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ABSTRACT. For pointed stable curves over algebraically closed fields of positive
characteristic, we investigate a new kind of anabelian phenomenon that cannot be
explained by Grothendieck’s original anabelian philosophy.

We introduce a topological space that is determined by the isomorphism classes
of admissible fundamental groups of pointed stable curves of type (g,n) over al-
gebraically closed fields of positive characteristic. We show that there is a natural
continuous map from the moduli space of pointed stable curves of type (g,n) to
the above topological space. Moreover, we conjecture that the above continuous
map is a homeomorphism (which we call the homeomorphism conjecture). The
homeomorphism conjecture can be regarded as a dictionary between the geom-
etry of curves and the anabelian properties of curves, and it supplies a point of
view to see what anabelian phenomena that we can reasonably expect from curves
over algebraically closed fields of positive characteristic. One of the main results
of the present series of papers says that the homeomorphism conjecture holds for
one-dimensional moduli spaces.

In the present paper, we establish precise connections between the geometric
behaviors of curves and open continuous homomorphisms of their admissible fun-
damental groups, which play central roles in the theory developed in the series of
papers. By using the precise connections, we prove the homeomorphism conjec-
ture for closed points of moduli spaces when g = 0. In particular, we obtain the
homeomorphism conjecture for one-dimensional moduli spaces when g = 0.
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INTRODUCTION

0.1. Grothendieck’s anabelian philosophy. In the 1980s, A. Grothendieck sug-
gested a theory of arithmetic geometry called anabelian geometry ([G]), roughly
speaking, which focuses on the following question: Can we reconstruct the geomet-
ric information of a variety group-theoretically from various versions of its algebraic
fundamental group? The varieties which can be completely determined by their
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fundamental groups are called “anabelian varieties” by Grothendieck. To classify
the anabelian varieties in all dimensions over all fields is called “anabelian dream” of
him. In the particular case of dimension 1, he conjectured that all smooth pointed
stable curves (defined over certain fields) are anabelian varieties.

0.1.1. Let p be a prime number and #(—) the cardinality of (—). Let
X* = (X, Dy)

be a pointed stable curve of type (gx,nx) over a field k of characteristic char(k),
where X denotes the underlying curve which is a semi-stable curve over k, Dy

denotes the (finite) set of marked points satisfying [K, Definition 1.1 (iv)], gx denotes

the genus of X, and nx aef #(Dx). In the introduction, “curves” means pointed

stable curves unless indicated otherwise.

0.1.2. Suppose that X* is smooth over k. When k is an “arithmetic” field (e.g. a
number field, a p-adic field, a finite field, etc.), Grothendieck’s anabelian conjectures
for curves (or the Grothendieck conjectures for short), roughly speaking, are based
on the following anabelian philosophy (|G]):

Weak Isom-version: The isomorphism class of X*® can be deter-
mined group-theoretically from the isomorphism class of its algebraic
fundamental group.

Isom-version: The sets of isomorphisms of smooth pointed stable
curves can be determined group-theoretically from the sets of isomor-
phisms of their algebraic fundamental groups.

Hom-version: The sets of dominant morphisms of smooth pointed
stable curves can be determined group-theoretically from the sets
of open continuous homomorphisms of their algebraic fundamental
groups.

Grothendieck’s anabelian conjectures have been proven in many cases. For instance,
we have the following results: When k is a number field, the conjecture was proved
by H. Nakamura (weak Isom-version) ([Nakaml], [Nakam2]), A. Tamagawa (Isom-
version) ([T1]), and S. Mochizuki (Hom-version) ([M2]). When £ is a finitely gen-
erated field over the finite field IF,,, the Isom-version of the Grothendieck conjecture
was proved by Tamagawa ([T1]), Mochizuki ([M4]), J. Stix ([Stil], [Sti2]), and M.
Saidi-Tamagawa ([ST1], [ST3]). All the proofs of the Grothendieck conjectures for
curves over arithmetic fields mentioned above require the use of the non-trivial outer
Galois representations induced by the fundamental exact sequences of fundamental
groups.

0.2. Beyond the arithmetical actions. Next, we consider the case where X* is
an arbitrary pointed stable curve, and suppose that k is an algebraically closed field.
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0.2.1. By choosing a suitable base point x of X*®, we have the admissible funda-
mental group w39 (X*, z) of X* (see 1.2.2). For simplicity, we shall write 784m(X*)
for m2dm(X*® z), since we only focus on the isomorphism class of 2™ (X* z). In
particular, if X*® is smooth over k, then 724 (X*) is naturally isomorphic to the
tame fundamental group 7} (X*).

When char(k) = 0, since the isomorphism class of 729"(X*) depends only on the
type (gx,nx), the anabelian geometry of curves does not exist in this situation.
On the other hand, if char(k) = p, the situation is quite different from that in
characteristic 0. The admissible fundamental group 734™(X*®) is very mysterious
and its structure is no longer known. In the remainder of the introduction, we
assume that k is an algebraically closed field of characteristic p.

0.2.2. After M. Raynaud ([R1]) and D. Harbater ([Hal]) proved Abhyankar’s con-
jecture, Harbater asked whether or not the geometric information of a curve over
k can be carried out from its geometric fundamental groups ([Ha2|, [Ha3]). Since
the late 1990s, some developments of Raynaud ([R3]), F. Pop-Saidi ([PS]), Tam-
agawa ([T2], [T4], [T5]), and the author of the present paper ([Y2], [Y6]) showed
evidence for very strong anabelian phenomena for curves over algebraically closed
fields of positive characteristic (see [T3] for more about this conjectural world based
on Grothendieck’s anabelian philosophy mentioned in 0.1.2). In this situation, the
arithmetic fundamental group coincides with the geometric fundamental group, thus
there is a total absence of a Galois action of the base field. This kind of anabelian
phenomenon is the reason why we do not have an explicit description of the geometric
fundamental group of any pointed stable curve in positive characteristic. Moreover,
we may think that the anabelian geometry of curves is a theory based on the fol-
lowing rough consideration: The admissible fundamental group of a pointed stable
curve over an algebraically closed field of characteristic p must encode “moduli” of
the curve.

0.3. A moduli version of the weak Isom-version conjecture. We reformulate
the anabelian geometry of curves over algebraically closed fields of positive charac-
teristic from the point of view of moduli spaces.

0.3.1. Firstly, we fix some notation concerning moduli spaces of curves and admissi-
ble fundamental groups associated to points of moduli spaces. Let Fp be an algebraic
closure of F,, and let M,,, be the moduli stack over F, classifying pointed stable
curves of type (g,n) (i.e. the quotient stack of the moduli stack of n-pointed stable
curves in the sense of [K] by the natural action of n-symmetric group), M,,, C M.,
the open substack classifying smooth pointed stable curves, Mgm the coarse moduli
space of Mg,n, and M, the coarse moduli space of M, ,,.

Let q € Mgm be a point, k(q) the residue field of ngn, and k, an algebraically
closed field containing k(q). Then the composition of natural morphisms Spec k, —
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Speck(q) — M,,, determines a pointed stable curve Xy, of type (g,n) over k.
In particular, if k, is an algebraic closure of k(q), we shall write X, g for X ,;q. Let

72dm(X® ) be the admissible fundamental group of X . Since the isomorphism class
1 kq kq

of 73 (X} ) does not depend on the choice of &, (1.2.4), we shall write 78" (q) for
the admissible fundamental group 7§ (X} ).

Let ﬁg,n be the set of isomorphism classes (as profinite groups) of admissible
fundamental groups of pointed stable curves of type (g, n) over algebraically closed
fields of characteristic p. Then the fundamental group functor 739 induces a natural
sujective map from the underlying topological space |Mg7n| of Hg,n to ﬁg,n as follows:
[radm] s | M, | = 10, g = [139%(q)], where [7397(g)] denotes the isomorphism class
of T4 (g).

Since the existence of Frobenius twists of pointed stable curves, the map [r3™]
is not a bijection in general. We introduce an equivalence relation ~y. on [M,,|
which we call Frobenius equivalence (see [Y4, Definition 3.4] or Definition 3.1 of the

present paper). Moreover, [Y4, Proposition 3.7] shows that [r2d™] factors through

the following quotient set M, o |M, .|/ ~fe . Then we obtain a natural surjective

map
W;,%m t My = yn, [ = [W?dm(Q)]a

induced by [72dm] - where [q] denotes the image of ¢ of the natural quotient map
(Mg, — M,

0.3.2. The “Weak Isom-version” mentioned in 0.1.2 can be successfully formulated
for pointed stable curves over algebraically closed fields of characteristic p (see [T2],
[T3] for the case of smooth pointed stable curves, and [Y4] for the case of arbitrary
pointed stable curves). We shall refer to the formulation as the weak Isom-version
conjecture:

Weak Isom-version Conjecture . We maintain the notation introduced above.
Then the surjective map

adm . a7
s : My, — 11

g,n g,n

1S a bijection.

The weak Isom-version conjecture is one of the main conjectures in the theory of
anabelian geometry of curves, which was only completely proved in the case where
(g,m) = (0,3) or (0,4) (see [T4, Theorem 0.2], [Y4, Theorem 3.8], or Theorem 3.4
of the present paper).

Until now, the weak Isom-version conjecture is the ultimate goal of the anabelian
geometry of curves over algebraically closed fields of characteristic p, all of the re-
searches focus on this conjecture (e.g. [PS], [R3], [Sar], [ST2], [T2], [T4], [T5],
[Y2], [Y6]). Essentially, the weak Isom-version conjecture shares the same anabelian
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philosophy as Grothendieck originally suggested (i.e. the “Weak Isom-version” men-
tioned in 0.1.2), and this conjecture cannot give us any new insight into the anabelian
phenomena of curves over algebraically closed fields of characteristic p.

0.3.3. The “Isom-version” mentioned in 0.1.2 can be also successfully formulated
for pointed stable curves over algebraically closed fields of characteristic p (e.g. see
[T3, Conjecture 1.33] for the case of smooth pointed stable curves). At the time of
writing, no results are known for this conjecture.

0.4. A new kind of anabelian phenomenon.

0.4.1. When Tamagawa tried to formulate a “Hom-version” conjecture for curves
over algebraically closed fields of characteristic p based on Grothendieck’s anabelian
philosophy mentioned in 0.1.2 (i.e. an analogue of the conjecture posed in [G, p289
(6)]), he noted that the following phenomenon exists:

Let ¢; € M,,, i € {1,2}, be a smooth pointed stable curve over an
algebraically closed field k; of characteristic p > 0 and 724" (g;) the
admissible fundamental group (=the tame fundamental group) of X o
Then we have (e.g. specialization homomorphisms of a non-isotrivial
family of pointed stable curves)

Hom™™ (X2, X2) = 0, Homg® (ni™ (q1), 71" (q2)) # 0,

q1’

where Hom%™(—, —) denotes the set of dominant morphisms of pointed
stable curves, and Hom(?(—, —) denotes the set of open continuous
homomorphisms of profinite groups. This means that

Hom™™ (X, Xg,) 7 Homgh (7{" (q1), 71" (¢2)).

The above phenomenon means that if we only consider anabelian philosophy sug-
gested originally by Grothendieck mentioned in 0.1.2; the relation of two pointed
stable curves cannot be determined by the set of open continuous homomorphisms
of their admissible fundamental groups, and the “Hom-version” conjecture (in the
sense of 0.1.2) for curves over algebraically closed fields of characteristic p does not
exist.

In fact, the existence of specialization homomorphisms is the reason that Tama-
gawa cannot formulate a “Hom-version” conjecture for tame fundamental groups of
smooth pointed stable curves in general ([T3, Remark 1.34]).

0.4.2.  On the other hand, the author of the present paper considered the following
the fundamental question:

Does there exist a geometric explanation (i.e. an anabelian explana-
tion) for the group-theoretical object Hom?® (739™ (¢1), 73 (¢2))?
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We observed a new phenomenon that has never been seen before: It is possible
that the sets of deformations of a smooth pointed stable curve can be reconstructed
group-theoretically from open continuous homomorphisms of their admissible fun-
damental groups. Let q1,q2 € M, ,. This mean is that, roughly speaking, a smooth
pointed stable curve corresponding to a geometric point over ¢ can be deformed
to a smooth pointed stable curve corresponding to a geometric point over ¢, if and
only if the set of open continuous homomorphisms of admissible fundamental groups
Hom:® (729 (q1), m39™ (g2)) is not empty.

Moreover, the above observation implies a new kind of anabelian phenomenon that
cannot be explained by using Grothendieck’s original anabelian philosophy mentioned
n 0.1.2:

The topological structures of moduli spaces of curves in positive char-
acteristic are encoded in the sets of open continuous homomorphisms
of geometric fundamental groups of curves in positive characteristic.

This new kind of anabelian phenomenon can be precisely captured by using the
so-called moduli spaces of admissible fundamental groups and the homeomorphism
conjecture introduced in the present paper. Let us briefly explain them in the next
subsection of the introduction.

0.5. The homeomorphism conjecture. We maintain the notation introduced in
0.3. Moreover, from now on, we shall regard 9,,, as a topological space whose
topology is induced naturally by the Zariski topology of |M,|.

0.5.1. Let ¢ be the category of finite groups and G € ¢ a finite group. We put

def adm =3 adm
Uﬁgyn,G = {[ﬂ-ld ((])] € Hg,n | Homsurj<7r1d ((D»G) #* @}a

where Homygy,,;(—, —) denotes the set of surjective homomorphisms of profinite groups.
We define a topological space (I, Oﬁg‘n> group-theoretically from I, ,, as follows:
The underlying set is II, ,,, and the topology Oﬁg,n is generated by {Uﬁg’mG}Geg as
open subsets. For simplicity of notation, we still use II,, to denote the topological
space (1L, ,,, Oﬁgyn), and call the topological space

I,
the moduli space of admissible fundamental groups of type (g,n).

adm .
g7n

Myrn — ﬁg,n is a continuous map. Moreover, we pose the following conjecture,
which is the main conjecture of the theory developed in the present series of papers:

0.5.2. Theorem 3.6 of the present paper shows that the surjective map =
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Homeomorphism Conjecture . We maintain the notation introduced above. Then
we have that the natural map

s a homeomorphism.

0.5.3. Remark. The homeomorphism conjecture has a simpler form if we only con-
sider smooth pointed stable curves. Let I, be the prime field of characteristic p,
Mg, the coarse moduli space of the moduli stack M, ,r, over I, classifying
smooth pointed stable curves of type (g,n). Let Il,, C II,, be the subset of iso-
morphism classes of admissible fundamental groups (=tame fundamental groups)
of smooth pointed stable curves of type (g,n). The subset II,, can be regarded
as a topological space whose topology is induced by the topology of ﬁg,n (in fact,
Il,, is an open subset of II,, (see Proposition 3.10 (b)). In this situation, the
homeomorphism conjecture is equivalent to the following form: The natural map

My ,w, = 1y, q— [789(q)], is @ homeomorphism.

0.6. Weak Isom-version Conjecture vs. Homeomorphism Conjecture.

0.6.1. Firstly, let us explain the difference between the the weak Isom-version con-
jecture and the homeomorphism conjecture from the aspect of anabelian philosophy.

The weak Isom-version conjecture means that the moduli spaces of curves in
positive characteristic can be reconstructed group-theoretically as sets from isomor-
phism classes of admissible fundamental groups of pointed stable curves in positive
characteristic.

On the other hand, the homeomorphism conjecture generalizes all the conjectures
appeared in the theory of admissible (or tame) anabelian geometry of curves over
algebraically closed fields of characteristic p, and means that the moduli spaces of
curves in positive characteristic can be reconstructed group-theoretically as topolog-
ical spaces from sets of open continuous homomorphisms of admissible fundamental
groups of pointed stable curves in positive characteristic.

The moduli spaces of admissible fundamental groups and the homeomorphism
conjecture shed some new light on the theory of the anabelian geometry of curves
over algebraically closed fields of characteristic p based on the following new an-
abelian philosophy:

The anabelian properties of pointed stable curves over algebraically
closed fields of characteristic p are equivalent to the topological prop-
erties of the topological space ﬁgm.

Since Tamagawa discovered that there also exists the anabelian geometry for cer-
tain smooth pointed stable curves over the algebraically closed fields of characteristic
p, almost 30 years have passed. However, the weak Isom-version conjecture is still
the only anabelian phenomenon that we know in this situation, and we cannot even
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imagine what phenomena arose from curves and their fundamental groups should
be anabelian.

The above philosophy supplies a point of view to see what anabelian phenomena
that we can reasonably expect for pointed stable curves over algebraically closed fields
of characteristic p. This means that the homeomorphism conjecture is a dictionary
between the geometry of pointed stable curves (or moduli spaces of curves) and the
anabelian properties of pointed stable curves. For instance, it has raised a host of
new questions (e.g. Section 3.4) concerning anabelian phenomena which cannot be
seen if we only consider the weak [som-version conjecture.

0.6.2. Next, let us explain the difference between the weak Isom-version conjec-
ture and the homeomorphism conjecture from the aspect of group theory. The mean
of anabelian geometry around the weak Isom-version conjecture (i.e. the theory
developed in [PS], [R3], [Sar], [T2], [T4], [T5], [Y2], [Y6]) is the following: Let
Fi, i € {1,2}, be a geometric object in a certain category and Iz the funda-
mental group associated to JF;. Then the set of isomorphisms of geometric objects
Isom(F;, F3) can be understood from the set of isomorphisms of group-theoretical
objects Isom(Ilx,, I1x,). The term “anabelian” means that the geometric properties
of a geometric object which can be determined by the isomorphism classes of its
fundamental group. On the other hand, we do not know the relation of F; and F;
if I 7, is not isomorphic to Ilg,.

In the theory developed in the present series of papers, we consider anabelian ge-
ometry in a completely different way. The mean of anabelian geometry around
the homeomorphism conjecture is the following: The relation of F; and F3 in
a certain moduli space can be understood from a certain set of homomorphisms
Hom(Ilz,, I1£,). Moreover, Hom(Ilx,, I1£,) contains the deformation information of
Fo along Fi. The term “anabelian” means the geometric properties of a certain
moduli space of geometric objects (i.e. not only a single geometric object but also
the moduli space of geometric objects) which can be determined by the set of open
continuous homomorphisms of fundamental groups of geometric objects.

Thus, roughly speaking, the weak Isom-version conjecture is an “Isom-version”
problem, and the homeomorphism conjecture is a “Hom-version” problem. Similar
to other theory in anabelian geometry, Hom-version problems are so much harder
than the Isom-version problems.

0.7. Main result.

0.7.1.  Our main result of the present paper is as follows:

Theorem 0.1 (Theorem 6.7). We maintain the notation introduced above. Let

adm

lq] € ﬁgln be an arbitrary closed point. Then 755" ([q]) is a closed point of Iy,. In
particular, the homeomorphism conjecture holds when (g,n) = (0,3) or (0,4).
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Denote by Isom,(—, —) the set of isomorphisms of profinite groups. Then Theo-
rem 0.1 follows from the following strong (Hom-version) anabelian result.

Theorem 0.2 (Theorem 6.6). Let q1, g2 € Mo,n be arbitrary points. Suppose that
q1 18 closed. Then we have that

Hom® (w3 (q1), 759 (q2)) # 0

if and only if 1 ~¢e q2. In particular, if this is the case, we have that gy is a closed
point, and that

(1), 7™ (g2)) = Tsompg (T (1), 71" (q2)).

Remark 0.2.1. In fact, in the present paper, we will prove a slightly stronger
version of Theorem 0.2 by replacing 724™(q;) and 739 (qy) by the maximal pro-
solvable quotients w39m(q;)*! and w39 (gy)%! of 784 (gy) and 734 (o), respectively.
Then we obtain a solvable version of Theorem 0.1 which is slightly stronger than
Theorem 0.1. In particular, we obtain that the solvable homeomorphism conjecture

(see 3.3) holds when (g,n) = (0,3) or (0,4).

op [, adm
Hom? (7]

0.7.2.  We will prove directly Theorem 0.1 (or Theorem 0.2) without the use of
results concerning the weak Isom-version conjecture obtained in [T2], [T4], [Y2],
and its proof is much harder than the proofs of the main results of [T2], [T4], [Y2]
since we need to establish new connections between geometry of arbitrary (possibly
singular) pointed stable curves and arbitrary open continuous homomorphisms of

their fundamental groups which are not isomorphisms in general ([T5, Theorem 0.3],
[Y2, Theorem 7.9]).

0.8. Strategy of proof. We briefly explain the method of proving Theorem 0.2 (or
Theorem 0.1), whose tools are based on formulas concerning generalized Hasse-Witt
invariants proved in [Y3], [Y5] and the theory of combinatorial anabelian geometry
of curves in positive characteristic developed in [Y2], [Y6].

0.8.1. Firstly, we establish precise connections between the geometric behaviors of
curves and open continuous homomorphisms of their admissible fundamental groups,
which play central roles in the theory of moduli spaces of admissible fundamental
groups in positive characteristic.

The first result is the following, which is the main theorems of Section 4 (see
Theorem 4.11 and Theorem 4.13 for more precise statements):

Theorem 0.3. Let X!, i € {1,2}, be a pointed stable curve of type (gx,,nx,)
over an algebraically closed field k; of characteristic p, and U'xs the dual semi-graph
of X7. Let llxs be either the admissible fundamental group mdm(X®) of X2 or
the mazimal pro-solvable quotient w39™(X?)*" of 73™(X?), and I; C Ixs a closed

subgroup associated to an open edge of I'xs (i.e. a closed subgroup which is (outer)
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1somorphic to the inertia subgroup of the marked point corresponding to an open
edge of U'xs ). Suppose that (gx,,nx,) = (9x,,nx,). Let

¢ZHX10 —)HX20

be an arbitrary open continuous homomorphism of profinite groups. Then the fol-
lowing statements hold:

(i) ¢(I1) C Ilxs is a closed subgroup associated to an open edge of I'xs, and
there exists a closed subgroup I' C Tlxs associated to an open edge of I'xs such that
o(I') = L.

(i1) The field structures associated to inertia subgroups of marked points can be re-
constructed group-theoretically from Ilxes, and ¢ induces a field isomorphism between
the fields associated to I and ¢(Iy) group-theoretically.

Theorem 0.3 says that the inertia subgroups and field structures associated to iner-
tia subgroups of marked points can be reconstructed group-theoretically from arbi-
trary surjective open continuous homomorphisms of admissible fundamental groups.
One of the main ingredients in the proof of Theorem 0.3 is an explicit formula for
the maximum generalized Hasse-Witt invariant y™**(Ilxs) of an arbitrary pointed
stable curve X, which was proved by the author by using the theory of Raynaud-
Tamagawa theta divisors ([Y5, Theorem 5.4]).

The second result is a generalized version of combinatorial Grothendieck conjec-
ture in positive characteristic. One of the main results of Section 5 is as follows,
which says that the combinatorial Grothendieck conjecture for open continuous ho-
momorphisms holds for pointed stable curves of type (0,n) (see Theorem 5.30 for a
more precise statement):

Theorem 0.4. Let X?, i € {1,2}, be a pointed stable curve of type (0,n) over
an algebraically closed field k; of characteristic p, and Uxs the dual semi-graph of
X?. Let lUxes be the mazimal pro-solvable quotient madm(xe)sol of the admissible
fundamental group 7™ (X?) of X2 and 1I; C Uxe a closed subgroup associated to a
vertex (i.e. a closed subgroup which is (outer) isomorphic to the solvable admissible
Jundamental group of the smooth pointed stable curve associated to a vertex of I'xs ),
and I; C Ilxs a closed subgroup associated to a closed edge (i.e. a closed subgroup
which is (outer) isomorphic to the inertia subgroup of the node corresponding to
a closed edge of Txs). Suppose that #(v(I'xs)) = #(v(I'xs)) and #(e?(Ixs)) =
#(eM(T'xs)), where v(—) denotes the set of vertices of (—) and e?(—) denotes the
set of closed edges of (—) (see 1.1.1). Let

¢ZHX10 —)HX20

be an arbitrary open continuous homomorphism of profinite groups. Then the fol-
lowing statements hold:
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(i) p(I11) C Ilxyg is a closed subgroup associated to a vertex of I'xy, and there exists
a closed subgroup 11" C lxes associated to a vertex of FX{ such that ¢(I1") = Tl,.

(i) ¢(I) C Ilxs is a closed subgroup associated to a closed edge of I'xs, and
there exists a closed subgroup I' C Tlxs associated to a closed edge of I'xs such that
o(I') = Is.

(111) ¢ induces an isomorphism
¢sg . FX; :> FX2-
of dual semi-graphs group-theoretically.

Theorem 0.4 says that the geometry (i.e. topological and combinatorial data) of
pointed stable curves can be completely reconstructed group-theoretically from open
continuous homomorphisms of admissible fundamental groups. One of the main
ingredients in the proof of Theorem 0.4 is an explicit formula for the limit of p-
averages Avr,(ILye) of the admissible fundamental group of X?, which was proved
by Tamagawa ([T4, Theorem 0.5]) and the author ([Y3, Theorem 1.3]) by using the
theory of Raynaud-Tamagawa theta divisors .

In anabelian geometry, the geometric data of an geometric object can be rep-
resented by various subgroups of its fundamental group. Then, roughly speaking,
Theorem 0.3 and Theorem 0.4 mean that the geometric data of X3 can be controlled
by the geometric data of X7 if there exists an open continuous homomorphism
between their admissible fundamental groups.

Remark. In fact, Theorem 0.4 is a consequence of a generalized result (see Theo-
rem 5.26) which says that Theorem 0.4 also holds for arbitrary types under certain
assumptions. Moreover, the author believes that the methods developed in Section
5 can be used to prove the combinatorial Grothendieck conjecture for open con-
tinuous homomorphisms without any assumptions (see Remark 5.26.1 and Remark
5.26.2), and that Theorem 0.3, Theorem 0.4, and Theorem 5.26 will play important
roles in the proof of the homeomorphism conjecture for higher dimensional moduli
spaces. For instance, in [Y8], we use Theorem 0.3 and Theorem 5.26 to prove the
homeomorphism conjecture for (g,n) = (1,1).

0.8.2. By applying Theorem 0.3 and Theorem 0.4, we briefly sketch the proof of
Theorem 0.2 as follows:

Case I: ¢1 € My,,. Over Fp, the scheme structure of a smooth pointed stable curve of
type (0,n) can be completely determined by its inertia subgroups of marked points
and the field structures associated to the inertia subgroups via generalized Hasse-
Witt invariants. By constructing certain admissible coverings for X7 and X7, we
apply Theorem 0.3 to prove that, when X7 is nonsingular, the scheme structure

of X7 can be determined by the scheme structure of X2 via an open continuous
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homomorphism between their admissible fundamental groups (see Proposition 6.2
and Proposition 6.5).

Case II: q; € ngn \ My,. By applying Theorem 0.3, the geometric operation
(=removing a subset of marked points of a pointed stable curve and contracting the
(—1)-curves and the (—2)-curves of a pointed semi-stable curve) can be translated
to the group-theoretical operation (=quotient of a closed subgroup of the admissible
fundamental group of a pointed stable curve, where the closed subgroup is generated
by the inertia subgroups corresponding to a subset of marked points of the pointed
stable curve). Then we can reduce Theorem 0.2 to the case where #(v(I'x, )) =
#(v(I'xs ) and #(ed(rxq-l)) = #(eCI(FX52)). Moreover, by applying Theorem 0.4,
we can reduce Theorem 0.2 further to the case where ¢; and g» are contained in M, ,,
(i.e. X3 and X? are nonsingular). Then Theorem 0.2 follows from the case where
S MO,n‘

0.9. Structure of the present paper. The present paper is organized as follows.

Part I (Formulations of moduli spaces of admissible fundamental groups) consists
of Section 1~3. In Section 1, we fix some notation concerning admissible cover-
ings and admissible fundamental groups. In Section 2, we recall the definition of
generalized Hasse-Witt invariants, a formula for maximum generalized Hasse-Witt
invariants of prime-to-p admissible coverings, and a formula for limits of p-averages
of admissible fundamental groups. In Section 3, we introduce the moduli spaces
of admissible fundamental groups (resp. the moduli spaces of solvable admissible
fundamental groups) and formulate the homeomorphism conjecture. We also pose
some open problems that are of particular interest of the author. In particular, we
formulate a generalized version of Tamagawa’s essential dimension conjecture from
the point of view of the theory of moduli spaces of fundamental groups (Section
3.4.1). Moreover, we prove some basic properties concerning the topology of ﬁgm.

