that Πcpt
X•

i
can be reconstructed group-theoretically from ΠX•

i
.

Let H2 ∈ EtnormDX2
(ΠX•

2
), H1

def
= φ−1(H2), and G

def
= ΠX•

2
/H2 = ΠX•

1
/H1. We will

prove thatH1 ∈ EtnormDX1
(ΠX•

1
). Let f •

H1
: X•

H1
→ X•

1 be the Galois admissible covering

over k1 with Galois group G corresponding to H1, x1 ∈ DX1 a marked point of X•
1 ,

and efH1
(x1) the ramification index of a point of f−1

H1
(x1). Since H2 ∈ EtnormDX2

(ΠX•
2
),

we have gXH2
= #(G)(gX − 1)+ 1 and nXH2

= #(G)nX . By applying the Riemann-
Hurwitz formula, we obtain

gXH1
= #(G)(gX − 1) + 1 +

1

2
·

∑
x1∈DX1

#(G)

efH1
(x1)

(efH1
(x1)− 1)

= #(G)(gX − 1) + 1 +
1

2
·

∑
x1∈DX1

(#(G)− #(G)

efH1
(x1)

),

nXH1
=

∑
x1∈DX1

#(G)

efH1
(x1)

.

By applying Theorem 2.1 (a) and Lemma 2.2 (a), the surjective homomorphism
φ|H1 : H1 ↠ H2 induces the following inequality (see 2.2.1 for γmax(Hi)):

γmax(H1) + 2 = gXH1
+ nXH1

≥ γmax(H2) + 2 = gXH2
+ nXH2

.
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Then we obtain

gXH1
+ nXH1

= #(G)(gX − 1) + 1 +
1

2
·

∑
x1∈DX1

(#(G)− #(G)

efH1
(x1)

) +
∑

x1∈DX1

#(G)

efH1
(x1)

= #(G)(gX − 1) + 1 +
1

2
#(G)nX +

1

2
·

∑
x1∈DX1

#(G)

efH1
(x1)

≥ #(G)(gX − 1) + 1 + #(G)nX .

Thus, we have ∑
x1∈DX1

#(G)

efH1
(x1)

≥ #(G)nX .

Since #(DX1) = nX , we see immediately that efH1
(x1) = 1. This means that f •

H1

is étale, and that H1 ∈ EtnormDX1
(ΠX•

1
). Thus we may define the following surjective

homomorphism

φcpt : Πcpt
X•

1

def
= ΠX•

1
/

⋂
H1∈EtnormDX1

(ΠX•
1
)

H1 ↠ Πcpt
X•

2

def
= ΠX•

2
/

⋂
H2∈EtnormDX2

(ΠX•
2
)

H2

which is induced by φ group-theoretically. Moreover, the commutative diagram

ΠX•
1

ϕ−−−→ ΠX•
2y y

Πcpt
X•

1

ϕcpt−−−→ Πcpt
X•

2

follows immediately from the definition of φcpt. This completes the proof of the
lemma. □
Lemma 4.5. Let ` be a prime number, H2 ⊆ ΠX•

2
an open normal subgroup, and

H1
def
= φ−1(H2) ⊆ ΠX•

1
. Suppose that G

def
= ΠX•

1
/H1 = ΠX•

2
/H2 is a cyclic group

which is isomorphic to Z/`Z. Then we have

(gXH1
, nXH1

) = (gXH2
, nXH2

).

Proof. Let i ∈ {1, 2}, and let f •
Hi

: X•
Hi
→ X•

i be the Galois admissible covering over
ki with Galois group G corresponding toHi. Suppose that ` = p. Then the definition
of admissible coverings implies that f •

Hi
is étale. Thus, we have (gXH1

, nXH1
) =

(gXH2
, nXH2

). Then we may suppose ` 6= p.

By the Riemann-Hurwitz formula, we have (see 1.1.5 for eop,rafHi
)

gXHi
= `(gX − 1) + 1 +

1

2
#(eop,rafHi

)(`− 1),
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nXHi
= #(eop,rafHi

) + `(nX −#(eop,rafHi
)).

By applying Theorem 2.1 (a) and Lemma 2.2 (a), the surjective homomorphism
φ|H1 : H1 ↠ H2 implies

γmax(H1) + 2 = gXH1
+ nXH1

≥ γmax(H2) + 2 = gXH2
+ nXH2

.

Then we have

`(gX − 1) + 1 +
1

2
#(eop,rafH1

)(`− 1) + #(eop,rafH1
) + `(nX −#(eop,rafH1

))

= `(gX − 1) + 1 + `nX +
1

2
(1− `)#(eop,rafH1

)

≥ `(gX − 1) + 1 +
1

2
#(eop,rafH2

)(`− 1) + #(eop,rafH2
) + `(nX −#(eop,rafH2

))

= `(gX − 1) + 1 + `nX +
1

2
(1− `)#(eop,rafH2

).

Then we obtain

#(eop,rafH1
) ≤ #(eop,rafH2

).

Let 0 ≤ m ≤ nX . We put

Ni,m
def
= {Ni ⊆ ΠX•

i
is an open normal subgroup

| ΠX•
i
/Ni
∼= Z/`Z and #(eop,rafNi

) = m},

Ni,≤m
def
=

⋃
0≤j≤m

Ni,j.

Here f •
Ni

denotes the Galois admissible covering over ki corresponding to Ni. The

isomorphism φp
′
induces a bijective map φ∗

ℓ : N2,≤nX

∼→ N1,≤nX
, N2 7→ φ−1(N2). To

verify the lemma, it sufficient to prove that φ∗
ℓ induces a bijection

φ∗
ℓ |N2,m : N2,m

∼→ N1,m.

We note that since (gX , nX) = (gX1 , nX1) = (gX2 , nX2), the isomorphism φp
′
implies

#(N1,j) = #(N2,j) for each 0 ≤ j ≤ nX . Then by Lemma 4.4, we have a bijection

φ∗
ℓ |N2,0 : N2,0

∼→ N1,0. We prove φ∗
ℓ |N2,m : N2,m

∼→ N1,m by induction on m. Sup-
pose that m ≥ 1. The inequality #(eop,rafH1

) ≤ #(eop,rafH2
) concerning the cardinality

of branch locus implies that we have a bijection φ∗
ℓ |N2,≤m

: N2,≤m
∼→ N1,≤m. By

induction, φ∗
ℓ |N2,≤m−1

: N2,≤m−1
∼→ N1,≤m−1 is a bijection. Then we obtain

φ∗
ℓ |N2,m : N2,m

∼→ N1,m.

This completes the proof of the lemma. □



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 45

Corollary 4.6. Let H2 ⊆ ΠX•
2
be an open normal subgroup and H1

def
= φ−1(H2) ⊆

ΠX•
1
. Suppose that G

def
= ΠX•

1
/H1 = ΠX•

2
/H2 is a finite solvable group. Then we

have
(gXH1

, nXH1
) = (gXH2

, nXH2
).

Proof. The corollary follows immediately from Lemma 4.5. □
Lemma 4.7. Let H2 ⊆ ΠX•

2
be an open normal subgroup and H1

def
= φ−1(H2) ⊆ ΠX•

1
.

Suppose that H2 contains the kernel of the natural homomorphism ΠX•
2
↠ Πcpt

X•
2
(i.e.

the admissible covering corresponding to H2 is étale over DX2). Then we have

(gXH1
, nXH1

) = (gXH2
, nXH2

).

Proof. By Lemma 4.4, we have that H1 contains the kernel of the natural homomor-
phism ΠX•

1
↠ Πcpt

X•
1
(i.e. the admissible covering corresponding to H1 is étale over

DX1). Then the lemma follows immediately from the Riemann-Hurwitz formula. □
Definition 4.8. Let Π be an arbitrary profinite group and m,n ∈ N positive natural
numbers. We define the closed normal subgroup Dn(Π) of Π to be the topological
closure of [Π,Π]Πn, where [Π,Π] denotes the commutator subgroup of Π. Moreover,

we define the closed normal subgroup D
(m)
n (Π) of Π inductively by D

(0)
n (Π)

def
= Π,

D
(1)
n (Π)

def
= Dn(Π), and D

(j+1)
n (Π)

def
= Dn(D

(j)
n (Π)), j ∈ {1, . . . ,m − 1}. Note that

#(Π/D
(m)
n (Π)) ≤ ∞ when Π is topologically finitely generated.

Proposition 4.9. Let N2 ⊆ ΠX•
2
be an arbitrary open subgroup and N1

def
= φ−1(N2) ⊆

ΠX•
1
. Then there exist open normal subgroups H2 ⊆ N2 ⊆ ΠX•

2
of ΠX•

2
and H1

def
=

φ−1(H2) ⊆ N1 ⊆ ΠX•
1
of ΠX•

1
such that

(gXH1
, nXH1

) = (gXH2
, nXH2

).

Proof. If nX = 0, then the proposition is trivial. We may assume that nX ≥ 1. Let
i ∈ {1, 2}, and let Mi be an open normal subgroup of ΠX•

i
such that Mi ⊆ Ni and

φ−1(M2) = M1. By replacing Ni by Mi, we may assume that Ni is an open normal

subgroup of ΠX•
i
. We put G

def
= ΠX•

1
/N1 = ΠX•

2
/N2. Write m for [G : Gp], where Gp

is a Sylow-p subgroup of G. Then we have (m, p) = 1.
Moreover, let m′ be a natural number prime to p. Corollary 4.6 implies that by

replacing X•
i and Ni by X

•
D

(2)

m′ (ΠX•
i
)
and Ni∩D(2)

m′ (ΠX•
i
), respectively, we may assume

that gX ≥ 2 and nX ≥ 2, and that there exists an irreducible component of X•
i

such that the genus of the normalization of the irreducible component is ≥ 2, where

X•
D

(2)

m′ (ΠX•
i
)
denotes the pointed stable curve over ki corresponding to D

(2)
m′ (ΠX•

i
).

First, suppose that G is a simple finite group. By applying Corollary 4.6, we may
assume that G is non-abelian. We have the following claim:
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Claim: To verify the proposition, we may assume that nX is a posi-
tive even number.

Let us prove this claim. Suppose that p 6= 2. Let R2 ⊆ ΠX•
2
be an open subgroup

such that #(ΠX•
2
/R2) = 2, and that R2 ⊇ ker(ΠX•

2
↠ Πcpt

X•
2
) (i.e. the cyclic Galois

admissible covering corresponding to R2 is étale). Let R1
def
= φ−1(R2) ⊆ ΠX•

1
. Then

Corollary 4.6 implies that by replacing Hi and ΠX•
i
by Hi ∩Ri and Ri, respectively,

we may assume that nX is a positive even number. Suppose that p = 2. Let
` >> 0 be a prime number such that (`, 2) = (`,#(G)) = 1. By [R2, Théorème
4.3.1], there exists an open normal subgroup R∗

2 ⊆ ΠX•
2
such that #(ΠX•

2
/R∗

2) = `,

R∗
2 ⊇ ker(ΠX•

2
↠ Πcpt

X•
2
), and

dimFp(R
∗,ab
2 ⊗ Fp) > 0.

Let R∗
1

def
= φ−1(R∗

2) ⊆ ΠX•
1
. Then we have #(ΠX•

1
/R∗

1) = ` and dimFp(R
∗,ab
1 ⊗Fp) > 0.

Thus, we may take an open normal subgroup R′
2 ⊆ R∗

2 such that

ΠX•
2
/R′

2
∼= Z/2Z ⋊ Z/`Z.

We put R′
1

def
= φ−1(R′

2). Then the construction of R′
1 implies that ΠX•

1
/R′

1
∼= Z/2Z⋊

Z/`Z. Corollary 4.6 implies that by replacing Hi and ΠX•
i
by Hi ∩ R′

i and R′
i,

respectively, we may assume that nX is a positive even number. This completes the
proof of the claim.

Since nX is a positive even number, there exists an open normal subgroup Q2 ⊆
ΠX•

2
such that ΠX•

2
/Q2

∼= Z/mZ, and that the Galois admissible covering f •
Q2

:
X•
Q2
→ X•

2 induced by Q2 is totally ramified over every marked point of DX2 .

Write Q1 for φ−1(Q2) and f
•
Q1

: X•
Q1
→ X•

1 for the Galois admissible covering with
Galois group ΠX•

1
/Q1

∼= Z/mZ induced by Q1. Then Corollary 4.6 implies that

f •
Q1

is totally ramified over every marked point of DX1 . Let Hi
def
= Ni ∩ Qi and

f •
Hi

: X•
Hi

∼= X•
Ni
×X•

i
X•
Qi
→ X•

i the Galois admissible covering over ki with Galois
group G × Z/mZ. By Abhyankar’s lemma, we obtain that the natural morphism
X•
Hi
→ X•

Qi
induced by the inclusion Hi ⊆ Qi is étale over every marked point of

DXQi
. Then the proposition follows immediately from Corollary 4.6 and Lemma

4.7. This completes the proposition when G is a simple group.
Next, let us prove the proposition in the case where G is an arbitrary finite group.

Let G1 ⊆ G2 ⊆ · · · ⊆ Gn
def
= G be a sequence of subgroups of G such that Gj/Gj−1

is a non-trivial simple group for all j ∈ {2, . . . n}. In order to verify the proposition,
it is sufficient to to prove the proposition when n = 2. Let P2 be the kernel of the

natural homomorphism ΠX•
2
↠ G ↠ G1 and P1

def
= φ−1(P2). Then by replacing

G by G1 and by applying the proposition for the simple group G1, we obtain an
open normal subgroup T2 ⊆ P2 ⊆ ΠX•

2
such that (gXT1

, nXT1
) = (gXT2

, nXT2
), where
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T1
def
= φ−1(T2), and (gXTi

, nXTi
) denotes the type of the pointed stable curve X•

Ti

corresponding to Ti.

If Ti ⊆ Ni, then we may put Hi
def
= Ti. If Ni does not contain Ti, we put Oi

def
=

Ti ∩Ni. Then we have Ti/Oi
∼= G/G1. Note that G/G1 is a simple group. Then the

proposition follows from the proposition when we replace X•
i and G by X•

Ti
and the

simple group G/G1, respectively. This completes the proof of the proposition. □

Lemma 4.10. Let ` be a prime number distinct from p, Ii, Ji ∈ Edgop(ΠX•
i
) ar-

bitrary closed subgroups (see 1.2.11 for Edgop(ΠX•
i
)), and Πℓ

X•
i
the maximal pro-`

quotient of ΠX•
i
. Write I

ℓ

i and J
ℓ

i for pr
ℓ
i (Ii) and pr

ℓ
i (Ji) (4.2.1), respectively. Sup-

pose that I
ℓ

i = J
ℓ

i . Then we have

Ii = Ji.

Proof. Suppose that Ii 6= Ji. [M3, Proposition 1.2 (i)] implies that Ii ∩ Ji is trivial.
Then we see that, by replacing ΠX•

i
by a certain open subgroup of ΠX•

i
, there exists

an open normal subgroup Ni ⊆ ΠX•
i
such that #(ΠX•

i
/Ni) = `, that Ii ⊆ Ni, and

that Ji 6⊆ Ni. This contradicts I
ℓ

i = J
ℓ

i . We complete the proof of the lemma. □

4.2.3. Next, we prove the main result of this section.

Theorem 4.11. We maintain the settings introduced in 4.2.1. Then the open con-
tinuous homomorphism φ : ΠX•

1
→ ΠX•

2
induces a surjective map (see 1.2.11 for

Edgop(ΠX•
i
))

φedg,op : Edgop(ΠX•
1
) ↠ Edgop(ΠX•

2
),

group-theoretically. Moreover, φ induces a bijection

φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
)

of the sets of open edges of dual semi-graphs of X•
1 and X•

2 group-theoretically.

Proof. If nX = 0, the theorem is trivial. Then we may assume nX > 0. Let CΠX•
2
be

a cofinal system of ΠX•
2
(i.e. CΠX•

2
consists of open normal subgroups of ΠX•

2
such

that ΠX•
2

∼→ lim←−H2∈CΠX•
2

ΠX•
2
/H2). We put

CΠX•
1

def
= {H1

def
= φ−1(H2) | H2 ∈ CΠX•

2
}.

Note that CΠX•
1
is not a cofinal system of ΠX•

1
in general. Moreover, by applying

Proposition 4.9, we may assume that (gXH1
, nXH1

) = (gXH2
, nXH2

) holds for every

H2 ∈ CΠX•
2
and every H1

def
= φ−1(H2) ∈ CΠX•

1
.



48 YU YANG

Let I1 ∈ Edgop(ΠX•
1
) and φ(I1) ⊆ ΠX•

2
. We will prove φ(I1) ∈ Edgop(ΠX•

2
). Let

H2 ∈ CΠX•
2
. By replacing ΠX•

i
and φ by Hi and φ|H1 , respectively, Lemma 4.4 implies

that we have the following commutative diagram:

I1 ∩H1

ϕ|I1∩H1−−−−→ φ(I1) ∩H2y y
H1

ϕ|H1−−−→ H2y y
Hcpt,ab

1

ϕ|cpt,abH1−−−−→ Hcpt,ab
2 .

Since I1 ∈ Edgop(ΠX•
1
), we have that I1 ∩H1 ↪→ H1 → Hcpt,ab

1 is trivial. Then the
above commutative diagram implies that the natural morphism

φ(I1) ∩H2 ↪→ H2 → Hcpt,ab
2

is trivial. Thus, by [HM, Lemma 1.6], there exists I2 ∈ Edgop(ΠX•
2
) such that

φ(I1) ⊆ I2.

Let us prove φ(I1) = I2. Suppose that φ(I1) 6= I2. We put G
def
= I2/φ(I1). Note

that G is a cyclic group, and that (m, p) = 1, where m
def
= #(G) ≥ 2.

Suppose gX = 0. Then we have nX ≥ 3. Let N2
def
= Dm(ΠX2), N1

def
= φ−1(N2) =

Dm(ΠX1), and

f •
Ni

: X•
Ni
→ X•

i

the Galois admissible covering over ki corresponding to Ni. Since the ramification
index of each point of f−1

Ni
(DXi

) is equal to m, we have

I1 6⊆ N1, I2 6⊆ N2, φ(I1) ⊆ N2.

On the other hand, the isomorphism of maximal pro-prime-to-p quotients φp
′
:

Πp′

X•
1

∼→ Πp′

X•
2
and I1 6⊆ N1 imply φ(I1) 6⊆ N2. This contradicts φ(I1) ⊆ N2. Then we

obtain φ(I1) = I2.
Suppose that gX > 0. We put

Q2
def
= ker(ΠX•

2
↠ Πcpt

X•
2
↠ Πcpt,ab

X•
2
⊗ Z/mZ)

and Q1
def
= φ−1(Q2). Then Lemma 4.4 implies Q1 = ker(ΠX•

1
↠ Πcpt

X•
1
↠ Πcpt,ab

X•
1
⊗

Z/mZ). Note that the assumption gX > 0 implies that Πcpt
X•

i
↠ Πcpt,ab

X•
i
⊗ Z/mZ is

not trivial. Then Qi is an open normal subgroup of ΠX•
i
. Moreover, the nontrivial
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Galois admissible covering over ki corresponding to Qi is étale over DXi
. Then we

have Ii ⊆ Qi and nXQi
≥ 2. Let P2

def
= Dm(Q2), P1

def
= φ−1(P2) = Dm(Q1), and

g•i : X
•
Pi
→ X•

Qi

the Galois admissible covering over ki corresponding to Pi ⊆ Qi. Since the ramifi-
cation index of each point of g−1

i (DXQi
) is equal to m, we have

I1 6⊆ P1, I2 6⊆ P2, φ(I1) ⊆ P2.

On the other hand, the isomorphism of maximal pro-prime-to-p quotients φ|p
′

P1
:

P p′

1
∼→ P p′

2 and I1 6⊆ P1 imply φ(I1) 6⊆ P2. This contradicts φ(I1) ⊆ P2. Then we
obtain φ(I1) = I2. Thus, we may define the following map

φedg,op : Edgop(ΠX•
1
)→ Edgop(ΠX•

2
), I1 7→ I2

def
= φ(I1).

Next, we will prove that φedg,op is a surjection. Let ` be a prime number distinct
from p and prℓi : ΠX•

i
↠ Πℓ

X•
i
the maximal pro-` quotient. Let J2 ∈ Edgop(ΠX•

2
)

be an arbitrary subgroup, J
ℓ

2
def
= prℓ2(J2) the image of J2, and CℓΠX•

i

def
= {H i

def
=

prℓi (Hi)}Hi∈CΠX•
i

, where CΠX•
i
is the set of normal subgroups of ΠX•

i
defined above.

Note that CℓΠX•
i

is a cofinal system of Πℓ
X•

i
, and that H1 = (φℓ)−1(H2).

