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In the present paper, we study the ordinariness of coverings of stable curves.
Let f : Y → X be a morphism of stable curves over a discrete valuation ring R
with algebraically closed residue field of characteristic p > 0. Write S for SpecR
and η (resp. s) for the generic point (resp. closed point) of S. Suppose that the
generic fiber Xη of X is smooth over η, that the morphism fη : Yη → Xη over η on
generic fiber induced by f is a Galois étale covering (hence Yη is smooth over η too)
whose Galois group is a solvable group G, that the genus of the normalization of
each irreducible component of the special fiber Xs is ≥ 2, and that Ys is ordinary.
Then we have the morphism fs : Ys → Xs over s induced by f is an admissible
covering. This result extends a result of M. Raynaud concerning the ordinariness
of coverings to the case where Xs is a stable curve. If, moreover, suppose that G is
a p-group, and the p-rank of the normalization of each irreducible component of Xs

is ≥ 2, we give a numerical criterion for the admissibility of fs.
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Introduction

Let R be a discrete valuation ring with algebraically closed residue field k of characteristic
p > 0 and K the quotient field. We use the notation S to denote SpecR. Write η and s for
the generic point of S and the closed point of S corresponding to the natural morphisms
SpecK → S and Spec k → S, respectively. Let G be a finite group, and let X be a stable
curve of genus g(X) (in the present paper, the genus of a curve means the arithmetic
genus of the curve) over S. Write Xη and Xs for the generic fiber of X and the special
fiber of X, respectively. Moreover, we suppose that Xη is smooth over η.

We are interested to understand the reduction of an étale covering of Xη. Let Yη
be a smooth, geometrically connected curve over η and fη : Yη → Xη a Galois étale
covering over η whose Galois group is G. By replacing S by a finite extension of S, we
have that Yη admits a stable model over S, and fη extends to a unique G-stable covering
f : Y → X over S (cf. Definition 1.5 and Remark 1.5.1). In the present paper, we focus
on a geometric invariant σ(Ys) of the special fiber Ys which is called the p-rank of Ys (cf.
Definition 1.2).

Let us recall some known results concerning the p-rank of the special fiber Ys. Let x
be a closed point of Xs and G an arbitrary p-group. M. Raynaud (cf. [R1, Théorème 1])
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proved that, if x is a smooth point, the p-rank of f−1(x) is equal to 0 (note that f−1(x)
is not a finite set in general). Afterwards, M. Säıdi (cf. [S1, Theorem 1 and Proposition
1]) treated the case where x is a singular point of Xs. Säıdi obtained an explicit formula
and a bound for the p-rank of f−1(x) under the assumption that G is a cyclic p-group.
Recently, the author generalized the formula for the p-rank of f−1(x) to the case where G
is an arbitrary p-group and obtained a bound for the p-rank of f−1(x) in the case where
G is an arbitrary abelian p-group (cf. [Y2, Theorem 4.8], [Y3, Theorem 3.4]). On the
other hand, if G is an arbitrary finite group, and Xs is smooth over s, Raynaud proved
that, if the morphism fs on special fibers induced by f is not an étale covering, then Ys
is not ordinary (cf. [R2, Proposition 3]).

In the present paper, we study the ordinariness of stable coverings. Our main theorem
is as follows, see also Theorem 2.6:

Theorem 0.1. Let Y be a stable curve over S and f : Y → X a Z/pZ-stable covering
over S. Suppose that the genus of the normalization of each irreducible component of
Xs is ≥ 2, and the morphism fs : Ys → Xs over s induced by f is p-new-ordinary (cf.
Definition 2.4). Then fs is an admissible covering (cf. Definition 1.1). If, moreover, we
suppose that the p-rank of the normalization of each irreducible component of Xs is ≥ 2,
then fs is an admissible covering if and only if

σ(Ys)− 1 = p(σ(Xs)− 1).

As a corollary, we generalize the main result of [R2] to the case where Xs is a stable
curve, and G is a solvable group; moreover, if G is a p-group, we obtain a numerical
criterion for the admissibility of G-stable coverings as follows, see also Corollary 2.7.