Part IT (Reconstructions of geometric data from open continuous homomorphisms)
consists of Section 4~5. In Section 4, we prove Theorem 0.3. In Section 5, we prove
the combinatorial Grothendieck conjecture for open continuous homomorphisms un-
der certain conditions. As a consequence, by applying Theorem 0.3, we obtain
Theorem 0.4.

Part IIT (Main result) consists of Section 6, and we prove our main theorem in
this part.
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PART I: FORMULATIONS OF MODULI SPACES OF ADMISSIBLE
FUNDAMENTAL GROUPS

1. ADMISSIBLE COVERINGS AND ADMISSIBLE FUNDAMENTAL GROUPS

In this section, we set up notation and terminology concerning admissible cover-
ings and admissible fundamental groups.

1.1. Admissible coverings.

1.1.1. Let I be a semi-graph (see [Y5, 2.1.1] for a rough explanation).

(a) We shall denote by v(T'), e°P(T"), and e“(T") the set of vertices of ', the set of
open edges of I', and the set of closed edges of I", respectively.

(b) The semi-graph I' can be regarded as a topological space with natural topology
induced by R2. We define an one-point compactification I'P?* of T' as follows: if
e°P(T") = 0, we put T'P* = T'; otherwise, the set of vertices of I'°P* is the disjoint union
v([ePY) o v(T) U{vs}, the set of closed edges of TPt is e (T'°P!) o eP(T) U e?(T),
the set of open edges of I' is empty, and every edge e € ¢°P(I") C e?(I'°P") connects
Vs With the vertex that is abutted by e.

(c) Let v € v(I"). We shall say that I" is 2-connected at v if '\ {v} is either empty
or connected. Moreover, we shall say that [' is 2-connected if I' is 2-connected
at each v € v(T"). Note that, if T' is connected, then T'°P* is 2-connected at each
v € v(I") Co(l") if and only if I'?* is 2-connected. We put

b) = D b,
ece°P(I)Ue!(T)
where b.(v) € {0, 1,2} denotes the number of times that e meets v. We put
o(0)'<H = {v € o(T) | bv) <1},

and denote by e(I')*<! the set of closed edges of I' which meet some vertex of
v(T)0<L.
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1.1.2. Let p be a prime number, and let
X* = (X, Dx)

be a pointed semi-stable curve of type (gx,nx) over an algebraically closed field k
of characteristic p, where X denotes the underlying curve, Dx denotes the (finite)
set of marked points, gx denotes the genus of X, and nx denotes the cardinality

#(Dx) of Dx. Write I'xs for the dual semi-graph of X*® (see [Y1, Definition 3.1]

for the definition of the dual semi-graph of a pointed semi-stable curve) and rx def

dimg(H'(T'x.,Q)) for the Betti number of the semi-graph I'x.. We shall say that
X* is a pointed stable curve over k if Dy satisfies [K, Definition 1.1 (iv)].

1.1.3. Let v € v(I'ye) and e € e°?(I'xs) Ue(I'ye). We write X, for the irreducible
component of X corresponding to v, write z. for the node of X corresponding to e

if e € e(I'yxe), and write x, for the marked point of X corresponding to e if e €

¢°P(I'y+ ). Moreover, write X, for the smooth compactification of Uy, X, \ Xsing,

where (—)*8 denotes the singular locus of (—). We define a smooth pointed semi-
stable curve of type (g,,n,) over k to be

e - def , >

Xy =(X,, Dz, = (Xy,\Ux,) U(Dx N X,)).
We shall call )N(; the smooth pointed semi-stable curve of type (gv,ny) associated to
v, or the smooth pointed semi-stable curve associated to v for short. In particular,
we shall say that X is the smooth pointed stable curve associated to v if X is a
pointed stable curve over k.

1.1.4. We recall the definition of Mochizuki’s admissible coverings of pointed stable
curves (see also [M1, §3]). Let Y* = (Y, Dy) be a pointed semi-stable curve over k
and ['ye the dual semi-graph of Y*. Let

oy X

be a surjective, generically étale, finite morphism of pointed semi-stable curves over
k such that f(y) is a smooth (resp. singular) point of X if y is a smooth (resp.
singular) point of Y. Write f : ¥ — X for the morphism of underlying curves
induced by f*, and f*¢ : I'ye — I'ye for the map of dual semi-graphs induced by
f°, where “sg” means “semi-graph”. Let v € v(I'x+) and w € (f*8)7!(v) C v(T'ys).
Then f* induces a morphism of smooth pointed semi-stable curves

fow: Yo = X5
over k associated to w and wv.

Definition 1.1. We shall say that f* : Y*®* — X*® is a Galois admissible covering
over k with Galois group G if the following conditions are satisfied:
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(i) There exists a finite group G C Aut,(Y*) such that Y*/G = X°, and f* is
equal to the quotient morphism Y* — Y*/G.

(ii) f;:w is a tame covering over k for each v € v(I'x.) and each w € (%)~ (v).
(iii) For each y € Y*"¢ we write D, C G for the decomposition group of y and 7
for a generator of D,,. Then the local morphism between singular points induced by
fis

Ox. sy = Kllu, v]]/uv — Oyy = E[[s, 1]]/st
u > 57Dy
v — t# Py

and that 7(s) = (xp,)s and 7(t) = @;(lgy)t, where Cx(p,) is a primitive #(D,)th
root, of unity.

Moreover, we shall say that f® is an admissible covering if there exists a mor-
phism of pointed semi-stable curves h® : W*® — Y® over k such that the composite
morphism f® o h®: W* — X* is a Galois admissible covering over k.

Let Z°® be a disjoint union of finitely many pointed semi-stable curves over k. We
shall say that a morphism f7 : Z®* — X*® over k is a multi-admissible covering if the
restriction of f} to each connected component of Z° is admissible, and that f7 is
étale if the underlying morphism of curves fz induced by f7 is an étale morphism.

Remark 1.1.1. In [M1, §3.9 Definition|, the admissible coverings defined in Defi-
nition 1.1 are called HM-admissible coverings (i.e. Harris-Mumford admissible cov-
erings).

1.1.5. Let f* : Y* — X*® be an admissible covering over k of degree m. Let
e € eP(T'ye) Ue?(Ixe) and z, the closed point of X corresponding to e. We put

S (o AT | () = 1,
Cl U e e e!(Txe) | #(f  (x)) = m},

P E fe € e®(Txe) | #(F 7 (we)) =1},

P E fe € eP(Dxe) | #(f () = m},
v = {v € u(lxe) | #(0r(f (X)) =1},
v = {v € v(Txe) | #(Ie(f71(X,)) = m},

where Irr(—) denotes the set of irreducible components of (—), “ra” means “rami-
fication”, and “sp” means “split”. Note that if the Galois closure of f* is a Galois
admissible covering whose Galois group is a p-group, then the definition of admissible
coverings implies #(e’ chray — #(e) = 0.
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1.2. Admissible fundamental groups. In this subsection, we recall some well-
known properties concerning admissible fundamental groups of pointed semi-stable
curves. There are many approaches to define admissible fundamental groups of
pointed semi-stable curves (e.g. constructing Galois categories of admissible covering
(by equipping certain isomorphisms of tangent base points of branches of nodes),
Mochizuki’s theory of semi-graphs of anabelioids, geometric log étale fundamental
groups, etc.). In the present paper, we define admissible fundamental groups of
pointed stable curves by using log geometry (see also [T6, §2]).

1.2.1.  We maintain the notation introduced in 1.1.2. Let M, ,, z be the moduli
stack over SpecZ parameterizing pointed stable curves of type (gx,nx) (i.e. the
quotient stack of the moduli stack of n-pointed stable curves in the sense of [K]
by the natural action of n-symmetric group) and Mg, .z the open substack of

M nyz parameterizing smooth pointed stable curves. Write ./\/ng ny,z for the
log stack obtained by equipping ./\/ng nx,z With the natural log structure associated
to the divisor with normal crossings My, nyz \ Mgy nyz C My ny z relative to
SpecZ.

Write X for the pointed stable curve associated to X* (i.e. the pointed stable
curve obtained by contracting the (—1)-curves and (—2)-curves of X*). Then we

obtain a morphism s o Speck — M,y ny z determined by X8 — s. Write sl)(;i for
the log scheme whose underlying scheme is Spec k, and whose log structure is the
pulling-back log structure induced by the morphism s — M z. We obtain a

9x,mx,
natural morphism SIXg — ME gxmy.z nduced by the morphism s — M

gx nx,Z and a
stable log curve

log def log —log
Xst - X XM;O)?"X’Z gx.nx+1,7Z
1 . . :
over sy® whose underlying scheme is X. Then there exists a log blow-up X log

X8 such that the underlying scheme of X8 is X.

1.2.2. Let 9% — X8 be a log geometric point and 708 — X8 — X8 the
composition morphism of the natural morphisms of log schemes. Moreover, suppose
that the image of the morphism of underlying schemes of 7°¢ — X% is a smooth
point of Xi. Write x — X and ¢ — X for the geometric points induced by
the log geometric points. Then we have a surjective homomorphism of log étale
fundamental groups (X8, 1°8) — m;(s'y%, 7'°%) (see [I] for the general theory of
log étale fundamental groups). We call

i (X, @) E ker(m (X%, 79%) — m (s, 7))

the admissible fundamental group of X* (i.e. the geometric log étale fundamental
group of X'°8). It is well known that 724 (X* r) independents the log structures
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of X'°8 and that there is a bijection between the set of open (resp. open normal)
subgroups of w3 (X* z) and the set of isomorphism classes of admissible (resp.
Galois admissible) coverings of X* over k.

On the other hand, by applying similar arguments to the arguments given above,
we obtain the admissible fundamental group 734" (X?%, x) of X3. Moreover, by [I,
Theorem 6.10], we have 734 (X* z) = rodm( X 7).

Since we only focus on the isomorphism class of 784™(X*®, x) in the present paper,
for simplicity of notation, we omit the base point and denote by

7T_;ixdm (Xo)

the admissible fundamental group 739" (X* z). Note that, by the definition of ad-
missible coverings, the admissible fundamental group of X*® is naturally isomorphic
to the tame fundamental group of X*® when X*® is smooth over k.

1.2.3. Remark. Unlike [T2], we do not consider the étale fundamental group of X \
Dy in general for the following reasons: (i) The étale fundamental group is not a
good invariant if X* is singular (since it does not contain the ramification information
of singular points of X*), and if we consider anabelian geometry from the point of
view of moduli spaces (since there does not exist a good deformation theory for
étale coverings of X \ Dx in positive characteristic if Dx # ). (ii) The results
of anabelian geometry of curves concerning étale fundamental groups are weaker
than the results of anabelian geometry of curves concerning tame (or admissible)
fundamental groups ([T2, Corollary 1.5]).

1.2.4. Let k' be an arbitrary algebraically closed field containing k. Then it is
well known that 734 (X®) & 7adm( X x . k'). Moreover, by applying [V, Théoréme
2.2 (c)], we obtain that 724™(X*) is topologically finitely generated, and that the
maximal pro-prime-to-p quotient 739 (X*)? of 724™(X*) is isomorphic to the pro-
prime-to-p completion of the following group

9x nx
<(1,1,...7Clgx,bl,...,ng,Cl,...,CnX | H[al,bl]HcJ:D
i=1 j=1

1.2.5. Let v € v(I'ye). Write 729m(X?) for the admissible fundamental group (=the

tame fundamental group) of the smooth pointed semi-stable curve X? associated to
v. Then we have a natural (outer) injection

T (X)) = m (X)),
We shall denote by 729 (X), w¢t(X), 7°°(I'x.) the admissible fundamental group
of the pointed semi-stable curve (X, (), the étale fundamental group of the under-
lying curve X of X*, and the profinite completion of the topological fundamental
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group of I'ye, respectively. Then we have the following natural surjective open
continuous homomorphisms (for suitable choices of base points):

ﬂ_zlidm(XO) — Wildnl(X) 5 Wft(X) —» W;OP(FX-).

Note that the isomorphism classes of m2d™(X*®), 724™(X), 7¢(X), and 7°°(I'x.)
depend only on the pointed stable curve associated to X°.

1.2.6. Let m3dm(xe)l gadm(x)sol 7¢t( X))l 71 (I'ye)*! be the maximal pro-
solvable quotients of 724 (X*), 73 (X)), 7(X), 7°"(I'x.), respectively. Then we
obtain the following natural surjective open continuous homomorphisms

,ﬂ_?dm(Xo)sol — W?dm(X)SOI s 7T~‘1ét(X)sol s ﬂtOp(Fxo)SOI.

We shall call
ﬂ,ixdm (Xo>sol
the solvable admissible fundamental group of X*.
Let v € v(I'xe). Write 724m(X*)%! for the solvable admissible fundamental group
of the smooth pointed semi-stable curve )Z'; associated to v. Then the natural
(outer) injection w24™(X®) < 72dm(X*) induces an (outer) homomorphism

ﬂ_?dm(X )sol N W?dm(X.)SOI.

We see that this homomorphism is an injection. Indeed, it follows immediately from
the following: Let f; : Y? — X be a Galois admissible covering over k whose Galois
group is an abelian group. Then we see that there exists a Galois admissible covering
g°® : Z* — X* over k whose Galois group is a solvable group such that the following
is satisfied: let Z, be an irreducible component of Z* such that g(Z,) = X,; then
the Galois admissible covering Z’ — X * over k induced by ¢°* factors through f
This means that the homomorphism W%dm(X; )0l — adm(x eyl mentioned above is
an injection.

1.2.7.  In the remainder of the present paper, we shall denote by
ITxe

either T24m(X®) or m3dm(X*)%! unless indicated otherwise. If Ilxye = 729M(X*), we
denote by
TPt 9 adm 30y 1, 4 260(x) ITiR 4 top(Ty),

If Ixe = 72dm(X*)°l we denote by

st (X)), I ! (X)), T S (D)
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1.2.8. Let H C IIxs be an arbitrary open subgroup. We write X7, for the pointed
semi-stable curve of type (gx,,nx,) over k corresponding to H, I'xs for the dual
semi-graph of X7, and rx, for the Betti number of I'ys. Then we obtain an
admissible covering

fn:Xgp—X°

over k induced by the natural injection H — Ily., and obtain a natural map of dual
semi-graphs

s
Hg:FX;I — I'xeo

induced by f};, where “sg” means “semi-graph”. Moreover, if H is an open normal
subgroup, then I'xs admits an action of II xe/H induced by the natural action of
IIx«/H on X3§,. Note that the quotient of [xe by IIxe/H coincides with I'y., and
that H is isomorphic to the admissible fundamental group (resp. solvable admissible
fundamental group) Ixs of Xp if Ilxe = m9™(X*®) (resp. ITye = ™ (X*)*!). We
also use the notation

Hcpt Hét Htop
) )

cpt ét top .
to denote II X, II . and II X respectively.

1.2.9. Let ¢ be a prime number. Let o € Hom(IIxe,Z/¢7Z) be a non-trivial element.
Then « induces a Galois admissible covering f3 : X2 — X°® over k with Galois
group Z/{Z (i.e. the Galois admissible covering of X* corresponding to the open
normal subgroup ker(a) C IIxe). We call f2 the Galois admissible covering of X*
corresponding to .

On the other hand, let f*:Y*® — X* be a Galois admissible covering with Galois
group Z/¢Z. Then there exists a non-trivial element o € Hom(Ilxe,Z/¢Z) such that
f2 = f*. We call a an element corresponding to (or induced by) f*.

1.2.10. We put
X= lim Xy Dg=  lm Dy, g™ lim Ty
HCIIye open HCIIye open HClIIye open
We shall say that
X*=(X,Dg)

is the universal admissible covering (resp. universal solvable admissible covering) of
X* corresponding to e if [xe = 789 (X*) (resp. Ilye = 724 (X*)%) and that
I' ;. is the dual semi-graph of X*. Note that we have that Aut()?’/X‘) = IIy., and
that I'¢, admits a natural action of IIy..
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1.2.11. Let v € v(I'ye), e € e®P(Pxe) U e (I'ye), € v(I'g.) a vertex over v, and
€€ e®(Tg.) Ue(Iz.) an edge over e. We denote by
II; € Ilx., Ie C1lxe.

the stabilizer subgroups of v and e, respectively. We see immediately that II; is
(outer) isomorphic to Ilg, of X¢, and that Is is (outer) isomorphic to an inertia
subgroup associated to the closed point of X corresponding to e. Then we have
L= 2(1)1’/, where (—)? denotes the maximal pro-prime-to-p quotient of (—). We
put

def
Ver(Ilxe) = {Is}seur.),
(o) def
Edg p(HX.) = {[’e\}’éeeop(r‘)?.)7

c def
Edg l(HX') = {IQ}QEeCI(F)?.)-
Moreover, if € abuts on v, then we have the following injections
Iz — II; — Ilx..

Note that Ver(ITy.), Edg® (Ilx.), and Edg®(ITx.) admit natural actions of T x. (i.e.
the conjugacy actions), and that we have the following natural bijections

Ver(ITye) /T xe — v(Txe),

~

Engp(ch>/HXo — GOP(F)(-),
Edg(Ilxe) /T xe = (I xe)
induced by I3 — v, Iz — e, Iz — e, respectively.

2. MAXIMUM AND AVERAGES OF GENERALIZED HASSE-WITT INVARIANTS

In this section, we recall some results concerning Hasse-Witt invariants (or p-rank)
and generalized Hasse-Witt invariants.

2.1. Hasse-Witt invariants and generalized Hasse-Witt invariants.

2.1.1. Let Z* be a disjoint union of finitely many pointed semi-stable curves over
k. We define the p-rank (or Hasse- Witt invariant) of Z* to be

def ;.
oz = dimg, (Hg (Z,F,)).
In particular, if Z°® is a pointed semi-stable curve, then we have oz = dimp, (ITh ®
F,), where Iz is either the admissible fundamental group or the solvable admissible
fundamental group of Z°, and (—)* denotes the abelianization of (—).
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2.1.2.  Let X* be a pointed stable curve of type (gx, nx) over an algebraically closed
field k£ of characteristic p > 0, ['xe the dual semi-graph of X*, and IIx. either the
admissible fundamental group or the solvable admissible fundamental group of X*°.
Let n be an arbitrary positive natural number prime to p and u,, C k* the group of
nth roots of unity. Fix a primitive nth root (,, we may identify p, with Z/nZ via
the map ¢’ + 1.

2.1.3. Let a € Hom(II3%, Z/nZ). We denote by X2 = (X,, Dx,) the Galois multi-
admissible covering with Galois group Z/nZ corresponding to «. Write Fy,_ for
the absolute Frobenius morphism on X,. Then there exists a decomposition ([Ser,
Section 9])
HY(X,,0x,) = H'(X,, Ox, )" ® H'(X,, Ox, )",

where Fy, is a bijection on H'(X,, Ox, ) and is nilpotent on H'(X,, Ox, )™. More-
over, we have H*(X,, Ox, )" = H*(X,, Ox, )™« ®p, k, where (—)"*a denotes the
subspace of (—) on which Fx_ acts trivially. Then Artin-Schreier theory implies that

we may identify H, % H(X.,F,) ®r, k with the largest subspace of H'(X,, Ox,)
on which Fly, is a bijection.
The finite dimensional k-linear space H, is a finitely generated k[u,]-module in-

duced by the natural action of u, on X,. We have the following canonical decom-

position
@ Ha,h
1E€EZ/NL
where ¢, € p,, acts on H,; as the (ﬁl—multiplication. We call

YVoui def dimg(Ha,), @ € Z/nZ,

a generalized Hasse- Witt invariant (see [Nakaj|, [T4] for the case of smooth pointed
stable curves) of the cyclic multi-admissible covering X2 — X*. Note that the above
decomposition implies

ox, = dimy(Ha) = > o

1€EZ/nZ
2.1.4. Let t € N be an arbitrary positive natural number, K,:_; the kernel of the
natural surjection Ilxe — 13 ® Z/(p' — 1)Z, and X' _ the pointed stable curve
over k determined by K,:_;. Next, we define two 1mportant invariants associated to
X°.
We shall call
FEE(X) & MAX N st (mp)=1{Vai | @ € Hom(II3%, Z/mZ),

a 0, i € (Z/mZ)\{0}}
the maximum generalized Hasse- Witt invariant of prime-to-p cyclic admissible cov-
erings of X°.
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We shall call
Avr,(X*) &f Jim TXk s
P t=o0 #(TIR% @ Z/ (p* — 1)Z)

the limit of p-averages of X°.

2.2. Two group-theoretical formulas. In this subsection, we recall two group-
theoretical formulas for maximum and p-averages of generalized Hasse-Witt invari-
ants proved by Tamagawa and the author. We maintain the notation and settings
introduced in Section 2.1.

2.2.1. Let F, be an algebraic closure of the finite field F,, x € Hom(II X.,F; ) such
that x # 1, and II, C IIy. the kernel of x. The profinite group II, admits a natural
action of Iy« via the conjugation action. We put

Hom(IL,, Z/pZ)[x] € {a € Hom(IL,, Z/pZ) @, F, | 7(a) = x(r)a

for all 7 € IIxe},
def .
v (Hom(Il,,Z/pZ)) = dimg (Hom(IL,,Z/pZ)[x])-

We define the following group-theoretical invariants associated to Il xe:

A (Tl xe) o max{7y, (Hom(1l,,Z/pZ)) | x € Hom(HX.,F;) such that y # 1},

dimg (K2 |, @ F,)

Avr,(ILy) € li R

Vi) = B S 0 276 - 12)

We see immediately that
Y (Ilxe) = y™*(X®), Avr,(Ilye) = Avr,(X°).

2.2.2. We have the following highly non-trivial formulas for v™**(Ilx.) and Avr,(Ilxs),
which were proved by applying the theory of Raynaud-Tamagawa theta divisors.

Theorem 2.1. We maintain the notation introduced above.
(a) We have

max _ gx — 17 Zf nx = 07

K (H”)_{gx+nx—z if nx #0.
(b) Suppose that T'Fs is 2-connected (1.1.1 (b)). Then we have (see 1.1.1 (c) for

v([xe )=, e(Txe)"=)
Avry(Ixe) = gx — rx — #(0(Txe) =) + #(e (Dxe)"=1).

Proof. (a) This is [Y5, Theorem 5.4]. (b) This follows immediately from the “in
particular” part of [Y3, Theorem 1.3]. Note that our notation differs from that of
[Y3, Theorem 1.3]. Moreover, if I'%% is 2-connected, then we have that #E>! < 1
for each v € v(['x.), and that #(Vi) = #(v(Txe)"=), #(Vis*=") = 0, and
=) = $(). 0
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Remark 2.1.1. In the present paper, we will use the formula for Avr,(Ilx.) when
#(v(Txe)"=1) = #(e(Txe)*=1) = 0.

Lemma 2.2. Let X?, i € {1,2}, be a pointed stable curve of type (gx,,nx,) over
an algebraically closed field k; of characteristic p and Ilxe either the admissible
fundamental group of X or the solvable admissible fundamental group of X?. Let

Cb:HXl’ —»HX20

be an arbitrary surjective open continuous homomorphism of profinite groups, Hy C

lxs an arbitrary open normal subgroup, and H o ¢~ Y(Hy). Then the following

statements hold:
(a) We have
YR (H) 2 " (Ha).
(b) Suppose that (gx,nx) = (9x,,nx,) = (9x,,Nx,). Moreover, suppose that one

of the following conditions are satisified:

o GY Ixs/Hy is a p-group.

o (#(G),p) =1.

e (G is a solvable group.

Then we have
AVI'p(Hl) 2 Avrp(Hg).

Proof. (a) Let m € Z-q be a positive natural number prime to p such that there
exists ap € Hom(HZ", Z/mZ) satisfying oy # 0 and 7,,, = 7" (H,) for some
Jj € (Z/mZ) \ {0}. Write Q2 for the kernel of the composition of the following
homomorphisms Hy — H3P = Z/nZ, Oy o ¢~ 1(Q5), and oy € Hom(H, Z/nZ)
for the homomorphism induced by ¢|y, and as. Let F, be an algebraic closure of
F,. Then Q" ®r, F, admits a natural F,[Z/nZ]-module structure. Moreover, we

see immediately that ¢|g, induces a surjective homomorphism of F,[Z/nZ]-modules
Qlfjab ®FP Fp - anb ®Fp Fp-
Then we obtain that 74, ; > Va,,;. Thus, we have v™*(Hy) > ~™*(H,).
(b) Let ¢ € N be an arbitrary positive natural number, Kp, 1 the kernel of
the natural surjection H; — H* @ Z/(p' — 1)Z. Suppose that G is a p-group. We

have that Galois admissible covering X7, — X corresponding to H; is étale. This
implies that X7, and X7, are equal types. We obtain

#H QL' —1)Z) = #(H3" @ Z/(p' — 1)Z).

Suppose that (#(G),p) = 1. Since X and X3 are equal types, H? is isomorphic to
HY . We have

#(H" QL —1)Z) = #(H3" ® Z/(p' — 1)Z).
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Then ¢|g, implies
def . dime(K}?ki,pta ®F,)
Avr,(H,) = lim — -
t=oo fH(HP” @ Z/(p" — 1)Z)

if either G is a p-group, or (#(G),p) = 1 holds.

Suppose that G is solvable. Then the lemma follows immediately from the lemma
when either G is a p-group, or (#(G),p) = 1. This completes the proof of the
lemma. U

dimp, (K2 .  @F
> Avr,(Hs) L Jim F, Hap -1 )
t=o0 #(H3" @ Z/(p' — 1)Z)

3. MODULI SPACES OF FUNDAMENTAL GROUPS AND THE HOMEOMORPHISM
CONJECTURE

In this section, we define the moduli spaces of fundamental groups and formulate
the homeomorphism conjecture, which are main objects of the series of the present
papers.

3.1. The weak Isom-version conjecture. Let p be a prime number, I, the prime
field of characteristic p, and Fp an algebraic closure of IF,. Let ./\_/lgm be the moduli
stack over Fp classifying pointed stable curves of type (g,n) and M,, C M%n the
open substack classifying smooth pointed stable curves. Let M,, and M,, be the
coarse moduli spaces of HM and M, ,,, respectively.

3.1.1. Let ¢ € M,, be an arbitrary point, k(q) the residue field of M,,,, and
k, an algebraically closed field containing k(g). Then the composition of natural

morphisms Speck, — Speck(q) — Mg,n determines a pointed stable curve Xz,
of type (g,n) over k,. Write 739 (X »,) for the admissible fundamental group Xp
and m34m(X ,;q)s‘)l for the solvable admissible fundamental group of Xp . Since the
isomorphism classes of 724 (X, »,) and madm (X ,;q)s"l do not depend on the choice of
k4, we shall write

i (q), 7 (q)

for madm(X r): madm (X ,;q)S"l, respectively. Moreover, we shall denote by

X;

and I'y the dual semi-graph of X7, where k(q) is an

the pointed stable curve X =)
algebraic closure of k(g). Let v € v(I';). Then the smooth pointed stable curve X e

of type (g,,ny) associated to v determines a morphism Spec k(q) — M, ,,,. We shall
write g, € My, n, for the image of the morphism and call g, the point of type (g,, ny)
associated to v.
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3.1.2.  We recall an equivalent relation on the underlying topological space |Mg7n\
of M, that was introduced in [Y4].

Definition 3.1. (a) Let ¢; € M,,, i € {1,2}, be an arbitrary point. We shall say
that g is Frobenius equivalent to gy if X, \ Dx, is isomorphic to X,, \ Dx,, as
schemes.

(b) Let ¢; € M,,,, i € {1,2}, be an arbitrary point. We shall say that ¢, is
Frobenius equivalent to ¢, if the following conditions are satisfied:

(i) There exists an isomorphism p : T'y, = Ty, of dual semi-graphs.

(ii) Let v; € v(I'y,), vo e p(v1) € v(L'y,), q1,5, the point of type (gu, , 7, ) associated
to vy, and ga,, the point of type (gy,,n,) associated to ve. We have that gy, is
Frobenius equivalent to go ,.