Let H2 ∈ CℓΠX•
2

, N2
def
= J

ℓ

2H2 ⊇ H2, N1
def
= (φℓ)−1(N2) ⊇ H1, and Ni

def
=

(prℓi )
−1(N i). We have that G

def
= N1/H1 = N1/H1 = N2/H2 = N2/H2 is a cyclic

`-group. Write

g•Hi,Ni
: X•

Hi
→ X•

Ni

for the Galois admissible covering over ki with Galois groupG. Since J2 ∈ Edgop(ΠX•
2
),

we obtain that g•H2,N2
is totally ramified at a marked point of X•

H2
. We put

Edgop,ℓ,ab(Ni)
def
= {the image of I of

the natural homomorphism Ni ↠ N ℓ,ab
i | I ∈ Edgop(Ni)}.

We have #(Edgop,ℓ,ab(Ni)) = nXNi
. Then the composition of the following natural

homomorphisms ⊕
IN2

∈Edgop,ℓ,ab(N2)

IN2 → N ℓ,ab
2 ↠ G

is a surjection. By applying Lemma 4.4, we obtain that the isomorphism φℓ induces
an isomorphism

Im(
⊕

IN1
∈Edgop,ℓ,ab(N1)

IN1 → N ℓ,ab
1 )

∼→ Im(
⊕

IN2
∈Edgop,ℓ,ab(N2)

IN2 → N ℓ,ab
2 ).
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Then the composition of the following natural homomorphisms⊕
IN1

∈Edgop,ℓ,ab(N1)

IN1 → N ℓ,ab
1 ↠ G

is also a surjection. Since G is a cyclic `-group, there exists I ′N1
∈ Edgop,ℓ,ab(N1)

such that the composition I ′N1
↪→ N ℓ,ab

1 ↠ G is a surjection. This means that g•H1,N1

is also totally ramified at a marked point of X•
H1
.

We put

EH1

def
= {x1 ∈ DXH1

| g•H1,N1
is totally ramified at x1}.

Then we have that EH1
is a non-empty finite set. Thus, we obtain

lim←−
H1∈Cℓ

ΠX•
1

EH1
6= ∅.

Note that we have a commutative diagram

ΠX•
1

ϕ−−−→ ΠX•
2

prℓ1

y prℓ2

y
Πℓ
X•

1

ϕℓ−−−→ Πℓ
X•

2
.

Then there exists J1 ∈ Edgop(ΠX•
1
) such that prℓ2(φ(J1)) = φℓ(prℓ1(J1)) = J

ℓ

2. Since

φ(J1) ∈ Edgop(ΠX•
2
), by applying Lemma 4.10, we have φ(J1) = J2. Then φ

edg,op is
a surjection. Moreover, Theorem 4.2 implies that Edgop(ΠX•

i
) can be reconstructed

group-theoretically from ΠX•
i
. This completes the proof of the first part of the

theorem.
Let us prove the “moreover” part of the theorem. We see that

φedg,op : Edgop(ΠX•
1
) ↠ Edgop(ΠX•

2
)

is compatible with the natural actions of ΠX•
1
and ΠX•

2
, respectively. By using the

surjectivity of φedg,op, we obtain a surjection

φsg,op : eop(ΓX•
1
)

∼→ Edgop(ΠX•
1
)/ΠX•

1
↠ Edgop(ΠX•

2
)/ΠX•

2

∼→ eop(ΓX•
2
)

of the sets of open edges of dual semi-graphs of X•
1 and X•

2 , where (−)sg means
“semi-graph”. Moreover, since nX = #(eop(ΓX•

1
)) = #(eop(ΓX•

2
)), we have that

φsg,op is a bijection. On the other hand, Theorem 4.2 implies that eop(ΓX•
i
) can

be reconstructed group-theoretically from ΠX•
i
. This completes the proof of the

theorem. □
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Corollary 4.12. We maintain the notation introduced above. Let H2 ⊆ ΠX•
1
be an

arbitrary open subgroup and H1
def
= φ−1(H2) ⊆ ΠX•

2
. Then we have

γmax(H1) = γmax(H2).

Proof. By Theorem 4.11, we obtain (gXH1
, nXH1

) = (gXH2
, nXH2

). Then Theorem
2.1 (a) implies γmax(H1) = γmax(H2). □

4.3. Reconstructions of field structures.

4.3.1. Settings. We maintain the settings introduced in 4.2.1.

4.3.2. Let X̂•
i = (X̂i, DX̂i

), i ∈ {1, 2}, be the universal admissible (resp. the
universal solvable admissible) covering associated to ΠX•

i
(1.2.10) if ΠX•

i
is the ad-

missible (resp. solvable admissible) fundamental group of X•
i . Let ei ∈ eop(ΓX•

i
),

êi ∈ eop(ΓX̂•
i
) over ei, and Iêi ∈ Edgop(ΠX•

i
) such that φ(Iê1) = Iê2 . Write Fp,i for

the algebraic closure of Fp in ki. We put

Fêi
def
= (Iêi ⊗Z (Q/Z)p

′

i ) t {∗êi},

where {∗êi} is an one-point set, and (Q/Z)p
′

i denotes the prime-to-p part of Q/Z
which can be canonically identified with⋃

(p,m)=1

µm(Fp,i).

Moreover, let aêi be a generator of Iêi . Then we have a natural bijection

Iêi ⊗Z (Q/Z)p
′

i
∼→ Z⊗Z (Q/Z)p

′

i , aêi ⊗ 1 7→ 1⊗ 1.

Thus, we obtain the following bijections

Iêi ⊗Z (Q/Z)p
′

i
∼→ Z⊗Z (Q/Z)p

′

i
∼→

⋃
(p,m)=1

µm(ki)
∼→ F×

p,i.

This means that Fêi can be identified with Fp,i as sets, hence, admits a structure of

field, whose multiplicative group is Iêi ⊗Z (Q/Z)p
′

i , and whose zero element is ∗êi .

4.3.3. An important consequence of Theorem 4.11 is as follows.

Theorem 4.13. We maintain the settings introduced in 4.2.1 and the notation intro-
duced above. Then the field structure of Fêi can be reconstructed group-theoretically
from ΠX•

i
. Moreover, φ induces a field isomorphism

φfd
ê1,ê2

: Fê1
∼→ Fê2

group-theoretically, where “fd” means “field”.
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Proof. Firstly, we claim that we may assume nX ≥ 3. If gX = 0, then nX ≥ 3.
Suppose that gX ≥ 1. Theorem 4.11 implies that φ : ΠX•

1
↠ ΠX•

2
induces an open

continuous surjection φcpt : Πcpt
X•

1
↠ Πcpt

X•
2
(1.2.7). Let H ′

2 ⊆ Πcpt
X•

2
be an open normal

subgroup such that #(Πcpt
X•

2
/H ′

2) ≥ 3 and H ′
1

def
= (φcpt)−1(H ′

2). Write Hi ⊆ ΠX•
i
,

i ∈ {1, 2}, for the inverse image of H ′
i of the natural surjection ΠX•

2
↠ Πcpt

X•
2
, and

X•
Hi

for the pointed stable curve of type (gXHi
, nXHi

) over ki corresponding to Hi.
Note that gXH1

= gXH2
≥ 1 and nXH1

= nXH2
≥ 3. By replacing X•

i by X•
Hi
, we

may assume nX ≥ 3.
Second, we claim that we may assume nX = 3. By applying Theorem 4.11, φ

induces a bijection
φsg,op : eop(ΓX•

1
)

∼→ eop(ΓX•
2
).

Let EX1

def
= {e1,1, e1,2, e1,3} ⊆ eop(ΓX•

1
) and EX2

def
= φsg,op(EX1) ⊆ eop(ΓX•

2
). Write

D′
Xi
⊆ DXi

for the set of marked points of X•
i corresponding to EXi

. Then (Xi, D
′
Xi
)

is a pointed semi-stable curve of type (gX , 3) over ki. Let X
•
st,i be the pointed stable

curve of type (gX , 3) over ki associated to (Xi, D
′
Xi
) (1.2.1). Write Ii for the closed

subgroup of ΠX•
i
generated by the subgroups Iê ∈ Edgop(ΠX•

i
), where the image of

ê in eop(ΓX•
i
) is contained in eop(ΓX•

i
) \ EXi

. Then we have a natural isomorphism

ΠX•
st,i

∼= Π(Xi,D′
Xi

)
∼= ΠX•

i
/Ii.

Moreover, Theorem 4.11 implies that φ induces a surjective open continuous homo-
morphism

φ′ : ΠX•
st,1

↠ ΠX•
st,2
.

Thus, by replacing X•
i , ΠX•

i
, and φ by X•

st,i, ΠX•
st,i
, and φ′, respectively, we may

assume nX = 3.
Then the theorem follows immediately from [Y5, Theorem 6.4 and Remark 6.4.1].

□
Remark 4.13.1. Theorem 4.11 and Theorem 4.13 were obtained by Tamagawa in
a special case where X•

i , i ∈ {1, 2}, is non-singular and φ is an isomorphism ([T4,
Theorem 5.2 and Proposition 5.3]). Those results is the most important step in
Tamagawa’s proof of the weak Isom-version conjecture for smooth pointed stable
curves ([T4, Theorem 0.2]).

The formula for Avrp(ΠX•
i
) of smooth pointed stable curves ([T4, Theorem 0.5])

plays a central role in Tamagawa’s proofs of [T4, Theorem 5.2 and Proposition 5.3].
On the other hand, even through φ is an isomorphism, the methods of [T4] cannot be
generalized to the case of arbitrary pointed stable curves, since Avrp(ΠX•

i
) depends

not only on the type (gX , nX) but also on the structure of the dual semi-graph ΓX•
i

in general (see [Y3, Theorem 1.3 and Theorem 1.4]).
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5. Combinatorial Grothendieck conjecture for open continuous
homomorphisms

In this section, we will prove a version of combinatorial Grothendicek conjecture
for open continuous homomorphisms under certain assumption. Moreover, in the
present section, all fundamental groups are solvable admissible fundamental groups
unless indicated otherwise. The main results of the present section are Theorem
5.26 and Theorem 5.30.

5.1. Cohomology classes and sets of vertices.

5.1.1. Settings. Let X• be a pointed stable curve of type (gX , nX) over an alge-
braically closed field k of characteristic p > 0, ΓX• the dual semi-graph of X•, and
ΠX• the solvable admissible fundamental group of X•.

5.1.2. Let ` be a prime number. Recall that X̃•
v denotes the smooth pointed stable

curve of type (gv, nv) associated to v ∈ v(ΓX•) (1.1.3). We put (see 1.2.7 for Πét
X• ,

Πtop
X•)

v(ΓX•)>0,ℓ def
= {v ∈ v(ΓX•) | dimFℓ

(Hom(Πét
X̃•

v
,Z/`Z)) > 0} = {v ∈ v(ΓX•) | gv > 0},

M ét
X•

def
= Hom(Πét

X• ,Z/`Z), M top
X•

def
= Hom(Πtop

X• ,Z/`Z).
On the other hand, we have the natural isomorphisms Hom(Πét

X̃•
v
,Z/`Z) ∼= H1

ét(X̃v,Z/`Z),
M ét

X• ∼= H1
ét(X,Z/`Z), and M

top
X•
∼= H1(ΓX• ,Z/`Z). In the theory of anabelian ge-

ometry, since we want to emphasize the objects under consideration are arose from

various fundamental groups, we do not use the standard notation H1
ét(X̃v,Z/`Z),

H1
ét(X,Z/`Z), and H1(ΓX• ,Z/`Z). Moreover, there is an injection M top

X• ↪→ M ét
X•

induced by the natural surjection ΠX• ↠ Πtop
X• . We put

Mnt
X•

def
= coker(M top

X• ↪→M ét
X•),

where (−)nt means “non-top”.
A non-zero element ofM ét

X• corresponds to a Galois étale covering of the underlying
curve X of X• with Galois group Z/`Z. A non-zero element of M top

X• corresponds
to a Galois étale covering of the underlying curve X of X• with Galois group Z/`Z
such that the map of dual semi-graphs is a topological covering.

5.1.3. Let V ∗
X,ℓ ⊆ M ét

X• be the subset of elements of M ét
X• whose images of M ét

X• ↠
Mnt

X• are not 0. Then an element of V ∗
X,ℓ corresponds to a Galois étale covering of

the underlying curve X of X• with Galois group Z/`Z such that the map of dual
semi-graphs is not a topological covering.

Let α ∈ V ∗
X,ℓ and

f •
α : X•

α → X•
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the Galois étale covering corresponding to α. Denote by ΓX•
α
the dual semi-graph

of X•
α. We define a map

ι : V ∗
X,ℓ → Z>0, α 7→ #(v(ΓX•

α
)).

Furthermore, we put

V ⋆
X,ℓ

def
= {α ∈ V ∗

X,ℓ | ι attains its maximum} = {α ∈ V ∗
X,ℓ | ι(α) = `#(v(ΓX•))−`+1}.

For each α ∈ V ⋆
X,ℓ, ι(α) = `#(v(ΓX•)) − ` + 1 implies that there exists a unique

irreducible component Z ⊆ Xα whose decomposition group under the action of Z/`Z
is not trivial. Then we have (see 1.1.5 for vrafα)

V ⋆
X,ℓ = {α ∈ V ∗

X,ℓ | #(vrafα) = 1}.
Let vα be the unique element of vrafα (i.e. Xvα = fα(Z)). Then we have vα ∈
v(ΓX•)>0,ℓ. This means that V ⋆

X,ℓ 6= ∅ if and only if v(ΓX•)>0,ℓ 6= ∅.

5.1.4. Let S, S ′ be sets. We shall call f : S → S ′ a quasi-map if f is a map from
some subset S1 ⊆ S to S ′. Moreover, suppose that Smax is the maximal subset of

S such that f is a map from Smax to S ′. Let S∗ def
= S \ Smax. Then we shall write

f(s) = ∅ for all s ∈ S∗.
Let H ⊆ ΠX• be an open subgroup. Write f sg

H : ΓX•
H
→ ΓX• for the map of dual

semi-graphs induced by the admissible covering f •
H : X•

H → X• over k corresponding
to H. We define a quasi-map (i.e. we allow that an element maps to empty set)

fver,ℓ
H : v(ΓX•

H
)>0,ℓ → v(ΓX•)>0,ℓ

as follows: Let vH ∈ v(ΓX•
H
)>0,ℓ and v

def
= f sg

H (vH) ∈ v(ΓX•
H
). Then we have

fver,ℓ
H (vH) = v if dimFℓ

(Hom(Πét
X̃•

v
,Z/`Z)) 6= 0; otherwise, fver,ℓ

H (vH) = ∅. More-

over, if H ⊆ ΠX• is an open normal subgroup, then v(ΓX•
H
)>0,ℓ admits a natural

action of ΠX•/H.

Proposition 5.1. (a) We define a pre-equivalence relation ∼ on V ⋆
X,ℓ as follows:

Let α, β ∈ V ⋆
X,ℓ. We have that α ∼ β if, for each λ, µ ∈ F×

ℓ for which
λα + µβ ∈ V ∗

X,ℓ, λα + µβ ∈ V ⋆
X,ℓ.

Then the pre-equivalence relation ∼ on V ⋆
X,ℓ is an equivalence relation.

(b) We denote by VX,ℓ the quotient set of V ⋆
X,ℓ by ∼ defined in (a). Then we have

a natural bijection

κX,ℓ : VX,ℓ
∼→ v(ΓX•)>0,ℓ, [α] 7→ vα,

where [α] denotes the equivalence class of α.
(c) Let `, `′ be prime numbers distinct from each other. Suppose that `′ 6= p. Then

we have a natural injection
VX,ℓ ↪→ VX,ℓ′ ,
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which is a bijection if ` 6= p, and which fits into the following commutative diagram:

VX,ℓ
κX,ℓ−−−→ v(ΓX•)>0,ℓy y

VX,ℓ′
κX,ℓ′−−−→ v(ΓX•)>0,ℓ′ ,

where the vertical map of the right-hand side is the natural injection induced by the
definitions of v(ΓX•)>0,ℓ and v(ΓX•)>0,ℓ′.

(d) Let H ⊆ ΠX• be an open subgroup. Suppose ([ΠX• : H], `) = 1. Then the
natural injection H ↪→ ΠX• induces a map

γver,ℓH : VXH ,ℓ → VX,ℓ

which fits into the following commutative diagram:

VXH ,ℓ

κXH,ℓ−−−→ v(ΓX•
H
)>0,ℓ

γver,ℓH

y fver,ℓH

y
VX,ℓ

κX,ℓ−−−→ v(ΓX•)>0,ℓ.

Moreover, suppose that H ⊆ ΠX• is an open normal subgroup. Then VXH ,ℓ admits
an action of ΠX•/H such that κXH ,ℓ is compatible with ΠX•/H-actions (i.e. κXH ,ℓ

is ΠX•/H-equivariant).

Proof. See [Y6, Proposition 2.1, Remark 2.1.1, and Remark 2.1.2]. □

Remark 5.1.1. By applying Theorem 4.2, we have that Πét
X• , Π

top
X• can be recon-

structed group-theoretically from ΠX• . Then we obtain that VX,ℓ (or v(ΓX•)>0,ℓ) can
be reconstructed group-theoretically from ΠX• . Moreover, for every open subgroup
H ⊆ ΠX• , the map

γver,ℓH : VXH ,ℓ → VX,ℓ

constructed in Proposition 5.1 (d) can be reconstructed group-theoretically from the
natural inclusion H ↪→ ΠX• .

5.2. Cohomology classes and sets of closed edges.

5.2.1. Settings. We maintain the settings introduced in 5.1.1. Moreover, in this
subsection, we suppose that the genus of the normalization of each irreducible com-
ponent of X is positive (i.e. v(ΓX•) = v(ΓX•)>0,ℓ (5.1.2) if ` 6= p), and that Γcpt

X• is
2-connected (see 1.1.1 (b) (c)).
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5.2.2. We shall say that

TX•
def
= (`, d, f •

X : Y • → X•)

is an edge-triple associated to X• if the following conditions are satisfied:
(i) ` and d are prime numbers distinct from each other and from p.
(ii) ` ≡ 1 (mod d); this means that all dth roots of unity are contained in Fℓ.

Moreover, we write µd ⊆ F×
ℓ for the subgroup of dth roots of unity.

(iii) f •
X : Y • → X• is a Galois admissible covering over k such that the Galois

group is isomorphic to µd, that f
•
X is étale (i.e. fX is étale), and that #(vspfX ) = 0

(see 1.1.5 for vspfX ). Note that since v(ΓX•) = v(ΓX•)>0,d, we see that f •
X exists.

5.2.3. We maintain the prime numbers ` and d introduced in 5.2.2. On the other
hand, we shall say that

TΠX•
def
= (`, d, αfX )

is an edge-triple associated to ΠX• if the following conditions are satisfied (see 1.2.7
for Πét

X•):
(i) αfX ∈ Hom(Πét

X• ,Z/dZ).
(ii) The composition of the natural homomorphisms Πét

X̃•
v
↪→ Πét

X•
αfX→ Z/dZ is a

surjection for every v ∈ v(ΓX•).
We see immediately that an edge-triple TX• associated to X• is equivalent to an

edge-triple TΠX• associated to ΠX• . Moreover, f •
X is the Galois admissible cover-

ing corresponding to the kernel of the composition of the natural homomorphisms

ΠX• ↠ Πét
X•

αfX→ Z/dZ.

5.2.4. Further settings. In the remainder of the present subsection, we fix an
edge-triple

TΠX•
def
= (`, d, αfX )

associated to ΠX• . Write TX•
def
= (`, d, f •

X : Y • → X•) for the edge-triple associated
to X• corresponding to TΠX• , (gY , nY ) for the type of Y •, ΓY • for the dual semi-
graph of Y •, rY for the Betti number of ΓY • (1.1.2), and ΠY • for the kernel of the

composition of the homomorphisms ΠX• ↠ Πét
X•

αfX→ Z/dZ (i.e. the admissible (or
solvable admissible) fundamental group of Y •).

5.2.5. We put

MY •
def
= Hom(ΠY • ,Z/`Z).

There is a natural injectionM ét
Y •

def
= Hom(Πét

Y • ,Z/`Z) ↪→MY • induced by the natural
surjection ΠY • ↠ Πét

Y • . Then we obtain an exact sequence

0→M ét
Y • →MY • →M ra

Y •
def
= coker(M ét

Y • ↪→MY •)→ 0
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with a natural action of µd, where “ra” means “ramification”. For any element of
MY • , if the image of the element is not 0 inM ra

Y • , then the Galois admissible covering
of Y • with Galois group Z/`Z corresponding to the element is not étale.

5.2.6. Let M ra
Y •,µd

⊆ M ra
Y • be the subset of elements on which µd acts via the

character µd ↪→ F×
ℓ . Write E∗

TΠX•
⊆ MY • for the subset of elements whose images

are nonzero elements of M ra
Y •,µn .