Corollary 0.2. Let G be a finite solvable group, Y a stable curve over S, and f : Y → X
a G-stable covering over S. Suppose that the genus of the normalization of each irreducible
component of Xs is ≥ 2, and that Ys is ordinary (i.e., σ(Ys) = g(Ys) = (#G)(g(Xs) −
1) + 1). Then the morphism fs : Ys → Xs over s induced by f is an admissible covering.
Moreover, suppose that the p-rank of the normalization of each irreducible component of
Xs is ≥ 2, and that G is a p-group. Then the morphism fs : Ys → Xs over s induced by
f is an admissible covering if and only if

σ(Ys)− 1 = (#G)(σ(Xs)− 1).

Remark 0.2.1. Suppose that Xs is ordinary, and that fs is an admissible covering over
s. If G is not a p-group, then Ys is not ordinary in general.

Finally, we would like to mention that Säıdi extended the main result of [R2] to the
case where fη : Yη → Xη is a Galois covering over η (cf. [S2, Thoerem]). More precisely,
Säıdi proved the following result: let X be a smooth stable curve over S and f : Y → X
a morphism of stable curves over S; suppose that char(k) = p > 0, and η : Yη → Xη

is a Galois covering whose Galois group is isomorphic to Z/pZ (i.e., the extension of
function fields K(Yη)/K(Xη) induced by fη is a Galois extension whose Galois group is
isomorphic to Z/pZ). Säıdi proved that, if fs : Ys → Xs is not generically étale, then Ys
is not ordinary. Note that, if char(K) = 0 and char(k) = p > 0, then this result follows
immediately from [R1, Théorème 1′] (i.e., a tame version of [R1, Théorème 1]).
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1 Preliminaries

In this section, we give some definitions which will be used in the present paper.

Definition 1.1. Let C1 and C2 be two semi-stable curves over an algebraically closed
field l and ϕ : C2 → C1 a morphism of semi-stable curves over Spec l.

We shall call ϕ a Galois admissible covering over Spec l (or Galois admissible
covering for short) if the following conditions hold: (i) there exists a finite group G ⊆
Autk(C2) such that C2/G = C1, and ϕ is equal to the quotient morphism C2 → C2/G; (ii)
for each c2 ∈ Csm

2 , ϕ is étale at c2, where (−)sm denotes the smooth locus of (−); (iii) for
any c2 ∈ Csing

2 , the image ϕ(c2) is contained in Csing
1 , where (−)sing denotes the singular

locus of (−); (iv) for each c2 ∈ Csing
2 , the local morphism between two nodes (cf. (iii))

induced by ϕ may be described as follows:

ÔC1,ϕ(c2)
∼= l[[u, v]]/uv → ÔC2,c2

∼= l[[s, t]]/st
u 7→ sn

v 7→ tn,

where (n, char(l)) = 1 if char(l) = p > 0; moreover, write Dc2 ⊆ G for the decomposition
group of c2; then τ(s) = ζ#Dc2

s and τ(t) = ζ−1
#Dc2

t for each τ ∈ Dc2 , where ζ#Dc2
is a

primitive #Dc2-th root of unit.
We shall call ϕ an admissible covering if there exists a morphism of stable curves

ϕ′ : C ′
2 → C2 over Spec l such that the composite morphism ϕ ◦ ϕ′ : C ′

2 → C1 is a Galois
admissible covering over Spec l.

For more details on admissible coverings and the admissible fundamental groups for
(pointed) semi-stable curves, see [M1], [M2].

Remark 1.1.1. Note that, if C2 is smooth over l, then the definition of admissible
coverings implies that ϕ is an étale covering.

Definition 1.2. Let C be a proper algebraic curve over an algebraically closed field of
characteristic p > 0. We define the p-rank σ(C) of C to be

σ(C) := dimFpH
1
ét(C,Fp).

Moreover, let C ′ be a noetherian scheme of dimension 0 over an algebraically closed field
of characteristic p > 0. Then we define the p-rank of C ′ to be σ(C ′) = 0.