(iii) Let pyy 0y 1 T
by p. There exists an isomorphism ¢y, 4, : 9™ (q1,4,) — 789 (ga,,) such that the
isomorphism of dual semi-graphs T'y, , = T, . induced by ¢, v, (cf. [T4, Theorem
5.2] or [Y2, Theorem 1.2 and Remark 1.2.1]) coincides with p,, ,.

We shall denote by

10, = I'g,,, be the isomorphism of dual semi-graphs induced

q1 ~fe 42
if g1 is Frobenius equivalent to ga. We see that ~ . is an equivalence relation on the
underlying topological space [M, | of M, .,
(c) Let ¢; € M,,, i € {1,2}, be an arbitrary point, k, an algebraically closed
field containing k(g;), and X o the pointed stable curve of type (g,n) over k. We
shall say that X ’qu 1s Frobenius equivalent to X ,:qz if ¢; is Frobenius equivalent to ¢s.

The following result was proved by the author.

Proposition 3.2. Let ¢; € M, i € {1,2}, be an arbitrary point. Suppose q; ~ e
q2. Then we have that w2 (qy) is isomorphic to m%™(q) as profinite groups. In

particular, we have that 75°(qy) is isomorphic to ©5°(qy) as profinite groups.

Proof. See [Y4, Proposition 3.7]. O

3.1.3.  We put

def oy def (5=
mg,n = ’Mg,n’/ Nfeg ED/tg,n = ‘Mg,n’/ ~fes

def adm T def adm AT
g = {[m*™(@)] | ¢ € My} € Ty = {[m™(@)] | g € My},

def =sol def o -
Ty = T @] | ¢ € My} ST, = {[m7(9)] | ¢ € My},
where [729(q)] and [75°!(¢)] denote the isomorphism classes (as profinite groups) of
adm sol

7340 (g) and 75°(q), respectively. Let ¢ € M,,,. We shall write [q] for the image of
q in M, ,,. Then there are natural surjective maps of sets as follows:

sol : ﬁg,n — 11

sol

sol

s T (Q)] = (75 ()],
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dm . g7 e d
Tom - Mg = g, [q] = [777(q)],

sol def adm .
Tyn = SOl oy M, —»Hgn,

t dﬁf adm .
Tgn = Tgn [Mgn - My — g n,

t,s0l def _sol . sol
Tym = Tynlmg, + Mg — 17,

where “t” means “tame”. Moreover, we have the following commutative diagrams:

t

Tg,n
mg7n Hg?”

l l

a 71-g,n —sol
My, —2s 11

g?"’

where all vertical arrows are natural injections.

Proposition 3.3. We maintain the notation introduced above. Then we have
adm 0 _501 so
Wgcia( gn\mgn): gn\Hg,m 51( gn\imgn): \H .

Proof. The proposition follows immediately from [Y2, Theorem 1.2, Remark 1.2.1,
Remark 1.2.2; and Proposition 6.1] (see also Theorem 4.2 of the present paper). [

3.1.4.  We may formulate a moduli version of the weak Isom-version of the Grothendieck
conjecture for pointed stable curves over algebraically closed fields of characteristic
p > 0 (=the weak Isom-version conjecture) as follows:

Weak Isom-version Conjecture . We maintain the notation introduced above.
Then we have that

adm mg, s 1—[97

g7
1S a bijection as sets.

Moreover, we have the following solvable version of the weak Isom-version conjecture
which is slightly stronger than the original version.

Solvable Weak Isom-version Conjecture . We maintain the notation introduced

above. Then we have that |
T—=SO.

oo s My — 10,

1S a bijection as sets.
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3.1.5.  Write M(;n for the set of closed points of M,,, and ﬁjn for the image of

——=cl

M, of the natural map |Mg,| = 9My,,. Then we have the following result.

Theorem 3.4. We maintain the notation introduced above. Then the following
statements hold:
(a) We have that

cl —sol

ol 9 STl

g7n mg’,n/ g7n g?n

is quasi-finite (i.e. #((m3]ge )~ ([73°(q)])) < o0 for every [x3°(q)] € ﬁ:ojl)
(b) Suppose that g = 0. Then we have that

sol Cancl —sol
gvn|ﬁ;n P, gy,

s

15 an ingection, and that
== =5cl —=sol —cl
W;?rlz(mgyn \ iD/tg,n) g Hg,n \ 7-‘-;(,)le(g‘ng,n)'
In particular, the weak Isom-version conjecture and the Solvable Weak Isom-version

Congecture hold if (g,n) = (0,4).

Proof. Since [T4, Theorem 0.2] and [T5, Theorem 0.1] also hold for the maximal
pro-solvable quotients of tame fundamental groups, the theorem follows immediately
from [T4, Theorem 0.2], [T5, Theorem 0.1], [Y2, Theorem 1.2, Remark 1.2.1, Remark
1.2.2, and Proposition 6.1], and Proposition 3.3. U

Remark 3.4.1. The result (a) is called “finiteness theorem”. When ¢ € M, by
using the theory of Raynaud’s theta divisors, the finiteness theorem was proved
by Raynaud ([R3]), Pop-Saidi ([PS]) under certain assumptions, and by Tama-
gawa ([T5]) in general case. Furthermore, Tamagawa’s result was generalized to
the case where ¢ € M, ,, by the author ([Y2]) as an application of the combinatorial
Grothendieck conjecture for curves in positive characteristic.

3.2. Moduli spaces of admissible fundamental groups. We maintain the no-
tation introduced in 3.1. Moreover, we regard I, ,, and M, ,, as topological spaces
whose topologies are induced by the Zariski topologies of |M,,| and |M,,|, respec-
tively.

3.2.1. Let ¢ be the category of finite groups, G € ¢4 an arbitrary finite group, and
Homg,j(—, —) the set of surjective homomorphisms. We put

Uﬁgyn,G déf {[ﬂ-?dm(q)] € ﬁg,n | Homsurj (W?dm(Q)v G) 7é @},

ef adm adm
Uny e {[m34(q)] € 1L, | Homy(mi9 (), G) # 0},

ol

def so s SO
Uﬁzc”i“G = {[ﬂ-l l(q)] € Hg,n | Homsurj <7T1 I(Q)a G) 7£ ®}7
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def SO. SO. S0
Ungy, ¢ = {[m1"(q)] € TT3,, | Homu(m5°(q), G) # 0}
Then we obtain the following topological spaces

T —sol
(Hg,m Oﬁg,n)a (Hg,Tm OHg,n), (Hgm, Oﬁsol ) (

g,n

sol
Mg > Org)

gn
whose topologies O, On,,, Oﬁsol, and Opse, are generated by {Uﬁ nG}Geg,
{Un,.,..c}cey, {Uﬁol G}Ggg, and {Unbol G}aey as open subsets, respectively. For
simplicity of notatlon we still use the notation

= —sol sol
Hgm, g,m» Hg,n’ Hg,n

11

—sol

to denote the topological spaces (I1,.,, Om, ), (Hgn, On,,,), (I1 O—sol ) and (TT5°! Onsot, ),

gm? gm?

respectively.

Definition 3.5. We call
,,, (resp. ﬁ;oi)

the moduli space of admissible fundamental groups of pointed stable curves (resp.
solvable admissible fundamental groups) of type (g,n) over algebraically closed fields
of characteristic p, or the moduli space of admissible fundamental groups (resp.
solvable admissible fundamental groups) of type (g,n) in characteristic p for short.

adm

3.2.2. Continuous of the map w3 Let M:i be the log stack obtained by equipping

M,,,, with the natural log structure associated to the divisor with normal crossings
ﬂg,n\/\/lg’n relative to Spec Fp. Let A, be the stack over Spec Fp defined as follows:
For a scheme S, the objects of A4(S) are HM-admissible coverings ([M1, §3.9 Defi-
nition]) C* — D* over S of degree d (note that if S is an algebraically closed field of
characteristic p, then HM-admissible coverings are equivalent to the HM-admissible
coverings defined in Definition 1.1), where C* is a pointed stable curve over S, and
D* is a pointed stable curve of type (g,n) over S. By [M1, §3.11 Proposition and
§3.22 Theorem], the stack Ay is a separated Deligne-Mumford stack of finite type

over Spec Fp. Moreover, A, is equipped with a canonical log structure M4, — O4,,

together with a logarithmic morphism A% © Ay, My,) — ﬂl;i (obtained by
mapping C* — D® — D*) which is log étale (not necessary proper).

Let G be an arbitrary finite group. For any HM-admissible covering C'* — D* over
S, [M1, §3.10 and §3.11] imply that C* — D*® can be extended to a log admissible
covering C'°¢ — D198 gver S'°8 (M1, §3.5 Definition]). Since log admissible coverings
are finite Kummer log étale coverings, we shall say C'* — D*® over S a Galois HM-
admissible covering with Galois group G if C'°® — D'°¢ over S'°¢ is a Galois Kummer
log étale covering with Galois group G. Note that if S is an algebraically closed field
k of characteristic p, then a Galois HM-admissible covering can be regarded as a
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Galois admissible covering in the sense of Definition 1.1 by equipping certain sets of
isomorphisms of k-isomorphisms of branches of singular points (1.1.4).

Let Ag be the substack of Ay classifying Galois HM-admissible coverings with
Galois group G which is a union of some connected components of A, and
which is a separated Deligne-Mumford stack of finite type over Spec Fp. Note that
Ag may be empty. Moreover, we shall denote by .AIGOg the log stack whose underlying
stack is Ag, and whose log structure is the pulling-back log structure induced by
Ag = Ay ). Furthermore, we have a logarithmic morphism AS% — /\/l - which is
log étale (not necessary proper)

Theorem 3.6. We maintain the notation introduced above. Then we have that

—sol

adrn . sol .o
Ty Dﬁgn — Hgm, o Mg — 1

are continuous maps.

Proof. We only need to treat the case 7Tadm M, — Il,,. To verify the theorem,
it is sufficient to prove that the composmon of the natural maps

adm
gn

gn = Mg — g,

M

is continuous.

Let G be an arbitrary finite group. If Uy~ = (), then the theorem is trivial.
We may assume U # 0. Let ¢ € My, such that [radm(q)] € Ug,, ¢ k(q) an
algebraic closure of k( ), and

IqYg = X

a Galois admissible covering over k(q) with Galois group G. Then we obtain a
morphism

(23] : Spec k(q) = Ac

determined by fr. Let U — Ag be an étale altas. Then the morphism Spec@ —
Ag factors through a morphism Spec@ — U. Write qy € U for the image of
the morphism Specm U. Let q;; € U be a closed point (i e. an F -rational
point) contained in the topological closure of ¢y in U and ¢’ € M ¢ the image of
qp of U —» Ag — ./\/lgn — Mgn which is a closed point of Mgn Then we have

[radm(g] € Us,, - By replacing ¢ by ¢, to verify the theorem, we only need to

prove the theorem when ¢ is a closed point of Mgﬂv
Let Ofs) be the completion of strict henselization of Ag at [fg], S &t Spec O,

and S8 the log scheme whose underlying scheme is S, and whose log structure is
the pulling-back log structure of AIGOg induced by the natural morphism S — Ag
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(see [M1, §3.23] for explicit descriptions of S and S'°%). Moreover, we have a Galois
log admissible covering
f8 Y = X"
over S™°& with Galois group G. On the other hand, by forgetting the log structure of
gog’ we obtain a Galois HM-admissible covering f§ : Y§ — Xg over S with Galois
group G whose closed fiber (i.e. the fiber over the closed point of S) is f7.

Since Ag is a Deligne-Mumford stack of finite type over Spec Fp, by applying [V1,
Proposition 4.3 (1)], there exists a subring A C O which is of finite type over
Fp such that the Galois log admissible covering fjgog can be descended to a Galois
Kummer log étale covering

log . v log log
fgoYgo = Xg

over £'°8 with Galois group G, where E o Spec A. By the construction, the pulling-
back fr® X pios S'°8 via the natural morphism S'°8 — EY8 is f%. Moreover, by
replacing £ by an open subset of F, we may assume that the underlying schemes
Yr and Xp are geometrically connected over each point e € E. Then by forgetting
the log structure of f}EOg , we obtain a Galois HM-admissible covering

fr: Y —> X
over F with Galois group GG, and a morphism £ — Ag determined by f.
Since E is a scheme of finite type over Spec Fp, the image W of £ — Ag —
ﬂg,n — Mgm is a constructible subset of Mg,n containing q. Moreover, since the
image of the composition of the natural morphisms S — Ag — Mg,n — Mg,n is

dense in Mg,n, W is a dense constructible subset of M%n containing q. Then we
have that

W:|i|1WZ-

-----

of generality, we may assume g € W;. Since W; contains the image of S, we obtain
that W; is an open subset of M,,. This completes the proof of the theorem. Il

3.3. The homeomorphism conjecture. Next, we formulate the main conjectures
of the theory of moduli spaces of fundamental groups.

Homeomorphism Conjecture . We maintain the notation introduced above. Then
we have that the continous map

adm . qy7 =
Ty @ Mg = Uy
1s a homeomorphism.

Moreover, we have a solvable version of the homeomorphism conjecture as follows,
which is slightly stronger than the original version.
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Solvable Homeomorphism Conjecture . We maintain the notation introduced
above. Then we have that the continous map

Py —sol

sol
Ty My — Hg’n

1s @ homeomorphism.

Remark. Note that the (solvable) homeomorphism conjecture is completely different
from Grothendieck’s anabelian conjecture for moduli spaces of curves (i.e. a con-
jecture of Grothendieck based on a similar anabelian philosophy mentioned in 0.1.2
says that moduli spaces of curves are anabelian varieties in the sense of 0.1). Fur-
thermore, the (solvable) homeomorphism conjecture contains “moduli” information
(i.e. classifications information) of curves, and Grothendieck’s anabelian conjecture
for moduli spaces of curves does not contain any “moduli” information of curves.

3.3.1.  The main theorem of the present paper is the following, which will be proved
in Section 6.

Theorem 3.7 (Theorem 6.7). We maintain the notation introduced above. Let

sol

lq] € ﬁgln be an arbitrary closed point. Then w35 ([q]) and 73 ([q]) are closed
sol

points of ﬁO,n and ﬁo,m respectively. In particular, the homeomorphism conjecture
and the solvable homeomorphism conjecture hold when (g,n) = (0,3) or (0,4).

3.4. Some open problems. Based on the homeomorphism conjecture, many new
open problems and new conjectures can be formulated. In the present subsection, we
outlines a few open problems and conjectures concerning ﬁg,n that are of particular
interest to the author. Note that we may also formulate the problems and the

. . —sol
conjectures mentioned below for II_ .

3.4.1. Dimension and the generalized essential dimension conjecture. Let V' be an
irreducible closed subset of II,,, I C Z-, a (possibly infinite) subset, and V; C

V,i € I, an irreducible closed subset of II,,. We shall call ¢ oo {Vi}ier a chain
of irreducible closed subsets of V' if V;, C V, and V; # V, hold for all s,t € I such
that s > t. We sall call € a maximal chain of irreducible closed subsets of V' if the
following holds:

o Let ¢/ ¥ {V!}icr be a chain of irreducible closed subsets of V' such that

% C €¢'. Then we have € = ¥".

Moreover, we put length(%) o #(I) when % is a maximal chain of irreducible
closed subsets of V.
Let € be a maximal chain of irreducible closed subsets of V. We define the

dimension of V' to be

dim(V) = max{length(%) | ¢ is a maximal chain



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 33

of irreducible closed subsets of V'}.
We have the following problem:

Problem 3.8. (i) Let V be an irreducible closed subset of 11,,, and ¢;, i € {1,2},
an arbitrary mazimal chain of irreducible closed subsets of V. Does

length(%)) = length(%2)

hold?
(ii) Let Z be an irreducible closed subset of M, ,, and [qz] the generic point of Z.
Does

dim(Z) = dim(V ([7}*"(q2)]))
hold? In particular, do dim(Z) < oo, dim(M,,,) = dim(I,,), and dim(V ([739(q)])) =
0 for every [q] € ﬁ;ln hold? Moreover, Is m2%"([q]) a closed point of Ily,, for every
[q) € 9., 7
We maintain the notation introduced above. Tamagawa’s essential dimension
congecture (see T3, Conjecture 5.3 (ii)] for the case where [¢;] € 9, ,,) says that:

Let i € {1,2}, and let [¢;] € M,,, and V([g]) the topological clo-

sure of [¢;] in M,,,. Then we have dim(V ([¢;])) = dim(V([gr])) if

[ ()] = [ (g2)].
We see immediately that Problem 3.8 (ii) is a generalized version of the essential
dimension conjecture. To more conveniently compare with Tamagawa’s essential
dimension conjecture, we formulate a new conjecture as following:

Generalized essential dimension conjecture . Leti € {1,2}, and let [g;] € M.,
and V ([qi]) the topological closure of [g;] in M,,,. Then we have

dim(V ([q1])) > dim(V ([g2]))

if Homp® (mi4™ (qq), 759 (q2)) # 0, where Hom?2(—, —) denotes the set of open con-
tinuous homomorphisms of profinite groups.

At present, the essential dimension conjecture has been proved when (g,n) €
{(0,n),(1,1)} and [g], i € {1,2}, is a closed point of M,,, (see [Sar], [T4], [Y2]),
and the generalized essential dimension conjecture has been proved when (g,n) €
{(0,n),(1,n),(2,0)} and ¢, is a closed point of M, ,, (see Theorem 6.6 of the present
paper and [HY, Theorem 1.3]).

3.4.2. p-rank stratification and purity. Let 0 < o < g be an integral number. We
put

=0
Hgvn

) e, | dimg, (T ®,F,) < o},
and call ﬁ;’n the p-rank stratum of ﬁg,n with p-rank o. Note that ﬁ; is a closed

subset of II, ,,. Then we have the following problem:
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Problem 3.9. (i) Let S;, i € {1,2}, be an arbitrary irreducible component of ﬁ;n
Then does

dim(S;) = dim(Ss)
hold?

(ii) Let 1 < o < g, and let S°1, S be any irreducible components of Hgn AL
respectively. Then does

=0

dim(S°7 1) = dim(S7) —
hold? B
(111) Let S be an arbitrary irreducible component of H;n. Then does

dim(S) =29+n—-3+0
hold?

The above problem is an analogue of the purity of the p-rank strata of the moduli
stack M, ,, (see [FG, Theorem 2.3]).

3.5. Some results about the topology of II,,. In this subsection, we prove
some basic properties concerning the topology of ﬁgyn.

3.5.1. Firstly, we have the following proposition.

Proposition 3.10. We maintain the notation introduced above. Then the following
statements hold. B
(a) Let [739™(q)] € I1,,, and [75°(q)] € H be arbitrary points. Then we have
) =

V([m*™ (@) = {[m" ()] € Hgn | Homsum(ﬂ’i‘dm(Q) T () # 0},

V([m(@)]) = {[m(¢)] € T, | Homau (7 (q), 71(¢))) # 0},
where V ([789™(q)]) and V([ l(q)]) denote the topological closures of [m3%™(q)] and

[7°4(q)] in T, and IT,
(b) We have that

g TESpEctively.

1, CI,,, I CIT,,

gn =
are open subsets. o
(c) Let Z be an arbitrary irreducible closed subset of Sﬁgn Then V(m29™(Z))

and V(m$0L(Z)) are irreducible closed subsets of Iy, and Hgn, respectively, where
V(ﬂ'adm(Z)) and V(790 (Z)) denote the topological closures of 25" (Z) and w5 (Z)

g,m

m Hg n and T’

irreducible. B
(d) Let V' be either an irreducible closed subset of 11, or an irreducible closed

g Tespectively. In particular, the topological spaces Hgn and HSO1 are

subset of ﬁ:i),ll. Then V' has a unique generic point.
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(e) Let [q] € ﬁjn Then we have that dim(V (724 ([q]))) = 0 if and only if

g)n
adm

w20 ([q]) is a closed point of Ty,

Proof. (a) follows immediately from the definitions of Of 4 and Ofsol , respectively.

(b) Let [r39m(q)] € I1,,, be an arbitrary point and 73 (g) the set of finite quo-
tients of 724 (g). Moreover, since 739 (q) is topologically finitely generated, we
have a subset of open normal subgroups {H,};ey of m39™(q) such that H; C Hj,

for any j; > j2, and that

73 (g) 2 i 4 (g) /.

JeN

We put S(q) & {Wadm( )/H;, j € N} C 7%™(q). We see that, in order to prove
that II,, is an open subset of ﬁg,n, it is sufficient to prove that, for every point
2] € My, there exists a finite group G € S(gz) such that Ug 5 is contained in
I, .
Suppose that Uy N (11 ,,\II,,) # 0 for all G € S(g,). Since T2 is continuous
(i.e. Theorem 3.6) and the set of generic points of M, \ M., is ﬁmte, there exists

a generic point [q] of 9, \ M, ,, such that

adm
(71 € () Un,,.c
GeS(q2)

Then the set

Homiaus (787" (), 73" (42)) = Jim Homay (" (41), G)
GeS(q2)

is not empty. Thus, there is a surjective open continuous homomorphism ¢ :
edm(g) — adm(qg). Note that ¢ induces an isomorphism of maximal prime-to-
p quotients ¢ : ()P 5 e (g0
By applying [Y2, Lemma 6.3], there exists an open characteristic subgroup H; C
724 (¢1)P such that the pointed stable curve Xf of type (9xp,sxy,) Over kg,
corresponding to H; satisfying the following conditions:

e %y is 2-connected;
Hy
° #(’U(FXZH)I’SI) = 0;
e the Betti number ry, of the dual semi-graph of X}, is positive.

Let H, & ¢¥ (Hy) C m™(gy)?". Then we obtain a smooth pointed stable curve Xp;_

of type (gxy,,nxy,) over kg, corresponding to Hy. Since H; is an open character-
istic subgroup, we obtain (gx, nx,, ) = (9xy,,nxy,). Then Theorem 2.1 (b) and
Lemma 2.2 (b) imply rx,, < 0. This contradicts rx, > 0.
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Similar arguments to the arguments given in the above proof imply that Hsg?}l is

an open subset of ﬁ;?:l. This completes the proof of (b).

(c) is trivial.

(d) We only treat the case where V is an irreducible closed subset of II,,. Let
Gen(V) be the set of generic points of V. Since every closed subset of ﬁgm has a
non-empty set of generic points, we have Gen(V) # 0. Let [ (q,)], [m39%(qy)] €
Gen(V) be arbitrary generic points. Let 731™(—) be the set of finite quotinets
of m3m(—) and G € 7% (q;) an arbitrary finite group. Then Ug,,c NV # 0.
Thus, [7{"(g2)] € Ug,, o N V. This means that 74" (q1) € 75" (ga). Similar
arguments to the arguments given in the above proof imply 73 (q;) 2 73™(g).
Then we have 13 (q;) = 73 (o). Since admissible fundamental groups of pointed
stable curves are topologically finitely generated, [FJ, Proposition 16.10.6] implies
[radm(g)] = [729m(gy)]. This completes the proof of the proposition.

(e) The “if” part of the proposition is trivial. We only need to prove the “only if”
part of the proposition.

Let [739™(¢")] € V(729" ([g])) be an arbitrary point and V ([7{*"(¢')]) the topolog-
ical closure of [r3m(¢')] in II,,,. Then we have that V([r39™(¢")]) is an irreducible
closed subset contained in V(7™ ([q])). Since V(m29([q])) is an irreducible closed
subset of dimension 0, we obtain

V(mgn™(la) = V(=" (@)).

This means that there exist surjective open continuous homomorphisms

ﬂ,zlxdm(q) s 7Tzlaudm(q/)’ 'ﬂ'?dm(q/) s WTdm(q>-
adm

Then we obtain 783%™ (g) = 7% (¢’). Since admissible fundamental groups of pointed
stable curves are topologically finitely generated, [FJ, Proposition 16.10.6] implies
[ (q)] = [739(¢')]. Thus, we obtain V(m29"([q])) = [739™(¢)]. This completes

the proof of the proposition. O

3.5.2.  Next, we prove that the dimension of ﬁg,n has a low bound.

Proposition 3.11. The topological space ﬁgﬁn 1s noetherian and
39 — 3+ n < dim(Il,,).

Proof. The noetherian property of ﬁgyn follows immediately from the continuity of
the map ﬂgf}lm and the fact that M,,, is noetherian.

Let T" be an arbitray semi-graph and w : v(I') — Z>( a map such that (I';w) =
(I'xe,wxe) for some pointed stable curve X* of type (g,n) over an algebraically
closed k, where I'ys denotes the dual semi-graph of X*, and wy. : v(I'xe) —
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{gv}vev(rye) is the map defined as v — g, (recall that g, is the genus of the smooth
pointed stable curve assoicated to v (1.1.3)). We put
def

C(lw) = {g € Mgy | (xg,wxy) = (I, w)}

We have the following combinatorial stratification (e.g. see [C, Section 4.1])

Mg,n = |_| C(F>w)
(')

such that C(I'1,w;) € C(I'g,ws) if and only if (I'1,wy) > (I'2,ws) (ie. (I'g,ws) is
a weighted contraction of (I'y,w;), see [C, (2.27)]). Then we see immediately that
there exists a chain of irreducible components

§3g—3+n - §39—3+n—1 c---C g1 - §0 = Mg,na
where S;, i € {0,...,39 — 3+ n}, is an irreducible component of some C(I",w) such
that S; # S; if ¢ # j, and S; denotes the topological closure of S; in M.
Let ¢;, i € {0,...,39g — 3 + n}, be the generic point of S;. Then there exist
surjections of the admissible fundamental groups

dm( dm(

WTdm(QO) —» WTdm((h) — .o Ty (13973+n71) — Ty Q3gf3+n)'

By [Y2, Theorem 1.2] or [Y6, Theorem 0.3], each surjection of admissible funda-
mental groups mentioned above is not an isomorphism since the dual semi-graphs
of {X? }i are not equal. We have

V([m ™ (@sg-3+n)]) € -+ S V(7" (@1)]) € Ty
such that

V([r*™(a)]) 2 V({7 (@), V(7™ (@)]) # V([ri*™ ()
if 1 < j. We complete the proof of (b). d

Remark 3.11.1. At the time of writing this paper, the author still does not know
how to prove that dim(Il,,) < oco.

PART II: RECONSTRUCTIONS OF GEOMETRIC DATA FROM
OPEN CONTINUOUS HOMOMORPHISMS

4. RECONSTRUCTIONS OF INERTIA SUBGROUPS AND FIELD STRUCTURES

In this section, we prove that the inertia subgroups and field structures associated
to marked points can be reconstructed group-theoretically from open continuous ho-
momorphisms of admissible fundamental groups (or solvable admissible fundamental
groups). The main results of the present section are Theorem 4.11 and Theorem
4.13.
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4.1. Anabelian reconstructions.

4.1.1. Let P be a category of profinite groups whose class of objects Ob(P) consists
of profinite groups, and whose class of morphisms Homp (II, II') is the class of open
continuous homomorphisms of IT and II’. Let IT € P, and let &y be a category whose
class of objects Ob(Syp) is a set of subgroups of II, and whose class of morphisms
Home, (H, H') for any H, H' € &y is defined as follows: the unique element of
Homg, (H, H') is the natural inclusion when H C H’; otherwise, Homg, (H, H') is
empty. We call Gy a category associated to II.

4.1.2. Let S be a category whose class of objects Ob(S) is the class of categories as-
sociated to profinite groups, and whose class of morphisms Homg (&, &) consists

of the classes of functors defined as follows: 0s € Homg (S, Si) if there exists an

open continuous homomorphism 6 : IT — II' such that & = {H o 0 (H)} res,y

and that 6s : Sy — Sy, H — H'; otherwise, Homg(Sy, Sy) is empty.

There is a natural functor 7 : & — P defined as follows: Let &y, S» € S be
categories associated to profinite groups II, II', respectively; we have 7(&y) = II,
7(6w) = II', and 7(fs) = 6. We see immediately that 7 : & — P is a fibered
category over P.

Definition 4.1. Let ¢ € {1,2}, and let F; be a geometric object (in a certain cate-

gory), Iz a profinite group associated to the geometric object F;, and &; &f Sn,, a
category associated to IIx,. Let Invg, be an invariant depending on the isomorphism
class of F; (in a certain category) and Addz,(S;) an additional structure associated
to &; (e.g. Addx (6;) = &;) on the profinite group 1%, depending functorially on
Fi and G;.