Let α ∈ E∗
TΠX•

. Write

g•α : Y •
α → Y •

for the Galois admissible covering over k corresponding to α. We define a map

ε : E∗
TΠX•

→ Z≥0, α 7→ #(eop(ΓY •
α
) ∪ ecl(ΓY •

α
)),

where ΓY •
α
denotes the dual semi-graph of Y •

α . We put (see 1.1.5 for eop,ragα and ecl,ragα )

Ecl,⋆
TΠX•

def
= {α ∈ E∗

TΠX•
| #(eop,ragα ) = 0, #(ecl,ragα ) = d}.

Note that Ecl,⋆
TΠX•

is not an empty set. For each α ∈ Ecl,⋆
TΠX•

, since the image of α is

contained inM ra
Y •,µd

, we obtain that the action of µd on the set {ye}e∈ecl,ragα
⊆ Nod(Y •)

is transitive, where Nod(−) denotes the set of nodes of (−), and ye denotes the node
of Y • corresponding to e. Then there exists a unique node xα of X• such that
fX(ye) = xα for all ye ∈ {ye}e∈ecl,ragα

. We denote by eα ∈ ecl(ΓX•) the closed edge

corresponding to xα.

5.2.7. On the other hand, let H ⊆ ΠX• be an open subgroup. Write f sg
H : ΓX•

H
→

ΓX• for the map of dual semi-graphs induced by the admissible covering f •
H : X•

H →
X• over k corresponding to H. We shall denote by

f cl
H

def
= f sg

H |ecl(ΓX•
H
) : e

cl(ΓX•
H
)→ ecl(ΓX•).

Moreover, if H ⊆ ΠX• is an open normal subgroup, then ecl(ΓX•
H
) admits a natural

action of ΠX•/H.

Proposition 5.2. (a) We define a pre-equivalence relation ∼ on Ecl,⋆
TΠX•

as follows:

Let α, β ∈ Ecl,⋆
TΠX•

. We have that α ∼ β if, for each λ, µ ∈ F×
ℓ for

which λα + µβ ∈ E∗
TΠX•

, we have λα + µβ ∈ Ecl,⋆
TΠX•

.

Then the pre-equivalence relation ∼ on Ecl,⋆
TΠX•

is an equivalence relation.

(b) We denote by Ecl
TΠX•

the quotient set of Ecl,⋆
TΠX•

by ∼ defined in (a). Then we

have a natural bijection

ϑTΠX• : Ecl
TΠX•

∼→ ecl(ΓX•), [α] 7→ eα,
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where [α] denotes the equivalence class of α.
(c) Let T′

ΠX• be an arbitrary edge-triples associated to ΠX•. Then we have a
natural bijection

Ecl
T′
ΠX•

∼→ Ecl
TΠX•

which fits into the following commutative diagram:

Ecl
T′
ΠX•

ϑT′
ΠX•−−−−→ ecl(ΓX•)y ∥∥∥

Ecl
TΠX•

ϑTΠX•−−−−→ ecl(ΓX•).

(d) Let H ⊆ ΠX• be an open subgroup. Suppose that ([ΠX• : H], `) = ([ΠX• :
H], d) = 1. We have that TX• associated to ΠX• induces an edge-triple

TX•
H

def
= (`, d, f •

XH
: Y •

XH

def
= Y • ×X• X•

H → X•
H)

associated to X•
H , where Y • ×X• X•

H denotes the fiber product in the category of
pointed stable curves. Write TH for the edge-triple associated to H corresponding to
TX•

H
. Then the natural injection H ↪→ ΠX• induces a surjective map

γclTΠX• ,H
: Ecl

TH
↠ Ecl

TΠX•

which fits into the following commutative diagram:

Ecl
TH

ϑTH−−−→ ecl(ΓX•
H
)

γclTΠX• ,H

y fclH

y
Ecl

TΠX•

ϑTΠX•−−−−→ ecl(ΓX•).

Moreover, suppose that H ⊆ ΠX• is an open normal subgroup. Then Ecl
TH

admits
an action of ΠX•/H such that ϑTH

is compatible with ΠX•/H-actions (i.e. ϑTH
is

ΠX•/H-equivariant).

Proof. See [Y6, Proposition 2.2, Remark 2.2.1, and Remark 2.2.2]. □
Remark 5.2.1. By applying Theorem 4.2, we have that Πét

X• can be reconstructed
group-theoretically from ΠX• . Then Ecl

TΠX•
(or ecl(ΓX•)) can be reconstructed group-

theoretically from ΠX• . Moreover, for every open subgroup H ⊆ ΠX• , the map

γclTΠX•,H
: Ecl

TH
→ Ecl

TΠX•

constructed in Proposition 5.2 (d) can be reconstructed group-theoretically from the
natural inclusion H ↪→ ΠX• .
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5.2.8. Next, we calculate the cardinality #(Ecl,⋆
TΠX•

) of Ecl,⋆
TΠX•

. We put

Ecl,⋆
TΠX• ,e

def
= {α ∈ Ecl,⋆

TΠX•
| e = eα}, e ∈ ecl(ΓX•).

Note that e = eα, α ∈ Ecl,⋆
TΠX• ,e

, means that the Galois admissible covering g•α : Y •
α →

Y • over k induced by α is (totally) ramified over f−1
X (xe), where xe denotes the node

of X corresponding to e. Moreover, we have the following disjoint union

Ecl,⋆
TΠX•

=
⊔

e∈ecl(ΓX• )

Ecl,⋆
TΠX• ,e

.

Let m ∈ Z≥0 and e ∈ ecl(ΓX•). We shall put

Ecl,⋆,m
TΠX• ,e

def
= {α ∈ Ecl,⋆

TΠX• ,e
| #(vspgα) = m}.

Let e ∈ ecl(ΓX•) be a closed edge. Write Ye for the normalization of the underlying
curve Y of Y • at f−1

X (xe) and nore : Ye → Y for the resulting normalization mor-
phism. Since the genus of the normalization of each irreducible component of X• is
positive, we obtain that the genus of the normalization of each irreducible component
of Ye is also positive. Moreover, since ΓX• is 2-connected, Ye is connected.

Lemma 5.3. We maintain the notation introduced above. Let e ∈ ecl(ΓX•) be a
closed edge. Then we have

#(Ecl,⋆
TΠX• ,e

) = `2gY −d−rY +1 − `2gY −d−rY .

Moreover, we have

#(Ecl,⋆
TΠX•

) = #(ecl(ΓX•))(`2gY −d−rY +1 − `2gY −d−rY ).

Proof. Write Re ⊆ Ye for the set of closed subset (fX ◦ nore)−1(xe). Then Ecl,⋆
TΠX• ,e

can be naturally regarded as a subset of H1
ét(Ye \ Re,Z/`Z) via the natural open

immersion Ye \Re ↪→ Ye. Write Le for the Fℓ-linear subspace spanned by Ecl,⋆
TΠX• ,e

in

H1
ét(Ye \Re,Z/`Z). Then we see Ecl,⋆

TΠX• ,e
= Le \H1

ét(Ye,Z/`Z).
Write Hra

e for the cokernel of the natural inclusion H1
ét(Ye,Z/`Z) ↪→ Le. We

obtain an exact sequence as follows:

0→ H1
ét(Ye,Z/`Z)→ Le → Hra

e → 0.

On the other hand, since the action of µd on f−1(xe) is translative, the structure
of the maximal pro-` quotient Πℓ

Y • of ΠY • (1.2.4) implies dimFℓ
(Hra

e ) = 1. Since
dimFℓ

(H1
ét(Ye,Z/`Z)) = 2(gY − d)− (rY − d) = 2gY − d− rY , we obtain

#(Ecl,⋆
TΠX• ,e

) = `2gY −d−rY +1 − `2gY −d−rY .
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Thus, we have

#(Ecl,⋆
TΠX•

) = #(ecl(ΓX•))(`2gY −d−rY +1 − `2gY −d−rY ).

This completes the proof of the lemma. □

5.2.9. We also introduce some notation concerning open edges. We put

Eop,⋆
TΠX•

def
= {α ∈ E∗

TΠX•
| #(eop,ragα ) = d, #(ecl,ragα ) = 0}.

Note that Eop,⋆
TΠX•

is not an empty set if nX 6= 0. For each α ∈ Eop,⋆
TΠX•

, since the image

of α is contained in M ra
Y •,µd

, we obtain that the action of µd on the set {ye}e∈eop,ragα
⊆

DY is transitive, where ye denotes the marked point of Y • corresponding to e. Then
there exists a unique marked point xα ∈ DX of X• such that fX(ye) = xα for every
ye ∈ {ye}e∈eop,ragα

. We denote by eα ∈ eop(ΓX•) the open edge corresponding to xα.
Moreover, we put

Eop,⋆
TΠX• ,e

def
= {α ∈ Eop,⋆

TΠX•
| e = eα}, e ∈ eop(ΓX•).

Note that e = eα, α ∈ Eop,⋆
TΠX• ,e

, means that the Galois admissible covering g•α : Y •
α →

Y • over k induced by α is (totally) ramified over f−1
X (xe), where xe denotes the

marked point of X• corresponding to e. Moreover, we have the following disjoint
union

Eop,⋆
TΠX•

=
⊔

e∈eop(ΓX• )

Eop,⋆
TΠX• ,e

.

Let m ∈ Z≥0 and e ∈ eop(ΓX•). We shall put

Eop,⋆,m
TΠX• ,e

def
= {α ∈ Eop,⋆

TΠX• ,e
| #(vspgα) = m}.

5.3. Three conditions. We introduce the following conditions concerning pointed
stable curves. Moreover, one of the main results of the present section (Theorem
5.26) will be proved under those conditions.

5.3.1. Let W •
i , i ∈ {1, 2}, be a pointed stable curve over ki of type (gWi

, nWi
), ΓW •

i

the dual semi-graph of W •
i , and ΠW •

i
the solvable admissible fundamental group

of W •
i . Let Hi ⊆ ΠW •

i
be an open subgroup, W •

Hi
the admissible covering of W •

i

corresponding to Hi, and ΓW •
Hi

the dual semi-graph of W •
Hi
.

Condition A . We shall say thatW •
i satisfies Condition A if the following conditions

are satisfied:

(i) The genus of the normalization of each irreducible component of Wi is posi-
tive.

(ii) Every irreducible component of Wi is smooth over ki.
(iii) Γcpt

W •
i
is 2-connected (1.1.1 (b) (c)).
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(iv) #(v(ΓW •
i
)b≤1) = 0 (1.1.1 (c)).

Condition B . We shall say that W •
i satisfies Condition B if Γcpt

W •
Hi

is 2-connected

for every open subgroup H ⊆ ΠW • .

Condition C . We shall say that W •
1 and W •

2 satisfy Condition C if the following
conditions are satisfied:

(i) (gW1 , nW1) = (gW2 , nW2).
(ii) #(v(ΓW •

1
)) = #(v(ΓW •

2
)).

(iii) #(ecl(ΓW •
1
)) = #(ecl(ΓW •

2
)).

5.3.2. We maintain the notation introduced above, then we have the following
lemma.

Lemma 5.4. Let m >> 0 be a positive natural number prime to p and Hi
def
=

D
(3)
m (ΠW •

i
) ⊆ ΠW •

i
(see Definition 4.8 for D

(3)
m (ΠW •

i
)). Then we have that W •

Hi

satisfies Condition A, and that the Betti number of the dual semi-graph of W •
Hi

is
positive.

Proof. If W •
i is smooth over ki, then the lemma is trivial. We may assume that W •

i

is singular. Let Qi
def
= D

(2)
m (ΠW •

i
) ⊆ ΠW •

i
. By the structure of Πp′

W • (1.2.4), it is easy
to see that W •

Qi
satisfies Condition A (i) (ii) (iv), and that the Betti number of the

dual semi-graph of W •
Qi

is positive. Write f • : W •
Hi
→ W •

Qi
for the Galois admissible

covering over ki with Galois group G induced by the natural inclusion Hi ↪→ Qi and
f sg : ΓW •

Hi
→ ΓW •

Qi
for the map of dual semi-graphs of W •

Hi
and W •

Qi
induced by f •.

Let v ∈ v(ΓW •
Qi
) be an arbitrary vertex. Note that #((f sg)−1(v)) ≥ 2. Since f • is

Galois, to verify that Γcpt
W •

Hi

is 2-connected, we only need to prove that Γcpt
W •

Hi

\ {w}
is connected for a vertex w ∈ (f sg)−1(v). Moreover, since m is prime to p, to verify
Γcpt
W •

Hi

\ {w} is connected, we may assume #(v(Γ•
WQi

)) = 2 and #(ecl(Γ•
WQi

)) ≥ 2.

Let C,D ⊆ Γcpt
W •

Hi

\ {w} be connected components. Suppose that C 6= D. Note

that since f • is Galois and Πét
W̃ •

Qi,v

is not trivial (i.e. Condition A (i)), C is isomorphic

to D as semi-graphs. Let w′ ∈ ((f sg)−1(v) \ {w}) ∩ C, and let Cw′ be a connected
component of C \ {w′} such that there exists a closed edge which meets Cw′ and w.
Then we obtain that there exists a connected component C ′ of Γcpt

W •
Hi

\ {w′} which
contains w, D, and Cw′ . On the other hand, since f • is Galois, C ′ is isomorphic to
D as semi-graphs, which is impossible as D and C ′ are finite semi-graphs. Then we
have C = D. We complete the proof of the lemma. □

5.4. Reconstructions of topological and combinatorial data. In this subsec-
tion, we prove that sets of vertices, sets of closed edges, and sets of genus can be
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reconstructed group-theoretically from an open continuous homomorphism of solv-
able admissible fundamental groups. The main results of the present subsection are
Theorem 5.12, Theorem 5.14, and Theorem 5.17.

5.4.1. Settings. Let i ∈ {1, 2}, and let ki be an algebraically closed field of char-
acteristic p > 0 and ` a prime number distinct from p. Let X•

i be a pointed stable
curve of type (gXi

, nXi
) over ki, ΠX•

i
the solvable admissible fundamental group of

X•
i , ΓX•

i
the dual semi-graph of X•

i , and rXi
the Betti number of ΓX•

i
(1.1.2). More-

over, let vi ∈ v(ΓX•
i
), X̃•

i,vi
the smooth pointed stable curve of type (gi,vi , ni,vi) over

ki associated to vi (1.1.3), and σi,vi the p-rank of X̃•
i,vi

(2.1.1).
We suppose that X•

1 and X•
2 satisfy Condition A, Condition B, and Condition C

introduced in 5.3.1. Moreover, let

φ : ΠX•
1
→ ΠX•

2

be an arbitrary open continuous homomorphism of the solvable admissible funda-
mental groups of X•

1 and X•
2 , and

(gX , nX)
def
= (gX1 , nX1) = (gX2 , nX2).

Note that rX1 = rX2 , and that by Lemma 4.3, φ is a surjective open continuous
homomorphism.

5.4.2. Firstly, we have the following lemma.

Lemma 5.5. We maintain the notation introduced above. Then we have (see 2.2.1
for Avrp(ΠX•

i
))

Avrp(ΠX•
i
) = gXi

− rXi
.

Proof. The lemma follows immediately from Condition A and Theorem 2.1 (b). □

5.4.3. Let i, j ∈ {1, 2} such that i 6= j, and let G be a finite group such that
(#(G), p) = 1 and

f •
i : Y •

i → X•
i

a Galois admissible covering over ki with Galois group G. Then the isomorphism

φp
′
: Πp′

X•
1

∼→ Πp′

X•
2
induced by φ (4.2.1) implies that f •

i induces a Galois admissible
covering

f •
j : Y •

j → X•
j

over kj with Galois group G. We write (gYi , nYi) for the type of Y
•
i , ΓY •

i
for the dual

semi-graph of Y •
i , and rYi for the Betti number of ΓY •

i
.
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Lemma 5.6. We maintain the notation introduced above. Suppose that G ∼= Z/`Z,
that f •

1 : Y •
1 → X•

1 is étale, and that #(vspf1) = m (see 1.1.5 for vspf1). Then we have

(see 1.1.5 for ecl,raf2
, eop,raf2

)

0 ≤ #(ecl,raf2
) +

1

2
#(eop,raf2

) + #(vspf2) ≤ m.

Proof. Since f •
1 is an étale covering, the Riemann-Hurwitz formula implies

gY1 = `(gX − 1) + 1,

gY2 = `(gX − 1) +
1

2
(`− 1)#(eop,raf2

) + 1.

Then we obtain

gY1 − gY2 = −
1

2
(`− 1)#(eop,raf2

).

On the other hand, we have

rY1 = `#(ecl(ΓX•
1
))−#(v(ΓX•

1
)) + #(vspf1)− `#(vspf1) + 1

= `#(ecl(ΓX•
1
))−#(v(ΓX•

1
))− (`− 1)m+ 1,

rY2 = `#(ecl,étf2
) + #(ecl,raf2

)− `#(vspf2)−#(vraf2) + 1.

Since #(e(ΓX•
1
)) = #(e(ΓX•

2
)) and #(v(ΓX•

1
)) = #(v(ΓX•

2
)), we obtain

rY1 − rY2 = (`− 1)#(ecl,raf2
) + (`− 1)(#vspf2 −m).

Moreover, by applying Lemma 5.5 and Lemma 2.2 (b), we have gY1−gY2 ≥ rY1−rY2 .
Thus, we obtain

0 ≤ #(ecl,raf2
) +

1

2
#(eop,raf2

) + #(vspf2) ≤ m.

This completes the proof of the lemma. □
Corollary 5.7. We maintain the notation introduced above. Suppose that G ∼=
Z/`Z, that f •

1 : Y •
1 → X•

1 is étale, and that #(vspf1) = 0. Then we have that

f •
2 : Y •

2 → X•
2 is étale, and that #(vspf2) = 0.

Proof. The corollary follows immediately from Lemma 5.6. □
Corollary 5.8. We maintain the notation introduced above. Suppose that G ∼=
Z/`Z, that f •

1 : Y •
1 → X•

1 is étale, and that #(vspf1) = 1. Then we have that
f •
2 : Y •

2 → X•
2 is étale.

Proof. In order to verify the corollary, it is sufficient to prove that #(ecl,raf2
) =

#(eop,raf2
) = 0. By applying Lemma 5.6, we have

0 ≤ #(ecl,raf2
) +

1

2
#(eop,raf2

) + #(vspf2) ≤ 1.



64 YU YANG

Suppose that #(ecl,raf2
) 6= 0. Since X•

2 satisfies Condition A, the above inequality
and the structures of the maxmial prime-to-p quotient of solvable admissible funda-
mental groups (1.2.4) imply that either (i) #(ecl,raf2

) = 1 and #(eop,raf2
) ≥ 2, or (ii)

#(ecl,raf2
) ≥ 2 holds. Then we have 2#(ecl,raf2

) + #(eop,raf2
) + 2#(vspf2) > 2. Thus, we

have #(ecl,raf2
) = 0.

Suppose #(eop,raf2
) 6= 0. Since #(ecl,raf2

) = 0, the above inequality implies #(eop,raf2
) =

2. Let `′ 6= p be a prime number distinct from `, and let

g•1 : Z•
1 → X•

1

be a Galois étale covering of over k1 with Galois group Z/`′Z such that #(vspg1) = 0.
Then Corollary 5.7 implies that the Galois admissible covering g•2 : Z•

2 → X•
2 over

k2 with Galois group Z/`′Z induced by g•1 is étale covering, and that #(vspg2) = 0.
Write ΓZ•

i
for the dual semi-graph of Z•

i . We obtain

#(v(ΓX•
1
)) = #(v(ΓZ•

1
)) = #(v(ΓZ•

2
)) = #(v(ΓX•

2
)),

`′#(eop(ΓX•
1
)) = #(eop(ΓZ•

1
)) = #(eop(ΓZ•

2
)) = `′#(eop(ΓX•

2
)),

`′#(ecl(ΓX•
1
)) = #(ecl(ΓZ•

1
)) = #(ecl(ΓZ•

2
)) = `′#(ecl(ΓX•

2
)).

We have that Z•
1 and Z•

2 satisfy Condition A, Condition B, and Condition C.

We denote by W •
i

def
= Y •

i ×X•
i
Z•
i . Note that since `′ 6= `, we see that W •

i is
connected. Then f •

i induces a Galois admissible covering

h•i : W
•
i → Z•

i

over ki with Galois group Z/`Z. We have that h•1 is étale, that #(vsph1) = 1, and that
#(eop,rah2

) = 2`′. Then Lemma 5.6 implies

1 < #(ecl,rah2
) +

1

2
#(eop,rah2

) + #(vsph2) = #(ecl,rah2
) + `′ +#(vsph2) ≤ 1.

This is a contradiction. Thus, we obtain #(eop,raf2
) = 0. This completes the proof of

the corollary. □
5.4.4. We put (see 1.2.7 for Πét

X•
i
, Πtop

X•
i
)

MX•
i

def
= Hom(ΠX•

i
,Z/`Z), M ét

X•
i

def
= Hom(Πét

X•
i
,Z/`Z), M top

X•
i

def
= Hom(Πtop

X•
i
,Z/`Z).