(a) We shall say that Invz, can be reconstructed group-theoretically from Iz, (or
Invy, can be induced group-theoretically from Ilz,, or IIz, induces Invz, group-
theoretically) if Iz, = Ilz, implies Invz, = Invz,.

(b) We shall say that Addz,(&2) can be reconstructed group-theoretically from
Iz, (or Addz,(&;3) can be induced group-theoretically from Ilx,, or Iz, induces
Addg,(S,) group-theoretically) if every isomorphism 6 : I — Ilz induces a
bijection 0, : Addz (&) = Addz,(S,) which preserves the structures Addz, (&)

and Addz,(6,), where &; < IIx, Xg115, G2 (i.e. the fiber product in the fibered
category S over P).

(c) Let ji, j2 € {1,2} distinct from each other, and let 0 : IIx, — Il be
an open continuous homomorphism of profinite groups and &, = Ilx, X, Go.
We shall say that a map 0, : Addz, (&;) — Addz, (6;,) can be reconstructed
group-theoretically from 6 : Iz, — Ilz, (or 0.4 @ Addz, (&;,) — Addz, (6;,) can
be induced group-theoretically from 6 : Il — Ilgz, or 6 : IIx — Ilz, induces
Oad : Addz, (6;,) — Addz, (&;,) group-theoretically) if the following holds: Let J7,



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 39

i € {1,2}, be a geometric object, II 7/ a profinite group associated to the geometric
object Fj, 0; : Iz = Il an isomorphism of profinite groups, @' : Uz — g,

G, ' 7 %o, 1 ©; Addy/(6)) the additional structure on the profinite group Il
induced by ;. Moreover, suppose that we have the following commutative diagram
of profinite groups:

6/

My —2 T
ell egl
0
H]:1 — H]:Q.

Then the above commutative diagram of profinite groups induces the following com-
mutative diagram of additional structures

J1 J2

ojl,adJ( ejz,adJ(

Addy, (6;,) 24 Addy, (65,)

Addy (8),) "5 Addg (),)

which preserves the structures of additional structures.

Remark 4.1.1. Let us explain the theory of mono-anabelian geometry introduced
by Mochizuki. The classical point of view of anabelian geometry (i.e. the anabelian
geometry considered in [G]) focuses on a comparison between two geometric objects
via their fundamental groups. Moreover, the term “group-theoretical”, in the clas-
sical point of view, means that “preserved by an arbitrary isomorphism between the
fundamental groups under consideration”. We shall refer to the classical point of
view as “bi-anabelian geometry’. Then Definition 4.1 is a definition from the point
of view of bi-anabelian geometry.

On the other hand, mono-anabelian geometry focuses on the establishing a group-
theoretic algorithm whose input datum is an abstract topological group which is
isomorphic to the fundamental group of a given geometric object of interest (resp.
a continuous homomorphism of abstract topological groups which are isomorphic to
a continuous homomorphism of the fundamental groups of given geometric objects
of interest), and whose output datum is a geometric object which is isomorphic to
the given geometric object of interest (resp. a morphism of geometric objects which
is isomorphic to a morphism of given geometric objects of interest). In the point of
view of mono-anabelian geometry, the term “group-theoretic algorithm” is used to
mean that “the algorithm in a discussion is phrased in language that only depends
on the topological group structures of the fundamental groups under consideration”.
Note that mono-anabelian results are stronger than bi-anabelian results.



40 YU YANG

We maintain the notation introduced in Definition 4.1. Then the mono-anabelian
version of Definition 4.1 is as follows:

(a) We shall say that Invz, can be mono-anabelian reconstructed from Iz, if there
exists a group-theoretical algorithm whose input datum is IIx,, and whose output
datum is Invg,.

(b) We shall say that Addz, (S;) can be mono-anabelian reconstructed from Iz,
if there exists a group-theoretical algorithm whose input datum is Iz, and whose
output datum is Addg,.

(c) Let j1, jo € {1,2} distinct from each other, and let 6 : IIx, — IIz, be an
open continuous homomorphism of profinite groups and &; = Iz, Xon,, G2. We
shall say that a map (or a morphism) .44 : Addr, (&;,) — Addz, (&;,) can be
mono-anabelian reconstructed from 6 : Iz — Iz, if there exists a group-theoretical

algorithm whose input datum is 0 : [Ix, — Ilx,, and whose output datum is f.4q :
Add]:j1 (6j1) — Add]:72 (6]‘2).

4.1.3. Let i € {1,2}, and let X! = (X;, Dx,) be a pointed stable curve of type
(9x,,nx,) over an algebraically closed field k; of characteristic p; > 0, I'xs the dual
semi-graph of X7, and Ilxs either the admissible fundamental group or the solvable
admissible fundamental group of X?. We have the following result:

Theorem 4.2. We maintain the notation introduced in 1.2.7 and 1.2.11. Then the
data

Pis (annXi)v Hét.‘? Hg(()& ver(HXi’>v Edgop(HX;)a Edgd(HXi')7 FX;
can be reconstructed group-theoretically from Ilys.

Proof. See [Y2, Theorem 1.2, Remark 1.2.1, Remark 1.2.2, and Proposition 6.1] and
[Y5, Theorem 6.3]. O

Remark 4.2.1. [Y5, Theorem 1.3] gives a group-theoretical formula for (gx,,nx,).
Then we obtain that the characteristic p; of k; and the type (gx,,nx,) can be mono-
anabelian reconstructed from Ilys. 1In fact, we have that ¢, %Y, Ver(Ilxs),

Edg® (ILy.), Edgd(HXi-), and I'xs can be mono-anabelian reconstructed from Ilxs
(see [Y6, Theorem 0.3]).

We do not use the term “mono-anabelian reconstruction” in the present paper.
On the other hand, all of the results proved in Section 4 and Section 5 can be
generalized to the case of mono-anabelian reconstructions.

4.1.4. The following lemma will be used in the remainder of the present paper.

def def
Lemma 4.3. Suppose that p = p; = py and (g9x,nx) = (9x,,7x,) = (x4, 1x,)-
Let ¢ : lxs — lxs be an arbitrary open continuous homomorphism. Then ¢ is a
surjection.
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Proof. Let 11, o ¢(Ilxs) C Ilxs be the image of ¢ which is an open subgroup
of Ilxs. Let X3 = (X4, Dx,) be the pointed stable curve of type (gx,,nx,) over
ko induced by II, and X; — XJ the admissible covering over £y induced by the
natural inclusion Il < Ixs. The Riemann-Hurwitz formula implies gx, > gx
and ny, > ny. Moreover, by considering the maximal prime-to-p quotients of
IIxs and 1y, the natural surjection Ilxs — II; induced by ¢ implies 2gx + nx >
29x, + nx,. Then we have (gx,nx) = (gx,,nx,). This means that the admissible
covering X$ — X3 is totally ramified over every marked point of Dx,. Moreover, the
Riemann-Hurwitz formula implies that [Ilx, : IIy] # 1 and (g9x,nx) = (9x,,nx,) if
and only if (gx,nx) = (0,2). Since X! is a pointed stable curve over k;, we obtain
[ILxs : IIg] = 1. Thus, ¢ is a surjection. O

4.2. Reconstructions of inertia subgroups.

4.2.1. Settings. We maintain the notation introduced in 4.1.3. In the remainder
def def

of this subsection, we suppose that p = p; = py and (gx,nx) = (9x,,nx,) =
(nga an)' Let

¢ 11 X — 11 X3
be an arbitrary open continuous homomorphism. By Lemma 4.3, we see that ¢ is
a surjective open continuous homomorphism. Let i € {1,2}, and let P be the set
of prime numbers, ¥ C B\ {p} a subset, H?Q. the maximal pro-X quotient of ILye,

pr; : s — I}, the natural surjective homomorphism, and
@7 Tys = Iy,

the isomorphism induced by ¢. In particular, if ¥ = B\ {p}, we use the notation
IT%. and 1 « — IT%, to denote IT, and ¢*, respectively.

4.2.2. Firstly, we have some lemmas concerning types of admissible coverings.

Lemma 4.4. We maintain the notation introduced above. Then we have that H;?_f
(1.2.7) can be reconstructed group-theoretically from Uxe, and that the (surjective>
open continuous homomorphism ¢ : llxs — llxs induces a surjective open continu-
ous homomorphism

oI o 11
group-theoretically. Moreover, the following commutative diagram of profinite groups

¢
HXI' —_— HX20

Lo

t PP t
e 2
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can be reconstructed group-theoretically from ¢.

Proof. By Theorem 4.2, we have that (gx, nx) can be reconstructed group-theoretically
from 1II Xs- If nx = 0, the lemma is trivial. Then we may assume ny > 0.

Let H; C IIxs be an open subgroup. Then the Riemann-Hurwitz formula implies
that the admissible covering X}, — X? over k; induced by H; C Ilys is étale over
Dy, if and only if gx,, = [llx; : H;J(gx — 1) + 1. We put

Eth (Ilxs) oof {H; C Il is an open normal subgroup

| 9xy, = [lxs : Hil(9x — 1) + 1}

C Etp, (HXi.) def {H; C [Ty is an open subgroup

| 9x,, = [[Ixe + Hil(9x — 1) + 1}
By Theorem 4.2, we have that Etrg);?‘(ﬂ x¢) and Etp, (Ilxs) can be reconstructed
group-theoretically from ITye. Since

IS/ () Hi=lx/ (] H

HiGEt%O;;(HX_o) H»L‘EEtDXi (sz.)

K3

we obtain that Hg?.t can be reconstructed group-theoretically from Ixe..

Let H, € Bt} (Ixy), Hy = ¢7'(Hy), and G = Tlxy/Hy = Ty /Hy. We will

prove that H; € Etfg);f‘(ﬂ xe). Let ff + X3 — X7 be the Galois admissible covering
over k; with Galois group G corresponding to Hy, 1 € Dy, a marked point of X7,
and e, (71) the ramification index of a point of S (x1). Since H, € EtnDO;?(HXQ-),
we have gx,, = #(G)(gx —1) +1 and nx, = #(G)nx. By applying the Riemann-
Hurwitz formula, we obtain

9xw, = #(G)gx =) +1+5- > &)

G
S o . o

z1€Dx, Ble (xl)

By applying Theorem 2.1 (a) and Lemma 2.2 (a), the surjective homomorphism
é|g, : Hy — Hy induces the following inequality (see 2.2.1 for y™**(H,)):

YON(HY) 42 = gxy, + nxy, =7 (Ha) +2 = gx,, + xy, -
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Then we obtain

€ Xz (& X
ZElEDxl le 1 $1€Dx le 1

= HOox D+ 1+ SO+ Y O

CE1€DX ele (x1>

> #(G)(gx —1) + 1+ #(G)nx

> _#G) #(G)nx.

z1€Dx, le

Thus, we have

Since #(Dx,) = nx, we see immediately that ey, (z;) = 1. This means that f7,
is étale, and that H, € Etnorm(H x¢). Thus we may define the following surjective
homomorphism

oM IR S/ () H—-OREy/ () H

Hi B (Txe) Ha €B (T xg)

which is induced by ¢ group-theoretically. Moreover, the commutative diagram

@
HXI —_— HX2-

l l

t Pt t
HE&. — Hg&.

follows immediately from the definition of ¢°P*. This completes the proof of the
lemma. ]

Lemma 4.5. Let ¢ be a prime number, Hy C Ilxy an open normal subgroup, and

H, def ¢~ (Hy) C IIxs. Suppose that G et [xs/Hy = lxg/Hy is a cyclic group

which is isomorphic to Z/lZ. Then we have
(gXH1 Xy ) = (gXH2 ) nXHQ)'

Proof. Let i € {1,2}, and let f; : X}, — X7 be the Galois admissible covering over
k; with Galois group G corresponding to H;. Suppose that £ = p. Then the definition
of admissible coverings implies that f7. is étale. Thus, we have (gx, ,nx, ) =
(94, "xy, ). Then we may suppose £ # p.

By the Riemann-Hurwitz formula, we have (see 1.1.5 for e?g’:a)

1 ra
9xu, =lgx — 1) +1+ 5#(6(}2 )(€ = 1),
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nix, = #EDE) + Unx — #(E)).

By applying Theorem 2.1 (a) and Lemma 2.2 (a), the surjective homomorphism
é|g, : Hy — Hy implies

YHE(HL) + 2 = gxy, T nxy, 27V (Ha) +2 = gxp, + 0y,

Then we have

1 op,ra op,ra op.ra
Ugx = 1)+ 1+ ok (€ ") (0= 1) + #(ep, ™) + Ly — #(e7,)
= 1 op,ra
Ugx = 1) +1+nx +5(1 - OH(EP™)
1 op,ra op,ra op.ra
2 lgx = 1)+ 1 o (e ) (0= 1) + # (e ™) + Ly — # (e )

1 op,ra
=lgx —1)+1+Inx + 5(1 — 6)#(efi’2 ).
Then we obtain
#(Cpy ) < #(er)-
Let 0 <m < nx. We put

£ .
Nim o {N; C Ilxs is an open normal subgroup

| Ix; /Ni = Z/UZ and #(e;™) = m},

def
Nizm = | Mg
0<j<m
Here f%. denotes the Galois admissible covering over k; corresponding to N;. The

isomorphism ¢” induces a bijective map @} : No<py —+ M <ny, Na = ¢~ (Ny). To
verify the lemma, it sufficient to prove that ¢; induces a bijection

¢Z|N2,m : N27m :> NLm

We note that since (gx,nx) = (9x,,7x,) = (9x,, Nx,), the isomorphism ¢ implies
#(N1;) = #(Ny;) for each 0 < j < ny. Then by Lemma 4.4, we have a bijection
G5 Nao : Nop = Nio. We prove ¢f|n,,. : Nowm — Ni,m by induction on m. Sup-
pose that m > 1. The inequality #(e},™) < #(e},"™") concerning the cardinality

of branch locus implies that we have a bijection ¢j|n; ., @ Nocm — Ni<m. By
induction, ¢f|x; ., : No<m—1 = N1 <m-1 is a bijection. Then we obtain

¢Z|N2,m : NQ,m :> Nl,m-
This completes the proof of the lemma. O



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 45

Corollary 4.6. Let Hy C lxs be an open normal subgroup and H, def

¢~ (Ha) C
Ilxs. Suppose that G def [lys/Hy = lxg/Hy is a finite solvable group. Then we
have
(gXH17nXH1> = (gXH27nXH2)'

Proof. The corollary follows immediately from Lemma 4.5. U

Lemma 4.7. Let Hy C Ilxy be an open normal subgroup and H, et ¢~ (Hy) C Ixs.
Suppose that Hy contains the kernel of the natural homomorphism Ilxs — Hg?; (i.e.
the admissible covering corresponding to Hy is étale over Dx, ). Then we have

(gXHl ) nXHl) = (gXH2 ] nXHQ)'
Proof. By Lemma 4.4, we have that H; contains the kernel of the natural homomor-
phism IIxs — Hi?lf (i.e. the admissible covering corresponding to H; is étale over
Dyx,). Then the lemma follows immediately from the Riemann-Hurwitz formula. [

Definition 4.8. Let II be an arbitrary profinite group and m,n € N positive natural
numbers. We define the closed normal subgroup D,,(II) of II to be the topological

closure of [II, IT|TI", where [I1, IT] denotes the commutator subgroup of II. Moreover,
we define the closed normal subgroup Dém)(ﬂ) of II inductively by D,(qo)(H) o 11,
D) ¥ D, (1), and DY (1) ¥ D,(DY D)), j € {1,...,m — 1}. Note that

#(I1/ D,(zm)(H)) < oo when II is topologically finitely generated.

lxe. Then there exist open normal subgroups Hy C No C Ilx; of lxs and Hy def

¢~ (Hy) € Ny C lxs of llxs such that

Proposition 4.9. Let Ny C Ilxs be an arbitrary open subgroup and Ny def ¢~ H(Ny) C

(gXHl » Xy, ) = (gXH2 » Xy, )
Proof. If ny = 0, then the proposition is trivial. We may assume that nxy > 1. Let
i € {1,2}, and let M; be an open normal subgroup of L xe such that M; C N; and

¢~ (My) = M. By replacing N; by M;, we may assume that N; is an open normal

subgroup of Ilys. We put G et [Ixs /N1 = Ilxs /Ny. Write m for [G : G,], where G,

is a Sylow-p subgroup of G. Then we have (m,p) = 1.
Moreover, let m’ be a natural number prime to p. Corollary 4.6 implies that by
replacing X and N; by Xl.)(Q)(H ) and N; N ij/) (ILxe ), respectively, we may assume
m! X ¢

that gx > 2 and nx > 2, and ‘that there exists an irreducible component of X?
such that the genus of the normalization of the irreducible component is > 2, where

;(Q)m ) denotes the pointed stable curve over k; corresponding to Dfs,) (ITxs).
m Mo ;

First, suppose that G is a simple finite group. By applying Corollary 4.6, we may
assume that G is non-abelian. We have the following claim:
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Claim: To verify the proposition, we may assume that nx is a posi-
tive even number.

Let us prove this claim. Suppose that p # 2. Let Ry C Ilxs be an open subgroup

such that #(Ilxs/Ry) = 2, and that Ry 2 ker(Ilxy — HCpt) (i.e. the cyclic Galois

admissible covering corresponding to R, is étale). Let Ry dff ¢_1(R2) C Ilxs. Then

Corollary 4.6 implies that by replacing H; and Ilxs by H; N R; and R;, respectively,
we may assume that ny is a positive even number. Suppose that p = 2. Let
¢ >> 0 be a prime number such that (¢,2) = (¢,#(G)) = 1. By [R2, Théoreme
4.3.1], there exists an open normal subgroup R3 C Ilys such that #(Ilx,/R;) = ¢,

Ry D ker(Ilxs — Hg?;), and

dimg, (Ry™ @ F,) > 0,

Let R} © ¢~ (Rj3) C Tlxs. Then we have #(Ilxs /R;) = £ and dims, (R} ™" ©F,) > 0.

Thus, we may take an open normal subgroup R, C Rj such that

Txs/R) & Z/27 x L/VZ.

We put R} L -1 (R5). Then the construction of R} implies that Ilxs / R} = Z/27 %
Z/V7Z. Corollary 4.6 implies that by replacing H; and Ixs by H N R/ and R,
respectively, we may assume that nx is a positive even number. This completes the
proof of the claim.

Since nx is a positive even number, there exists an open normal subgroup Q2 C
ILys such that Ixs/Q2 = Z/mZ, and that the Galois admissible covering f3, :
Xy, — X3 induced by Q3 is totally ramified over every marked point of Dx,.
Write Q; for ¢~1(Q3) and fo, + X&, — X7 for the Galois admissible covering with

Galois group Ilxs/Qy = Z/mZ induced by Q1. Then Corollary 4.6 implies that

1o, is totally ramified over every marked point of Dy,. Let H; &f N; N Q; and

Ti, s X, & XR, xxe X3, — X7 the Galois admissible covering over k; with Galois
group G x Z/mZ. By Abhyankar’s lemma, we obtain that the natural morphism
Xy, — X, induced by the inclusion H; C @Q; is étale over every marked point of
Dx, . Then the proposition follows immediately from Corollary 4.6 and Lemma
4.7. This completes the proposition when G is a simple group.

Next, let us prove the proposition in the case where G is an arbitrary finite group.

Let G, C Gy, C---CG, G bea sequence of subgroups of G such that G;/G,_;
is a non-trivial simple group for all j € {2,...n}. In order to verify the proposition,
it is sufficient to to prove the proposition when n = 2. Let P5 be the kernel of the
natural homomorphism II X3 = G —» Gy and P def qﬁ_l(PQ). Then by replacing
G by G7 and by applying the proposition for the simple group G, we obtain an

open normal subgroup Ty C P, C Ilys such that (gXT1 . XTl) = (gXTQ,n XTQ), where
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T, ¢~ (Ty), and (gx,,,nx,, ) denotes the type of the pointed stable curve X3,

corresponding to T;.
def def

If T; € N;, then we may put H; = T;. If N; does not contain T;, we put O; =
T; N N;. Then we have T;/O; = G /G;. Note that G/G is a simple group. Then the
proposition follows from the proposition when we replace X and G by X7. and the
simple group G /Gy, respectively. This completes the proof of the proposition. [

Lemma 4.10. Let { be a prime number distinct from p, I;,J; € Edg®™(Ilxs) ar-
bitrary closed subgroups (see 1.2.11 for Edg® (Ilxs)), and Hg(i. the mazximal pro-£
quotient of Uxs. Write Tf and 7f for pré(L;) and pri(J;) (4.2.1), respectively. Sup-
pose that Tf = 7f Then we have

L= Ji.

Proof. Suppose that I; # J;. [M3, Proposition 1.2 (i)] implies that I; N J; is trivial.
Then we see that, by replacing ITys by a certain open subgroup of Ilys, there exists
an open normal subgroup N; C Ilxs such that #(ILys/N;) = ¢, that I; C N;, and

that J; € N;. This contradicts _Tf = 7f We complete the proof of the lemma. [

4.2.3. Next, we prove the main result of this section.

Theorem 4.11. We maintain the settings introduced in 4.2.1. Then the open con-
tinuous homomorphism ¢ : Ilxs — Ilxs induces a surjective map (see 1.2.11 for

Edg™ (Ilxs))
¢*'5°P - Edg™(Ilx;) — Edg® (Ilxy),

group-theoretically. Moreover, ¢ induces a bijection

~

qug’Op : 60p<FX1-) — QOP(FX2->
of the sets of open edges of dual semi-graphs of X3 and X3 group-theoretically.

Proof. If nx = 0, the theorem is trivial. Then we may assume ny > 0. Let Cy,, be
2

a cofinal system of Ilx, (i.e. Cri,, consists of open normal subgroups of Ilx, such
2

that HXQ' :> @Hzecn HX2~/H2) We put
X3

Ciiye  {H\ = ¢7'(H>) | Hy € Crr }.

Note that Cr,, is not a cofinal system of IIxs in general. Moreover, by applying
1
Proposition 4.9, we may assume that (gx, ,nx,, ) = (9xu,,nx,,) holds for every

Hy € Cp,, and every H, def oY (H,y) € Cr,.-
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Let I} € Edg®(Ilxs) and ¢(I;) C Tlxs. We will prove ¢(/;) € Edg®(Ilxs). Let
Hj; € Cn,. By replacing llxs and ¢ by H; and ®|m, , respectively, Lemma 4.4 implies
that we have the following commutative diagram:

Blrynmy

LN H,y ¢(11) N Hy
&lu,
H1 — HQ
lgpea

t,ab t,ab
feetab M, peptab,

Since I; € Edg®(Ilxs), we have that I N Hy — H; — prt’ab is trivial. Then the
above commutative diagram implies that the natural morphism

o(I)) N Hy — Hy — HPYP

is trivial. Thus, by [HM, Lemma 1.6], there exists I, € Edg®(ILys) such that
o(I) C Is.
def

Let us prove ¢(I;) = I,. Suppose that ¢(I1) # Io. We put G = I5/¢(1;). Note

that G is a cyclic group, and that (m,p) = 1, where m o #(G) > 2.

Suppose gx = 0. Then we have ny > 3. Let N def D, (Ilx,), Ny dof

D,,(Ilx, ), and

¢ (o) =

[ X5, = X
the Galois admissible covering over k; corresponding to N;. Since the ramification
index of each point of f]\_,il(D x;) is equal to m, we have

I & Ny, I £ Ny, ¢(11) C Ns.
Or} the ot/her hand, the isomorphism of maximal pro-prime-to-p quotients ¢? :
H];q = Hf’;q and I; € Ny imply ¢(I1) € No. This contradicts ¢(I;) € No. Then we

obtain ¢(11) = .
Suppose that gx > 0. We put

Q- def ker(Ilxs — Hg?; —» Hi?g’ab ® Z/mZ)

and Q) o ¢~ '(Q2). Then Lemma 4.4 implies @y = ker(ILys — Hg?;t —» Hg?l.t’ab ®

Z/mZ). Note that the assumption gx > 0 implies that TP — P © Z/mZ is
not trivial. Then @); is an open normal subgroup of IlIys. Moreover, the nontrivial
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Galois admissible covering over k; corresponding to (); is étale over Dy,. Then we

have I; C Q; and nx, > 2. Let Py & D,(Q2), Pt = ¢ () = D (Q1), and
g; + Xp, — X0,

the Galois admissible covering over k; corresponding to P; C ();. Since the ramifi-
cation index of each point of g;° 1(DXQ¢) is equal to m, we have

I & P, Iy £ Py, ¢(11) C Ps.

On the other hand, the isomorphism of maximal pro-prime-to-p quotients q5|1;3,1

P{’l = P;l and Iy € Py, imply ¢(I;) € P,. This contradicts ¢([;) C P,. Then we
obtain ¢(I;) = I. Thus, we may define the following map

def

= o(hh).

Next, we will prove that ¢®d°P is a surjection. Let ¢ be a prime number distinct
from p and pr{ : Ixs — II% » the maximal pro-¢ quotient. Let J, € Edg®(ILxy)
be an arbitrary subgroup, 72 o pri(Jy) the image of Jy, and CZ o {H, of
pri(H;)} HicCnyy where Crp, . is the set of normal subgroups of IIxs deﬁned above.
Note that Cf_, is a cofinal system of Hé ., and that H; = (¢*)"*(H,).

X
X3

¢*'&P - Edg™(Ilx;) — Edg™(Tlxy), I +— I

Let H2 S CH s NQ dﬁf 72H2 D) H2 Nl déf (QZ%)*( 2) D) Hl, and N; def

(pr{)"'(N;). We have that G © N,/H, = N;/H, = No/Hy = Ny/H, is a cyclic

l-group. Write
for the Galois admissible covering over k; with Galois group G. Since J, € Edg® (Ilxy),
we obtain that gy, y, is totally ramified at a marked point of X7, . We put

Edg®**>(N;) o {the image of I of

the natural homomorphism N; — N/ | I € Edg®(N;)}.

We have #(Edg®®“*"(N;)) = nxy. . Then the composition of the following natural
homomorphisms

& Iy, = Ny™ — G

IN2 EEngp’[’ab (Ng)

is a surjection. By applying Lemma 4.4, we obtain that the isomorphism ¢* induces
an isomorphism

Tm( & Iy, — N&) 5 Imy( & Iy, — N,

INI GEngP’Z’ab(Nl) ]N2 GEdgop,Z,ab(NQ)
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Then the composition of the following natural homomorphisms

A I I el

In, €EdgoP42P (Ny)

is also a surjection. Since G is a cyclic (-group, there exists Iy, € Edg°“**(Ny)
such that the composition I, — Nf’ab —» (' is a surjection. This means that g3
is also totally ramified at a marked point of X3 .
We put
def ° . .
Eg, = {z1 € Dx,;, | g, n, 1s totally ramified at z, }.

Then we have that E7 is a non-empty finite set. Thus, we obtain

lim By, #0.

T 14
Hq ECHXI

Note that we have a commutative diagram

¢
HXI' e HXQ.

pr{l pr%l
¢ ¢* ¢
Then there exists J; € Edg®(ILxs) such that pri(¢(Jy)) = ¢“(pri(J1)) = 72. Since
¢(J1) € Edg®(Ilxy), by applying Lemma 4.10, we have ¢(J;) = Jo. Then ¢*I&°P is
a surjection. Moreover, Theorem 4.2 implies that Edg® (Ilxs) can be reconstructed
group-theoretically from IIxs. This completes the proof of the first part of the
theorem.
Let us prove the “moreover” part of the theorem. We see that

5P Edg®(ILxy) — Edg™ (Ixy)

is compatible with the natural actions of IIxs and Ilyg, respectively. By using the
surjectivity of ¢°¥°P we obtain a surjection

¢sg,0p : GOP(FXIO) :> Engp(HXI)/HXIO —» Engp(ng)/HXE :> €Op(FX£)
of the sets of open edges of dual semi-graphs of X7 and X3, where (—)%® means
“semi-graph”. Moreover, since nxy = #(e?(I'xs)) = #(e’®(I'xs)), we have that
¢*®°P is a bijection. On the other hand, Theorem 4.2 implies that e°’(I'xs) can
be reconstructed group-theoretically from Ilys. This completes the proof of the
theorem. |
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Corollary 4.12. We maintain the notation introduced above. Let Hy C . be an
def

arbitrary open subgroup and H, = ¢~ (Hy) C Uxs. Then we have

/ynlaX(H1> — WHIaX<H2)'
Proof. By Theorem 4.11, we obtain (gx, ,nxy, ) = (9xy,,Nxy,). Then Theorem
2.1 (a) implies y™*(H;) = y™*(Ha). O

4.3. Reconstructions of field structures.
4.3.1. Settings. We maintain the settings introduced in 4.2.1.

432 Let X! = <)?i’DX\i)7 i € {1,2}, be the universal admissible (resp. the
universal solvable admissible) covering associated to ITxs (1.2.10) if ITxs is the ad-
missible (resp. solvable admissible) fundamental group of X?. Let e; € e(I'xs),

¢ € e?('g.) over ¢;, and I, € Edg®™(Ilxs) such that ¢(I5,) = Is,. Write F,,; for
the algebraic closure of IF,, in k;. We put

Fe, © (I, @2 (Q/Z)7) U {xa,},

where {*g } is an one-point set, and (Q/Z)f, denotes the prime-to-p part of Q/Z
which can be canonically identified with

U Mm(Fp,i>'
(pm)=1
Moreover, let ag, be a generator of Iz,. Then we have a natural bijection
L, @7 (Q/Z)Y 320z (Q/Z), a5, @11 1.
Thus, we obtain the following bijections
L 0z (Q/Z)! 5 2@z (QZY = | pm(ki) SF,
(p,m):l

This means that Fz, can be identified with Fp,i as sets, hence, admits a structure of

field, whose multiplicative group is Iz, ®z (Q/Z)? ,, and whose zero element is *g,.

4.3.3.  An important consequence of Theorem 4.11 is as follows.

Theorem 4.13. We maintain the settings introduced in 4.2.1 and the notation intro-
duced above. Then the field structure of Fs, can be reconstructed group-theoretically
Jrom lxs. Moreover, ¢ induces a field isomorphism

fd
€1,62

: Fgl — FQQ

group-theoretically, where “fd” means “field”.
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Proof. Firstly, we claim that we may assume nyxy > 3. If gx = 0, then nx > 3.
Suppose that gx > 1. Theorem 4.11 implies that ¢ : [Ixs — Ilxs induces an open

continuous surjection ¢°* : Hg?lf — HE?; (1.2.7). Let H) C H‘;gf be an open normal
subgroup such that #(H;?;/Hé) > 3 and H| o (") ~H(Hj). Write H; C Ilys,
i € {1,2}, for the inverse image of H of the natural surjection Ilys — H;gf, and
X4, for the pointed stable curve of type (gXHi , ”XHZ.) over k; corresponding to H;.
Note that gx, = gx,, > 1 and nx, = nx, > 3. By replacing X} by X7, we
may assume ny > 3.

Second, we claim that we may assume nx = 3. By applying Theorem 4.11, ¢
induces a bijection

~

¢Sg’0p : GOP(FXI) — €OP(FX20).

Let EX1 déf {61,176172,6173} g GOP(FXIO) and EX2 déf ngg,Op(EXl) g GOP(FX20). Write

D' C Dy, for the set of marked points of X corresponding to Ex,. Then (X;, D)
is a pointed semi-stable curve of type (gx,3) over k;. Let X ; be the pointed stable
curve of type (gx,3) over k; associated to (X;, D) (1.2.1). Write I; for the closed
subgroup of Ilxs generated by the subgroups Iz € Edg™(Ilxs), where the image of

e in e®P(['xs) is contained in e®(I'xs) \ Ex,. Then we have a natural isomorphism
HX- = H(Xi’D/Xi) = HX;/]z

st,i
Moreover, Theorem 4.11 implies that ¢ induces a surjective open continuous homo-
morphism

(b/ : HXs‘t,l - HXs‘t,Q'

Thus, by replacing X7, Ilxe, and ¢ by X§ ;, Ilxs , and ¢', respectively, we may
assume ny = 3. 7

Then the theorem follows immediately from [Y5, Theorem 6.4 and Remark 6.4.1].

O

Remark 4.13.1. Theorem 4.11 and Theorem 4.13 were obtained by Tamagawa in
a special case where X?, i € {1,2}, is non-singular and ¢ is an isomorphism ([T4,
Theorem 5.2 and Proposition 5.3]). Those results is the most important step in
Tamagawa’s proof of the weak Isom-version conjecture for smooth pointed stable
curves ([T4, Theorem 0.2]).

The formula for Avr,(Ilxs) of smooth pointed stable curves ([T4, Theorem 0.5])
plays a central role in Tamagawa’s proofs of [T'4, Theorem 5.2 and Proposition 5.3].
On the other hand, even through ¢ is an isomorphism, the methods of [T4] cannot be
generalized to the case of arbitrary pointed stable curves, since Avr,(II X;) depends
not only on the type (gx,nx) but also on the structure of the dual semi-graph I' s
in general (see [Y3, Theorem 1.3 and Theorem 1.4]).
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5. COMBINATORIAL GROTHENDIECK CONJECTURE FOR OPEN CONTINUOUS
HOMOMORPHISMS

In this section, we will prove a version of combinatorial Grothendicek conjecture
for open continuous homomorphisms under certain assumption. Moreover, in the
present section, all fundamental groups are solvable admissible fundamental groups
unless indicated otherwise. The main results of the present section are Theorem
5.26 and Theorem 5.30.

5.1. Cohomology classes and sets of vertices.

5.1.1. Settings. Let X* be a pointed stable curve of type (gx,nx) over an alge-
braically closed field k of characteristic p > 0, I"xe the dual semi-graph of X*, and
[Ty« the solvable admissible fundamental group of X*°.

5.1.2. Let £ be a prime number. Recall that )N(; denotes the smooth pointed stable

curve of type (g,,n,) associated to v € v(I'ye) (1.1.3). We put (see 1.2.7 for I,

Iye)

0(Txe)”" = {v € v(T'xe) | dimg, (Hom(I1%,, Z/(Z)) > 0} = {v € v(T'x+) | g, > 0},
M&, ¥ Hom(11%., Z/0Z), MP % Hom(IT'%, Z./¢7Z).

On the other hand, we have the natural isomorphisms Hom(H%ﬁ JZJUZ) = HE ( X,, Z/(Z),

M. =2 HL(X,Z/0Z), and Mx? = HY(I'x+,Z/{Z). In the theory of anabelian ge-
ometry, since we want to emphasize the objects under consideration are arose from
various fundamental groups, we do not use the standard notation H} (X,,Z/(Z),
HL(X,7/0Z), and H'(I'xe,Z/¢Z). Moreover, there is an injection My < M.
induced by the natural surjection Ilye — HE?I.) . We put

M, coker(MSP — ML),

where (—)™ means “non-top”.

A non-zero element of M. corresponds to a Galois étale covering of the underlying
curve X of X*® with Galois group Z/¢Z. A non-zero element of M;?.p corresponds
to a Galois étale covering of the underlying curve X of X* with Galois group Z/(Z
such that the map of dual semi-graphs is a topological covering.

5.1.3. Let Vi, C Mg, be the subset of elements of M. whose images of M. —
M. are not 0. Then an element of Vy , corresponds to a Galois étale covering of
the underlying curve X of X*® with Galois group Z/¢Z such that the map of dual
semi-graphs is not a topological covering.
Let a € V¢, and
fa Xy —X*
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the Galois étale covering corresponding to a. Denote by I'xe the dual semi-graph
of X3. We define a map

L V;,E — Z>0, o = #(’U(FX&))

Furthermore, we put

V3 = {a € Vg, | v attains its maximum} = {a € Vi, | t(a) = (#(v(I'xe)) —C+1}.
For each a € Vg, t(a) = (#(v(I'xs)) — £ + 1 implies that there exists a unique
irreducible component Z C X, whose decomposition group under the action of Z/¢(Z
is not trivial. Then we have (see 1.1.5 for v}?)

Vie=1a € Vx, | #((vf) =1}.
Let v, be the unique element of v (ie. X,, = fa(Z)). Then we have v, €
v(T'x+)”%". This means that V5§, # 0 if and only if v(I'xe)>%" # 0.

5.1.4. Let S, S’ be sets. We shall call f: S — S" a quasi-map if f is a map from

some subset S; C S to S’. Moreover, suppose that S™* is the maximal subset of

S such that f is a map from S™ to S’. Let S* g \ S™2* Then we shall write

f(s) =10 for all s € S*.

Let H C IIx. be an open subgroup. Write f}r : ['xe — I'xe for the map of dual
semi-graphs induced by the admissible covering f7; : X7, — X*® over k corresponding
to H. We define a quasi-map (i.e. we allow that an element maps to empty set)

Iv{er,e . U<FX;I)>O,€ SN U(FX.)>0,Z

as follows: Let vy € v(Ixy )" and v = 7 (i) € v(I'xs). Then we have

Yl og) = v if dimg, (Hom(11S,, Z/¢Z)) # 0; otherwise, et oy) = 0. More-

>0,0

over, if H C Ily. is an open normal subgroup, then U(FX;{) admits a natural

action of Iy /H.

Proposition 5.1. (a) We define a pre-equivalence relation ~ on Vs, as follows:

Let o, 3 € Vx,. We have that a ~ (3 if, for each A\, u € F; for which
A+ pB € Vi A+ uB € Vi,
Then the pre-equivalence relation ~ on Vg , is an equivalence relation.
(b) We denote by Vx, the quotient set of Vi, by ~ defined in (a). Then we have
a natural bijection
Kxe: Ve — ’U(FX°)>O’K: [a] = va,
where [a] denotes the equivalence class of «.
(c) Let 0,0 be prime numbers distinct from each other. Suppose that ¢’ # p. Then
we have a natural injection
Vxio—= Vxu,
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which is a bijection if £ # p, and which fits into the following commutative diagram:

Ve —2 (I xe)>0!

l l

Kx. ¢ ,
ijg/ —_— ’U(Fxo)>0’g,

where the vertical map of the right-hand side is the natural injection induced by the
definitions of v(I'xe)>% and v(T xe)>%

(d) Let H C Ilxe be an open subgroup. Suppose ([Ilxe : H|,{) = 1. Then the
natural injection H — Ilxe induces a map

ver,{

Y Vxpe = Vxy

which fits into the following commutative diagram:

VXH,K M) U(Fxf{)>0’€

ver,{ ver,{
TH fu

VX’g —)HXI U(FX.)>0,£'

Moreover, suppose that H C Ilx. is an open normal subgroup. Then Vx, , admits
an action of llxe/H such that kx, ¢ is compatible with 1xe/H-actions (i.e. kKx, ¢
is I xe / H-equivariant).

Proof. See [Y6, Proposition 2.1, Remark 2.1.1, and Remark 2.1.2]. O

Remark 5.1.1. By applying Theorem 4.2, we have that 1%, II%% can be recon-
structed group-theoretically from ITye. Then we obtain that Vx , (or v(I'xs)>%¢) can
be reconstructed group-theoretically from Il y.. Moreover, for every open subgroup
H C Ilxe., the map

”Ylv;r’e Vo — Vxy
constructed in Proposition 5.1 (d) can be reconstructed group-theoretically from the
natural inclusion H < Ilxe.

5.2. Cohomology classes and sets of closed edges.

5.2.1. Settings. We maintain the settings introduced in 5.1.1. Moreover, in this
subsection, we suppose that the genus of the normalization of each irreducible com-
ponent of X is positive (i.e. v(I'xe) = v(I'xe)>% (5.1.2) if £ # p), and that T'Fs is
2-connected (see 1.1.1 (b) (c)).
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5.2.2.  We shall say that

Txe C(0,d, f3: Y = X°)

is an edge-triple associated to X* if the following conditions are satisfied:

(i) ¢ and d are prime numbers distinct from each other and from p.

(ii) £ = 1 (mod d); this means that all dth roots of unity are contained in F,.
Moreover, we write g C F; for the subgroup of dth roots of unity.

(iii) f% : Y* — X* is a Galois admissible covering over k such that the Galois
group is isomorphic to pa, that f% is étale (i.e. fx is étale), and that #(v})) =0
(see 1.1.5 for v ). Note that since v(T'x+) = v(I'x+)”*?, we see that fy exists.

5.2.3.  We maintain the prime numbers ¢ and d introduced in 5.2.2. On the other

hand, we shall say that

‘ZHX' S (67 d, afx)

is an edge-triple associated to Il y. if the following conditions are satisfied (see 1.2.7
for TI<. ):

(i) ay, € Hom(II%.,Z/dZ).

(ii) The composition of the natural homomorphisms H%. — TI%. 2 Z]dZ is a
surjection for every v € v(I'xs).

We see immediately that an edge-triple T x. associated to X* is equivalent to an

edge-triple Tp,, associated to Ilx.. Moreover, f% is the Galois admissible cover-
ing corresponding to the kernel of the composition of the natural homomorphisms

Mxe —» 1% 5 7/d7.

5.2.4. Further settings. In the remainder of the present subsection, we fix an
edge-triple

T © (0,d, apy)
associated to IIxe. Write Txe o (4,d, fy : Y* — X*) for the edge-triple associated
to X* corresponding to Tpi,., (gy,ny) for the type of Y*, I'ye for the dual semi-
graph of Y'*, ry for the Betti number of I'ys (1.1.2), and Ily. for the kernel of the

composition of the homomorphisms ITye —» TI. 2 Z/dZ (i.e. the admissible (or
solvable admissible) fundamental group of Y*).

5.2.5. We put

My« < Hom(Ily., Z/07).
There is a natural injection M, o Hom(11¢%, Z/¢Z) < My-. induced by the natural
surjection Ilys —» TISL,. Then we obtain an exact sequence

0 — M — Mye — M2 % coker(ME < My.) — 0
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with a natural action of p4, where “ra” means “ramification”. For any element of
My, if the image of the element is not 0 in M4, then the Galois admissible covering
of Y* with Galois group Z/¢Z corresponding to the element is not étale.

52.6. Let Mys , C My, be the subset of elements on which pg acts via the
character pg — F,. Write Ez, . C My. for the subset of elements whose images
X.
are nonzero elements of My, .
Let a € ETHX.' Write
g Y = Y*
for the Galois admissible covering over k corresponding to . We define a map
€: E;Hx- — L=, o= F#(eP(I'ys) U eCl(Fya-)),

where I'ys denotes the dual semi-graph of Y. We put (see 1.1.5 for egP** and eglcfa)

clx  def * op,ra clira
ETI’ ={ac€ ETnX. | #(egz’ ) =0, #(eglcl ) =d}.

Mye

Note that Egn* is not an empty set. For each o € E;ln* , since the image of « is
xe xe

contained in My , , we obtain that the action of x4 on the set {y.}, cestra © Nod(Y*)

is transitive, where Nod(—) denotes the set of nodes of (—), and y,. denotes the node

of Y* corresponding to e. Then there exists a unique node z, of X*® such that

Ix(ye) = x4 for all y, € {ye}eee?,ra. We denote by e, € ¢(I'ye) the closed edge

corresponding to .

5.2.7.  On the other hand, let H C IIx. be an open subgroup. Write f}7 : Ixe —
I'x. for the map of dual semi-graphs induced by the admissible covering f7, : X7 —
X* over k corresponding to H. We shall denote by

cldﬁf sg
H — JH

GCI(Fx;{) : €C1(FX;_I) — €C1(FX-).

Moreover, if H C IIx. is an open normal subgroup, then e(T xs,) admits a natural
action of Iy /H.

Proposition 5.2. (a) We define a pre-equivalence relation ~ on E;IH*X. as follows:
Let o, € E;ln*x. We have that o ~ 3 if, for each A, € F) for
which Ao+ pf € E;HX. , we have Ao+ pf € E;ln*x.

Then the pre-equivalence relation ~ on Egn’; 18 an equivalence relation.

(b) We denote by E%H the quotient set of Egn* by ~ defined in (a). Then we
xe xe
have a natural bijection

Uz, E%lnx. 5 el(Txe), [a] = eq,
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where [a] denotes the equivalence class of «.
c) Le e an arbitrary edge-triples associated to Ilxe. en we have a
Let Ty, b bitrary edge-tripl jated to 11 Th h
natural bijection
1~ gl
EZ = E%HX.

Mxe
which fits into the following commutative diagram:
1 %/Hx' 1
Eg, —— e%(I'xs)

Mye

l H

(IHX'

E%HX. —5 e Txe).
(d) Let H C Ilxe be an open subgroup. Suppose that ([Ixe : H],¢) = ([IIxe :
H],d) = 1. We have that Txe« associated to Il xe induces an edge-triple

Tay, € (Ld [3, YR, S Y % Xjy = X))

associated to X3, where Y* X xeo X}, denotes the fiber product in the category of
pointed stable curves. Write Ty for the edge-triple associated to H corresponding to
Txs . Then the natural injection H — Ilxe induces a surjective map

cl . cl cl
Yy o0 B, > Bs

which fits into the following commutative diagram:

9
B¢ T (D)

cl
cl
’YQHX.,Hl Hl

cl ﬁTHX’ cl
ETHX. —— e (I'xe).
Moreover, suppose that H C Ilxe is an open normal subgroup. Then E%lH admits
an action of Ilxe/H such that V=, is compatible with 1lx«/H-actions (i.e. Vs, is

[Ix./H -equivariant).
Proof. See [Y6, Proposition 2.2, Remark 2.2.1, and Remark 2.2.2]. O

Remark 5.2.1. By applying Theorem 4.2, we have that 1. can be reconstructed
group-theoretically from ITy.. Then EZ  (or e?(I'x.)) can be reconstructed group-
X.

theoretically from Ily.. Moreover, for every open subgroup H C Ily., the map
cl . cl cl
’YTHX.YH . E(IH _> ETHX.

constructed in Proposition 5.2 (d) can be reconstructed group-theoretically from the
natural inclusion H < IIx..
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5.2.8. Next, we calculate the cardinality #(E;ll’j* ) of Egn* . We put
X. X'

Eéll;;ue & {a € E;ln*x. le=e.}, e €e?(Txe).

Note that e = e,, a € E;ln* ., means that the Galois admissible covering g5, : Y35 —
X. ?

Y* over k induced by « is (totally) ramified over fy'(z.), where x. denotes the node
of X corresponding to e. Moreover, we have the following disjoint union

clx cl,x
E‘ano o |—| ETHx.7e.

ecel(I'xeo)

Let m € Zsg and e € e?(T'x+). We shall put

1,%, def 1,
Egr™ = {a € Byl | #(v0) =m}.

Let e € e(I'y+) be a closed edge. Write Y, for the normalization of the underlying
curve Y of Y* at fy'(x.) and nor, : Y, — Y for the resulting normalization mor-
phism. Since the genus of the normalization of each irreducible component of X* is
positive, we obtain that the genus of the normalization of each irreducible component
of Y, is also positive. Moreover, since I'xe is 2-connected, Y, is connected.

Lemma 5.3. We maintain the notation introduced above. Let e € e?(I'xe) be a
closed edge. Then we have

#(Egn;.e) — 29y —d=ry+1 _ p29y —d—ry

Moreover, we have

#(Ecl,* ) _ #(6C1(FX.))(€29Y_C[_TY+1 o gﬂgy—d—ry).

Tilye

Proof. Write R, C Y, for the set of closed subset (fx o nor.)!(z.). Then E;IH* .
X.7

can be naturally regarded as a subset of H. (Y. \ R.,Z/{Z) via the natural open
immersion Y, \ R, < Y,. Write L, for the [F,-linear subspace spanned by EX* in

TnX.,e
HL (Y. \ R, Z/(Z). Then we see E;;*X o= L\ HY(Y., Z/IT).

Write H'* for the cokernel of the natural inclusion Hj (Y,Z/(Z) < L.. We
obtain an exact sequence as follows:

0— HL(Y,,Z/l{Z) — L, — H™ — 0.

On the other hand, since the action of ug on f~!(z.) is translative, the structure
of the maximal pro-¢ quotient IT%. of Ily. (1.2.4) implies dimg,(H'®) = 1. Since
dimg, (H (Y., Z/IZ)) = 2(gy — d) — (ry — d) = 29y — d — ry, we obtain

cl,* _ p2gy —d—ry+1 29y —d—
#<ETHX.7€> — g gy TY _ f gy Y.
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Thus, we have
#(Egﬂ*x) = (9 (Do )) (297 —4=Ty+1 _ 2oy —d=1v),
This completes the proof of the lemma. -

5.2.9.  We also introduce some notation concerning open edges. We put
op, def op,ra\ __ clira
Exﬁz = {ac€ Ezn ‘ #( P =d, #( ) =0}

Note that Eg>™ is not an empty set if ny # 0. For each a € EP™ | since the image
Xxe xe
of av is contained in My |, , we obtain that the action of 114 on the set {ye}eceopra C
Dy is transitive, where y. denotes the marked point of Y'* corresponding to e. Then
there exists a unique marked point z, € Dx of X* such that fx(y.) = z, for every
Ye € {ye}eeeggra. We denote by e, € €¢°P(I'xs) the open edge corresponding to z,.
Moreover, we put
o {a € EOp* | e =en}, e €eP(Ixe).

Tl e e

Note that e = e,, « € EZY" , means that the Galois admissible covering g, : Y7 —
X. 7

Y* over k induced by « is (totally) ramified over fx'(x.), where z. denotes the
marked point of X*® corresponding to e. Moreover, we have the following disjoint
union

E;ixo - |—| E;I;I’X‘
ece’P(I'xe)
Let m € Zsy and e € ¢°P(I'xe). We shall put

Jop*m def op,*
B ne — la € Ex

| #(vg2) = m}.

5.3. Three conditions. We introduce the following conditions concerning pointed
stable curves. Moreover, one of the main results of the present section (Theorem
5.26) will be proved under those conditions.

HXoa

5.3.1. Let W, i € {1,2}, be a pointed stable curve over k; of type (gw,, nw,), T'ws
the dual semi- graph of W, and Il the solvable admissible fundamental group

of W. Let H; C Ilys be an open subgroup, W4, the admissible covering of W
corresponding to H;, and T we, the dual semi-graph of W .

Condition A . We shall say that W satisfies Condition A if the following conditions
are satisfied:

(i) The genus of the normalization of each irreducible component of W is posi-
tive.
(ii) Every irreducible component of W; is smooth over ;.
(iii) Ff,f;:. is 2-connected (1.1.1 (b) (c)).
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(iv) #(o(Twe)"<1) = 0 (111 (c)).

Condition B . We shall say that W satisfies Condition B if F;{}; is 2-connected
for every open subgroup H C .. Z

Condition C . We shall say that W and Wy satisty Condition C if the following
conditions are satisfied:

(i) (gW17nW1) = (9W27nW2>'
(ii) #(w(Twy)) = #(0(Twy)).
(i) #(e"(Twe)) = #(e (D).

5.3.2. We maintain the notation introduced above, then we have the following
lemma.

Lemma 5.4. Let m >> 0 be a positive natuml number prime to p and H; def

Dﬁn)(HWi-) C Ilwe (see Definition 4.8 for DY (Ilwe)). Then we have that W,
satisfies Condition A, and that the Betti number of the dual semi-graph of Wg. is
positive.

Proof. If W2 is smooth over k;, then the lemma is trivial. We may assume that W

is singular. Let Q; e p2 )(HW;) C Iyys. By the structure of I, (1.2.4), it is easy

to see that W satisfies Condition A (i) (ii) (iv), and that the Betti number of the
dual semi-graph of W is positive. Write f*: Wg. — W for the Galois admissible
covering over k; with Galois group G induced by the natural inclusion H; — @); and
/¥ Dye — FWé_ for the map of dual semi-graphs of Wy, and W), induced by f°.

Let v € U(FW- ) be an arbitrary vertex. Note that #((f)~'(v)) > 2. Since f* is
Galois, to verify that ['P. is 2-connected, we only need to prove that FCpt N\ {w}

is connected for a vertex w e (f%8)~1(v). Moreover, since m is prime to p, to verify
F?/‘%i \ {w} is connected, we may assume #(U(F{,VQi)) =2 and #(ed(r{'/v@i)) > 2.

Let C,D C F;}}t. \ {w} be connected components. Suppose that C' # D. Note
that since f* is Galois and Het is not trivial (i.e. Condition A (i)), C'is isomorphic
to D as semi-graphs. Let w’ G ((fsg)_l(v) \ {w})NC, and let C,s be a connected

component of C'\ {w'} such that there exists a closed edge which meets C,, and w.
Then we obtain that there exists a connected component C” of I‘f/{}j}_ \ {w'} which

contains w, D, and C,,. On the other hand, since f* is Galois, C’ iszisomorphic to
D as semi-graphs, which is impossible as D and C’ are finite semi-graphs. Then we
have C' = D. We complete the proof of the lemma. O

5.4. Reconstructions of topological and combinatorial data. In this subsec-
tion, we prove that sets of vertices, sets of closed edges, and sets of genus can be
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reconstructed group-theoretically from an open continuous homomorphism of solv-
able admissible fundamental groups. The main results of the present subsection are
Theorem 5.12, Theorem 5.14, and Theorem 5.17.

5.4.1. Settings. Let i € {1,2}, and let k; be an algebraically closed field of char-
acteristic p > 0 and ¢ a prime number distinct from p. Let X? be a pointed stable
curve of type (gx,,nx,) over k;, Ilxs the solvable admissible fundamental group of
X7, I'xs the dual semi-graph of X7, and ry, the Betti number of I'ye (1.1.2). More-

(2
over, let v; € v(I'xs), X7, the smooth pointed stable curve of type (giu,, nin,) over

k; associated to v; (1.1.3), and o;,, the p-rank of )N(Z’vl (2.1.1).
We suppose that X7 and X3 satisfy Condition A, Condition B, and Condition C
introduced in 5.3.1. Moreover, let

¢ 11 X — 11 X3
be an arbitrary open continuous homomorphism of the solvable admissible funda-
mental groups of X7 and X3, and
def
(9x;nx) = (9x1,nx,) = (x5 1x5)-

Note that rx, = rx,, and that by Lemma 4.3, ¢ is a surjective open continuous
homomorphism.

5.4.2. Firstly, we have the following lemma.

Lemma 5.5. We maintain the notation introduced above. Then we have (see 2.2.1
for Avrp(HXio))

Avrp(HXi-) =gx, — T'x,-

Proof. The lemma follows immediately from Condition A and Theorem 2.1 (b). O

5.4.3. Let i,j € {1,2} such that i # j, and let G be a finite group such that
(#(G),p) = 1 and

Y = X7
a Galois admissible covering over k; with Galois group G. Then the isomorphism
o' 1% . o H_’;(Q. induced by ¢ (4.2.1) implies that f? induces a Galois admissible
covering

friY7 o X

over k; with Galois group G. We write (gy;, ny;) for the type of Y;*, T'y« for the dual
semi-graph of Y;*, and ry, for the Betti number of I'ye.
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Lemma 5.6. We maintain the notation introduced above. Suppose that G = Z/{Z,
that f} :Y" — X7 is étale, and that #(v)) = m (see 1.1.5 for v3’). Then we have

(see 1.1.5 for ed L ee)

0 < HE™) + SHER™) + #D) <m

Proof. Since f7 is an étale covering, the Riemann-Hurwitz formula implies

Y1 :E(gX - 1) + ]-7

g = Hlgx — 1)+ 5(0 = DRER™) + 1
Then we obtain .
vy — 9y, = —5(6 - 1)#(‘5;5 ).

On the other hand, we have

ry, = (#(e(Txz)) — #(0(Cxs)) + #(0F) — (#(0F) +

= (e (Tx)) — #(0(Txp)) — (= Dm + 1,
ry, = G, ) + #(eR™) — GH0F) — # W) + 1.
Since #(e(I'xs)) = #(e(I'xg)) and #(v(I'xs)) = #(v(I'xs)), we obtain
v, =y, = (0= DF#(eR™) + (L = D)(F#vF —m).

Moreover, by applying Lemma 5.5 and Lemma 2.2 (b), we have gy, — gy, > 7y, — 'y,
Thus, we obtain

0 < #(ef™) + #( B ) <
This completes the proof of the lemma. O

Corollary 5.7. We maintain the notation introduced above. Suppose that G =
ZZ, that f} : Y — X7 is étale, and that #(v})) = 0. Then we have that
fs 1Yy — X3 is étale, and that #(v})) = 0.