Note that we have the following injections (or weight-monodromy filtration)

M top
X•

i
↪→M ét

X•
i
↪→MX•

i
(or M top

X•
i
⊆M ét

X•
i
⊆MX•

i
)

induced by the natural surjections ΠX•
i
↠ Πét

X•
i
↠ Πtop

X•
i
. Moreover, we have an

isomorphism
ψℓ :MX•

2

∼→MX•
1

induced by the isomorphism φℓ : Πℓ
X•

1

∼→ Πℓ
X•

2
.
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Proposition 5.9. We maintain the notation introduced above. Then the isomor-
phism ψℓ :MX•

2

∼→MX•
1
induces an isomorphism

ψét
ℓ :M ét

X•
2

∼→M ét
X•

1

group-theoretically. Moreover, we have the following commutative diagram:

M ét
X•

2

ψét
ℓ−−−→ M ét

X•
1y y

MX•
2

ψℓ−−−→ MX•
1
,

where all vertical arrows are injections.

Proof. To verify the proposition, it is sufficient to prove that ψ−1
ℓ : MX•

1

∼→ MX•
2

induces an isomorphism ψ−1,ét
ℓ : M ét

X•
1

∼→ M ét
X•

2
which fits into the following commu-

tative diagram:

M ét
X•

1

ψ−1,ét
ℓ−−−→ M ét

X•
2y y

MX•
1

ψ−1
ℓ−−−→ MX•

2
,

where all vertical arrows are injections.
Let α1 ∈ M ét

X•
1
be a non-trivial element and f •

1,α : Y •
1,α → X•

1 the Galois étale

covering over k1 with Galois group Z/`Z corresponding to α. We put

LX•
1

def
= {α1 ∈M ét

X•
1
| #(vspf1,α1

) = 1}.

We see that M ét
X•

1
is spanned by LX•

1
as an Fℓ-linear space.

On the other hand, Corollary 5.8 implies that f •
1,α1

induces a Galois étale covering

of X•
2 over k2 with Galois group Z/`Z. This means that ψ−1

ℓ induces an injection of
Fℓ-linear spaces

ψ−1,ét
ℓ :M ét

X•
1
↪→M ét

X•
2
.

Moreover, since dimFℓ
(M ét

X•
1
) = 2gX1 − rX1 = 2gX2 − rX2 = dimFℓ

(M ét
X•

2
), we obtain

that ψ−1,ét
ℓ is an isomorphism. This completes the proof of the proposition. □

Proposition 5.10. We maintain the notation introduced above. Then the isomor-
phism ψℓ :MX•

2

∼→MX•
1
induces an isomorphism

ψtop
ℓ :M top

X•
2

∼→M top
X•

1
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group-theoretically. Moreover, we have the following commutative diagram:

M top
X•

2

ψtop
ℓ−−−→ M top

X•
1y y

M ét
X•

2

ψét
ℓ−−−→ M ét

X•
1y y

MX•
2

ψℓ−−−→ MX•
1
,

where all vertical arrows are injections.

Proof. Firstly, by Proposition 5.9, the isomorphism ψℓ : MX•
2

∼→ MX•
1
induces an

isomorphism ψét
ℓ : M ét

X•
2

∼→ M ét
X•

1
. Let α2 ∈ M top

X•
2
⊆ M ét

X•
2
be a non-trivial element

and
f •
2,α2

: Y •
2,α2
→ X•

2

the Galois étale covering over k2 with Galois group Z/`Z corresponding to α2. Then

we obtain an element α1
def
= ψét

ℓ (α2) ∈ M ét
X•

1
. Write f •

1,α1
: Y •

1,α1
→ X•

1 for the Galois

étale covering over k1 with Galois group Z/`Z corresponding to α1. Note that the
types of Y •

1,α1
and Y •

2,α2
are equal, and that Y •

1,α1
and Y •

2,α2
satisfy Condition A.

Lemma 5.5 and Lemma 2.2 (b) imply rY1,α1
≤ rY2,α2

, where rY1,α1
and rY2,α2

denote
the Betti numbers of the dual semi-graphs of Y •

1,α1
and Y •

2,α2
, respectively. Since

#(vspf2,α2
) = #(v(ΓX•

2
)) = #(v(ΓX•

1
)), the inequality implies #(vspf1,α1

) = #(v(ΓX•
1
)).

Thus, we have α1 ∈M top
X•

1
. Then α1 induces an injection

ψtop
ℓ :M top

X•
2
↪→M top

X•
1
.

Moreover, since dimFℓ
(M top

X•
2
) = rX2 = rX1 = dimFℓ

(M top
X•

1
), we have that ψtop

ℓ is an

isomorphism. This completes the proof of the proposition. □
Remark 5.10.1. Proposition 5.9 and Proposition 5.10 mean that the weight-monodromy
filtrations can be reconstructed group-theoretically from φ.

Lemma 5.11. We maintain the notation introduced above. Suppose that G ∼= Z/`Z,
that f •

2 is étale, and that #(vraf2) = 1 (1.1.5). Then we have that f •
1 is étale, and

that #(vraf1) = 1.

Proof. By Proposition 5.9, we obtain that f •
1 is étale. This implies gY1 = gY2 , and

#(ecl(ΓY •
1
)) = `#(ecl(ΓX•

1
)) = `#(ecl(ΓX•

2
)) = #(ecl(ΓY •

2
)). On the other hand,

Lemma 5.5 and Lemma 2.2 (b) imply rY1 ≤ rY2 . Thus, we obtain

`#(ecl(ΓX•
1
))−`(#(v(ΓX•

1
))−#(vraf1))−#(vraf1)+1 ≤ `#(ecl(ΓX•

2
))−`(#(v(ΓX•

2
))−1)−1+1.



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 67

This implies #(vraf1) ≤ 1.
Suppose that #(vraf1) = 0. Let αf1 ∈ MX•

1
be an element corresponding to f •

1 .

Then αf1 ∈M
top
X•

1
. Note that αf2

def
= (ψét

ℓ )
−1(αf1) ∈M ét

X•
2
is an element corresponding

to f •
2 . Then Proposition 5.10 implies that αf2 is contained inM top

X•
2
. This means that

#(vraf2) = 0. This contradicts the assumption #(vraf2) = 1. Thus, we have #(vraf1) = 1.
We complete the proof of the lemma. □

5.4.5. We reconstruct the sets of vertices and the sets of genus of irreducible com-
ponents group-theoretically from φ as follows.

Theorem 5.12. We maintain the settings introduced in 5.4.1. Then the (surjective)
open continuous homomorphism φ : ΠX•

1
↠ ΠX•

2
induces a bijection of the sets of

vertices

φsg,ver : v(ΓX•
1
)

∼→ v(ΓX•
2
)

group-theoretically. Moreover, let v1 ∈ v(ΓX•
1
) and v2

def
= φsg,vex(v1). Then we have

the following equality of genus:

g1,v1 = g2,v2 .

Proof. We maintain the notation introduced in Section 5.1. By applying Theorem
4.2, Proposition 5.9, and Proposition 5.10, we obtain that the following homomor-
phisms of the natural exact sequences can be induced group-theoretically from φ:

0 −−−→ M top
X•

2
−−−→ M ét

X•
2
−−−→ Mnt

X•
2
−−−→ 0

ψtop
ℓ

y ψét
ℓ

y y
0 −−−→ M top

X•
1
−−−→ M ét

X•
1
−−−→ Mnt

X•
1
−−−→ 0.

Then we obtain ψét
ℓ (V

∗
X2,ℓ

) = V ∗
X1,ℓ

(see 5.1.3 for V ∗
Xi,ℓ

). Moreover, Lemma 5.11
implies (see 5.1.3 for V ⋆

Xi,ℓ
)

ψét
ℓ (V

⋆
X2,ℓ

) = V ⋆
X1,ℓ

.

Let α2, α
′
2 ∈ V ⋆

X2,ℓ
be elements distinct from each other such that α2 ∼ α′

2 (i.e. the
equivalence relation defined in Proposition 5.1 (a)). By applying Lemma 5.11 again,
for any a, b ∈ F×

ℓ , we see that aα2 + bα′
2 ∈ V ⋆

X2,ℓ
if and only if ψét

ℓ (aα2 + bα′
2) =

aψét
ℓ (α2)+ bψét

ℓ (α
′
2) ∈ V ⋆

X1,ℓ
. Thus, we obtain a bijection (see Proposition 5.1 (b) for

VXi,ℓ)

VX2,ℓ
∼→ VX1,ℓ.

Then the first part of the theorem follows from Proposition 5.1.
Next, let us prove the “moreover” part of the theorem. Let vi ∈ v(ΓX•

i
). We put

LviX•
i

def
= {αi ∈M ét

X•
i
| vrafi,αi

= {vi}},
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where f •
i,αi

denotes the Galois admissible covering of X•
i over ki corresponding to αi.

Moreover, we denote by [LviX•
i
] the image of LviX•

i
in Mnt

X•
i
. Then we have #([LviX•

i
]) =

`gi,vi − 1.
Suppose v2 = φsg,ver(v1). Proposition 5.10 and Lemma 5.11 imply that ψét

ℓ induces
an injection [Lv2X•

2
] ↪→ [Lv1X•

1
]. Thus, we have `g2,v2 − 1 = #([Lv2X•

2
]) ≤ #([Lv1X•

1
]) =

`g1,v1 − 1. This implies g2,v2 ≤ g1,v1 . On the other hand, since∑
v1∈v(ΓX•

1
)

g1,v1 = gX − rX1 = gX − rX2 =
∑

v2∈v(ΓX•
2
)

g2,v2 ,

we obtain g1,v1 = g2,v2 . This completes the proof of the theorem. □

5.4.6. Further settings. Next, let us reconstruct the sets of closed edges from φ.
In the remainder of the present subsection, we fix an edge-triple

TΠX•
1

def
= (`, d, αfX1

: Πét
X•

1
↠ Z/dZ)

associated to ΠX•
1
(5.2.3). Then Corollary 5.7 implies that φ and the edge-triple

TΠX•
1
induce an edge-triple

TΠX•
2

def
= (`, d, αfX2

: Πét
X•

2
↠ Z/dZ)

associated to ΠX•
2
group-theoretically. Write ΠY •

i
for the kernel of αfXi

. Then the

(surjective) open continuous homomorphism φ : ΠX•
1
↠ ΠX•

2
induces a (surjective)

open continuous homomorphism

φY : ΠY •
1
↠ ΠY •

2
.

Moreover, the constructions of Y •
1 and Y •

2 imply that Y •
1 and Y •

2 satisfy Condition
A, Condition B, and Condition C (5.3.1).

5.4.7. We put

MY •
i

def
= Hom(ΠY •

i
,Z/`Z), M ét

Y •
i

def
= Hom(Πét

Y •
i
,Z/`Z), M ra

Y •
i

def
= MY •

i
/M ét

Y •
i
.

Then, by Theorem 4.2 and Proposition 5.9, the following commutative diagram can
be induced group-theoretically from φY :

0 −−−→ M ét
Y •
2
−−−→ MY •

2
−−−→ M ra

Y •
2
−−−→ 0

ψét
Y,ℓ

y ψY,ℓ

y y
0 −−−→ M ét

Y •
1
−−−→ MY •

1
−−−→ M ra

Y •
1
−−−→ 0,

where all vertical arrows are isomorphisms. Let E∗
TΠX•

i

be the subset of MY •
i
defined

in 5.2.6. Since the actions of µd on the exact sequences are compatible with the
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isomorphisms appearing in the above commutative diagram, we have

ψY,ℓ(E
∗
TΠX•

2

) = E∗
TΠX•

1

.

Let m ∈ Z≥0 and ei ∈ ecl(ΓX•
i
). Recall that Ecl,⋆,m

TΠX•
i
,ei

(5.2.8) is the subset of Ecl,⋆
TΠX•

i
,ei

whose element αi satisfies #(vspgi,αi
) = m. Then we have the following lemma.

Lemma 5.13. We maintain the notation introduced above. Then we have

ψ−1
Y,ℓ(

⊔
e1∈eop(ΓX•

1
)

Ecl,⋆,0
TΠX•

1
,e1
) ⊆

⊔
e2∈eop(ΓX•

2
)

Ecl,⋆,0
TΠX•

2
,e2
.

Moreover, we have

ψ−1
Y,ℓ(E

cl,⋆
TΠX•

1

) = Ecl,⋆
TΠX•

2

.

Proof. Let e1 ∈ ecl(ΓX•
1
) and α1 ∈ Ecl,⋆,0

TΠX•
1
,e1
. Then the Galois admissible covering

g•1,α1
: Y •

1,α → Y •
1 over k1 with Galois group Z/`Z corresponding to α1 induces a

Galois admissible covering g•2,α2
: Y •

2,α2
→ Y •

2 over k2 with Galois group Z/`Z. Write
α2 ∈ MY •

2
for an element corresponding to g•2,α2

. We have α2 ∈ E∗
TΠY •

2

. Write gYi,αi

for the genus of Y •
i,αi

and rYi,αi
for the Betti number of the dual semi-graph ΓY •

i,αi
.

Then the Riemann-Hurwitz formula and Theorem 4.11 imply

gY1,α1
− gY2,α2

= −1

2
(#(eop,rag2,α2

))(`− 1) = 0.

On the other hand, we have

rY1,α1
= `(#(ecl(ΓY •

1
))− d) + d−#(v(ΓY •

1
)) + 1,

rY2,α2
= `#(ecl,étg2,α2

) + #(ecl,rag2,α2
)− `#(vcl,spg2,α2

)−#(vcl,rag2,α2
) + 1.

Then Lemma 5.5 and Lemma 2.2 (b) imply 0 = gY1,α1
−gY2,α2

≥ rY1,α1
−rY2,α1

. Thus,
we have

#(ecl,rag2,α2
) + #(vspg2,α2

) +
1

2
#(eop,rag2,α2

) = #(ecl,rag2,α2
) + #(vspg2,α2

) ≤ d.

If #(ecl,rag2,α2
) = 0, then g2,α2 is étale. By replacing X•

1 and X•
2 by Y •

1 and Y •
2 ,

respectively, Proposition 5.9 implies that g1,α1 is also étale. This contradicts the
definition of α1. Thus, we obtain #(ecl,rag2,α2

) 6= 0.

If #(ecl,rag2,α2
) 6= 0, then we have #(ecl,rag2,α2

) = d and #(vspg2,α2
) = #(eop,rag2,α2

) = 0. This
means

α2 ∈
⊔

e2∈ecl(ΓY •
2
)

Ecl,⋆,0
TΠY •

2
,e2
.
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Thus, we have

ψ−1
Y,ℓ(

⊔
e1∈ecl(ΓY •

1
)

Ecl,⋆,0
TΠY •

1
,e1
) ⊆

⊔
e2∈ecl(ΓY •

2
)

Ecl,⋆,0
TΠY •

2
,e2
.

Moreover, let βi ∈ Ecl,⋆
TΠY •

i

. Then βi is a linear combination of some elements of⊔
ei∈ecl(ΓY •

i
)

Ecl,⋆,0
TΠY •

i
,ei
.

Then we have ψ−1
Y,ℓ(E

cl,⋆
TΠX•

1

) ⊆ Ecl,⋆
TΠX•

2

. On the other hand, since gY1 = gY2 and rY1 =

rY2 , Lemma 5.3 implies #(ψ−1
Y,ℓ(E

cl,⋆
TΠX•

1

)) = #(Ecl,⋆
TΠX•

2

). Thus, we obtain

ψ−1
Y,ℓ(E

cl,⋆
TΠX•

1

) = Ecl,⋆
TΠX•

2

.

This completes the proof of the lemma. □

Now, we can reconstruct the sets of closed edges group-theoretically from φ as
follows.

Theorem 5.14. We maintain the settings introduced in 5.4.1 and 5.4.6. Then the
(surjective) open continuous homomorphism φ : ΠX•

1
↠ ΠX•

2
induces a bijection of

the sets of closed edges

φsg,cl : ecl(ΓX•
1
)

∼→ ecl(ΓX•
2
)

group-theoretically.

Proof. Let α2, α
′
2 ∈ E

cl,⋆
TΠX•

2

and α1
def
= ψY,ℓ(α2), α

′
1

def
= ψY,ℓ(α

′
2) ∈ E

cl,⋆
TΠX•

1

. Lemma 5.13

implies that α1 ∼ α′
1 (i.e. the equivalence relation defined in Proposition 5.2 (a)) if

and only if α2 ∼ α′
2. Then the theorem follows from Proposition 5.2. □

5.4.8. Next, let us reconstruct the sets of p-rank from φ. Note that the surjection
φ induces a surjection of the maximal pro-p quotients

φp : Πp
X•

1
↠ Πp

X•
2

of solvable admissible fundamental groups. Then every Galois (étale) admissible
covering h•2 : Z•

2 → X•
2 over k2 with Galois group Z/pZ induces a Galois (étale)

admissible covering h•1 : Z•
1 → X•

1 over k1 with Galois group Z/pZ. Moreover, φp

induces an injection

ψp : NX•
2

def
= Hom(ΠX•

2
,Z/pZ) ↪→ NX•

1

def
= Hom(ΠX•

1
,Z/pZ).

We have the following lemmas.
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Lemma 5.15. We maintain the notation introduced above. Suppose that #(vrah2) =
0. Then we have #(vrah1) = 0. In particular, we obtain that

ψtop
p : N top

X•
2

def
= Hom(Πtop

X•
2
,Z/pZ) ∼→ N top

X•
1

def
= Hom(Πtop

X•
1
,Z/pZ)

is an isomorphism.

Proof. Since h•i is étale, the Riemann-Hurwitz formula implies gZ1 = gZ2 . Thus,
similar arguments to the arguments given in the proofs of Proposition 5.10 imply
#(vrah1) = 0. This completes the proof of the lemma. □
Lemma 5.16. We maintain the notation introduced above. Suppose that #(vrah2) =
1. Then we obtain #(vrah1) = 1.

Proof. Similar arguments to the arguments given in the proofs of Lemma 5.11 imply
#(vrah1) ≤ 1. If #(vrah1) = 0, then the “in particular” part of Lemma 5.15 implies
#(vrah2) = 0. This contradicts our assumption. Then we obtain #(vrah1) = 1. □

Now, we can reconstruct the sets of p-rank of smooth pointed stable curves asso-
ciated to vertices from φ as follows.

Theorem 5.17. We maintain the settings introduced in 5.4.1. Then the (surjective)
open continuous homomorphism φ : ΠX•

1
↠ ΠX•

2
induces an injection of the sets of

vertices (see 5.1.2 for v(ΓX•
i
)>0,p)

ψsg,ver
p : v(ΓX•

2
)>0,p ↪→ v(ΓX•

1
)>0,p

group-theoretically. Moreover, let v2 ∈ v(ΓX•
2
)>0,p and v1

def
= ψsg,vex

p (v2). Then we
have the following inequality of p-rank

σ2,v2 ≤ σ1,v1 .

Proof. Lemma 5.16 implies ψp(V
⋆
X2,p

) ⊆ V ⋆
X1,p

. Let α2, α
′
2 ∈ V ⋆

X2,p
be elements distinct

from each other such that α2 ∼ α′
2. It is easy to see that aα2 + bα′

2 ∈ V ⋆
X2,p

if and
only if aψp(α2) + bψp(α

′
2) ∈ V ⋆

X1,p
for each a, b ∈ F×

p . Thus, by Proposition 5.1, we
obtain an injection of the sets of vertices

ψsg,ver
p : v(ΓX•

2
)>0,p ↪→ v(ΓX•

1
)>0,p.

Let vi ∈ v(ΓX•
i
). We put

Lvi,pX•
i

def
= {αi ∈ NX•

i
| vrahi,αi

= {vi}},

where h•i,αi
denotes the Galois (étale) admissible covering corresponding to αi. More-

over, Lemma 5.16 implies that ψp induces an injection Lv2,pX•
2
↪→ Lv1,pX•

1
.