Proof. The corollary follows immediately from Lemma 5.6. O

Corollary 5.8. We maintain the notation introduced above. Suppose that G =
ZJZ, that f? : Y — X7 is étale, and that #(v})) = 1. Then we have that
fe Y3 — X3 is étale.

Proof. In order to verify the corollary, it is sufficient to prove that #( cl ra) =
#(e%™) = 0. By applying Lemma 5.6, we have

0. #EI™) + SHER™) + # (D) <
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Suppose that #(e(}g’ra) # 0. Since X3 satisfies Condition A, the above inequality
and the structures of the maxmial prime-to-p quotient of solvable admissible funda-
mental groups (1.2.4) imply that either (i) #(e‘}g’ra) = 1 and #(e})"™) > 2, or (ii)
#(e%’ra) > 2 holds. Then we have 2#(6%’”) +#(eR™) + 2#(v})) > 2. Thus, we
have #(e%ra) =0.

Suppose #(e},"™) # 0. Since #(ej}?’ra) = 0, the above inequality implies #(e})"™) =
2. Let ¢/ # p be a prime number distinct from ¢, and let

91 727 - X3
be a Galois étale covering of over k; with Galois group Z/¢'Z such that #(vi?) = 0.
Then Corollary 5.7 implies that the Galois admissible covering g5 : Z3 — X3 over
ko with Galois group Z/¢'Z induced by g7 is étale covering, and that #(vsb) = 0.
Write I'zs for the dual semi-graph of Z?. We obtain
#(0(xy)) = #(w(l'z;)) = #(v(l'z5)) = #(v(I'xz)),
U#(e™(Txy)) = #(e(Iz3)) = #(e™(Iz3)) = (#(e™ (I'xy)),
C#(e(Dxp)) = #(e (D)) = #(e” (L)) = C#(e” (Dxy)).
We have that Z7 and Z3 satisfy Condition A, Condition B, and Condition C.

We denote by W? Ll ye X xs Z;. Note that since (' # (, we see that W is

(2
connected. Then f? induces a Galois admissible covering

hy WS — Z?
over k; with Galois group Z/¢Z. We have that hf is étale, that #(v;") = 1, and that
#(epo™™) = 20'. Then Lemma 5.6 implies

I 1 I r
1< #(e™) + SH(en, ) + #(vy;) = Hen™) + 0+ #(vip) < 1.
This is a contradiction. Thus, we obtain #(e‘}g’ra) = 0. This completes the proof of

the corollary. O
5.4.4. We put (see 1.2.7 for II$., TI'g%)

Myxs & Hom(Ilxs, Z/0Z), M$& < Hom(I%., Z/¢Z), MP < Hom(I1', Z/(Z).

Note that we have the following injections (or weight-monodromy filtration)
MY — Mg — Mxs (or My C M. C Mys)

. . . 5 t
induced by the natural surjections Ilxs — [I%. — IIYY. Moreover, we have an
K2 2

isomorphism
Ibg M X3 :> M X?

induced by the isomorphism ¢° : H-KXI = H?X;
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Proposition 5.9. We maintain the notation introduced above. Then the isomor-
phism 1y, : MX; > MXf induces an isomorphism

ét.Mét %Mét
e« My :

group-theoretically. Moreover, we have the following commutative diagram:

, Pt ,
e

MX2' —_— ]\4:)(1-7
where all vertical arrows are injections.

Proof. To verify the proposition, it is sufficient to prove that 1, LM Xe 5 M X3
induces an isomorphism wzl’ét : Mf}l. =M étz. which fits into the following commu-

tative diagram:

) ¢e—1,éc )
Mg 2 M
Xt X3

l !

Gt
Mxy —— Mx;,

where all vertical arrows are injections.

Let oy € Mfgl. be a non-trivial element and f7, : Y7,

— X7 the Galois étale
covering over k; with Galois group Z/¢Z corresponding to a. We put

#(vy, ) =1}

We see that Mf}l. is spanned by Lxs as an Fy-linear space.

On the other hand, Corollary 5.8 implies that f7, induces a Galois étale covering
of X3 over ky with Galois group Z/¢Z. This means that 1, ' induces an injection of
[Fy-linear spaces

def
L Xr =

{al E Métlc

MoreoverZ since dimm(Mf}l.) =29x, —Tx, = 20x, —TX, = dimm(]\/[jé}s), we obtain
that 1, L is an isomorphism. This completes the proof of the proposition. O

Proposition 5.10. We maintain the notation introduced above. Then the isomor-
phism vy : Mxg = Mxs induces an isomorphism

top top ™~ top
Ui s MEE S M
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group-theoretically. Moreover, we have the following commutative diagram:

t )5 t
op 0 op
M o —— M x*

v ét
—> MX.

1

M,

e
Myxs —— Mxs,
where all vertical arrows are injections.

Proof. Firstly, by Proposition 5.9, the isomorphism o, : Mxg =S M x¢ induces an
- - Y R top ét i
isomorphism 9" : My, — My.. Let ay € My, C My, be a non-trivial element
and
fran t You, = X5

the Galois étale covering over ky with Galois group Z/¢Z corresponding to ay. Then
we obtain an element a; & Slay) € M)éfl.. Write f7,, : Y%, — X7 for the Galois
étale covering over k; with Galois group Z/¢Z corresponding to a;. Note that the
types of Y;°, and Y3, are equal, and that Y7°, and Y3, satisfy Condition A.

Lemma 5.5 and Lemma 2.2 (b) imply 7y, , < ry,,,, wherery, . and ry, . denote
the Betti numbers of the dual semi-graphs of Y?, and Y5, , respectively. Since
#(U?;CQ) = #(v(T'xs)) = #(v(I'xs)), the inequality implies #(Uj}i&l) = #(w(lxs)).

t . .. .
Thus, we have a; € Myr. Then «; induces an injection

.
1

top . top top
Ui s MY — MP.

Moreover, since dim]FZ(M;;P ) =rx, =Trx, = dimFl(M)t?lP ), we have that ¢,°” is an
isomorphism. This completes the proof of the proposition. O

Remark 5.10.1. Proposition 5.9 and Proposition 5.10 mean that the weight-monodromy
filtrations can be reconstructed group-theoretically from ¢.

Lemma 5.11. We maintain the notation introduced above. Suppose that G = Z/VZ,
that f5 is étale, and that #(vyy) = 1 (1.1.5). Then we have that f} is étale, and
that #(v}}) = 1.

Proof. By Proposition 5.9, we obtain that f; is étale. This implies gy, = gy,, and
#(eM(Typ)) = t#(eN(Txy)) = (#(e(Txy)) = #(e?(T'yp)). On the other hand,
Lemma 5.5 and Lemma 2.2 (b) imply ry, < ry,. Thus, we obtain

(e (Do)~ (0(Txp)) — (05 405+ < (e (Dxg))—H (0T )~ 1)~ 141,
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This implies #(v}}) < 1.

Suppose that #(vy) = 0. Let ay € Mxp be an element corresponding to f7.
Then ay, € M;’lp . Note that ay, o (W) Hay,) € M)éé. is an element corresponding
to f5. Then Proposition 5.10 implies that oy, is contained in M)t?; . This means that

#(v}:) = 0. This contradicts the assumption #(v}}) = 1. Thus, we have #(v}}) = 1.
We complete the proof of the lemma. O

5.4.5. We reconstruct the sets of vertices and the sets of genus of irreducible com-
ponents group-theoretically from ¢ as follows.

Theorem 5.12. We maintain the settings introduced in 5.4.1. Then the (surjective)
open continuous homomorphism ¢ : Ilxs — llxs induces a bijection of the sets of
vertices

¢sg,ver . U(Fxlo) :> U<FX2')

group-theoretically. Moreover, let vi € v(I'xs) and vy of ¢V (vy). Then we have
the following equality of genus:

JLo1 = 92,02
Proof. We maintain the notation introduced in Section 5.1. By applying Theorem
4.2, Proposition 5.9, and Proposition 5.10, we obtain that the following homomor-

phisms of the natural exact sequences can be induced group-theoretically from ¢:

0 —— Mt‘}p —>Mét2. —>Mnt2. — 0

el

0 — M;’lp — M, —— M¥ —— 0.

Then we obtain ¢*(Vy,,) = Vx,, (see 5.1.3 for V¥ ,). Moreover, Lemma 5.11
implies (see 5.1.3 for V¥ /)

Zt(V)?ﬂ) = V§1,z-
Let ag, ay € V, , be elements distinct from each other such that ay ~ a4 (i.e. the
equivalence relation defined in Proposition 5.1 (a)). By applying Lemma 5.11 again,
for any a, b € F, we see that acy + by € V3, , if and only if §* (acs + bojy) =
avf (o) + 0§t (ah) € V. Thus, we obtain a bijection (see Proposition 5.1 (b) for
Vx, 1)

VXQ,Z :> Vth.
Then the first part of the theorem follows from Proposition 5.1.

Next, let us prove the “moreover” part of the theorem. Let v; € v(T" X;). We put

o = o),

. def 3
Ly € {a; € ME
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where f?,. denotes the Galois admissible covering of X? over k; corresponding to «;.
Moreover, we denote by [L%.] the image of L. in MY.. Then we have #([L%.]) =
(9w — 1.

Suppose vy = ¢%¥°(v;). Proposition 5.10 and Lemma 5.11 imply that ¢¢* induces
an injection [L¢] <> [L%,]. Thus, we have (%22 — 1 = #([L3]) < #([L%,]) =
(911 — 1. This implies ¢34, < g1,0,- On the other hand, since

Z Jivp = 9x —TX; = 9x —TX, = Z 92,025
vlev(Fxf) ngv(FXQ-)
we obtain g ,, = ¢2.,. This completes the proof of the theorem. O

5.4.6. Further settings. Next, let us reconstruct the sets of closed edges from ¢.
In the remainder of the present subsection, we fix an edge-triple

Tiye © (6d, agy, 1%, - 2/d2)

associated to Ilxs (5.2.3). Then Corollary 5.7 implies that ¢ and the edge-triple
%1, induce an edge-triple

def

Ty, = (Ld,agy, 10y — Z/dZ)

associated to Ilx, group-theoretically. Write Iy« for the kernel of a fx,- Then the
(surjective) open continuous homomorphism ¢ : [Ixs — Ilxs induces a (surjective)
open continuous homomorphism

¢y . Hyl- —» HyQ-.

Moreover, the constructions of Y}* and Y5 imply that Y;* and Y satisfy Condition
A, Condition B, and Condition C (5.3.1).

5.4.7. We put

def &t def ra def

Mys = Hom(Ilys, Z/(Z), Mys = Hom(Ils, Z/(Z), My = My /M.

Then, by Theorem 4.2 and Proposition 5.9, the following commutative diagram can
be induced group-theoretically from ¢y:

O—>M§;.—>My2-—>M{§.—>O
w wl ]
0 —— M{fs —— My, —— Mjn —— 0,
where all vertical arrows are isomorphisms. Let E;HX. be the subset of My defined

in 5.2.6. Since the actions of pg on the exact sequénces are compatible with the
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isomorphisms appearing in the above commutative diagram, we have
EZ =F; .
Vye( znxi) Ty

(5.2.8) is the subset of E*

THXZ. €4

,€4

Let m € Zxq and e; € e?(I'xs). Recall that E;ln*m

whose element «; satisfies #(v;P ) = m. Then we have the following lemma.

Lemma 5.13. We maintain the notation introduced above. Then we have

—1 cl,%,0 cl,%,0
¢Y,f< |_| ETHX. ,e1 ) < |_| ETHX5 ,e2

e1€e°P(I'xs) ! e2€e*P (T xg)

Moreover, we have
d]YZ(ECl ok ) ECI *

Toe
X2

Proof. Let e; € eCI(FX-) and o € Ed*O Then the Galois admissible covering

,e1’
9oy Yo — Y7 over ki with Galois group Z/lZ corresponding to «; induces a
Galois admissible covering g3 ,, : Yo, —+ Y5 over ky with Galois group Z/¢Z. Write

2,a0
ag € My, for an element corresponding to g3 ,,. We have ap € Eg . Write gy,

for the genus of Y%, and ry, , for the Betti number of the dual semi- graph Fy-
Then the Riemann-Hurwitz formula and Theorem 4.11 imply
1 I
gyl,al - gYQ,ag - _5(#( Zsaa>)(€ - 1) 0
On the other hand, we have

My, = LF# (e (Typ)) = d) +d — #(v(Tye)) + 1,

Mooy = (€5, ) + FH(egy0m ) — L3H(vg,0 ) — #(vg,"n ) + 1.
Then Lemma 5.5 and Lemma 2.2 (b) imply 0 = gy, ., — 9vs.0, = "Vi, —T¥aa, LHUS,
we have

#(ehmy) T #WR,) + #( Corng) = #(egm,) + #(0,,) < &

If (e ;) = 0, then go,, is étale. By replacing X7 and X3 by Y)* and Y3,
respectlvely, Proposition 5.9 implies that g; ,, is also étale. This contradicts the
definition of ay. Thus, we obtain #(e5"™ 2 ) #0.

If #(egy™ ) # 0, then we have #(eg; cra ) =d and #(v) ) = #(egh) = 0. This
means
cl,%,0
Qg € |_| E‘IHY“@'
2

ea€edl (FY20 )
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Thus, we have
-1 cl,x,0 cl,x,0
wY,f( |_| Efny. ,e1 ) g |_| ET]‘[y. e’

e1 EeCI(FYI.) ! egEeCl(FY;) 2

1 . . . .
Moreover, let §; € E;H* . Then f; is a linear combination of some elements of
Y?*

K
cl,x,0
|_| ETHY'. €

eicet(Tye) !
1

Then we have zﬁ;%(Egn*X{) C E;lﬂ*xg On the other hand, since gy, = gy, and ry, =
Ty,, Lemma 5.3 implies #(w;;(Egl’: ) = #(Egr’[* ). Thus, we obtain
7 X. X.

1 2

-1 cl,x cl,*
EZ =FE27 .
ww( znxl,) znxs

This completes the proof of the lemma. O

Now, we can reconstruct the sets of closed edges group-theoretically from ¢ as
follows.

Theorem 5.14. We maintain the settings introduced in 5.4.1 and 5.4.6. Then the
(surjective) open continuous homomorphism ¢ : Ilxs — Ilxs induces a bijection of
the sets of closed edges

¢sg,cl . €C1(FX1.) :> €CI<FX2‘)

group-theoretically.

Proof. Let an, oy € Egn* and oy et Yy(ag), o) def Yy(ah) € E;ln* . Lemma 5.13
X3 X1
implies that oy ~ o] (i.e. the equivalence relation defined in Proposition 5.2 (a)) if

and only if ay ~ of. Then the theorem follows from Proposition 5.2. U

5.4.8. Next, let us reconstruct the sets of p-rank from ¢. Note that the surjection
¢ induces a surjection of the maximal pro-p quotients

@P 1% — 115,

of solvable admissible fundamental groups. Then every Galois (étale) admissible
covering hy : Z3 — X3 over ko with Galois group Z/pZ induces a Galois (étale)
admissible covering h} : Z? — X} over k; with Galois group Z/pZ. Moreover, ¢?
induces an injection

Yy : Nxs < Hom(Ilxs, Z/pZ) < Nxs < Hom(Ilxs, Z/pZ).

We have the following lemmas.
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Lemma 5.15. We maintain the notation introduced above. Suppose that #(v}3) =
0. Then we have #(v;2) = 0. In particular, we obtain that
fo) def fe) ~ O def o)
Uy Nyy = Hom(I1yy, Z/pZ) = Ny¥ = Hom(IIy¥, Z/pZ)
s an isomorphism.

Proof. Since h? is étale, the Riemann-Hurwitz formula implies gz, = ¢z,. Thus,
similar arguments to the arguments given in the proofs of Proposition 5.10 imply
#(v) = 0. This completes the proof of the lemma. O

Lemma 5.16. We maintain the notation introduced above. Suppose that #(v};3) =
1. Then we obtain #f(v;}) = 1.

Proof. Similar arguments to the arguments given in the proofs of Lemma 5.11 imply
#(vir) < L If #(v;?) = 0, then the “in particular” part of Lemma 5.15 implies
#(vj>) = 0. This contradicts our assumption. Then we obtain #(v;>) = 1. O

Now, we can reconstruct the sets of p-rank of smooth pointed stable curves asso-
ciated to vertices from ¢ as follows.

Theorem 5.17. We maintain the settings introduced in 5.4.1. Then the (surjective)
open continuous homomorphism ¢ : Uxe — llxs induces an injection of the sets of
vertices (see 5.1.2 for v(I'xs)”"?)

w;g,ver . ,U<FX2.)>0,p SN U<FX1')>O’p
group-theoretically. Moreover, let v € v(I'xs)”"? and vy o VeV (vy). Then we
have the following inequality of p-rank
T20y < 01y

Proof. Lemma 5.16 implies ¢,(Vy, ,) € V5, - Let ag, a5 € V, | be elements distinct
from each other such that ay ~ af. Tt is easy to see that acy + bay € V5, ) if and
only if ay,(as) + bihy(ay) € Vi, , for each a,b € F);. Thus, by Proposition 5.1, we
obtain an injection of the sets of vertices
w}sjg,ver : U(FX§)>O’p — U(FXIO)>0’p.
Let v; € v(I'xs). We put

Ly € {a; € Nyo | o2, = {vi}},

where h? . denotes the Galois (étale) admissible covering corresponding to a;. More-
over, Lemma 5.16 implies that 1), induces an injection L;’?Q;p — L?lzp )

We denote by [L%¥] the image of LYY in Nxs/Ny¥. Then we have #([L}7]) =

poiwi — 1. Suppose that v, < Y3V (1), Lemma 5.15 implies that ), induces an
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injection [Lq)é;p] — [L}’glzp]. Thus, we have p72v — 1 = #([LUXQ;]) < #([Llel.p]) =
p”t*1 — 1. This means that o9,, < 01,, for each vy € U(FX5)>O’p. We complete the
proof of the theorem. O

5.4.9. In the remainder of the present subsection, we prove a proposition which
will be used in Section 5.6.

Proposition 5.18. We maintain the notation introduced above. Then the following
statements hold:
(a) Let S§' C e?(Dxs) be a subset of closed edges, o, € E;IH*X? o (5.2.8) for every
1

e € Sfl,

def *
o] = Z Qe € ETHX. (526),
6165%1 !
and g7 ., @ Y, — Y7* the Galois admissible covering over ky with Galois group
ZJUZL corresponding to cy. Let ¢°8 1 e?!(Txs) = e?(T'xg) be the bijection of the

sets of closed edges obtained in Theorem 5.14, gz (e,) € E;II’T*’O 55l (1) the element
xg”

induced by ¢ for every e, € S,

oy .
Qg = Qpsg.cl(e) c ETHX.’
2

8165?1

and g3 ., © Yoo, — Yo the Galois admissible covering over kg with Galois group

ZJVZ corresponding to cs. Suppose #(v;fal) = 0. Then we have
#(egone) = #(vg, . ) =0.
(b) Let E’%’;’:O e; € e®(I'xs), be the set of cohomology classes defined in 5.2.9,

°Ci’

and let S7° C e (I'xs) be a subset of open edges, a., € E;?;O’el for every e; € S7P,
1

def j : *
a1 = Oéel - E(IHX. y
1

61€S?p
and g1, ¢ Y1, — Yi" the Galois admissible covering over ki with Galois group
Z/UZ corresponding to ay. Let ¢ : eP(T'xs) = e(T'xg) be the bijection of the

sets of open edges obtained in Theorem 4.11, cvgssop(e,) € E;I;I’*’D F50p (c1) the element
xg”

induced by ¢ for every e; € S¥,

def z : *
Oé2 = Oé¢sg,op(el) 6 ETHX. 9
2

el ES?D
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and g3 o, * Yoo, = Yo the Galois admissible covering over kg with Galois group

ZJVZ corresponding to cw. Suppose #(U;ﬁal) = 0. Then we have

clra \ __ S _
#(692,(12) - #(Ugg,aQ) - 0

Proof. (a) Since #(eg?"®) = 0, Theorem 4.11 implies #(egp*) = 0. On the other
hand, we have

My, = L# (e (Typ)) — d#(ST)) + d#(ST) — #(v(Typ)) + 1,

Moy = (G, )+ #(eg0n,) — () — #(g ) + 1.

Then Lemma 5.5 and Lemma 2.2 (b) imply 0 = gv; ,, — v, = "Vi0, — T¥a,a, LHUS,
we have

#(egrm,) + #5 ) + #( Cornn) = #(Cgym) + (V5 ) < dFE(ST).

On the othe hand, Lemma 5.13 implies # (e ) = d#(S§"). Then we obtain

92,a9

#(v®? ) =0. This completes the proof of (a).

92,a9

(b) The Riemann-Hurwitz formula and Theorem 4.11 imply

1 o op,ra
IV, = aay — i(d#(51p> - #( > ))(f — 1) 0.
On the other hand, we have

e, = (#(e?(Tys)) — #(v(Tye)) + 1,

Py = CH(ESS )+ H(el™ ) — G2 ) — #2)+ 1.

Then Lemma 5.5 and Lemma 2.2 (b) imply gv; ., — 9¥3.0y = TVia, = "Vaa,- LhUS, We
have

cl,ra 1 op,ra d#(SOp)
#( glg a2) + #( gg a2) 5#(695;2) - 9 : <0.
This means that #(eS™ o) =#(vg,,) = 0. We complete the proof of (b). O

92,a9

5.5. Reconstructions of commutative diagrams of combinatorial data. In
this subsection, we prove that the commutative diagrams of sets of vertices, sets of
open edges, and sets of closed edges induced by admissible coverings can be recon-
structed from an open continuous homomorphism of solvable admissible fundamental
groups. The main result of the present subsection is Proposition 5.19.
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5.5.1. Settings. In the present subsection, we maintain the settings introduced

in 5.4.1. Furthermore, we fix some notation as follows. Let Hs be an open normal
subgroup of 1%, H; def ¢~ '(H>) the open normal subgroup of Hxe, G = def HX-/H1

[Ixs/Hy, and ¢, the surjection ¢|py, : Hy — Hy. Let i € {1,2}. We write
Fi s Xiy, = X

for the Galois admissible covering over k; with Galois group G, (gXHi,nXHi) for the
type of X7, and I'xs for the dual semi-graph of X7, . Furthermore, we suppose

that X3, and X3, satzsfy Condition A, Condition B, and Condition C (5.3.1).

5.5.2. Let £ and d be prime numbers distinct from p such that ¢ # d and (#(G), () =
(#(G),d) =1, and let

Tty  (0,d, ap,, IS, —» Z/dZ)

be an edge-triple associated to Ilxs (5.2.3) and Tx; o (0, d, f%, : Yo — X3) the

edge-triple associated to X3 correspondmg to THX. (5.2.2). By Corollary 5.7, we
2
obtain an edge-triple

Tty E (0,d, 0y, 1 — Z/dZ)

induced group-theoretically from ¢ and Ty, . We write Txs &t (,d, f%x, Y — X7)

for the edge-triple associated to X7 correspondmg to T Xt On the other hand, we
put

e
def

; f i
Qi Y ker(Ilys — 1% —' Z/dZ).
We have that H; — H;/(H; N Q;) = Z/dZ factors through a homomorphism ay, —:
H — Z/dZ. We see that

T, © (4 d,ayy, )

is an edge-triple associated to H;. Moreover, Ty, is induced group-theoretically from
H; C Ilxs and %y, . Note that Ty, coincides with the edge-triple associated to Hi

induced group—theolretically from ¢p, and Ty,. Moreover, we denote by

Txy = < ((,d, fxu, + Yy, B xxs Xii, = Xi,)

the edge-triple associated to X3 corresponding to Ty, .
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5.5.3. By applying Proposition 5.1, Remark 5.1.1, Proposition 5.2, and Remark
5.2.1, we have that the natural inclusion H; < Ilxs induces the following maps

ver,l |

cl . cl cl
fyHi VXH,L-:Z — VXZ',ZJ WTHX.,HZ' . E(IHZ- — E‘I]‘[X,

group-theoretically. We put

-1
K
Xp, ot ver, ¢ D'IN
H.

’V}’ir:v(rx;li) 5 VXHZJ - VXM =5 U(FX;)7

1 9
19..£Hi ,Y%IH L T x¢
,_ycl 'GCI(F . ) :> Ecl g Ecl :> €C1<F .)
H; - X, T, Ty X3

Then the maps vy and 'yl‘é}i can be reconstructed group-theoretically from the in-
clusion H; < llx..

On the other hand, Theorem 4.2 implies that the sets Edg® (ILys) and Edg® (H;)
(1.2.11) can be reconstructed group-theoretically from II xs and H;, respectively.
Note that we have a natural map

Engp(Hi> — Engp(HXi-)

induced by the natural inclusions of stabilizer subgroups. Moreover, this map com-
patible with the actions of H; and IlIxs. Then we obtain a map

’yzg : QOP(Fx;_Ii) = Engp(Hl)/HZ — Engp(Hx;)/Hx; = QOP(FXi-)
which can be reconstructed by the inclusion H; < Ilxs group-theoretically.
Moreover, by Theorem 4.11, Theorem 5.12, and Theorem 5.14, the following maps

~

Qﬁi_%ver : U<FX;11> = U(FXI.{Q)’ qbsl_%fp : GOP(PXEII) — GOp(Fx;{Q), qbslid : GCI(FX;h) =5 €C1<FX%2),

(bsg,ver : U(FXI') :> U(szo), ¢sg,0p : GOP(FXIO) :> GOP(FXQO), ¢Sg’d : ed(Fxlo) :> €C1(FX2°)

can be induced group-theoretically from ¢pg, : Hy — Hy and ¢ : Hxe — lxs,
respectively.
We have the following result:

Proposition 5.19. We maintain the notation introduced above. Then the following
diagrams

sg,ver

Tz, ) —— o(Txy, )

e l e l

sg,ver

v(lx;) —— v(l'xy),
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Sg,op

eop(l"X;ﬁ ) — eop(FX;{)

Vi, l Vit l
¢ (T'xs) R (T xs),
sg,cl

cl Hy cl
e (FX;H) — € (Fx;l2)

i | i |

sg,cl
e(Txs) T e(Ixy)
are commutative. Moreover, the above commutative diagrams are compatible with
the natural actions of G.

Proof. The commutativity of the second diagram follows immediately from Theorem

4.11 (in fact, the second commutative diagram holds without Condition A, Condition

B, and Condition C). We treat the third diagram. To verify the commutativity of

the third diagram, we only need to prove the commutativity of the following diagram
(@

Gd(rx;b) e BCI(F)(;JI)

VH, l v, l

c d)sg,cl —1 c
eITxy) 20 (D),

def _ def
Let ep, € GCI(FXI'{2)7 e, = (Qﬁ{d) Yem) € ed(rx;ﬁ), e2 = v, (em,) € e(Lxy),

er = (751 0 (05 ) (em) € e(Txy), and ¢f = (¢5) 7 (ey) € e/(Tyz). We will

prove that e; = €.
Write Sy, and Sy, for the sets (v§,) ' (€}) and (7§,) ' (e2), respectively. Note
that ey, € Sp,. To verify e; = €/, it is sufficient to prove that ey, € Sy, .
Let g € E;ll’:x.m (5.2.8). Then the proof of Lemma 5.13 implies that ay induces
2

an element oy € E;ln* . Write Y2 — Y;* for the Galois admissible covering over
X9 ‘

k; corresponding to «;. We consider the Galois admissible covering

’
€1

L] L] L]
Ya2 XX2' XH2 — YXH2

over ko with Galois group Z/¢Z, and denote by B2 an element of Ez,, (5.2.6) corre-
sponding to this Galois admissible covering. Then we have

ﬁQZ Z t@ﬁczu

C2€SH2
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ey Note that we have t.,, 7 0. On the other
hand, the proof of Lemma 5.13 implies that (., induces an element ch}} ) 1(e2) €
1

where t., € (Z/(Z)* and ., € Egz

cl,x .
ETHI, (65 )1 e2) Then [, induces an element

def k
61 = Z tCQﬁ(¢%l)—1(02) + teHQBEHl - ETHl'

CQESHQ\{GHQ}
Note that since (; is an element corresponding to the Galois admissible covering
Ya.l XXI Xf.ﬂ — Y;(Hl
over ki with Galois group Z/{Z, the composition of the Galois admissible coverings

Yo xxs X, = Yy, =5 X}, is ramified over Sp,. This means that eg, is contained
in SHl .

Similar arguments to the arguments given in the above proof imply the first
diagram is commutative. It is easy to check the “moreover” part of the proposition.
This completes the proof of the proposition. O

5.6. Combinatorial Grothendieck conjecture. In this subsection, we prove a
version of combinatorial Grothendieck conjecture for open continuous homomor-
phisms under certain assumptions. The main results of the present subsection are
Theorem 5.26 and Theorem 5.30.

5.6.1. Settings. In the present subsection, we maintain the settings introduced in

5.4.1. Moreover, we fix some notation as follows. Let Hy be an open normal subgroup

of I1%,, Hy o ¢~'(H,) the open normal subgroup of IIxs, G o [xs/Hy = lxg/Hy,

and ¢p, aof &g, : Hi — Hs the surjection induced by ¢. Let i € {1,2}. We write
fo o X = X

for the Galois admissible covering over k; with Galois group G, (gXHi,n XHi) for the

type of X}, I'yy for the dual semi-graph of X7, and ry, for the Betti number of

FX;Ii'

5.6.2. Firstly, we prove that X7, and X}, satisfy Condition A, Condition B, and
Condition C introduced in 5.3.1 (see Proposition 5.25 below).

Lemma 5.20. We maintain the notation introduced above. Then X}, satisfies
Condition A, Condition B, and Condition C (i).

Proof. The first condition, the second condition, and the fourth condition of Con-
dition A follow immediately from the definition of admissible coverings. Since X}
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satisfies Condition B and the third condition of Condition A, X}, also satisfies Con-
dition B and the third condition of Condition A. Moreover, Condition C (i) follows
immediately from Theorem 4.11. This completes the proof of the lemma. U

Lemma 5.21. We maintain the notation introduced above. Suppose that there exists
an open normal subgroup Hy C Hy such that X;I{ and X]'{é satisfy Condition A,

Condition B, and Condition C, where H] o ¢~'(H}) € Hy. Then X3, and X,
satisfy Condition A, Condition B, and Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that Xz and
X3, satisfy Condition C (ii) and Condition C (iii).
Let G % Tlys/H| = llxs/Hy and G"  H,/H| = Hy/H} C G'. By applying
Proposition 5.19, the following commutative diagrams
¢sg,ver

H/

U(FX;Ii) —1> U(FXI.fé)

5P
H
€OP(FX° ) 1 , €OP(FX' )
Hy Hy
op op
’\/Hi l ’\/Hé l

sg,cl
eI(Txs) T e(I'xy)

can be reconstructed group-theoretically from H} — lUxe, ¢, and ¢g of ol H-

Moreover, the commutative diagrams are compatible with the actions of G” and G’.
Then we obtain

#(U(Fx;{l)) = #(U(FXL;)/G”) = #(U(PX;{é)/G/,) = #(U(FX;I2>)a
#(e®(Ixy, ) = #(e™ (Ixy, )/G") = #(e™ (Ixy, )/ G") = #(e™ (xy, ),
#(e"(Uxy, ) = #(e Ty, )/G") = (e (T, )/ G") = #(e“ (T, ).

This means that X7, and X7, satisfy Condition C. U
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Lemma 5.22. We maintain the notation introduced above. Suppose that (#(G),p) =
1, and that fy, is étale. Then Xp; and X3, satisfy Condition A, Condition B, and
Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X7, and X7,
satisfy Condition C (ii) and Condition C (iii). Moreover, since G is a finite solvable
group, to verify the lemma, it is sufficient to prove the lemme when G = Z/{Z,
where ¢ is a prime number distinct from p. Thus, Proposition 5.9 implies that fp,
is also étale.

We denote by H), C H, the inverse image of Dg(l'[‘;}z.) (Definition 4.8) of the

natural surjection Ilys — H%E. Then H, is an open normal subgroup of Ilxs. Let

Hj def ~Y(H}) € Hy. We see that Hj is equal to the inverse image of Dg(Hé}l.) of

the natural surjection ITys —» Hi‘}l.. Since X7 and X3 satisfy Condition C, Theorem
5.12 and the structures of the maximal prime-to-p quotients of solvable admissible
fundamental groups (1.2.4) imply that XI.{{ and XI'{é also satisfy Condition C. Then
the lemma follows from Lemma 5.21. Il

Lemma 5.23. We maintain the notation introduced above. Suppose that (#(G),p) =
L. Then X3, and Xy, satisfy Condition A, Condition B, and Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X3 and
X3, satisfy Condition C (ii) and Condition C (iii).

Since G is a finite solvable group, to verify the lemma, it is sufficient to prove the
lemme when G = Z /{7, where { is a prime number distinct from p.

Let SHXQ, = (0, d, gy, H§§2. —» Z/dZ) be an edge-triple associated to [Ty (5.2.3),
ng; = ((,d,ayy - H_é)gl. —» Z/dZ) the edge-triple associated to IIxs induced by ¢,
and Txs = ((,d, f%, : Y, — X?) the edge-triple associated to X} corresponding to
Tie (5.2.2).

Filrstly, we suppose that fp, is étale over Dy,. Then Theorem 4.11 implies that
fr, is also étale over Dx,. Let a, € E;lr’l*’o (5.2.8), €1 € e(I'xs),

€1
®)
Xl

I R By, (5.2.6),

(3
er€e!(Tyxs) '

and g7, : Y7, — Y7° the Galois admissible covering over k; corresponding to

a;. Note that we have #(e%P™) = #(v* ) = 0 (Definition 1.1.5). Let ¢*&< :

91,aq 91,aq

e?(xs) = e (T'xg) be the bijection of the sets of closed edges obtained in Theorem
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5.14, ageseie)) € Ed*0 the element induced by ¢ for every e; € (I’ xs),

¢sg cl(

def *
a2 — E Oéd)sg,cl(el) 6 ETHX.,

eleed(l"x;) 2

and g3, : Yo,, — Y5 the Galois admissible covering over ky corresponding to as.
Then Proposition 5.18 (a) implies #(egh"®) = #(v;) ) = 0. We obtain that g;q,
is totally ramified over every node of Y;, and that Y;°, and Y3, satisfy Condition
A, Condition B, and Condition C. Write N; C Tlx. for the open normal subgroup

correspondmg to Y;°,,

Let H, def
Note that X7, is isomorphic to a connected component of

H,NN; and XI'{, the pointed stable curve over k; corresponding to H.

. .
XHi x Xz. }/;70‘1

We denote by hf : X7, — Y53, the Galois admissible covering over k; corresponding
to the injection H] . N;. By applying Abhyankar’s lemma, fp, is étale over Dy,
implies that h; is étale. Then the lemma follows from Lemma 5.21 and Lemma 5.22.
This completes the proof of the lemme when fy, is étale over Dy, .
Next, let us prove the lemme in the general case. We take (., € EP+0

Ty e5€1
1
e1 € e®®(I'ys) such that #(v;fﬂl) = 0, where

Z Pey € E‘Inxl

e1 EeOP(FX.)

for every

def

b=

Write g7 5, : Y1°5, — Y7* for the Galois admissible covering over k; corresponding to
p1. Note that we have # (e ra) = #(vP 51) = 0. Let ¢*8°P : eP(I'xs) = e(Txs)
be the bijection of the sets of open edges obtained in Theorem 4.11, Byesop(e,) €

E;Ir’[;; gonon(cy) the element induced by ¢ for every e; € e*P(I'xy),

def

B ooty € By

e1 GeOP(FX-)

and g5 5, : Yo 5, — Y5 the Galois admissible covering over £y corresponding to [fs.
Then Proposition 5.18 (b) implies # (e ) = #(vP ) = 0. We obtain that g; g,

92,85 92,89
is totally ramified over every marked point of Y;, and that Y’; and Y3, satisty
Condition A, Condition B, and Condition C. Write @Q; C Tlxs for the open normal

subgroup corresponding to Y;*;..
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Let H def H;NQ; and X}, the pointed stable curve over k; corresponding to H;'.
Note that X7, is isomorphic to a connected component of

XI.{z XX: }/1,.51

We denote by h;"* : X3, — Y%, the Galois admissible covering over k; corresponding
to the injection H! <—>ZQZ-. By applying Abhyankar’s lemma, h; is étale over Dy, 5"
By applying the lemma in the case where hj is ¢tale over Dy, , , we obtain that
X;Ig and X;Ig satisfy Condition A, Condition B, and Condition C. Then the lemma
follows from Lemma 5.21. We complete the proof of the lemma. O

Lemma 5.24. We maintain the notation introduced above. Suppose that G is a
p-group. Then Xy and X3, satisfy Condition A, Condition B, and Condition C.

Proof. By Lemma 5.20, to verify the lemma, we only need to prove that X7 and
X3, satisfy Condition C (ii) and Condition C (iii).

To verify the lemma, without loss the generality, it is sufficient to treat the case
where G = Z/pZ. Since f}; is étale, X3, and X3, satisfy Condition C (iii).

Let V; C v(I'xs)”%? (5.1.2) be the subset of vertices such that the natural (outer)

homomorphism

Mg, =y — G = My /H,
is non-trivial (since G = Z/pZ, the homomorphism is a surjection) for all v; € V;,
where I, is the admissible fundamental group of the smooth pointed stable curve

1,04

)?;v associated to v; (1.1.3). Then we obtain #(v(I'xs ) = p(#(v(I'xs)) —#(Vi)) +
#(V;) and #(e?(Tx;, ) = p# (e (Txz))-
Theorem 5.17 implies that we have an injection
w;g,ver . ?J(FX2-)>O’p SN U(FXI.)>0,p

induced by ¢. We put

def .
VIS {8 (02) bogers, € v(Txs) 0%,

By applying Lemma 5.15 and Lemma 5.16, we see that V; = V/. Thus, we have
#(U(FX;{I)) = #(U(FX;{2)) and #(GCI(FX;II)) = #(eCI(FX;{2)). This completes the
proof of the lemma. O

Proposition 5.25. We maintain the notation introduced above. Then X3 and
X1, satisfy Condition A, Condition B, and Condition C.

Proof. Since G is a solvable group, the proposition follows from Lemma 5.23 and
Lemma 5.24. U
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5.6.3. Next, we prove the main result of the present section which we call the
combinatorial Grothendieck conjecture for open continuous homomorphisms.

Theorem 5.26. We maintain the settings introduced in 5.4.1. Then the open con-
tinuous homomorphism ¢ : llxs — Ilxs induces the following surjective maps (see

1.2.11 for Ver(Ilys), Edg®(Ilxs), and Edg®(Ixs))
¢*" : Ver(Ilxy) — Ver(Ilxg), ¢ : Edg® (Ilx;) — Edg®™(Ilxy),

¢ . Edg® (ILxs) — Edg® (ILyy)
group-theoretically. Moreover, ¢ induces an isomorphism
¢Sg : FXl' :> Fxg
of the dual semi-graphs of X3 and X3 group-theoretically.

Proof. By applying Theorem 4.11, the homomorphism ¢ : IIxs — Ilyxs induces a
surjective map ¢°48°P : Edg®(Ilxs) — Edg®(Ilxs) group-theoretically. We only
need to treat the cases of ¢"" and ¢4, respectively.

Let Cy X3 be a cofinal system of Tlxs which consists of open normal subgroups of

lxs. We put
def def

CHX{ = {Hl = qb_l(HQ) | H, € CHXQ'}'

Note that Cr,, is not a cofinal system of IIxs in general. Moreover, by applying

Proposition 5.215, we have that X7, and X}, satisfy Condition A, Condition B, and
def

Condition C for every Hs € CHX2. and every H, = ¢! (H,) € CHx;'

We treat the case of ¢V*". Let )A(Z' be the universal solvable admissible covering
of X? associated to llx; and I'g, the dual semi-graph of X?. Let @ € U(F)A(I.) and
15, the stabilizer subgroup of w;. Write wy, € v(I' X;Il), H, € CHXf? for the image
of w,. Proposition 5.19 implies that ¢ induces a cofinal system of vertices

Co, < {wm, € O} (wm)}incci

which admits a natural action of IIxs. Then we obtain an element w, € v(I' )?2.).
Moreover, the stabilizer of Cg, is [15,. We see immediately that ¢ induces a surjective
open continuous homomorphism

¢y, : Ha, — g,
group-theoretically. Then we define
" Ver(Illxs ) — Ver(Ilxy ), Ilg, = Ilg,.
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Next, we prove that ¢V is a surjective map. Let vy € v(I’ )?2.) and 113, the stabilizer
subgroup of vy. Write vy, € U(FX;I2), H, € CHXQ" for the image of ¥. Then we
obtain a cofinal system of vertices

Cﬁz déf {UHZ}HQGCHX.
2
associated to vy. The cofinal system Cj;, admits a natural action of 11 xs. We see

immediately that the stabilizer of Cy, is equal to 1l;,. Proposition 5.19 implies that
¢ and Cy, induce a set of vertices

def def _
' = {UHI = (¢sg,vex) 1<UH2)}H2€CHX5

group-theoretically. By extending C’ to a cofinal system of vertices, we obtain an
element v; € v(T' )?f> such that the image of v in v(I'x, ) is vg,. Thus, ¢ induces a
surjective map

qﬁ]nal g, — g,
This means that ¢¥*" is a surjection.

By applying similar arguments to the arguments given in the above proof, we
obtain that ¢ induces a surjective map ¢! : Edgd(HXI-) — Edg(II X3) group-
theoretically. This completes the proof of the first part of the theorem.

We prove the “moreover” part of the theorem. The surjections ¢¥*, ¢°8°P and
¢°4&! imply the following surjections

(ng’ver : U(FXI’) :> Ver(HXl')/HXI‘ — VeI"(HXZO)/ng :> U(Fxg),

¢sg,op : GOp(FXI) 5 EdgoP(HXf)/HXlo —» EdgoP(szo)/HXE = €0p(FX20),
¢ e(Txs) = Bdg® (Ixy) /Ty — Edg®(Txg)/Tlxy = e”(Txg).
Since X7 and X3 satisfy Condition C, we have that ¢%"°, ¢%°P and ¢ are
bijections. Let e; € eoP(F)?l.) U e“l(F)A(l.) and v, € U(F)A(l.) such that e; abuts on ;.
Then we have Iz, C I, ¢°%8°P(I5) C ¢v(Ily) if €1 € eOP(F)?l.), and ¢°48<(I5) C
ovr(Ily,) if €y € ed(I’Xl.). By applying [HM, Lemma 1.5, Lemma 1.7, and Lemma
1.9], ¢ induces an isomorphism of dual semi-graphs

¢sg I X3 :> r X3
group-theoretically. This completes the proof of the theorem. U

Remark 5.26.1. We maintain the notation introduced above. We see immediately
that Theorem 5.26 does not hold without Condition C (e.g. X7 is a generic curve
of M, ,,, and X3 is a singular curve).

On the other hand, although the author cannot prove this at the present time,
he believes that Theorem 5.26 also holds without Condition B (e.g. nx, = 0). The
main difficult is that we do not have a precise formula for limits of p-averages of
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arbitrary pointed stable curves. Moreover, if the question of [Y3, Remark 4.10.2] is
true, without too much difficulty, similar arguments to the arguments given in the
proofs of this section imply that Theorem 5.26 holds without Condition B.

Remark 5.26.2. We maintain the notation introduced above. Suppose (gx,,nx,) =
(9x,.mx,) (i.e. we do not need to assume that Condition A, Condition B, and
Condition C (ii) (iii) hold).

In [Y7], the author of the present paper formulated a new conjecture called the
group-theoretical specialization conjecture (see [Y7, Section 3.1.3]). The conjecture
establishes a precise description of the relationship between the various data (i.e.
combinatorial data, topological data, and geometric data) associated to pointed
stable curves (see [Y7, Definition 2.5]) and the open continuous homomorphisms of
their admissible fundamental groups, and it will be played a central role to study
the homeomorphism conjecture for higher dimensional moduli spaces (see [Y7, Intro-
duction]). Moreover, the group-theoretical specialization conjecture is the ultimate
generalization of the combinatorial Grothendieck conjecture in positive character-
istic, and [T4, Theorem 0.1 and Theorem 5.2], [Y2, Theorem 1.2], Theorem 4.11,
Theorem 5.26, and Theorem 5.30 of the present paper are special cases of this con-
jecture.

Corollary 5.27. We maintain the notation introduced above. Let Q3 C s be an

arbitrary open subgroup and )y = ¢~ (Q2) C lxs. Then we have (see 2.2.1 for

Avry,(Qi))
Avr,(Q1) = Avr,(Q2).

Proof. The corollary follows immediately from Theorem 5.26. U

5.6.4. In the remainder of this subsection, we will prove that if gx = 0, Theorem
5.26 holds without Condition A and Condition B (see Theorem 5.30), which will
play a key role in the proof of the main theorem of the present paper. Furthermore,
although the author cannot prove this at the present time, he also believes that
Theorem 5.26 holds without Condition A and Condition B.

Lemma 5.28. Let E* = (E, Dg) be a pointed stable curve of type (0,n) over an
algebraically closed field k of characteristic p > 0, Ilge the solvable admissible fun-
damental group of E®, and ¢ >> n a prime number distinct from p. We put

Edg™"*" (Il ge) €

= {pr"" (L) | Iz € Edg® (lge)} = {L}eceon(r o),
where prt®® denotes the natural surjective homomorphism Tge —» H%?b, and I, &

pro®(I;). Let a, € I, e € e°®(I'gs), be a generator of I, such that

H a. =1,

ece’P(I'ge)
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and let o : 1Y — Z/UZ be a surjection and r, o alae). Write g* : X* — E* for
the Galois admissible covering over k with Galois group Z/lZ corresponding to c.
Suppose that r. # 0 for every e € e°®(I'gs), and that

Z re =1~

ece’P(I'ge)

if we identify Z/0Z with {0,1,...,0 — 1} C Z. Then g¢* is totally ramified over
every node and every marked point of E*. In particular, we have that the map of
dual semi-graphs T'xe — T'ge of X* and E* induced by g* is an isomorphism (as
semi-graphs), and that X* satisfies Condition A.

Proof. We prove the lemma by induction on #v(I'ge). Suppose that #v(I'gs) = 1.
Then the lemma is trivial. _
Suppose that #v(I'gs) > 2. Let vy € v(I'ge) and B} the smooth pointed stable

curve associated to vy (1.1.3). Note that the underlying curve E,, coincides with
the irreducible component of E corresponding to vy. On the other hand, we define
a pointed stable curve over k to be

def

E = (E, Y E\E,,Dp <

S (Dp N Eo) U (Eo N ),

where E \ E’UO denotes the topological closure of £\ EUO in £. Then ¢* induces the
following Galois admissible coverings
oo+ X0y = B3, 90 - X — E§

over k with Galois group Z/¢Z. To verify the lemma, we only need to prove that
gs, and gg are totally ramified over every node and every marked point of Ej and
Ej, respectively.

Let Iz, and IIgs be the solvable admissible fundamental groups of £} and Ef,

vo

respectively. Since F%p.t is 2-connected, [Y3, Corollary 3.5] implies that the natural
homomorphism 6,, : H%;b — II%" is an injection. Let 6y : Hiigb — 135" be the
homomorphism induced by the natural (outer) injective homomorphism ITgs < TI.
(in fact, 6y is also an injection).

Let {z} = Ey N E,,, e, € e®(I'z, ) the open edge corresponding to x, ey €

v0

—_

e?(I'ge) the open edge corresponding to w, E;O the universal solvable admissible
covering of E} , E§ the universal solvable admissible covering of Ef, €,, € eOP(FE.\)

vQ
an element over e, , and ¢ € e°P(T’ EB> an element over eg. We denote by I, the
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image of Iz,

of I, — 112", and by I, the image of I, of Igy — 115", We put
vo v

(0]

Qeyy = ( H ae)_17 ey = ( H ae>_1‘

ece?('gy )\{ewg} eceP (L' )\feo}

Then ae,, and ae, are generators of I, and I, respectively. Moreover, we put
~ O,
Gy T T 5 Z/MZ, 0 T BT 5 202,
Y0

Then the structures of maximal pro-prime-to-p quotients of solvable admissible fun-
damental groups (1.2.4) imply

Qg (e, ) = £ — Z Te = Z Te, (p(Uey) = Z Te.

c€e?(I'ge N\{evo} eceP(I'ge)\{eo} e€eP(I'ge N\{evy }

Thus, by induction, we have that g3 and gg are totally ramified over every node

and every marked point of E;O and E§, respectively. We complete the proof of the
lemma. O

Lemma 5.29. Let E* be a pointed stable curve of type (0,n) over an algebraically
closed field k of characteristic p > 0. Then E® satisfies Condition B.

Proof. Let f®:W?® — E*® be an arbitrary admissible covering over k, I'yys the dual
semi-graph of W* and f*8 : I'yye — I'ge the map of dual semi-graphs of W* and X*
induced by f°. To verify the lemma, we only need to prove that F%I}t. is 2-connected.

Suppose that f* is trivial. Then the lemma follows from that Fpr.t is 2-connected.

Suppose that f* is non-trivial. Let w € v(I'we) and v € v(I'ge). We denote
by mo(w) the set of connected components of Ty \ {w}. Suppose v = f8(w).
Let C,, € mo(w) be an arbitrary connected component. We see immediately that
1%8(Cy) NeP(Tgs) # O. Then we obtain C, N e°?(T'ys) # . Thus, we have
#(mo(w)) = 1. This means that ' is 2-connected. We complete the proof of the
lemma. i

5.6.5. Theorem 5.26 implies the following important result.

Theorem 5.30. Let i € {1,2}, and let E? be a pointed stable curve of type (0,n)
over k; of characteristic p > 0, lgs the solvable admissible fundamental group of
E?, and

an arbitrary open continuous homomorphism. Suppose that E} and ES satisfy Con-
dition C. Then ¢p : lgs — gy induces the following surjective maps

¢« Ver(llgy) — Ver(Ilg,), ?gpp : Edg™ (Ilgy) — Edg™ (Ilgy),
e Edg (gy) — Edg® (g,
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group-theoretically. Moreover, ¢ induces an isomorphism
of the dual semi-graphs of E} and E3 group-theoretically.

Proof. Lemma 4.3 implies that ¢p is a surjective map. By applying Theorem
4.11, the homomorphism ¢g : lgs — llgs induces a surjective map pedeop
Edg®(llgs) — Edg®(Ilgs) group-theoretically. We only need to treat the cases
of o3 and ¢8| respectively.

Let ¢ be a prime number such that ¢ # p, and that £ >> n. Let ay : H%Zlb — L7
satisfying the assumptions of Lemma 5.28. Then Theorem 4.11 implies that ¢ and
ap induce a surjection a; : Hil?b — 7 /U7 satisfying the assumptions of Lemma 5.28
too. Write g7 : X7 — E? for the Galois admissible covering over k; with Galois
group Z/¢Z. Then Lemma 5.28 and Lemma 5.29 imply that X7 and X3 satisfy
Condition A, Condition B, and Condition C.

Write IIxs C Ilge for the open normal subgroup corresponding to g7. Let 1, €

Ver(Ilx: ), oy, € Edg®(Ilys), I5, € Ver(Ilgs) the unique element containing G, ,

and [z, € Edgd(H pe) the unique element containing Iz, . Since Il and I, are the
normahzers of Iz, and [z, in Ilge, respectively, the theorem follows 1mmed1ate1y
from Theorem 5.26. This completes the proof of the theorem. U

PART III: MAIN RESULT

6. THE HOMEOMORPHISM CONJECTURE FOR CLOSED POINTS WHEN g = 0

We maintain the notation introduced in 3.1.3. In this section, we will prove that

Wadnl([q]) (resp. 7% ([g])) is a closed point of II,, (resp. ﬁSOI) for every [q] €

g,n
i)ﬁ o if g = 0. In particular, the homeomorphism conjecture (resp. the solvable
homeomorphlsm conjecture) holds when (g,n) = (0,3), (0,4). In the present section,
all fundamental groups are solvable admissible fundamental groups unless indicated
otherwise. The main results of the present section are Theorem 6.6 and Theorem

6.7.

6.0.1. Settings. We fix some notation. Let i € {1,2}, and let k; be an algebraically
closed field of characteristic p > 0 and pri the algebraic closure of F, in k;. Let
X} be a pointed stable curve of type (0,n) over k;, I'ye the dual semi-graph of X7,
and rx, the Betti number of I'xe. Note that I' xs I8 a tree, and that the irreducible
component X;,, corresponding to v; € v(I’ Xi.) is isomorphic to IP’}%. In particular,
Xiw; 18 smooth over k;. For simplicity of notation, we shall use the notation X? = to

denote the smooth pointed stable curve )?;v of type (0,n;,,) over k; associated to
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v; € v(Ixs) (1.1.3). Let e; € e®(Txs) U e?(I'xs). We shall denote by z., the closed
point of X; corresponding to e;.

On the other hand, let IIxs be the solvable admissible fundamental group of X7
and

¢ZHX10 —)HX20

an arbitrary open continuous homomorphism. By Lemma 4.3, we see that ¢ is a
surjective open continuous homomorphism. Then ¢ induces an isomorphism

;o ’
gzﬁp:pr—)Hé’(Q.

of the maximal prime-to-p quotients of solvable admissible fundamental groups. Let
X? be the universal solvable admissible covering of X corresponding to Ilxs, I'g.

the dual semi-graph of )A(Z', and e; € e°P(I'xs). We put
Edge? (Ixe) o {lz, € Edg*(Ilxs) | & € e®(I'g.) is an open edge over e;}.

Moreover, in the present section, we shall suppose that k; is an algebraic closure of
]Fp (1e k’l = Fp,l)'

We denote by Hom(P(—, —) and Isom,,(—, —) the set of open continuous homo-
morphisms of profinite groups and the set of continuous isomorphisms of profinite
groups, respectively.

6.1. Smooth case. In this subsection, we maintain the settings introduced in 6.0.1
and assume that X? is smooth over k;. We recall some results obtained in [HYZ]
which will be used in the remainder of the present paper.

6.1.1. Let Fp be an algebraic closure of the finite field IF,,, and let X*® be a smooth
pointed stable curve of type (0,n) over F,. We fix two marked points ., g € Dx
distinct from each other. Moreover, we choose any field k' = F,, and choose any
isomorphism ¢ : X = P, as schemes such that ¢(z.,) = oo and p(zy) = 0. Then
the set of F,-rational points X (F,) \ {7o} — AL (k') is equipped with a structure of
F,-module via the bijection ¢. Note that since any k’-isomorphism of P}, fixing oo
and 0 is a scalar multiplication, the F,-module structure of X (F,)\ {2} does not
depend on the choices of k" and ¢ but depends only on the choices of z,, and .

We call that X (F,) \ {zx} is equipped with a structure of F,-module with respect to
ZToo and xg. Then we have the following lemma.

Lemma 6.1. We maintain the notation introduced above. Suppose that X is
smooth over k;. Let e1p, €100 € e‘)p(FXf) be open edges distinct from each other.
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Theorem 4.11 implies that ¢ induces a bijection ¢**°P : e®(I'xs) = eP(I'xg) group-

theoretically. We put ez def PP (e10) and eg oo dof PP (e1,00). Let

Z beiTey = Tey g
eleeOP(FX;)\{el’oo,el,o}
be a linear condition with respect to x., ., and x.,, on X7, where b, € F, for every
e1 € e®®(I'xs). Then we have the following linear condition
Z b€1x¢>3g’°p(€1) = Tgseor(e10) = Leap
€1€€OP(FXI)\{€1,00761,0}
with respect to X, . and Te,, on X3.
Proof. This is Lemma 4.2 of [HYZ]. O

Remark 6.1.1. Note that, if X; = P,lﬂ, then the linear condition mentioned in

Lemma 6.1 is
Z belxl =0
.Z’1EDX1 \{O0,0}

with respect to oo and 0.
6.1.2.  One of the main result of [HYZ] is the following result:

Proposition 6.2. We maintain the notation introduced above. Suppose that X
and X35 are smooth over ki and ko, respectively. Then we have that

HOmgg(fo, ng) 7é (Z)

if and only if X3 is Frobenius equivalent to X3 (Definition 3.1 (¢)). In particular,
if this is the case, we have that X3 can be defined over the algebraic closure of ), in
ko, and that

HOIIISg(HX;, HX2.> = ISOIIlpg(HXI, HX2-)
Proof. This is Theorem 4.3 (ii) of [HYZ]. O

Remark 6.2.1. Let [¢] € 9)?81771 be an arbitrary point. Proposition 6.2 and Propo-
sition 3.10 (a) imply V(7% ([q])) NII, = 7% ([¢]). Then we have that [75(q)] is a

closed point of H(Sf#. In particular,

to. t,s0l sol
7T074 . m074 - H074, 71-0’4 . m074 —» ].—_[074

are homeomorphisms. Note that Proposition 6.2 cannot tell us whether or not
[15°(q)] is closed in ﬁz(i. In fact, this is highly non-trivial, see Proposition 6.5
below.
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6.2. General case. We maintain the settings introduced in 6.0.1. In this subsec-
tion, we generalize Proposition 6.2 to the case where X! is an arbitrary pointed
stable curve of type (0,n).