We denote by [Lvi,pX•
i
] the image of Lvi,pX•

i
in NX•

i
/N top

X•
i
. Then we have #([Lvi,pX•

i
]) =

pσi,vi − 1. Suppose that v1
def
= ψsg,ver

p (v2). Lemma 5.15 implies that ψp induces an
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injection [Lv2,pX•
2
] ↪→ [Lv1,pX•

1
]. Thus, we have pσ2,v2 − 1 = #([Lv2,pX•

2
]) ≤ #([Lv1,pX•

1
]) =

pσ1,v1 − 1. This means that σ2,v2 ≤ σ1,v1 for each v2 ∈ v(ΓX•
2
)>0,p. We complete the

proof of the theorem. □

5.4.9. In the remainder of the present subsection, we prove a proposition which
will be used in Section 5.6.

Proposition 5.18. We maintain the notation introduced above. Then the following
statements hold:

(a) Let Scl
1 ⊆ ecl(ΓX•

1
) be a subset of closed edges, αe1 ∈ E

cl,⋆,0
TΠX•

1
,e1

(5.2.8) for every

e1 ∈ Scl
1 ,

α1
def
=

∑
e1∈Scl

1

αe1 ∈ E∗
TΠX•

1

(5.2.6),

and g•1,α1
: Y •

1,α1
→ Y •

1 the Galois admissible covering over k1 with Galois group

Z/`Z corresponding to α1. Let φsg,cl : ecl(ΓX•
1
)

∼→ ecl(ΓX•
2
) be the bijection of the

sets of closed edges obtained in Theorem 5.14, αϕsg,cl(e1) ∈ E
cl,⋆,0
TΠX•

2
,ϕsg,cl(e1)

the element

induced by φ for every e1 ∈ Scl
1 ,

α2
def
=

∑
e1∈Scl

1

αϕsg,cl(e1) ∈ E
∗
TΠX•

2

,

and g•2,α2
: Y •

2,α2
→ Y •

2 the Galois admissible covering over k2 with Galois group
Z/`Z corresponding to α2. Suppose #(vspg1,α1

) = 0. Then we have

#(eop,rag2,α2
) = #(vspg2,α2

) = 0.

(b) Let Eop,⋆,0
TΠX•

i
,ei
, ei ∈ eop(ΓX•

i
), be the set of cohomology classes defined in 5.2.9,

and let Sop
1 ⊆ eop(ΓX•

1
) be a subset of open edges, αe1 ∈ E

op,⋆,0
TΠX•

1
,e1

for every e1 ∈ Sop
1 ,

α1
def
=

∑
e1∈Sop

1

αe1 ∈ E∗
TΠX•

1

,

and g•1,α1
: Y •

1,α1
→ Y •

1 the Galois admissible covering over k1 with Galois group

Z/`Z corresponding to α1. Let φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
) be the bijection of the

sets of open edges obtained in Theorem 4.11, αϕsg,op(e1) ∈ E
op,⋆,0
TΠX•

2
,ϕsg,op(e1)

the element

induced by φ for every e1 ∈ Sop
1 ,

α2
def
=

∑
e1∈Sop

1

αϕsg,op(e1) ∈ E∗
TΠX•

2

,
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and g•2,α2
: Y •

2,α2
→ Y •

2 the Galois admissible covering over k2 with Galois group
Z/`Z corresponding to α2. Suppose #(vspg1,α1

) = 0. Then we have

#(ecl,rag2,α2
) = #(vspg2,α2

) = 0.

Proof. (a) Since #(eop,rag1,α1
) = 0, Theorem 4.11 implies #(eop,rag2,α2

) = 0. On the other

hand, we have

rY1,α1
= `(#(ecl(ΓY •

1
))− d#(Scl

1 )) + d#(Scl
1 )−#(v(ΓY •

1
)) + 1,

rY2,α2
= `#(ecl,étg2,α2

) + #(ecl,rag2,α2
)− `#(vcl,spg2,α2

)−#(vcl,rag2,α2
) + 1.

Then Lemma 5.5 and Lemma 2.2 (b) imply 0 = gY1,α1
−gY2,α2

≥ rY1,α1
−rY2,α1

. Thus,
we have

#(ecl,rag2,α2
) + #(vspg2,α2

) +
1

2
#(eop,rag2,α2

) = #(ecl,rag2,α2
) + #(vspg2,α2

) ≤ d#(Scl
1 ).

On the othe hand, Lemma 5.13 implies #(ecl,rag2,α2
) = d#(Scl

1 ). Then we obtain

#(vspg2,α2
) = 0. This completes the proof of (a).

(b) The Riemann-Hurwitz formula and Theorem 4.11 imply

gY1,α1
− gY2,α2

=
1

2
(d#(Sop

1 )−#(eop,rag2,α2
))(`− 1) = 0.

On the other hand, we have

rY1,α1
= `#(ecl(ΓY •

1
))−#(v(ΓY •

1
)) + 1,

rY2,α2
= `#(ecl,étg2,α2

) + #(ecl,rag2,α2
)− `#(vspg2,α2

)−#(vrag2,α2
) + 1.

Then Lemma 5.5 and Lemma 2.2 (b) imply gY1,α1
− gY2,α2

≥ rY1,α1
− rY2,α2

. Thus, we
have

#(ecl,rag2,α2
) + #(vspg2,α2

) +
1

2
#(eop,rag2,α2

)− d#(Sop
1 )

2
≤ 0.

This means that #(ecl,rag2,α2
) = #(vspg2,α2

) = 0. We complete the proof of (b). □

5.5. Reconstructions of commutative diagrams of combinatorial data. In
this subsection, we prove that the commutative diagrams of sets of vertices, sets of
open edges, and sets of closed edges induced by admissible coverings can be recon-
structed from an open continuous homomorphism of solvable admissible fundamental
groups. The main result of the present subsection is Proposition 5.19.
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5.5.1. Settings. In the present subsection, we maintain the settings introduced
in 5.4.1. Furthermore, we fix some notation as follows. Let H2 be an open normal

subgroup of Π•
X2
, H1

def
= φ−1(H2) the open normal subgroup of ΠX•

1
, G

def
= ΠX•

1
/H1 =

ΠX•
2
/H2, and φH1 the surjection φ|H1 : H1 ↠ H2. Let i ∈ {1, 2}. We write

f •
Hi

: X•
Hi
→ X•

i

for the Galois admissible covering over ki with Galois group G, (gXHi
, nXHi

) for the
type of X•

Hi
, and ΓX•

Hi
for the dual semi-graph of X•

Hi
. Furthermore, we suppose

that X•
H1

and X•
H2

satisfy Condition A, Condition B, and Condition C (5.3.1).

5.5.2. Let ` and d be prime numbers distinct from p such that ` 6= d and (#(G), `) =
(#(G), d) = 1, and let

TΠX•
2

def
= (`, d, αfX2

: Πét
X•

2
↠ Z/dZ)

be an edge-triple associated to ΠX•
2
(5.2.3) and TX•

2

def
= (`, d, f •

X2
: Y •

2 → X•
2 ) the

edge-triple associated to X•
2 corresponding to TΠX•

2
(5.2.2). By Corollary 5.7, we

obtain an edge-triple

TΠX•
1

def
= (`, d, αfX1

: Πét
X•

1
↠ Z/dZ)

induced group-theoretically from φ and TΠX•
2
. We write TX•

1

def
= (`, d, f •

X1
: Y •

1 → X•
1 )

for the edge-triple associated to X•
1 corresponding to TΠX•

1
. On the other hand, we

put

Qi
def
= ker(ΠX•

i
↠ Πét

X•
i

αfXi↠ Z/dZ).

We have that Hi ↠ Hi/(Hi ∩Qi) ∼= Z/dZ factors through a homomorphism αfXHi
:

H ét
i ↠ Z/dZ. We see that

THi

def
= (`, d, αfXHi

)

is an edge-triple associated to Hi. Moreover, THi
is induced group-theoretically from

Hi ⊆ ΠX•
i
and TΠX•

i
. Note that TH1 coincides with the edge-triple associated to H1

induced group-theoretically from φH1 and TH2 . Moreover, we denote by

TX•
Hi

def
= (`, d, f •

XHi
: Y •

XHi

def
= Y •

i ×X•
i
X•
Hi
→ X•

Hi
)

the edge-triple associated to X•
Hi

corresponding to THi
.
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5.5.3. By applying Proposition 5.1, Remark 5.1.1, Proposition 5.2, and Remark
5.2.1, we have that the natural inclusion Hi ↪→ ΠX•

i
induces the following maps

γver,ℓHi
: VXHi

,ℓ → VXi,ℓ, γ
cl
TΠX•

i
,Hi

: Ecl
THi
→ Ecl

TΠXi

group-theoretically. We put

γverHi
: v(ΓX•

Hi
)

κ−1
XHi

,ℓ

∼→ VXHi
,ℓ

γver,ℓHi→ VXi,ℓ

κXi,ℓ
∼→ v(ΓX•

i
),

γclHi
: ecl(ΓX•

Hi
)

ϑ−1
THi
∼→ Ecl

THi

γclTΠX•
i

,Hi

→ Ecl
TΠX•

i

ϑTΠX•
i

∼→ ecl(ΓX•
i
).

Then the maps γverHi
and γclHi

can be reconstructed group-theoretically from the in-
clusion Hi ↪→ ΠX•

i
.

On the other hand, Theorem 4.2 implies that the sets Edgop(ΠX•
i
) and Edgop(Hi)

(1.2.11) can be reconstructed group-theoretically from ΠX•
i
and Hi, respectively.

Note that we have a natural map

Edgop(Hi)→ Edgop(ΠX•
i
)

induced by the natural inclusions of stabilizer subgroups. Moreover, this map com-
patible with the actions of Hi and ΠX•

i
. Then we obtain a map

γopHi
: eop(ΓX•

Hi
)

∼→ Edgop(Hi)/Hi → Edgop(ΠX•
i
)/ΠX•

i

∼→ eop(ΓX•
i
)

which can be reconstructed by the inclusion Hi ↪→ ΠX•
i
group-theoretically.

Moreover, by Theorem 4.11, Theorem 5.12, and Theorem 5.14, the following maps

φsg,ver
H1

: v(ΓX•
H1
)

∼→ v(ΓX•
H2
), φsg,op

H1
: eop(ΓX•

H1
)

∼→ eop(ΓX•
H2
), φsg,cl

H1
: ecl(ΓX•

H1
)

∼→ ecl(ΓX•
H2
),

φsg,ver : v(ΓX•
1
)

∼→ v(ΓX•
2
), φsg,op : eop(ΓX•

1
)

∼→ eop(ΓX•
2
), φsg,cl : ecl(ΓX•

1
)

∼→ ecl(ΓX•
2
)

can be induced group-theoretically from φH1 : H1 ↠ H2 and φ : ΠX•
1
↠ ΠX•

2
,

respectively.
We have the following result:

Proposition 5.19. We maintain the notation introduced above. Then the following
diagrams

v(ΓX•
H1
)

ϕsg,verH1−−−→ v(ΓX•
H2
)

γverH1

y γverH2

y
v(ΓX•

1
)

ϕsg,ver−−−→ v(ΓX•
2
),
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eop(ΓX•
H1
)

ϕsg,opH1−−−→ eop(ΓX•
H2
)

γopH1

y γopH2

y
eop(ΓX•

1
)

ϕsg,op−−−→ eop(ΓX•
2
),

ecl(ΓX•
H1
)

ϕsg,clH1−−−→ ecl(ΓX•
H2
)

γclH1

y γclH2

y
ecl(ΓX•

1
)

ϕsg,cl−−−→ ecl(ΓX•
2
)

are commutative. Moreover, the above commutative diagrams are compatible with
the natural actions of G.

Proof. The commutativity of the second diagram follows immediately from Theorem
4.11 (in fact, the second commutative diagram holds without Condition A, Condition
B, and Condition C). We treat the third diagram. To verify the commutativity of
the third diagram, we only need to prove the commutativity of the following diagram

ecl(ΓX•
H2
)

(ϕsg,clH1
)−1

−−−−−→ ecl(ΓX•
H1
)

γclH2

y γclH1

y
ecl(ΓX•

2
)

(ϕsg,cl)−1

−−−−−→ ecl(ΓX•
1
).

Let eH2 ∈ ecl(ΓX•
H2
), eH1

def
= (φsg,cl

H1
)−1(eH2) ∈ ecl(ΓX•

H1
), e2

def
= γclH2

(eH2) ∈ ecl(ΓX•
2
),

e1
def
= (γclH1

◦ (φsg,cl
H1

)−1)(eH2) ∈ ecl(ΓX•
1
), and e′1

def
= (φsg,cl)−1(e2) ∈ ecl(ΓX•

1
). We will

prove that e1 = e′1.
Write SH1 and SH2 for the sets (γclH1

)−1(e′1) and (γclH2
)−1(e2), respectively. Note

that eH2 ∈ SH2 . To verify e1 = e′1, it is sufficient to prove that eH1 ∈ SH1 .

Let α2 ∈ Ecl,⋆
TΠX•

2
,e2

(5.2.8). Then the proof of Lemma 5.13 implies that α2 induces

an element α1 ∈ Ecl,⋆
TΠX•

1
,e′1
. Write Y •

αi
→ Y •

i for the Galois admissible covering over

ki corresponding to αi. We consider the Galois admissible covering

Y •
α2
×X•

2
X•
H2
→ Y •

XH2

over k2 with Galois group Z/`Z, and denote by β2 an element of E∗
TH2

(5.2.6) corre-

sponding to this Galois admissible covering. Then we have

β2 =
∑

c2∈SH2

tc2βc2 ,
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where tc2 ∈ (Z/`Z)× and βc2 ∈ E
cl,⋆
TH2

,c2
. Note that we have teH2

6= 0. On the other

hand, the proof of Lemma 5.13 implies that βc2 induces an element β(ϕclH1
)−1(c2) ∈

Ecl,⋆

TH1
,(ϕclH1

)−1(c2)
. Then β2 induces an element

β1
def
=

∑
c2∈SH2

\{eH2
}

tc2β(ϕclH1
)−1(c2) + teH2

βeH1
∈ E∗

TH1
.

Note that since β1 is an element corresponding to the Galois admissible covering

Y •
α1
×X•

1
X•
H1
→ Y •

XH1

over k1 with Galois group Z/`Z, the composition of the Galois admissible coverings

Y •
α1
×X•

1
X•
H1
→ Y •

XH1

f•XH1→ X•
H1

is ramified over SH1 . This means that eH1 is contained

in SH1 .
Similar arguments to the arguments given in the above proof imply the first

diagram is commutative. It is easy to check the “moreover” part of the proposition.
This completes the proof of the proposition. □

5.6. Combinatorial Grothendieck conjecture. In this subsection, we prove a
version of combinatorial Grothendieck conjecture for open continuous homomor-
phisms under certain assumptions. The main results of the present subsection are
Theorem 5.26 and Theorem 5.30.

5.6.1. Settings. In the present subsection, we maintain the settings introduced in
5.4.1. Moreover, we fix some notation as follows. Let H2 be an open normal subgroup

of Π•
X2
, H1

def
= φ−1(H2) the open normal subgroup of ΠX•

1
, G

def
= ΠX•

1
/H1 = ΠX•

2
/H2,

and φH1

def
= φ|H1 : H1 ↠ H2 the surjection induced by φ. Let i ∈ {1, 2}. We write

f •
Hi

: X•
Hi
→ X•

i

for the Galois admissible covering over ki with Galois group G, (gXHi
, nXHi

) for the
type of X•

Hi
, ΓX•

Hi
for the dual semi-graph of X•

Hi
, and rXHi

for the Betti number of

ΓX•
Hi
.

5.6.2. Firstly, we prove that X•
H1

and X•
H2

satisfy Condition A, Condition B, and
Condition C introduced in 5.3.1 (see Proposition 5.25 below).

Lemma 5.20. We maintain the notation introduced above. Then X•
Hi

satisfies
Condition A, Condition B, and Condition C (i).

Proof. The first condition, the second condition, and the fourth condition of Con-
dition A follow immediately from the definition of admissible coverings. Since X•

i
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satisfies Condition B and the third condition of Condition A, X•
Hi

also satisfies Con-
dition B and the third condition of Condition A. Moreover, Condition C (i) follows
immediately from Theorem 4.11. This completes the proof of the lemma. □
Lemma 5.21. We maintain the notation introduced above. Suppose that there exists
an open normal subgroup H ′

2 ⊆ H2 such that X•
H′

1
and X•

H′
2
satisfy Condition A,

Condition B, and Condition C, where H ′
1

def
= φ−1(H ′

2) ⊆ H1. Then X•
H1

and X•
H2

satisfy Condition A, Condition B, and Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X•
H1

and
X•
H2

satisfy Condition C (ii) and Condition C (iii).

Let G′ def
= ΠX•

1
/H ′

1 = ΠX•
2
/H ′

2 and G′′ def
= H1/H

′
1 = H2/H

′
2 ⊆ G′. By applying

Proposition 5.19, the following commutative diagrams

v(ΓX•
H′
1

)
ϕsg,ver
H′
1−−−→ v(ΓX•

H′
2

)

γver
H′
1

y γver
H′
2

y
v(ΓX•

1
)

ϕsg,ver−−−→ v(ΓX•
2
),

eop(ΓX•
H′
1

)
ϕsg,op
H′
1−−−→ eop(ΓX•

H′
2

)

γop
H′
1

y γop
H′
2

y
eop(ΓX•

1
)

ϕsg,op−−−→ eop(ΓX•
2
),

ecl(ΓX•
H′
1

)
ϕsg,cl
H′
1−−−→ ecl(ΓX•

H′
2

)

γcl
H′
1

y γcl
H′
2

y
ecl(ΓX•

1
)

ϕsg,cl−−−→ ecl(ΓX•
2
)

can be reconstructed group-theoretically from H ′
i ↪→ ΠX•

i
, φ, and φH′

1

def
= φ|H′

1
.

Moreover, the commutative diagrams are compatible with the actions of G′′ and G′.
Then we obtain

#(v(ΓX•
H1
)) = #(v(ΓX•

H′
1

)/G′′) = #(v(ΓX•
H′
2

)/G′′) = #(v(ΓX•
H2
)),

#(eop(ΓX•
H1
)) = #(eop(ΓX•

H′
1

)/G′′) = #(eop(ΓX•
H′
2

)/G′′) = #(eop(ΓX•
H2
)),

#(ecl(ΓX•
H1
)) = #(ecl(ΓX•

H′
1

)/G′′) = #(ecl(ΓX•
H′
2

)/G′′) = #(ecl(ΓX•
H2
)).

This means that X•
H1

and X•
H2

satisfy Condition C. □
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Lemma 5.22. We maintain the notation introduced above. Suppose that (#(G), p) =
1, and that fH2 is étale. Then X•

H1
and X•

H2
satisfy Condition A, Condition B, and

Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X•
H1

andX•
H2

satisfy Condition C (ii) and Condition C (iii). Moreover, since G is a finite solvable
group, to verify the lemma, it is sufficient to prove the lemme when G ∼= Z/`Z,
where ` is a prime number distinct from p. Thus, Proposition 5.9 implies that fH1

is also étale.
We denote by H ′

2 ⊆ H2 the inverse image of Dℓ(Π
ét
X•

2
) (Definition 4.8) of the

natural surjection ΠX•
2
↠ Πét

X•
2
. Then H ′

2 is an open normal subgroup of ΠX•
2
. Let

H ′
1

def
= φ−1(H ′

2) ⊆ H1. We see that H ′
1 is equal to the inverse image of Dℓ(Π

ét
X•

1
) of

the natural surjection ΠX•
1
↠ Πét

X•
1
. Since X•

1 and X•
2 satisfy Condition C, Theorem

5.12 and the structures of the maximal prime-to-p quotients of solvable admissible
fundamental groups (1.2.4) imply that X•

H′
1
and X•

H′
2
also satisfy Condition C. Then

the lemma follows from Lemma 5.21. □

Lemma 5.23. We maintain the notation introduced above. Suppose that (#(G), p) =
1. Then X•

H1
and X•

H2
satisfy Condition A, Condition B, and Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X•
H1

and
X•
H2

satisfy Condition C (ii) and Condition C (iii).
Since G is a finite solvable group, to verify the lemma, it is sufficient to prove the

lemme when G ∼= Z/`Z, where ` is a prime number distinct from p.
Let TΠX•

2
= (`, d, αfX2

: Πét
X•

2
↠ Z/dZ) be an edge-triple associated to ΠX•

2
(5.2.3),

TΠX•
1
= (`, d, αfX1

: Πét
X•

1
↠ Z/dZ) the edge-triple associated to ΠX•

1
induced by φ,

and TX•
i
= (`, d, f •

Xi
: Y •

i → X•
i ) the edge-triple associated to X•

i corresponding to
TΠX•

i
(5.2.2).

Firstly, we suppose that fH2 is étale over DX2 . Then Theorem 4.11 implies that

fH1 is also étale over DX1 . Let αe1 ∈ E
cl,⋆,0
TΠX•

1
,e1

(5.2.8), e1 ∈ ecl(ΓX•
1
),

α1
def
=

∑
e1∈ecl(ΓX•

1
)

αe1 ∈ E∗
TΠX•

1

(5.2.6),

and g•1,α1
: Y •

1,α1
→ Y •

1 the Galois admissible covering over k1 corresponding to

α1. Note that we have #(eop,rag1,α1
) = #(vspg1,α1

) = 0 (Definition 1.1.5). Let φsg,cl :

ecl(ΓX•
1
)

∼→ ecl(ΓX•
2
) be the bijection of the sets of closed edges obtained in Theorem
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5.14, αϕsg,cl(e1) ∈ E
cl,⋆,0
TΠX•

2
,ϕsg,cl(e1)

the element induced by φ for every e1 ∈ ecl(ΓX•
1
),

α2
def
=

∑
e1∈ecl(ΓX•

1
)

αϕsg,cl(e1) ∈ E
∗
TΠX•

2

,

and g•2,α2
: Y •

2,α2
→ Y •

2 the Galois admissible covering over k2 corresponding to α2.
Then Proposition 5.18 (a) implies #(eop,rag2,α2

) = #(vspg2,α2
) = 0. We obtain that gi,αi

is totally ramified over every node of Yi, and that Y •
1,α1

and Y •
2,α2

satisfy Condition
A, Condition B, and Condition C. Write Ni ⊆ ΠX•

i
for the open normal subgroup

corresponding to Y •
i,αi

.