6.2.1. Firstly, we have the following lemmas.

Lemma 6.3. We maintain the notation introduced above. Suppose that X7 is a
singular curve. Then X3 is also a singular curve.

Proof. Lemma 5.4 implies that there exists a Galois admissible covering f? : Y —
X? over k; with Galois group G such that (#(G),p) = 1, that the Betti number of
the dual semi-graph of Y;* is positive, and that Y} satisfies Condition A. Then ¢
induces a Galois admissible covering f5 : Yy — X35 over ky with Galois group G.
Write gy, for the genus of Y;* and ry, for the Betti number of the dual semi-graph
of Y*.

By applying Theorem 4.11, we obtain gy, = ¢y,. Moreover, Theorem 2.1 and
Lemma 2.2 (b) imply 0 < ry; < ry,. This means that X3 is a singular curve. We
complete the proof of the lemma. O

Lemma 6.4. Let X* be a pointed stable curve of type (0,n) over an algebraically
closed field k of characteristic p > 0 and £ > 3 a prime number distinct from p.
Then there exists a Galois admissible covering f* : Y* — X*® over k with Galois
group Z/UZ such that the genus of Y is 0 and #(Y, N Dy) > 3 for some irreducible
component Y, of Y.

Proof. Suppose that X*® is smooth over k. Then the lemma is trivial. We may
suppose that X*® is singular. Since X* is of type (0,n), there exist irreducible
components X,,, X,, of X distinct from each other such that #(X,, NDx) > 2 and
#(X,, N Dx) > 2.

Let x1 € X,, N Dx, x5 € X,, N Dx, and let f*:Y* — X* be a Galois admissible
covering over k with Galois group Z/¢Z such that f is totally ramified over x; and

x9, and that f is étale over Dx \ {z1,22}. We see immediately that the irreducible

components Y,, & f71(X,,) and Y,, & f~1(X,,) of Y satisfy the conditions # (Y, N

Dy) > 3 and #(Y,, N Dy) > 3, respectively. Moreover, the Riemann-Hurwitz
formula implies that the genus of Y'* is 0. This completes the proof of the lemma. [J

6.2.2. Next, we generalize Proposition 6.2 to the case where we only assume that
X7 is smooth over k.

Proposition 6.5. We maintain the notation introduced above. Suppose that X7 is
smooth over ki. Then X7} is Frobenius equivalent to X3 (Definition 3.1 (¢)). In
particular, we have that X3 is smooth over ky, and that X3 can be defined over the
algebraic closure of F), in k.



MODULI SPACES OF FUNDAMENTAL GROUPS OF CURVES I 91

Proof. It X3 is smooth over ks, the proposition follows immediately from Proposition
6.2. Then we may assume that X3 is singular (i.e. #(v(I'xg)) > 2).

Step 1: We reduce the proposition to the case where X satisfies the conditions
mentioned in Lemma 6.4.

Let ¢ > 3 be a prime number distinct from p. Lemma 6.4 implies that there
exists an open normal subgroup Hy C Ilx, such that Ilys/Hy = Z/(Z, that the
Galois admissible covering ff, : X3, — X3 corresponding to Hy is totally ramified
over two marked points of X3, and that there exists wp, € U(FXI-{2) satisfying

#(XHM,H2 N DXH2) > 3. Write H; def ¢~ 1(Hy) C IIxs for the open subgroup and

It + Xp, — X7 for the Galois admissible covering over k; corresponding to Hj.
Theorem 4.11 implies that f7; is totally ramified over two marked points of X7, and
that nx, = nx,, . Since f7, is totally ramified over two marked points, we have

gXHl = gXH2 = 0.

If we can prove the proposition holds for X3, , X3 , and ¢|g, : H; — Hj, then we
obtain that X3 is also smooth over ky. Then the proposition follows immediately
from Proposition 6.2. Thus, by replacing X7, X3, and ¢ by X}, Xy, and ¢|g,,
respectively, we may assume that #(X5 ., N Dx,) > 3 for some wy € v(I'xy).

Step 2: We construct a pointed stable curve Z? of type (0,5) over k; from X?.

Let €00, €20, €2,1 € € (I'xg) NeP(I'xs w2) distinct from each other. By Theorem
4.11, ¢ induces a bijection

¢sg,0p ceP (FX1. ) :> eP (FXz' )
group-theoretically. We put

def _ def _ def _
€1,00 = (¢Sg’0p) 1(62,00)7 €1,0 = (¢Sg’0p) 1(62,0), €1,1 = (¢Sg’0p) 1(62,1)-

Without loss of generality, we may assume

Ter = 00, ey B0, 20, 1, Xy =PL, Xo, =P}

Let mo(I'xs \ {w2}) denote the set of connected components of I'xs \ {ws} in I'ys.
Let Cy € mo(I'xs \ {w2}). Since X3 is a pointed stable curve of type (0,n) over ks,
we have #(Cy N e®(I'yg)) > 2. Let ez 0,1, 2,002 € Co N e®P(I'xs) be open edges
distinct from each other. We put

def _ def _
12 = (0%P) (eg,051) € €®(Dxs), €13 = (0°5P) ' (e2,052) € €P(xe).

We denote by X5 ¢, the semi-stable subcurve of Xy whose irreducible components
are the irreducible components corresponding to the vertices of I'xs contained in
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Cs. Moreover, we write ey o for the unique closed edge of T’ xg connecting ws and Cs.
Then the node z.,, corresponding to ep is the unique closed point of X, contained
in X27w2 N XQ,CQ.

We put

° def def
Zl = (Zl = Xl?DZl = {xel,ocﬂxel,o’xel,17xel,27xel,3})7

° def def
)/1,1 = (YrLl = Xl?DYl,l = {xel,oovxel,ovxel,lvxel,z})a

° def def
YLQ = (YL? = X, DY1,2 = {xel,oo7 LeygsLeq s xel,s})v

° def def
Yé = (}/2 = X2,w2’ DY2 = {x62,007$52,O7$52,17$52,2})'

Moreover, we denote by Z3 the pointed stable curve of type (0, 5) over ky associated
to the pointed semi-stable curve

(XQv {xEQ,mv Legor Lea,1s w62,02,1 > er,CQ,Q})

over ky (i.e. the pointed stable curve obtained by contracting the (—1)-curves and
the (—2)-curves of (Xa,{Te, s Tes s Tes1s Ten ) 15 Ten ey 1) We see that Zp has two
irreducible components Z,, and Z¢, such that Z,, is equal to Xy ,,, that {z.,,} =
Zwn N Zey, that {Te, Ty o, Teyy b © Zuy, and that {ze, o 1, Tey 0,0} € Zoy-

Step 3: We prove that the solvable admissible fundamental groups and the natu-
ral homomorphisms between the solvable admissible fundamental groups of pointed
stable curves constructing in Step 2 can be reconstructed group-theoretically from

o.

Let I C Ilys, I € Ilyy be the closed subgroups generated by the inertia sub-
groups of

U Edg??(TLxy),
61680p(FX1- N\{e1,00,€1,0,€1,1,€1,2,€1,3}
U EdgeP(Iyg),

62€e°P(FX5 N\ {e2,00,€2,0,2,1,€2,05,1,€2,C5,2}

respectively, Iy C Ilxs, [12 C Ilxs the closed subgroups generated by the inertia
subgroups of

U Bdg?? (Ixy),
e1 EEOP(FXI )\{e1,00,1,0,€1,1,€1,2}
U Edge?(Iys),

el EeOP(Fxlo)\{61,00761,0761,1,61,3}
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respectively, and I, C Hxs, Ia2 C lxg the closed subgroups generated by the
inertia subgroups of

U Edg?(ILx;),
egEeOP(FX2-)\{62,00,62,0,62,1762,02,1}
U Edg?® (Ilx;),

ezEGOP(FXE)\{62,00,62,0,62,1762,02,2}
respectively.

Then Theorem 4.11 implies ¢(I1) = s, ¢(I11) = I 1, and ¢(12) = s 5. Moreover,
we see that Ilys/I; and Ilys /I, are (outer) isomorphic to the solvable admissible
fundamental groups of Z7 and Z3, respectively, that e /11 and e /1,2 are
(outer) isomorphic to the solvable admissible fundamental groups of Y}, and Y7,
respectively, and that Ilys/I5; and Ilxs /> are (outer) isomorphic to the solvable
admissible fundamental group of Y;*. Note that I, ; D I} C I1 o and Io; 2 I, C Iys.

On the other hand, ¢ induces the following surjective open continuous homomor-
phisms

Q_Zﬁ . HZI déf HXl'/Il - HZQ. déf HXZ'/IQ,

- def def
Q11 Uyp, = 1xs /L1y — Dy = lxg /1o,

51 2" HYlj2 o HXI‘/[LQ - Hyg. def HXZ‘/IZ?

)

which fit into the following commutative diagram:

P11
1_IY1.,1 HYz’

wl,l/[ ¢2,1T
2
¢1,2l wz,zl

HY10’2 e Hy; ,

where 1 1, V12, 12,1, and 12 2 denote the natural quotient homomorphisms.
Note that 121 0 ¢ # 129 0 ¢, and that the homomorphisms of maximal prime-

to-p quotients of solvable admissible fundamental groups 571371, #", and 5?72 in-

duced by 51’1, ¢, and 51’2, respectively, are isomorphisms. Moreover, we see that
Uo1(leyc,,) € Bdgeh,(Tlyy) and ¥as(le, ., ,) € Edgd,(Ilyy) for every Ie, . , €
Edg2§C2 (Ilzg) and every I, € Edg? (Izs).

2,C9,2 €2,C9,2
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Step 4: We construct linear conditions associated to irreducible components of
z?.

(2

Let €;9 € e?(I'g.) be an open edge over e; . By applying Theorem 4.13,

def /
]Fa',o = ([Ei,o Qz (Q/Z)f ) U {*a‘,o
admits a structure of field which can be reconstructed group-theoretically from IIye.
Since we assume that £, is an algebraic closure of F,, we may suppose that k; = [z, .
Moreover, Theorem 4.13 implies that ¢ induces a field isomorphism
bed : Fa,o = IE‘/6\2,0

€1,0,€2,0

group-theoretically. We see that there exists a natural number m prime to p such

that F),((n,1) contains mth roots of Te, 4, Tey s, Where (1 denotes a fixed primitive

mth root of unity in Fg, ;. Let s df [Fy(Cna) : Fp). For each ey, € {e12,€13}, we fix

1
an mth root x¢; , in Fg, ;. Then we have

s—1
1
xgll,u = § bl,u,tcrtmla u € {273}7
t=0

where by, € F, for each v € {2,3} and each t € {0,...,s — 1}. Note that since
Tey o 7 Te, ,, there exists t' € {0,...,s — 1} such that by oy # by gp.

Let Z; \ {we, ..} = SpecFg, ,[xi], and let f§ : Z8 — Z} be the Galois admissible
covering over Fg , with Galois group Z/mZ determined by the equation y* = x;
and ()1 C Iz the open normal subgroup induced by f§5 . Then fq, is totally

ramified over {z., , = 0,2, . = oo} and is étale over Dy \ {z.,,, T, . }. Note that

Zg, = ]P’Hl;gw, and that the marked points of Dy, over {z,,, 2., .} are {7, , o

def
0,Teq, o = oco}. We put

def %
Teg,u = Tétw € Dzo,, u € {2,3},

def ¢
Tet, | = € Dz,,, t€{0,...,s— 1}

m,1

Thus, we obtain a linear condition

s—1
Teg, . = E blyu,ta:eth’l, u € {2,3},
t=0

with respect to @e, , and @e, . on Zj) .
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Since (m, p) = 1, there exists a unique open normal subgroup @, C Ilzs such that
5_1(622) = (1. On the other hand, we put

def def

Q11 = ¥11(Q1) Cllyp,, Qi2 = ¥12(Q1) C vy,
Q2,1 o V2,1(Q2) C Ilyy, Qoo o 22(Q2) C Hys.

Note that the constructions of ()1 and @5 imply P def Q2,1 = Q2,2. The commutative

diagram of profinite groups constructed in Step 3 induces the following commutative
diagram of profinite groups:

¢Q1 1
Qi —— P

le,l,lT ¢Q2,2,1T

?q
Qi —— @

¢Q1,1,2l ¢Q2,2,2l

6le
Qi —— P

Let j € {1,2}. Write Y3, , for the pointed stable curve over ki corresponding
to Q1. Then we see that eOP(Fyél ) can be regarded as a subset of eoP(FZél) via
2J _ _ _
Y@, ,1,5- By applying Theorem 4.11 for ¢, ¢q 1> and @q, ,, respectively, the above
commutative diagram of profinite groups implies that we may put

def —sg,op def —sg,op
€Qa,00 = ¢Q1 (thoo): €Q2,0 = ¢Q1 (6Q170)7

def —sg,
etQ%l = qﬁ;glop(ezghl), te{0,...,s—1},

def —sg,op —sg,op def —sg,op —sg,op
€Proo = Do, (€Q100) = P, (€Quoc)s €0 = Do, (€010) = Do, (€01.0)5

def —sg,op —58,0p
633271 = ¢Q1,1 (6291,1> = ¢Q172 (622171), te{0,...,s—1},

def —sg,op —58,0P
€p,,2 = ¢Q1,1 (6Q1,2) = ¢Q172 (6Q1,3)'

Moreover, we may identify ef,, ;, ¢t € {0,...,s—1}, with e}, | via 9,21 (01 1g,,2,2)-

We denote by (2 df g,o,éz,o(cml)' Without loss of generality, we may assume
Ty, | = Gm,2- Then we have
2

T =X =Cho, t€{0,...,s—1}

t
€py,1 €Qq,1



96 YU YANG

Let Y5, be the pointed stable curve over ks corresponding to P C Ily,. Moreover,
by applying Lemma 6.1 for an ,» we obtain

s—1
Tera = D Di2ites, |
t=0

with respect to @, , and z., _ on Yp. On the other hand, by applying Lemma
6.1 for q_le ,» we obtain

s—1
Lep,» = E b1,3,txe§3271
t=0

with respect to @e,, , and @, . on Yp . This means that

s—1 s—1
b Ct o b t
124Gm2 = 1,3,6m,25
t=0 t=0

which is impossible as by 2y # by 3 for some ¢ € {0,...,s — 1}. Then we obtain
that X3 is smooth over ky. Thus, the proposition follows from Proposition 6.2. This
completes the proof of the proposition. O

6.2.3. Now, we prove the first form of the main theorem of the present paper.

Theorem 6.6. Let X?, i € {1,2}, be an arbitrary pointed stable curve of type
(0,n) over an algebraically closed field k; of characteristic p > 0 and Iy either the
admissible fundamental group of X? or the solvable admissible fundamental group of
X?. Suppose that ky is an algebraic closure of F,. Then we have that

HOIH;E(HXI, HX20) 7é @

if and only if X3 is Frobenius equivalent to X3 (Definition 3.1 (¢)). In particular,
if this is the case, we have that X3 can be defined over the algebraic closure of ), in
ko, and that

HOHI;Ig)(HXI-, HX2'> = ISOHlpg<HX1-, HXZ.)

Proof. To verify the theorem, it is sufficient to prove the theorem when Ilys is the
solvable admissible fundamental group of X?. The “if” part of the theorem follows
from [Y4, Proposition 3.7]. Let us prove the “only if” part of the theorem. Suppose
that Hom(P(ILys, [lxs) # 0, and let ¢ € Hom§ (Tlxe, Ilxs) be an arbitrary open
continuous homomorphism. Then Lemma 4.3 implies that ¢ is a surjection.

Suppose that X7 is smooth over k;. Then the theorem follows from Proposition
6.5. Thus, we may assume that X7 is a singular pointed stable curve.

Note that since X7 is singular, we have n = #(e®*(I'xs)) > 4. We prove the
theorem by induction on #(e°?(I'xs)). Suppose that #(e°’(I'xs)) = 4. Since X7
is a singular pointed stable curve of type (0,4), we obtain #(v(I'xs)) = 2 and
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#(e?(I'xs)) = 1. On the other hand, by applying Lemma 6.3, we obtain that X3 is
also a singular pointed stable curve of type (0,4). Thus, we have #(e?(I'xs)) = 4,
#((Txs)) = 2, and #(e?(I'xs)) = 1. Then X} and X3 satisfy Condition C defined
in 5.3.1. Thus, by Theorem 5.30 and Proposition 6.2, we obtain that X7 is Frobenius
equivalent to X3.

Suppose that #(e?(I'xs)) > 5. Theorem 4.11 implies that ¢ induces a bijection

~

¢sg,op : 60p<FX1-) — 60p(FX2¢>

group-theoretically. Let e1, € e®(I'xs) and eg, def »**°P(e1,). We denote by Z?
the pointed stable curve of type (0,n — 1) over k; associated to the pointed semi-
stable curve (X;, Dx, \{ze,,}) (i.e. the pointed stable curve obtained by contracting
the (—1)-curves and the (—2)-curves of (X;, Dx, \ {z, . }))-

Write I;,, C Iy for the closed subgroup generated by the subgroups contained in

Edg? (Ilxe). Then we see that 11z “ x# /Iy is (outer) isomorphic to the solvable

admissible fundamental group of Z by Moreover Theorem 4.11 implies ¢(11,,) = Ia.
Then ¢ induces a surjective open continuous homomorphism

q_b . HZl. —» HZQ.

By induction, we obtain that Z7 is Frobenius equivalent to Z3. Then ¢ induces a
bijection of dual semi-graphs

q—bsg . FZI' :) FZQ.
In particular, we put

—sg,ver def

¢ &% o (rye) : 0(Tz) = v(T'z3),

gbsg,op def $g|e°P(FZ;) : GOP(FZI) = GOP(FZ2->.
Note that v(I'zs ), e°P(T'zs ), the set of irreducible components of Z;, the set of marked
points Dy, of Z? can be regarded naturally as subsets of v(I'xs), e°®(I'xs ), the set of
irreducible components of X;, the set of marked points Dy, of X via the contracting
morphism (X;, Dx, \ {z., ,}) — Z;, respectively. Moreover, we see that one of the
following cases may occur:

(1) #(v(l'xy)) = #(v(lz;)) = #(v(l'xz)) = #(v(lz));
(ii) #(U(Fxf)) —1=#( (FZ;)) = #(U(Fxg)) —1= #(U(Fzg));
(iii) #(v(xp)) = #(v(Lz)) = #(v(T'x3)) = 1= #(v(T'z));
(iv) #(v (FX')) —1=#( (FZ;)) = #(v (FX')) = #(v (FZ'))
Suppose that either (i) or (ii) holds. Then X7 and X3 satisfy Condition C defined in
5.3.1. Thus, by Theorem 5.30 and Proposmon 6.2, we obtain that X7 is Frobenius
equivalent to X3.
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Suppose that (iii) holds. Let vy € v(I'xs) such that z.,, € X,, =4 X, (ie. the
irreducible component of X, corresponding to v,). Since #(v(I'xs)) = #(v(I'zs))+1,
we have #(X,, N Dx,) = 2. Note that {va} = v('xg) \ v(I'zs).

Let z.,, , € X,, N Dx, be the marked point distinct from z.,, and ez, _; €

eP(I'xs) the open edge corresponding to the marked point z.,, ,. On the other

hand, let w; € v(I'xs) such that z., , € X, dof X1 .w,- We put

def —sg,ver

wy = ¢ (w1) € v(I'zg) Cv(Txs),

def ,—Sg,0p\ _ o o
€11 = (¢ ® p) Yegn1) €€ P(Lzs) C e (I'xs).

Since Z7 is a pointed stable curve of type (0,7 — 1), we have
#( Xy, N Dyz,) 4 #(Xyp, N Z578) > 3.

Then we see that there exist marked points @, ,_,, %e,,_, € Dz, \ {%e,,_,} distinct
from each other such that one of the following conditions is satisfied:

(1) If #(Xw, N Dyz,) >3, then x¢, ,_,, Te,,,_; € Xy,

(2) If #(Xu, N Dz) =2and z,,,, | & Xy, then zep,,, Tey 5 € Xy,

(3) If #(Xw, N Dz ) =1and ., ,_, & Xy,, then we have that z.,, , € X,,, and
that the connected components of Z; \ X,,, (note that since #(X,, N Dz, ) = 1, the
cardinality of the set of connected components of Z; \ X, is > 2) containing z., ,_,
and w., ,_,, respectively, are distinct from each other.

(4) If #(Xw, N Dz ) =2 and ., ,_, € X,,, then we have that z.,, , € X,,, and
that z., ,_, is contained in a connected component of Z; \ X,

(5) If #(Xw, N Dz) = 1 and z,,,_, € X,,, then we have that the connected
components of Z; \ X, (note that since #(X,, N Dz ) = 1, the cardinality of
the set of connected components of Z; \ X,, is > 2) containing z., , , and ., _,,
respectively, are distinct from each other.

(6) If #(Xw, N Dyz) = 0, then we have that the connected components of Z; \
Xy, (note that since #(X,, N Dz ) = 0, the cardinality of the set of connected
components of Z; \ X,, is > 3) containing ., ,_,, Z¢, ,_,, and x, ,_,, respectively,
are distinct from each other.

Write e;,—5 and ey,,_3 € e®®(I'zs) for the open edges corresponding to the marked
points ., ,_, and x., ,_,, respectively. We put

1

def —sg, def —sg,
€2.n—2 = <Z5sg Op( 1,n72)7 €2 n—3 = ¢Sg Op( 1,n73)-

Let Y;* be the pointed stable curve of type (0,4) over k; associated to the pointed
semi-stable curve

(Xi’ {Iei,rﬂ Leipn_1>Tejn_2s xei,n—B})'
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By the construction of the set of marked points {., ,, e, ,_,: Te, ,,_s> Te,,_s }, WE SCC
that Y}* is smooth over k; whose underlying curve is X,,,, and that Y’ is singular

whose irreducible components are X, def Xow, and X,,.

Next, we will see that the solvable admissible fundamental groups and the natural
homomorphisms between the solvable admissible fundamental groups of pointed
stable curves constructing above can be reconstructed group-theoretically from ¢.
Let I; C Ilxs be the closed subgroup generated by the subgroups contained in

U EdgeP (Ixs).
eieeOp(FXi‘)\{ei,nyei,n—l7€i,n—276i,n—3}
We see that Ilye B xs/1; is (outer) isomorphic to the solvable admissible funda-
mental group of Y;*. Moreover, Theorem 4.11 implies ¢(I1) = I. Then we obtain a

surjective open continuous homomorphism ¢ : IIye — Ilyp. This contradicts Propo-
sition 6.5, since Proposition 6.5 implies that Y* is smooth over ks. Then (iii) does
not occur.

Suppose that (iv) holds. Similar arguments to the arguments given in the proof

of (iii) imply that (iv) does not occur. More precisely, we have the following.

Let v; € v(I'xs) such that z., , € X, o X1, Since #(v(I'xs)) = #(v(I'zs)) +1,

we have #(X,, N Dx,) = 2. Note that {v1} = v('xs) \ v(I'zs).
Let z.,,, € X, N Dx, be the marked point distinct from ., , and e, €

eP(I'xs) the open edge corresponding to the marked point z.,, ,. On the other

hand, let wy € v(I'xy) such that z.,, € X, dof X2, We put

w, def (Esg,ver)_l(u&) c U(FZl‘) C U(Fxf),

eon1 2 G (e1, 1) € eP(Tzs) C eP(Txy).

Since Zj is a pointed stable curve of type (0,7 — 1), we have
#(Xup N Dz,) + # (X, N Z5") 2 3.

Then we see that there exist marked points @, ,, Te,,_, € Dz, \ {Ze,,,_, } distinct
from each other such that one of the following conditions is satisfied:

(1) If #(Xw, N Dyz,) > 3, then xe,, 5, ey, € Xuy-

(2) If #(Xw, N Dyz,) =2 and xe,,, | & Xu,, then ze, ,_,, Tey 5 € Xu,.

(3) If #(Xw, N Dz,) =1and x,, , & Xu,, then we have that z.,, , € X,,, and
that the connected components of Z, \ X, (note that since #(X,, N Dz,) = 1, the
cardinality of the set of connected components of Z,\ X, is > 2) containing ., ,_,
and ., ,_,, respectively, are distinct from each other.

(4) If #(Xw, N Dz,) =2 and w.,,_, € Xy,, then we have that z.,, , € X,,, and
that z.,,_, is contained in a connected component of Z; \ X, .



100 YU YANG

(5) If #(Xw, N Dz,) =1 and z,, , € Xy,, then we have that the connected
components of Zs \ X, (note that since #(X,, N Dz,) = 1, the cardinality of
the set of connected components of Z, \ X,, is > 2) containing z.,, , and ., .,
respectively, are distinct from each other.

(6) If #(Xw, N Dgz,) = 0, then we have that the connected components of Zs \
Xuw, (note that since #(X,, N Dz,) = 0, the cardinality of the set of connected
components of Z; \ X, is > 3) containing ., ,_,, Te,,_,, and x.,,_,, respectively,
are distinct from each other.

Write e3,,_2 and eq,,—3 € e®P(T Z;) for the open edges corresponding to the marked
points ., , , and ., _,, respectively. We put

def ,—sg,0p. _ def ,—sg,0p _
€1,n—2 = (<Z5sg Op) 1<€2,n72); €1,n—3 = (Qbsgop) 1(62,n73)-

Let Y;* be the pointed stable curve of type (0,4) over k; associated to the pointed
semi-stable curve

(Xi’ {Iei,rﬂ Lejpn_1>Tejn_2s xei,n—B})'
By the construction of the set of marked points {z.,,, e, ,_,: Te; ,,_s> Te,,n_s }, WE SCC

that Y® is singular whose irreducible component are X, e x 1w, and X, , and that
Y. is smooth over ky whose underlying curve is X,,,.
Let I; C Ilxs be the closed subgroup generated by the subgroups contained in

U Bdg??(ILx;).
eieeOp(FXi')\{ei,nyei,n—l73i,n—27ei,n—3}
We see that Ilye © xs/I; is (outer) isomorphic to the solvable admissible funda-
mental group of Y;*. Moreover, Theorem 4.11 implies ¢(I1) = Is. Then we obtain a

surjective open continuous homomorphism ¢ : Iys — Ily,. This contradicts Lemma
6.3, since Lemma 6.3 implies that Y;* is singular. Then (iv) does not occur. This
completes the proof of the theorem. O

6.2.4. Theorem 6.6 implies the following result concerning the homeomorphism
conjecture formulated in 3.3.

Theorem 6.7. We maintain the notation introduced in 3.1.3 and 3.2.1. Let |q] €

ﬁ;{n be an arbitrary closed point. Then w2 (|q]) and 7§, ([q]) are closed points of

o, and ﬁff,ll, respectively. In particular, the homeomorphism conjecture and the

solvable homeomorphism conjecture hold when (g,n) = (0,3) or (0,4).

Proof. To verify the theorem, we only need to treat the case of solvable admissible
fundamental groups.
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Let V(7o ([q])) be the topological closure of w2 ([g]) in ﬁ;?; and [m°(¢)] €
V(g ([q])) an arbitrary point. Then by Proposition 3.10 (a), we obtain that there
exists a surjective open continuous homomorphism

¢ % (q) = 7).

Theorem 6.6 implies ¢ ~. ¢’. Thus, we obtain [m5°(¢)] = [75°/(¢’)]. This means that
V(e ([q]) = [m5°(q)] is a closed point of Ty . O
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