Let H ′
i
def
= Hi ∩Ni and X

•
H′

i
the pointed stable curve over ki corresponding to H ′

i.

Note that X•
H′

i
is isomorphic to a connected component of

X•
Hi
×X•

i
Y •
i,αi
.

We denote by h•i : X
•
H′

i
→ Y •

i,αi
the Galois admissible covering over ki corresponding

to the injection H ′
i ↪→ Ni. By applying Abhyankar’s lemma, fHi

is étale over DXi

implies that hi is étale. Then the lemma follows from Lemma 5.21 and Lemma 5.22.
This completes the proof of the lemme when fH2 is étale over DX2 .

Next, let us prove the lemme in the general case. We take βe1 ∈ E
op,⋆,0
TΠX•

1
,e1

for every

e1 ∈ eop(ΓX•
1
) such that #(vspg1,β1

) = 0, where

β1
def
=

∑
e1∈eop(ΓX•

1
)

βe1 ∈ E∗
TΠX•

1

.

Write g•1,β1 : Y
•
1,β1
→ Y •

1 for the Galois admissible covering over k1 corresponding to

β1. Note that we have #(ecl,rag1,β1
) = #(vspg1,β1

) = 0. Let φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
)

be the bijection of the sets of open edges obtained in Theorem 4.11, βϕsg,op(e1) ∈
Eop,⋆,0

TΠX•
2
,ϕsg,op(e1)

the element induced by φ for every e1 ∈ eop(ΓX•
1
),

β2
def
=

∑
e1∈eop(ΓX•

1
)

βϕsg,op(e1) ∈ E∗
TΠX•

2

,

and g•2,β2 : Y •
2,β2
→ Y •

2 the Galois admissible covering over k2 corresponding to β2.

Then Proposition 5.18 (b) implies #(ecl,rag2,β2
) = #(vspg2,β2

) = 0. We obtain that gi,βi
is totally ramified over every marked point of Yi, and that Y •

1,β1
and Y •

2,β2
satisfy

Condition A, Condition B, and Condition C. Write Qi ⊆ ΠX•
i
for the open normal

subgroup corresponding to Y •
i,βi

.
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Let H ′′
i

def
= Hi∩Qi and X

•
H′′

i
the pointed stable curve over ki corresponding to H ′′

i .

Note that X•
H′′

i
is isomorphic to a connected component of

X•
Hi
×X•

i
Y •
i,βi
.

We denote by h∗,•i : X•
H′′

i
→ Y •

i,βi
the Galois admissible covering over ki corresponding

to the injection H ′′
i ↪→ Qi. By applying Abhyankar’s lemma, h∗i is étale over DYi,βi

.
By applying the lemma in the case where h∗i is étale over DYi,βi

, we obtain that
X•
H′′

1
and X•

H′′
2
satisfy Condition A, Condition B, and Condition C. Then the lemma

follows from Lemma 5.21. We complete the proof of the lemma. □

Lemma 5.24. We maintain the notation introduced above. Suppose that G is a
p-group. Then X•

H1
and X•

H2
satisfy Condition A, Condition B, and Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X•
H1

and
X•
H2

satisfy Condition C (ii) and Condition C (iii).
To verify the lemma, without loss the generality, it is sufficient to treat the case

where G ∼= Z/pZ. Since f •
Hi

is étale, X•
H1

and X•
H2

satisfy Condition C (iii).
Let Vi ⊆ v(ΓX•

i
)>0,p (5.1.2) be the subset of vertices such that the natural (outer)

homomorphism

ΠX̃•
i,vi

↪→ ΠX•
i
↠ G

def
= ΠX•

i
/Hi

is non-trivial (since G ∼= Z/pZ, the homomorphism is a surjection) for all vi ∈ Vi,
where ΠX̃•

i,vi

is the admissible fundamental group of the smooth pointed stable curve

X̃•
i,vi

associated to vi (1.1.3). Then we obtain #(v(ΓX•
Hi
)) = p(#(v(ΓX•

i
))−#(Vi))+

#(Vi) and #(ecl(ΓX•
Hi
)) = p#(ecl(ΓX•

i
)).

Theorem 5.17 implies that we have an injection

ψsg,ver
p : v(ΓX•

2
)>0,p ↪→ v(ΓX•

1
)>0,p

induced by φ. We put

V ′
1

def
= {ψsg,ver

p (v2)}v2∈V2 ⊆ v(ΓX•
1
)>0,p.

By applying Lemma 5.15 and Lemma 5.16, we see that V1 = V ′
1 . Thus, we have

#(v(ΓX•
H1
)) = #(v(ΓX•

H2
)) and #(ecl(ΓX•

H1
)) = #(ecl(ΓX•

H2
)). This completes the

proof of the lemma. □

Proposition 5.25. We maintain the notation introduced above. Then X•
H1

and
X•
H2

satisfy Condition A, Condition B, and Condition C.

Proof. Since G is a solvable group, the proposition follows from Lemma 5.23 and
Lemma 5.24. □
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5.6.3. Next, we prove the main result of the present section which we call the
combinatorial Grothendieck conjecture for open continuous homomorphisms.

Theorem 5.26. We maintain the settings introduced in 5.4.1. Then the open con-
tinuous homomorphism φ : ΠX•

1
→ ΠX•

2
induces the following surjective maps (see

1.2.11 for Ver(ΠX•
i
), Edgop(ΠX•

i
), and Edgcl(ΠX•

i
))

φver : Ver(ΠX•
1
) ↠ Ver(ΠX•

2
), φedg,op : Edgop(ΠX•

1
) ↠ Edgop(ΠX•

2
),

φedg,cl : Edgcl(ΠX•
1
) ↠ Edgcl(ΠX•

2
)

group-theoretically. Moreover, φ induces an isomorphism

φsg : ΓX•
1

∼→ ΓX•
2

of the dual semi-graphs of X•
1 and X•

2 group-theoretically.

Proof. By applying Theorem 4.11, the homomorphism φ : ΠX•
1
↠ ΠX•

2
induces a

surjective map φedg,op : Edgop(ΠX•
1
) ↠ Edgop(ΠX•

2
) group-theoretically. We only

need to treat the cases of φver and φedg,cl, respectively.
Let CΠX•

2
be a cofinal system of ΠX•

2
which consists of open normal subgroups of

ΠX•
2
. We put

CΠX•
1

def
= {H1

def
= φ−1(H2) | H2 ∈ CΠX•

2
}.

Note that CΠX•
1
is not a cofinal system of ΠX•

1
in general. Moreover, by applying

Proposition 5.25, we have that X•
H1

and X•
H2

satisfy Condition A, Condition B, and

Condition C for every H2 ∈ CΠX•
2
and every H1

def
= φ−1(H2) ∈ CΠX•

1
.

We treat the case of φver. Let X̂•
i be the universal solvable admissible covering

of X•
i associated to ΠX•

i
and ΓX̂•

i
the dual semi-graph of X̂•

i . Let ŵ1 ∈ v(ΓX̂•
1
) and

Πŵ1 the stabilizer subgroup of ŵ1. Write wH1 ∈ v(ΓX•
H1
), H1 ∈ CΠX•

1
, for the image

of ŵ1. Proposition 5.19 implies that φ induces a cofinal system of vertices

Cŵ2

def
= {wH2

def
= φver

H1
(wH1)}H2∈CΠX•

2

,

which admits a natural action of ΠX•
2
. Then we obtain an element ŵ2 ∈ v(ΓX̂•

2
).

Moreover, the stabilizer of Cŵ2 is Πŵ2 . We see immediately that φ induces a surjective
open continuous homomorphism

φ|Πŵ1
: Πŵ1 ↠ Πŵ2

group-theoretically. Then we define

φver : Ver(ΠX•
1
)→ Ver(ΠX•

2
), Πŵ1 7→ Πŵ2 .
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Next, we prove that φver is a surjective map. Let v̂2 ∈ v(ΓX̂•
2
) and Πv̂2 the stabilizer

subgroup of v̂2. Write vH2 ∈ v(ΓX•
H2
), H2 ∈ CΠX•

2
, for the image of v̂2. Then we

obtain a cofinal system of vertices

Cv̂2
def
= {vH2}H2∈CΠX•

2

associated to v̂2. The cofinal system Cv̂2 admits a natural action of ΠX•
2
. We see

immediately that the stabilizer of Cv̂2 is equal to Πv̂2 . Proposition 5.19 implies that
φ and Cv̂2 induce a set of vertices

C ′ def
= {vH1

def
= (φsg,vex)−1(vH2)}H2∈CΠX•

2

group-theoretically. By extending C ′ to a cofinal system of vertices, we obtain an
element v̂1 ∈ v(ΓX̂•

1
) such that the image of v̂1 in v(ΓXH1

) is vH1 . Thus, φ induces a

surjective map
φ|Πv̂1

: Πv̂1 ↠ Πv̂2 .

This means that φver is a surjection.
By applying similar arguments to the arguments given in the above proof, we

obtain that φ induces a surjective map φedg,cl : Edgcl(ΠX•
1
) ↠ Edgcl(ΠX•

2
) group-

theoretically. This completes the proof of the first part of the theorem.
We prove the “moreover” part of the theorem. The surjections φver, φedg,op, and

φedg,cl imply the following surjections

φsg,ver : v(ΓX•
1
)

∼→ Ver(ΠX•
1
)/ΠX•

1
↠ Ver(ΠX•

2
)/ΠX•

2

∼→ v(ΓX•
2
),

φsg,op : eop(ΓX•
1
)

∼→ Edgop(ΠX•
1
)/ΠX•

1
↠ Edgop(ΠX•

2
)/ΠX•

2

∼→ eop(ΓX•
2
),

φsg,cl : ecl(ΓX•
1
)

∼→ Edgcl(ΠX•
1
)/ΠX•

1
↠ Edgcl(ΠX•

2
)/ΠX•

2

∼→ ecl(ΓX•
2
).

Since X•
1 and X•

2 satisfy Condition C, we have that φsg,ver, φsg,op, and φsg,cl are
bijections. Let ê1 ∈ eop(ΓX̂•

1
) ∪ ecl(ΓX̂•

1
) and v̂1 ∈ v(ΓX̂•

1
) such that ê1 abuts on v̂1.

Then we have Iê1 ⊆ Πv̂1 , φ
edg,op(Iê1) ⊆ φver(Πv̂1) if ê1 ∈ eop(ΓX̂•

1
), and φedg,cl(Iê1) ⊆

φver(Πv̂1) if ê1 ∈ ecl(ΓX̂•
1
). By applying [HM, Lemma 1.5, Lemma 1.7, and Lemma

1.9], φ induces an isomorphism of dual semi-graphs

φsg : ΓX•
1

∼→ ΓX•
2

group-theoretically. This completes the proof of the theorem. □
Remark 5.26.1. We maintain the notation introduced above. We see immediately
that Theorem 5.26 does not hold without Condition C (e.g. X•

1 is a generic curve
ofMg,n, and X

•
2 is a singular curve).

On the other hand, although the author cannot prove this at the present time,
he believes that Theorem 5.26 also holds without Condition B (e.g. nXi

= 0). The
main difficult is that we do not have a precise formula for limits of p-averages of
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arbitrary pointed stable curves. Moreover, if the question of [Y3, Remark 4.10.2] is
true, without too much difficulty, similar arguments to the arguments given in the
proofs of this section imply that Theorem 5.26 holds without Condition B.

Remark 5.26.2. Wemaintain the notation introduced above. Suppose (gX1 , nX1) =
(gX2 , nX2) (i.e. we do not need to assume that Condition A, Condition B, and
Condition C (ii) (iii) hold).

In [Y7], the author of the present paper formulated a new conjecture called the
group-theoretical specialization conjecture (see [Y7, Section 3.1.3]). The conjecture
establishes a precise description of the relationship between the various data (i.e.
combinatorial data, topological data, and geometric data) associated to pointed
stable curves (see [Y7, Definition 2.5]) and the open continuous homomorphisms of
their admissible fundamental groups, and it will be played a central role to study
the homeomorphism conjecture for higher dimensional moduli spaces (see [Y7, Intro-
duction]). Moreover, the group-theoretical specialization conjecture is the ultimate
generalization of the combinatorial Grothendieck conjecture in positive character-
istic, and [T4, Theorem 0.1 and Theorem 5.2], [Y2, Theorem 1.2], Theorem 4.11,
Theorem 5.26, and Theorem 5.30 of the present paper are special cases of this con-
jecture.

Corollary 5.27. We maintain the notation introduced above. Let Q2 ⊆ ΠX•
2
be an

arbitrary open subgroup and Q1
def
= φ−1(Q2) ⊆ ΠX•

1
. Then we have (see 2.2.1 for

Avrp(Qi))
Avrp(Q1) = Avrp(Q2).

Proof. The corollary follows immediately from Theorem 5.26. □

5.6.4. In the remainder of this subsection, we will prove that if gX = 0, Theorem
5.26 holds without Condition A and Condition B (see Theorem 5.30), which will
play a key role in the proof of the main theorem of the present paper. Furthermore,
although the author cannot prove this at the present time, he also believes that
Theorem 5.26 holds without Condition A and Condition B.

Lemma 5.28. Let E• = (E,DE) be a pointed stable curve of type (0, n) over an
algebraically closed field k of characteristic p > 0, ΠE• the solvable admissible fun-
damental group of E•, and ` >> n a prime number distinct from p. We put

Edgop,ℓ,ab(ΠE•)
def
= {prℓ,ab(Iê) | Iê ∈ Edgop(ΠE•)} = {Ie}e∈eop(ΓE• ),

where prℓ,ab denotes the natural surjective homomorphism ΠE• ↠ Πℓ,ab
E• , and Ie

def
=

prℓ,ab(Iê). Let ae ∈ Ie, e ∈ eop(ΓE•), be a generator of Ie such that∏
e∈eop(ΓE• )

ae = 1,
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and let α : Πℓ,ab
E• ↠ Z/`Z be a surjection and re

def
= α(ae). Write g• : X• → E• for

the Galois admissible covering over k with Galois group Z/`Z corresponding to α.
Suppose that re 6= 0 for every e ∈ eop(ΓE•), and that∑

e∈eop(ΓE• )

re = `

if we identify Z/`Z with {0, 1, . . . , ` − 1} ⊆ Z. Then g• is totally ramified over
every node and every marked point of E•. In particular, we have that the map of
dual semi-graphs ΓX• → ΓE• of X• and E• induced by g• is an isomorphism (as
semi-graphs), and that X• satisfies Condition A.

Proof. We prove the lemma by induction on #v(ΓE•). Suppose that #v(ΓE•) = 1.
Then the lemma is trivial.

Suppose that #v(ΓE•) ≥ 2. Let v0 ∈ v(ΓE•) and Ẽ•
v0

the smooth pointed stable

curve associated to v0 (1.1.3). Note that the underlying curve Ẽv0 coincides with
the irreducible component of E corresponding to v0. On the other hand, we define
a pointed stable curve over k to be

E•
0 = (E0

def
= E \ Ẽv0 , DE0

def
= (DE ∩ E0) ∪ (E0 ∩ Ẽv0)),

where E \ Ẽv0 denotes the topological closure of E \ Ẽv0 in E. Then g• induces the
following Galois admissible coverings

g•v0 : X̃
•
v0
→ Ẽ•

v0
, g•0 : X•

0 → E•
0

over k with Galois group Z/`Z. To verify the lemma, we only need to prove that

g•v0 and g•0 are totally ramified over every node and every marked point of Ẽ•
v0

and
E•

0 , respectively.

Let ΠẼ•
v0

and ΠE•
0
be the solvable admissible fundamental groups of Ẽ•

v0
and E•

0 ,

respectively. Since Γcpt
E• is 2-connected, [Y3, Corollary 3.5] implies that the natural

homomorphism θv0 : Πℓ,ab

Ẽ•
v0

→ Πℓ,ab
E• is an injection. Let θ0 : Πℓ,ab

E•
0
→ Πℓ,ab

E• be the

homomorphism induced by the natural (outer) injective homomorphism ΠE•
0
↪→ ΠE•

(in fact, θ0 is also an injection).

Let {x} = E0 ∩ Ẽv0 , ev0 ∈ eop(ΓẼ•
v0
) the open edge corresponding to x, e0 ∈

eop(ΓE•
0
) the open edge corresponding to x,

̂̃
E•
v0

the universal solvable admissible

covering of Ẽ•
v0
, Ê•

0 the universal solvable admissible covering of E•
0 , êv0 ∈ eop(Γ̂̃

E•
v0

)

an element over ev0 , and ê0 ∈ eop(ΓÊ•
0
) an element over e0. We denote by Iev0 the
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image of Iêv0 of ΠẼ•
v0

↠ Πℓ,ab

Ẽ•
v0

, and by Ie0 the image of Iê0 of ΠE•
0
↠ Πℓ,ab

E•
0
. We put

aev0 = (
∏

e∈eop(Γ
Ẽ•
v0

)\{ev0}

ae)
−1, ae0 = (

∏
e∈eop(ΓE•

0
)\{e0}

ae)
−1.

Then aev0 and ae0 are generators of Iev0 and Ie0 , respectively. Moreover, we put

α̃v0 : Π
ℓ,ab

Ẽ•
v0

θv0→ Πℓ,ab
E•

α↠ Z/`Z, α0 : Π
ℓ,ab
E•

0

θ0→ Πℓ,ab
E•

α↠ Z/`Z.

Then the structures of maximal pro-prime-to-p quotients of solvable admissible fun-
damental groups (1.2.4) imply

α̃v0(aev0 ) = `−
∑

e∈eop(Γ
Ẽ•
v0

)\{ev0}

re =
∑

e∈eop(ΓE•
0
)\{e0}

re, α0(ae0) =
∑

e∈eop(Γ
Ẽ•
v0

)\{ev0}

re.

Thus, by induction, we have that g•v0 and g•0 are totally ramified over every node

and every marked point of Ẽ•
v0

and E•
0 , respectively. We complete the proof of the

lemma. □
Lemma 5.29. Let E• be a pointed stable curve of type (0, n) over an algebraically
closed field k of characteristic p > 0. Then E• satisfies Condition B.

Proof. Let f • : W • → E• be an arbitrary admissible covering over k, ΓW • the dual
semi-graph of W •, and f sg : ΓW • → ΓE• the map of dual semi-graphs of W • and X•

induced by f •. To verify the lemma, we only need to prove that Γcpt
W • is 2-connected.

Suppose that f • is trivial. Then the lemma follows from that Γcpt
E• is 2-connected.

Suppose that f • is non-trivial. Let w ∈ v(ΓW •) and v ∈ v(ΓE•). We denote
by π0(w) the set of connected components of ΓW • \ {w}. Suppose v = f sg(w).
Let Cw ∈ π0(w) be an arbitrary connected component. We see immediately that
f sg(Cw) ∩ eop(ΓE•) 6= ∅. Then we obtain Cw ∩ eop(ΓW •) 6= ∅. Thus, we have
#(π0(w)) = 1. This means that Γcpt

W • is 2-connected. We complete the proof of the
lemma. □
5.6.5. Theorem 5.26 implies the following important result.

Theorem 5.30. Let i ∈ {1, 2}, and let E•
i be a pointed stable curve of type (0, n)

over ki of characteristic p > 0, ΠE•
i
the solvable admissible fundamental group of

E•
i , and

φE : ΠE•
1
→ ΠE•

2

an arbitrary open continuous homomorphism. Suppose that E•
1 and E•

2 satisfy Con-
dition C. Then φE : ΠE•

1
→ ΠE•

2
induces the following surjective maps

φver
E : Ver(ΠE•

1
) ↠ Ver(ΠE•

2
), φedg,op

E : Edgop(ΠE•
1
) ↠ Edgop(ΠE•

2
),

φedg,cl
E : Edgcl(ΠE•

1
) ↠ Edgcl(ΠE•

2
)
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group-theoretically. Moreover, φE induces an isomorphism

φsg
E : ΓE•

1

∼→ ΓE•
2

of the dual semi-graphs of E•
1 and E•

2 group-theoretically.

Proof. Lemma 4.3 implies that φE is a surjective map. By applying Theorem
4.11, the homomorphism φE : ΠE•

1
↠ ΠE•

2
induces a surjective map φedg,op :

Edgop(ΠE•
1
) ↠ Edgop(ΠE•

2
) group-theoretically. We only need to treat the cases

of φver
E and φedg,cl

E , respectively.

Let ` be a prime number such that ` 6= p, and that ` >> n. Let α2 : Π
ℓ,ab
E•

2
↠ Z/`Z

satisfying the assumptions of Lemma 5.28. Then Theorem 4.11 implies that φE and
α2 induce a surjection α1 : Π

ℓ,ab
E•

1
↠ Z/`Z satisfying the assumptions of Lemma 5.28

too. Write g•i : X•
i → E•

i for the Galois admissible covering over ki with Galois
group Z/`Z. Then Lemma 5.28 and Lemma 5.29 imply that X•

1 and X•
2 satisfy

Condition A, Condition B, and Condition C.
Write ΠX•

i
⊆ ΠE•

i
for the open normal subgroup corresponding to g•i . Let Πv̂Xi

∈
Ver(ΠX•

i
), IêXi

∈ Edgcl(ΠX•
i
), Πv̂i ∈ Ver(ΠE•

i
) the unique element containing Πv̂Xi

,

and Iêi ∈ Edgcl(ΠE•
i
) the unique element containing IêXi

. Since Πv̂i and Iêi are the
normalizers of Πv̂Xi

and IêXi
in ΠE•

i
, respectively, the theorem follows immediately

from Theorem 5.26. This completes the proof of the theorem. □

PART III: MAIN RESULT

6. The homeomorphism conjecture for closed points when g = 0

We maintain the notation introduced in 3.1.3. In this section, we will prove that

πadm
g,n ([q]) (resp. πsol

g,n([q])) is a closed point of Πg,n (resp. Π
sol

g,n) for every [q] ∈
M

cl

g,n if g = 0. In particular, the homeomorphism conjecture (resp. the solvable
homeomorphism conjecture) holds when (g, n) = (0, 3), (0, 4). In the present section,
all fundamental groups are solvable admissible fundamental groups unless indicated
otherwise. The main results of the present section are Theorem 6.6 and Theorem
6.7.

6.0.1. Settings. We fix some notation. Let i ∈ {1, 2}, and let ki be an algebraically
closed field of characteristic p > 0 and Fp,i the algebraic closure of Fp in ki. Let
X•
i be a pointed stable curve of type (0, n) over ki, ΓX•

i
the dual semi-graph of X•

i ,
and rXi

the Betti number of ΓX• . Note that ΓX•
i
is a tree, and that the irreducible

component Xi,vi corresponding to vi ∈ v(ΓX•
i
) is isomorphic to P1

ki
. In particular,

Xi,vi is smooth over ki. For simplicity of notation, we shall use the notation X•
i,vi

to

denote the smooth pointed stable curve X̃•
i,vi

of type (0, ni,vi) over ki associated to
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vi ∈ v(ΓX•
i
) (1.1.3). Let ei ∈ eop(ΓX•

i
) ∪ ecl(ΓX•

i
). We shall denote by xei the closed

point of Xi corresponding to ei.
On the other hand, let ΠX•

i
be the solvable admissible fundamental group of X•

i

and

φ : ΠX•
1
→ ΠX•

2

an arbitrary open continuous homomorphism. By Lemma 4.3, we see that φ is a
surjective open continuous homomorphism. Then φ induces an isomorphism

φp : Πp′

X•
1

∼→ Πp′

X•
2

of the maximal prime-to-p quotients of solvable admissible fundamental groups. Let

X̂•
i be the universal solvable admissible covering of X•

i corresponding to ΠX•
i
, ΓX̂•

i

the dual semi-graph of X̂•
i , and ei ∈ eop(ΓX•

i
). We put

Edgopei (ΠX•
i
)
def
= {Iêi ∈ Edgop(ΠX•

i
) | êi ∈ eop(ΓX̂•

i
) is an open edge over ei}.

Moreover, in the present section, we shall suppose that k1 is an algebraic closure of
Fp (i.e. k1 = Fp,1).

We denote by Homop
pg(−,−) and Isompg(−,−) the set of open continuous homo-

morphisms of profinite groups and the set of continuous isomorphisms of profinite
groups, respectively.

6.1. Smooth case. In this subsection, we maintain the settings introduced in 6.0.1
and assume that X•

i is smooth over ki. We recall some results obtained in [HYZ]
which will be used in the remainder of the present paper.

6.1.1. Let Fp be an algebraic closure of the finite field Fp, and let X• be a smooth

pointed stable curve of type (0, n) over Fp. We fix two marked points x∞, x0 ∈ DX

distinct from each other. Moreover, we choose any field k′ ∼= Fp, and choose any

isomorphism ϕ : X
∼→ P1

k′ as schemes such that ϕ(x∞) = ∞ and ϕ(x0) = 0. Then

the set of Fp-rational points X(Fp)\{x∞}
∼→ A1

k′(k
′) is equipped with a structure of

Fp-module via the bijection ϕ. Note that since any k′-isomorphism of P1
k′ fixing ∞

and 0 is a scalar multiplication, the Fp-module structure of X(Fp) \ {x∞} does not
depend on the choices of k′ and ϕ but depends only on the choices of x∞ and x0.
We call that X(Fp) \ {x∞} is equipped with a structure of Fp-module with respect to
x∞ and x0. Then we have the following lemma.

Lemma 6.1. We maintain the notation introduced above. Suppose that X•
i is

smooth over ki. Let e1,0, e1,∞ ∈ eop(ΓX•
1
) be open edges distinct from each other.
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Theorem 4.11 implies that φ induces a bijection φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
) group-

theoretically. We put e2,0
def
= φsg,op(e1,0) and e2,∞

def
= φsg,op(e1,∞). Let∑

e1∈eop(ΓX•
1
)\{e1,∞,e1,0}

be1xe1 = xe1,0

be a linear condition with respect to xe1,∞ and xe1,0 on X•
1 , where be1 ∈ Fp for every

e1 ∈ eop(ΓX•
1
). Then we have the following linear condition∑

e1∈eop(ΓX•
1
)\{e1,∞,e1,0}

be1xϕsg,op(e1) = xϕsg,op(e1,0) = xe2,0

with respect to xe2,∞ and xe2,0 on X•
2 .

Proof. This is Lemma 4.2 of [HYZ]. □

Remark 6.1.1. Note that, if X1 = P1
k1
, then the linear condition mentioned in

Lemma 6.1 is ∑
x1∈DX1

\{∞,0}

be1x1 = 0

with respect to ∞ and 0.

6.1.2. One of the main result of [HYZ] is the following result:

Proposition 6.2. We maintain the notation introduced above. Suppose that X•
1

and X•
2 are smooth over k1 and k2, respectively. Then we have that

Homop
pg(ΠX•

1
,ΠX•

2
) 6= ∅

if and only if X•
1 is Frobenius equivalent to X•

2 (Definition 3.1 (c)). In particular,
if this is the case, we have that X•

2 can be defined over the algebraic closure of Fp in
k2, and that

Homop
pg(ΠX•

1
,ΠX•

2
) = Isompg(ΠX•

1
,ΠX•

2
).

Proof. This is Theorem 4.3 (ii) of [HYZ]. □

Remark 6.2.1. Let [q] ∈ Mcl
0,n be an arbitrary point. Proposition 6.2 and Propo-

sition 3.10 (a) imply V (πsol
0,n([q])) ∩ Πsol

0,n = πsol
0,n([q]). Then we have that [πsol

1 (q)] is a

closed point of Πsol
0,n. In particular,

πt
0,4 : M0,4 ↠ Π0,4, π

t,sol
0,4 : M0,4 ↠ Πsol

0,4

are homeomorphisms. Note that Proposition 6.2 cannot tell us whether or not

[πsol
1 (q)] is closed in Π

sol

0,n. In fact, this is highly non-trivial, see Proposition 6.5
below.
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6.2. General case. We maintain the settings introduced in 6.0.1. In this subsec-
tion, we generalize Proposition 6.2 to the case where X•

i is an arbitrary pointed
stable curve of type (0, n).

6.2.1. Firstly, we have the following lemmas.

Lemma 6.3. We maintain the notation introduced above. Suppose that X•
1 is a

singular curve. Then X•
2 is also a singular curve.

Proof. Lemma 5.4 implies that there exists a Galois admissible covering f •
1 : Y •

1 →
X•

1 over k1 with Galois group G such that (#(G), p) = 1, that the Betti number of
the dual semi-graph of Y •

1 is positive, and that Y •
1 satisfies Condition A. Then φp

′

induces a Galois admissible covering f •
2 : Y •

2 → X•
2 over k2 with Galois group G.

Write gYi for the genus of Y •
i and rYi for the Betti number of the dual semi-graph

of Y •
i .

By applying Theorem 4.11, we obtain gY1 = gY2 . Moreover, Theorem 2.1 and
Lemma 2.2 (b) imply 0 < rY1 ≤ rY2 . This means that X•

2 is a singular curve. We
complete the proof of the lemma. □

Lemma 6.4. Let X• be a pointed stable curve of type (0, n) over an algebraically
closed field k of characteristic p > 0 and ` ≥ 3 a prime number distinct from p.
Then there exists a Galois admissible covering f • : Y • → X• over k with Galois
group Z/`Z such that the genus of Y • is 0 and #(Yv ∩DY ) ≥ 3 for some irreducible
component Yv of Y .

Proof. Suppose that X• is smooth over k. Then the lemma is trivial. We may
suppose that X• is singular. Since X• is of type (0, n), there exist irreducible
components Xv1 , Xv2 of X distinct from each other such that #(Xv1 ∩DX) ≥ 2 and
#(Xv2 ∩DX) ≥ 2.

Let x1 ∈ Xv1 ∩DX , x2 ∈ Xv2 ∩DX , and let f • : Y • → X• be a Galois admissible
covering over k with Galois group Z/`Z such that f is totally ramified over x1 and
x2, and that f is étale over DX \ {x1, x2}. We see immediately that the irreducible

components Yv1
def
= f−1(Xv1) and Yv2

def
= f−1(Xv2) of Y satisfy the conditions #(Yv1∩

DY ) ≥ 3 and #(Yv2 ∩ DY ) ≥ 3, respectively. Moreover, the Riemann-Hurwitz
formula implies that the genus of Y • is 0. This completes the proof of the lemma. □

6.2.2. Next, we generalize Proposition 6.2 to the case where we only assume that
X•

1 is smooth over k1.

Proposition 6.5. We maintain the notation introduced above. Suppose that X•
1 is

smooth over k1. Then X•
1 is Frobenius equivalent to X•

2 (Definition 3.1 (c)). In
particular, we have that X•

2 is smooth over k2, and that X•
2 can be defined over the

algebraic closure of Fp in k2.
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Proof. IfX•
2 is smooth over k2, the proposition follows immediately from Proposition

6.2. Then we may assume that X•
2 is singular (i.e. #(v(ΓX•

2
)) ≥ 2).

Step 1: We reduce the proposition to the case where X•
i satisfies the conditions

mentioned in Lemma 6.4.

Let ` ≥ 3 be a prime number distinct from p. Lemma 6.4 implies that there
exists an open normal subgroup H2 ⊆ ΠX•

2
such that ΠX•

2
/H2

∼= Z/`Z, that the
Galois admissible covering f •

H2
: X•

H2
→ X•

2 corresponding to H2 is totally ramified
over two marked points of X•

2 , and that there exists wH2 ∈ v(ΓX•
H2
) satisfying

#(XH2,wH2
∩ DXH2

) ≥ 3. Write H1
def
= φ−1(H2) ⊆ ΠX•

1
for the open subgroup and

f •
H1

: X•
H1
→ X•

1 for the Galois admissible covering over k1 corresponding to H1.
Theorem 4.11 implies that f •

H1
is totally ramified over two marked points of X•

1 , and
that nXH1

= nXH2
. Since f •

Hi
is totally ramified over two marked points, we have

gXH1
= gXH2

= 0.
If we can prove the proposition holds for X•

H1
, X•

H2
, and φ|H1 : H1 ↠ H2, then we

obtain that X•
2 is also smooth over k2. Then the proposition follows immediately

from Proposition 6.2. Thus, by replacing X•
1 , X

•
2 , and φ by X•

H1
, X•

H2
, and φ|H1 ,

respectively, we may assume that #(X2,w2 ∩DX2) ≥ 3 for some w2 ∈ v(ΓX•
2
).

Step 2: We construct a pointed stable curve Z•
i of type (0, 5) over ki from X•

i .

Let e2,∞, e2,0, e2,1 ∈ eop(ΓX•
2
)∩ eop(ΓX•

2,w2
) distinct from each other. By Theorem

4.11, φ induces a bijection

φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
)

group-theoretically. We put

e1,∞
def
= (φsg,op)−1(e2,∞), e1,0

def
= (φsg,op)−1(e2,0), e1,1

def
= (φsg,op)−1(e2,1).

Without loss of generality, we may assume

xei,∞
def
= ∞, xei,0

def
= 0, xei,1

def
= 1, X1 = P1

k1
, X2,w2 = P1

k2
.

Let π0(ΓX•
2
\ {w2}) denote the set of connected components of ΓX•

2
\ {w2} in ΓX•

2
.

Let C2 ∈ π0(ΓX•
2
\ {w2}). Since X•

2 is a pointed stable curve of type (0, n) over k2,
we have #(C2 ∩ eop(ΓX•

2
)) ≥ 2. Let e2,C2,1, e2,C2,2 ∈ C2 ∩ eop(ΓX•

2
) be open edges

distinct from each other. We put

e1,2
def
= (φsg,op)−1(e2,C2,1) ∈ eop(ΓX•

1
), e1,3

def
= (φsg,op)−1(e2,C2,2) ∈ eop(ΓX•

1
).

We denote by X2,C2 the semi-stable subcurve of X2 whose irreducible components
are the irreducible components corresponding to the vertices of ΓX•

2
contained in
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C2. Moreover, we write e2,2 for the unique closed edge of ΓX•
2
connecting w2 and C2.

Then the node xe2,2 corresponding to e2,2 is the unique closed point of X2 contained
in X2,w2 ∩X2,C2 .

We put

Z•
1 = (Z1

def
= X1, DZ1

def
= {xe1,∞ , xe1,0 , xe1,1 , xe1,2 , xe1,3}),

Y •
1,1 = (Y1,1

def
= X1, DY1,1

def
= {xe1,∞ , xe1,0 , xe1,1 , xe1,2}),

Y •
1,2 = (Y1,2

def
= X1, DY1,2

def
= {xe1,∞ , xe1,0 , xe1,1 , xe1,3}),

Y •
2 = (Y2

def
= X2,w2 , DY2

def
= {xe2,∞ , xe2,0 , xe2,1 , xe2,2}).

Moreover, we denote by Z•
2 the pointed stable curve of type (0, 5) over k2 associated

to the pointed semi-stable curve

(X2, {xe2,∞ , xe2,0 , xe2,1 , xe2,C2,1
, xe2,C2,2

})

over k2 (i.e. the pointed stable curve obtained by contracting the (−1)-curves and
the (−2)-curves of (X2, {xe2,∞ , xe2,0 , xe2,1 , xe2,C2,1

, xe2,C2,2
}). We see that Z2 has two

irreducible components Zw2 and ZC2 such that Zw2 is equal to X2,w2 , that {xe2,2} =
Zw2 ∩ ZC2 , that {xe2,∞ , xe2,0 , xe2,1} ⊆ Zw2 , and that {xe2,C2,1

, xe2,C2,2
} ⊆ ZC2 .

Step 3: We prove that the solvable admissible fundamental groups and the natu-
ral homomorphisms between the solvable admissible fundamental groups of pointed
stable curves constructing in Step 2 can be reconstructed group-theoretically from
φ.

Let I1 ⊆ ΠX•
1
, I2 ⊆ ΠX•

2
be the closed subgroups generated by the inertia sub-

groups of ⋃
e1∈eop(ΓX•

1
)\{e1,∞,e1,0,e1,1,e1,2,e1,3}

Edgope1 (ΠX•
1
),

⋃
e2∈eop(ΓX•

2
)\{e2,∞,e2,0,e2,1,e2,C2,1

,e2,C2,2
}

Edgope2 (ΠX•
2
),

respectively, I1,1 ⊆ ΠX•
1
, I1,2 ⊆ ΠX•

1
the closed subgroups generated by the inertia

subgroups of ⋃
e1∈eop(ΓX•

1
)\{e1,∞,e1,0,e1,1,e1,2}

Edgope1 (ΠX•
1
),

⋃
e1∈eop(ΓX•

1
)\{e1,∞,e1,0,e1,1,e1,3}

Edgope1 (ΠX•
1
),
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respectively, and I2,1 ⊆ ΠX•
2
, I2,2 ⊆ ΠX•

2
the closed subgroups generated by the

inertia subgroups of ⋃
e2∈eop(ΓX•

2
)\{e2,∞,e2,0,e2,1,e2,C2,1

}

Edgope2 (ΠX•
2
),

⋃
e2∈eop(ΓX•

2
)\{e2,∞,e2,0,e2,1,e2,C2,2

}

Edgope2 (ΠX•
2
),

respectively.
Then Theorem 4.11 implies φ(I1) = I2, φ(I1,1) = I2,1, and φ(I1,2) = I2,2. Moreover,

we see that ΠX•
1
/I1 and ΠX•

2
/I2 are (outer) isomorphic to the solvable admissible

fundamental groups of Z•
1 and Z•

2 , respectively, that ΠX•
1
/I1,1 and ΠX•

1
/I1,2 are

(outer) isomorphic to the solvable admissible fundamental groups of Y •
1,1 and Y •

1,2,
respectively, and that ΠX•

2
/I2,1 and ΠX•

2
/I2,2 are (outer) isomorphic to the solvable

admissible fundamental group of Y •
2 . Note that I1,1 ⊇ I1 ⊆ I1,2 and I2,1 ⊇ I2 ⊆ I2,2.

On the other hand, φ induces the following surjective open continuous homomor-
phisms

φ : ΠZ•
1

def
= ΠX•

1
/I1 ↠ ΠZ•

2

def
= ΠX•

2
/I2,

φ1,1 : ΠY •
1,1

def
= ΠX•

1
/I1,1 ↠ ΠY •

2

def
= ΠX•

2
/I2,1,

φ1,2 : ΠY •
1,2

def
= ΠX•

1
/I1,2 ↠ ΠY •

2

def
= ΠX•

2
/I2,2

which fit into the following commutative diagram:

ΠY •
1,1

ϕ1,1−−−→ ΠY •
2

ψ1,1

x ψ2,1

x
ΠZ•

1

ϕ−−−→ ΠZ•
2

ψ1,2

y ψ2,2

y
ΠY •

1,2

ϕ1,2−−−→ ΠY •
2
,

where ψ1,1, ψ1,2, ψ2,1, and ψ2,2 denote the natural quotient homomorphisms.

Note that ψ2,1 ◦ φ 6= ψ2,2 ◦ φ, and that the homomorphisms of maximal prime-

to-p quotients of solvable admissible fundamental groups φ
p′

1,1, φ
p′

, and φ
p′

1,2 in-

duced by φ1,1, φ, and φ1,2, respectively, are isomorphisms. Moreover, we see that
ψ2,1(Iê2,C2,1

) ∈ Edgope2,2(ΠY •
2
) and ψ2,2(Iê2,C2,2

) ∈ Edgope2,2(ΠY •
2
) for every Iê2,C2,1

∈
Edgope2,C2,1

(ΠZ•
2
) and every Iê2,C2,2

∈ Edgope2,C2,2
(ΠZ•

2
).
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Step 4: We construct linear conditions associated to irreducible components of
Z•
i .

Let êi,0 ∈ eop(ΓX̂•
i
) be an open edge over ei,0. By applying Theorem 4.13,

Fêi,0
def
= (Iêi,0 ⊗Z (Q/Z)p

′

i ) t {∗êi,0}

admits a structure of field which can be reconstructed group-theoretically from ΠX•
i
.

Since we assume that k1 is an algebraic closure of Fp, we may suppose that k1 = Fê1,0 .
Moreover, Theorem 4.13 implies that φ induces a field isomorphism

φfd
ê1,0,ê2,0

: Fê1,0
∼→ Fê2,0

group-theoretically. We see that there exists a natural number m prime to p such
that Fp(ζm,1) contains mth roots of xe1,2 , xe1,3 , where ζm,1 denotes a fixed primitive

mth root of unity in Fê1,0 . Let s
def
= [Fp(ζm,1) : Fp]. For each e1,u ∈ {e1,2, e1,3}, we fix

an mth root x
1
m
e1,u in Fê1,0 . Then we have

x
1
m
e1,u =

s−1∑
t=0

b1,u,tζ
t
m,1, u ∈ {2, 3},

where b1,u,t ∈ Fp for each u ∈ {2, 3} and each t ∈ {0, . . . , s − 1}. Note that since
xe1,2 6= xe1,3 , there exists t′ ∈ {0, . . . , s− 1} such that b1,2,t′ 6= b1,3,t′ .

Let Z1 \ {xe1,∞} = SpecFê1,0 [x1], and let f •
Q1

: Z•
Q1
→ Z•

1 be the Galois admissible
covering over Fê1,0 with Galois group Z/mZ determined by the equation ym1 = x1
and Q1 ⊆ ΠZ•

1
the open normal subgroup induced by f •

Q1
. Then fQ1 is totally

ramified over {xe1,0 = 0, xe1,∞ =∞} and is étale over DZ1 \ {xe1,0 , xe1,∞}. Note that
ZQ1 = P1

Fê1,0
, and that the marked points of DZQ1

over {xe1,0 , xe1,∞} are {xeQ1,0

def
=

0, xeQ1,∞
def
= ∞}. We put

xeQ1,u

def
= x

1
m
e1,u ∈ DZQ1

, u ∈ {2, 3},

xetQ1,1

def
= ζtm,1 ∈ DZQ1

, t ∈ {0, . . . , s− 1}.

Thus, we obtain a linear condition

xeQ1,u
=

s−1∑
t=0

b1,u,txetQ1,1
, u ∈ {2, 3},

with respect to xeQ1,0
and xeQ1,∞

on Z•
Q1
.
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Since (m, p) = 1, there exists a unique open normal subgroup Q2 ⊆ ΠZ•
2
such that

φ
−1
(Q2) = Q1. On the other hand, we put

Q1,1
def
= ψ1,1(Q1) ⊆ ΠY •

1,1
, Q1,2

def
= ψ1,2(Q1) ⊆ ΠY •

1,2
,

Q2,1
def
= ψ2,1(Q2) ⊆ ΠY •

2
, Q2,2

def
= ψ2,2(Q2) ⊆ ΠY •

2
.

Note that the constructions of Q1 and Q2 imply P2
def
= Q2,1 = Q2,2. The commutative

diagram of profinite groups constructed in Step 3 induces the following commutative
diagram of profinite groups:

Q1,1

ϕQ1,1−−−→ P2

ψQ1,1,1

x ψQ2,2,1

x
Q1

ϕQ1−−−→ Q2

ψQ1,1,2

y ψQ2,2,2

y
Q1,2

ϕQ1,2−−−→ P2.

Let j ∈ {1, 2}. Write Y •
Q1,j

for the pointed stable curve over k1 corresponding

to Q1,j. Then we see that eop(ΓY •
Q1,j

) can be regarded as a subset of eop(ΓZ•
Q1
) via

ψQ1,1,j. By applying Theorem 4.11 for φQ1
, φQ1,1

, and φQ1,2
, respectively, the above

commutative diagram of profinite groups implies that we may put

eQ2,∞
def
= φ

sg,op

Q1
(eQ1,∞), eQ2,0

def
= φ

sg,op

Q1
(eQ1,0),

etQ2,1
def
= φ

sg,op

Q1
(etQ1,1

), t ∈ {0, . . . , s− 1},

eP2,∞
def
= φ

sg,op

Q1,1
(eQ1,∞) = φ

sg,op

Q1,2
(eQ1,∞), eP2,0

def
= φ

sg,op

Q1,1
(eQ1,0) = φ

sg,op

Q1,2
(eQ1,0),

etP2,1
def
= φ

sg,op

Q1,1
(etQ1,1

) = φ
sg,op

Q1,2
(etQ1,1

), t ∈ {0, . . . , s− 1},

eP2,2
def
= φ

sg,op

Q1,1
(eQ1,2) = φ

sg,op

Q1,2
(eQ1,3).

Moreover, we may identify etQ2,1
, t ∈ {0, . . . , s−1}, with etP2,1

via ψQ2,2,1 (or ψQ2,2,2).

We denote by ζm,2
def
= φfd

ê1,0,ê2,0
(ζm,1). Without loss of generality, we may assume

xe1Q2,1
= ζm,2. Then we have

xetP2,1
= xetQ2,1

= ζtm,2, t ∈ {0, . . . , s− 1}.
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Let Y •
P2

be the pointed stable curve over k2 corresponding to P2 ⊆ ΠY •
2
. Moreover,

by applying Lemma 6.1 for φQ1,1
, we obtain

xeP2,2
=

s−1∑
t=0

b1,2,txetP2,1

with respect to xeP2,0
and xeP2,∞

on Y •
P2
. On the other hand, by applying Lemma

6.1 for φQ1,2
, we obtain

xeP2,2
=

s−1∑
t=0

b1,3,txetP2,1

with respect to xeP2,0
and xeP2,∞

on Y •
P2
. This means that

s−1∑
t=0

b1,2,tζ
t
m,2 =

s−1∑
t=0

b1,3,tζ
t
m,2,

which is impossible as b1,2,t′ 6= b1,3,t′ for some t′ ∈ {0, . . . , s − 1}. Then we obtain
that X•

2 is smooth over k2. Thus, the proposition follows from Proposition 6.2. This
completes the proof of the proposition. □

6.2.3. Now, we prove the first form of the main theorem of the present paper.

Theorem 6.6. Let X•
i , i ∈ {1, 2}, be an arbitrary pointed stable curve of type

(0, n) over an algebraically closed field ki of characteristic p > 0 and ΠX•
i
either the

admissible fundamental group of X•
i or the solvable admissible fundamental group of

X•
i . Suppose that k1 is an algebraic closure of Fp. Then we have that

Homop
pg(ΠX•

1
,ΠX•

2
) 6= ∅

if and only if X•
1 is Frobenius equivalent to X•

2 (Definition 3.1 (c)). In particular,
if this is the case, we have that X•

2 can be defined over the algebraic closure of Fp in
k2, and that

Homop
pg(ΠX•

1
,ΠX•

2
) = Isompg(ΠX•

1
,ΠX•

2
).

Proof. To verify the theorem, it is sufficient to prove the theorem when ΠX•
i
is the

solvable admissible fundamental group of X•
i . The “if” part of the theorem follows

from [Y4, Proposition 3.7]. Let us prove the “only if” part of the theorem. Suppose
that Homop

pg(ΠX•
1
,ΠX•

2
) 6= ∅, and let φ ∈ Homop

pg(ΠX•
1
,ΠX•

2
) be an arbitrary open

continuous homomorphism. Then Lemma 4.3 implies that φ is a surjection.
Suppose that X•

1 is smooth over k1. Then the theorem follows from Proposition
6.5. Thus, we may assume that X•

1 is a singular pointed stable curve.
Note that since X•

1 is singular, we have n = #(eop(ΓX•
1
)) ≥ 4. We prove the

theorem by induction on #(eop(ΓX•
1
)). Suppose that #(eop(ΓX•

1
)) = 4. Since X•

1

is a singular pointed stable curve of type (0, 4), we obtain #(v(ΓX•
1
)) = 2 and
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#(ecl(ΓX•
1
)) = 1. On the other hand, by applying Lemma 6.3, we obtain that X•

2 is
also a singular pointed stable curve of type (0, 4). Thus, we have #(eop(ΓX•

2
)) = 4,

#(v(ΓX•
2
)) = 2, and #(ecl(ΓX•

2
)) = 1. Then X•

1 and X•
2 satisfy Condition C defined

in 5.3.1. Thus, by Theorem 5.30 and Proposition 6.2, we obtain that X•
1 is Frobenius

equivalent to X•
2 .

Suppose that #(eop(ΓX•
1
)) ≥ 5. Theorem 4.11 implies that φ induces a bijection

φsg,op : eop(ΓX•
1
)

∼→ eop(ΓX•
2
)

group-theoretically. Let e1,n ∈ eop(ΓX•
1
) and e2,n

def
= φsg,op(e1,n). We denote by Z•

i

the pointed stable curve of type (0, n − 1) over ki associated to the pointed semi-
stable curve (Xi, DXi

\{xei,n}) (i.e. the pointed stable curve obtained by contracting
the (−1)-curves and the (−2)-curves of (Xi, DXi

\ {xei,n})).
Write Ii,n ⊆ ΠX•

i
for the closed subgroup generated by the subgroups contained in

Edgopei,n(ΠX•
i
). Then we see that ΠZ•

i

def
= ΠX•

i
/Ii,n is (outer) isomorphic to the solvable

admissible fundamental group of Z•
i . Moreover, Theorem 4.11 implies φ(I1,n) = I2,n.

Then φ induces a surjective open continuous homomorphism

φ : ΠZ•
1
↠ ΠZ•

2
.

By induction, we obtain that Z•
1 is Frobenius equivalent to Z•

2 . Then φ induces a
bijection of dual semi-graphs

φ
sg
: ΓZ•

1

∼→ ΓZ•
2
.

In particular, we put

φ
sg,ver def

= φ
sg|v(ΓZ•

1
) : v(ΓZ•

1
)

∼→ v(ΓZ•
2
),

φ
sg,op def

= φ
sg|eop(ΓZ•

1
) : e

op(ΓZ•
1
)

∼→ eop(ΓZ•
2
).

Note that v(ΓZ•
i
), eop(ΓZ•

i
), the set of irreducible components of Zi, the set of marked

points DZi
of Z•

i can be regarded naturally as subsets of v(ΓX•
i
), eop(ΓX•

i
), the set of

irreducible components of Xi, the set of marked points DXi
of X•

i via the contracting
morphism (Xi, DXi

\ {xei,n}) → Z•
i , respectively. Moreover, we see that one of the

following cases may occur:

(i) #(v(ΓX•
1
)) = #(v(ΓZ•

1
)) = #(v(ΓX•

2
)) = #(v(ΓZ•

2
));

(ii) #(v(ΓX•
1
))− 1 = #(v(ΓZ•

1
)) = #(v(ΓX•

2
))− 1 = #(v(ΓZ•

2
));

(iii) #(v(ΓX•
1
)) = #(v(ΓZ•

1
)) = #(v(ΓX•

2
))− 1 = #(v(ΓZ•

2
));

(iv) #(v(ΓX•
1
))− 1 = #(v(ΓZ•

1
)) = #(v(ΓX•

2
)) = #(v(ΓZ•

2
)).

Suppose that either (i) or (ii) holds. Then X•
1 and X•

2 satisfy Condition C defined in
5.3.1. Thus, by Theorem 5.30 and Proposition 6.2, we obtain that X•

1 is Frobenius
equivalent to X•

2 .



98 YU YANG

Suppose that (iii) holds. Let v2 ∈ v(ΓX•
2
) such that xe2,n ∈ Xv2

def
= X2,v2 (i.e. the

irreducible component of X2 corresponding to v2). Since #(v(ΓX•
2
)) = #(v(ΓZ•

2
))+1,

we have #(Xv2 ∩DX2) = 2. Note that {v2} = v(ΓX•
2
) \ v(ΓZ•

1
).

Let xe2,n−1 ∈ Xv2 ∩ DX2 be the marked point distinct from xe2,n and e2,n−1 ∈
eop(ΓX•

2
) the open edge corresponding to the marked point xe2,n−1 . On the other

hand, let w1 ∈ v(ΓX•
1
) such that xe1,n ∈ Xw1

def
= X1,w1 . We put

w2
def
= φ

sg,ver
(w1) ∈ v(ΓZ•

2
) ⊆ v(ΓX•

2
),

e1,n−1
def
= (φ

sg,op
)−1(e2,n−1) ∈ eop(ΓZ•

1
) ⊆ eop(ΓX•

1
).

Since Z•
1 is a pointed stable curve of type (0, n− 1), we have

#(Xw1 ∩DZ1) + #(Xw1 ∩ Z
sing
1 ) ≥ 3.

Then we see that there exist marked points xe1,n−2 , xe1,n−3 ∈ DZ1 \ {xe1,n−1} distinct
from each other such that one of the following conditions is satisfied:

(1) If #(Xw1 ∩DZ1) ≥ 3, then xe1,n−2 , xe1,n−3 ∈ Xw1 .
(2) If #(Xw1 ∩DZ1) = 2 and xe1,n−1 6∈ Xw1 , then xe1,n−2 , xe1,n−3 ∈ Xw1 .
(3) If #(Xw1 ∩DZ1) = 1 and xe1,n−1 6∈ Xw1 , then we have that xe1,n−3 ∈ Xw1 , and

that the connected components of Z1 \Xw1 (note that since #(Xw1 ∩DZ1) = 1, the
cardinality of the set of connected components of Z1 \Xw1 is ≥ 2) containing xe1,n−1

and xe1,n−2 , respectively, are distinct from each other.
(4) If #(Xw1 ∩DZ1) = 2 and xe1,n−1 ∈ Xw1 , then we have that xe1,n−3 ∈ Xw1 , and

that xe1,n−2 is contained in a connected component of Z1 \Xw1 .
(5) If #(Xw1 ∩ DZ1) = 1 and xe1,n−1 ∈ Xw1 , then we have that the connected

components of Z1 \ Xw1 (note that since #(Xw1 ∩ DZ1) = 1, the cardinality of
the set of connected components of Z1 \Xw1 is ≥ 2) containing xe1,n−2 and xe1,n−3 ,
respectively, are distinct from each other.

(6) If #(Xw1 ∩ DZ1) = 0, then we have that the connected components of Z1 \
Xw1 (note that since #(Xw1 ∩ DZ1) = 0, the cardinality of the set of connected
components of Z1 \Xw1 is ≥ 3) containing xe1,n−1 , xe1,n−2 , and xe1,n−3 , respectively,
are distinct from each other.

Write e1,n−2 and e1,n−3 ∈ eop(ΓZ•
1
) for the open edges corresponding to the marked

points xe1,n−2 and xe1,n−3 , respectively. We put

e2,n−2
def
= φ

sg,op
(e1,n−2), e2,n−3

def
= φ

sg,op
(e1,n−3).

Let Y •
i be the pointed stable curve of type (0, 4) over ki associated to the pointed

semi-stable curve

(Xi, {xei,n , xei,n−1
, xei,n−2

, xei,n−3
}).
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By the construction of the set of marked points {xei,n , xei,n−1
, xei,n−2

, xei,n−3
}, we see

that Y •
1 is smooth over k1 whose underlying curve is Xw1 , and that Y •

2 is singular

whose irreducible components are Xw2

def
= X2,w2 and Xv2 .

Next, we will see that the solvable admissible fundamental groups and the natural
homomorphisms between the solvable admissible fundamental groups of pointed
stable curves constructing above can be reconstructed group-theoretically from φ.
Let Ii ⊆ ΠX•

i
be the closed subgroup generated by the subgroups contained in⋃

ei∈eop(ΓX•
i
)\{ei,n,ei,n−1,ei,n−2,ei,n−3}

Edgopei (ΠX•
i
).

We see that ΠY •
i

def
= ΠX•

i
/Ii is (outer) isomorphic to the solvable admissible funda-

mental group of Y •
i . Moreover, Theorem 4.11 implies φ(I1) = I2. Then we obtain a

surjective open continuous homomorphism φ : ΠY •
1
↠ ΠY •

2
. This contradicts Propo-

sition 6.5, since Proposition 6.5 implies that Y •
2 is smooth over k2. Then (iii) does

not occur.
Suppose that (iv) holds. Similar arguments to the arguments given in the proof

of (iii) imply that (iv) does not occur. More precisely, we have the following.

Let v1 ∈ v(ΓX•
1
) such that xe1,n ∈ Xv1

def
= X1,v1 . Since #(v(ΓX•

1
)) = #(v(ΓZ•

1
))+1,

we have #(Xv1 ∩DX1) = 2. Note that {v1} = v(ΓX•
1
) \ v(ΓZ•

1
).

Let xe1,n−1 ∈ Xv1 ∩ DX1 be the marked point distinct from xe1,n and e1,n−1 ∈
eop(ΓX•

1
) the open edge corresponding to the marked point xe1,n−1 . On the other

hand, let w2 ∈ v(ΓX•
2
) such that xe2,n ∈ Xw2

def
= X2,w2 . We put

w1
def
= (φ

sg,ver
)−1(w2) ∈ v(ΓZ•

1
) ⊆ v(ΓX•

1
),

e2,n−1
def
= φ

sg,op
(e1,n−1) ∈ eop(ΓZ•

2
) ⊆ eop(ΓX•

2
).

Since Z•
2 is a pointed stable curve of type (0, n− 1), we have

#(Xw2 ∩DZ2) + #(Xw2 ∩ Z
sing
2 ) ≥ 3.

Then we see that there exist marked points xe2,n−2 , xe2,n−3 ∈ DZ2 \ {xe2,n−1} distinct
from each other such that one of the following conditions is satisfied:

(1) If #(Xw2 ∩DZ2) ≥ 3, then xe2,n−2 , xe2,n−3 ∈ Xw2 .
(2) If #(Xw2 ∩DZ2) = 2 and xe2,n−1 6∈ Xw2 , then xe2,n−2 , xe2,n−3 ∈ Xw2 .
(3) If #(Xw2 ∩DZ2) = 1 and xe2,n−1 6∈ Xw2 , then we have that xe2,n−3 ∈ Xw2 , and

that the connected components of Z2 \Xw2 (note that since #(Xw2 ∩DZ2) = 1, the
cardinality of the set of connected components of Z2 \Xw2 is ≥ 2) containing xe2,n−1

and xe2,n−2 , respectively, are distinct from each other.
(4) If #(Xw2 ∩DZ2) = 2 and xe2,n−1 ∈ Xw2 , then we have that xe2,n−3 ∈ Xw2 , and

that xe2,n−2 is contained in a connected component of Z2 \Xw2 .
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(5) If #(Xw2 ∩ DZ2) = 1 and xe2,n−1 ∈ Xw2 , then we have that the connected
components of Z2 \ Xw2 (note that since #(Xw2 ∩ DZ2) = 1, the cardinality of
the set of connected components of Z2 \Xw2 is ≥ 2) containing xe2,n−2 and xe2,n−3 ,
respectively, are distinct from each other.

(6) If #(Xw2 ∩ DZ2) = 0, then we have that the connected components of Z2 \
Xw2 (note that since #(Xw2 ∩ DZ2) = 0, the cardinality of the set of connected
components of Z2 \Xw2 is ≥ 3) containing xe2,n−1 , xe2,n−2 , and xe2,n−3 , respectively,
are distinct from each other.

Write e2,n−2 and e2,n−3 ∈ eop(ΓZ•
2
) for the open edges corresponding to the marked

points xe2,n−2 and xe2,n−3 , respectively. We put

e1,n−2
def
= (φ

sg,op
)−1(e2,n−2), e1,n−3

def
= (φ

sg,op
)−1(e2,n−3).

Let Y •
i be the pointed stable curve of type (0, 4) over ki associated to the pointed

semi-stable curve

(Xi, {xei,n , xei,n−1
, xei,n−2

, xei,n−3
}).

By the construction of the set of marked points {xei,n , xei,n−1
, xei,n−2

, xei,n−3
}, we see

that Y •
1 is singular whose irreducible component are Xw1

def
= X1,w1 and Xv1 , and that

Y •
2 is smooth over k2 whose underlying curve is Xw2 .
Let Ii ⊆ ΠX•

i
be the closed subgroup generated by the subgroups contained in⋃

ei∈eop(ΓX•
i
)\{ei,n,ei,n−1,ei,n−2,ei,n−3}

Edgopei (ΠX•
i
).

We see that ΠY •
i

def
= ΠX•

i
/Ii is (outer) isomorphic to the solvable admissible funda-

mental group of Y •
i . Moreover, Theorem 4.11 implies φ(I1) = I2. Then we obtain a

surjective open continuous homomorphism φ : ΠY •
1
↠ ΠY •

2
. This contradicts Lemma

6.3, since Lemma 6.3 implies that Y •
2 is singular. Then (iv) does not occur. This

completes the proof of the theorem. □

6.2.4. Theorem 6.6 implies the following result concerning the homeomorphism
conjecture formulated in 3.3.

Theorem 6.7. We maintain the notation introduced in 3.1.3 and 3.2.1. Let [q] ∈
M

cl

0,n be an arbitrary closed point. Then πadm
0,n ([q]) and πsol

0,n([q]) are closed points of

Π0,n and Π
sol

0,n, respectively. In particular, the homeomorphism conjecture and the
solvable homeomorphism conjecture hold when (g, n) = (0, 3) or (0, 4).

Proof. To verify the theorem, we only need to treat the case of solvable admissible
fundamental groups.
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Let V (πsol
0,n([q])) be the topological closure of πsol

0,n([q]) in Π
sol

0,n and [πsol
1 (q′)] ∈

V (πsol
0,n([q])) an arbitrary point. Then by Proposition 3.10 (a), we obtain that there

exists a surjective open continuous homomorphism

φ : πsol
1 (q) ↠ πsol

1 (q′).

Theorem 6.6 implies q ∼fe q′. Thus, we obtain [πsol
1 (q)] = [πsol

1 (q′)]. This means that

V (πsol
0,n([q])) = [πsol

1 (q)] is a closed point of Π
sol

0,n. □
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