Remark 1.2.1. Suppose that C is a semi-stable curve over an algebraically closed field
of characteristic p > 0. Write ΓC for the dual graph of C, v(ΓC) for the set of vertices

of ΓC , Cv for the irreducible component of C corresponding to v ∈ v(ΓC), and C̃v for the
normalization of Cv, respectively. Then it is easy to prove that the p-rank σ(C) of C is
equal to ∑

v∈v(ΓC)

σ(C̃v) + rank(H1(ΓC ,Z)),

where rank(−) denotes the rank of (−) as a free Z-module.
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Definition 1.3. Let C be a semi-stable curve of genus g(C) over an algebraically closed
field of characteristic p > 0. We shall call C ordinary if σ(C) = g(C). Note that Remark

1.2.1 implies that C is ordinary if and only if C̃v is ordinary for each v ∈ v(ΓC).

Definition 1.4. Let ψ : C2 → C1 be a Galois covering (possibly ramified) of smooth pro-
jective curves over an algebraically closed field of characteristic p > 0, whose Galois group
is a finite p-group G. Write g(C1) and g(C2) for the genera of C1 and C2, respectively.
We shall call ψ p-new-ordinary if g(C2) − σ(C2) = (#G)(g(C1) − σ(C1)), where #(−)
denotes the cardinality of (−).

Remark 1.4.1. Note that, if C1 is ordinary, then ψ is p-new-ordinary if and only if C2

is ordinary.

Remark 1.4.2. For any closed point c2 ∈ C2, write ec2 for the ramification index of ψ at
c2 and δc2 for the degree of the different of ψ at c2. Then the genus and the p-rank of C2

can be calculated by using the Riemann-Hurwitz formula

2g(C2)− 2 = (#G)(2g(C1)− 2) +
∑
c2

δc2

and the Deuring-Shafarevich formula (cf. [C, p35], [B, Theorem 3.1])

σ(C2)− 1 = (#G)(σ(C1)− 1) +
∑
c2

ec2 ,

respectively. Thus, we have

g(C2)− σ(C2)− (#G)(g(C1)− σ(C1)) =
∑
c2

(δc2 − 2(ec2 − 1))/2.

Let Ic2 ⊆ G be the inertia group of c2 and Ic2,j the j-th ramification group of c2. Since
G is a p-group, we obtain that Ic2 = Ic2,0 = Ic2,1. Moreover, we have

δc2 =
∑
j≥0

(#Ic2,j − 1) = 2(#Ic2 − 1) +
∑
j≥2

(#Ic2,j − 1).

Thus, ψ is p-new-ordinary if and only if δc2 = 2(ec2 − 1) (i.e., Ic2,j are trivial for all j ≥ 2
and for all c2 ∈ C2).

From now on, we fix some notations. Let R be a discrete valuation ring with alge-
braically closed residue field k of characteristic p > 0, K the quotient field of R, and K
an algebraic closure of K. We use the notation S to denote the spectrum of R. Write η, η
and s for the generic point of S, the geometric generic point of S, and the closed point of
S corresponding to the natural morphisms SpecK → S, SpecK → S, and Spec k → S,
respectively. Let X be a semi-stable curve over S of genus gX ≥ 2. Write Xη := X×S η for
the generic fiber of X, Xη := X×Sη for the geometric generic fiber ofX, andXs := X×Ss
for the special fiber of X, respectively. Moreover, we suppose that Xη is smooth over η.
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Definition 1.5. Let Y be a stable curve over S, f : Y → X a morphism of semi-stable
curves over S, and G a finite group. We shall call f a G-semi-stable covering over S
if the morphism fη : Yη → Xη over η induced by f on generic fibers is an Galois étale
covering whose Galois group is isomorphic to G. We shall call f a G-stable covering
over S if f is a G-semi-stable covering over S, and X is a stable curve over S.

Remark 1.5.1. Suppose that X is a stable curve over S. Let Wη → Xη be any geomet-
rically connected Galois étale covering over η whose Galois group is G. [LL, Proposition
4.4 (a)] implies that, by replacing S by a finite extension of S, the morphism Wη → Xη

may extend to a G-stable covering over S.

Remark 1.5.2. Let Y be a stable curve over S, f : Y → X a G-semi-stable covering over
S, and y any closed point of Y . Then f induces a morphism fy : Spec ÔY,y → Spec ÔX,f(y)

over S. Suppose that fs : Ys → Xs over s induced by f is generically étale. We claim
that f is an admissible covering.

First, we prove that f is a finite morphism. Let x be any closed point of X. If x is
a smooth point, then Zariski-Nagata’s purity theorem implies fs is étale over x. If x is a
singular point of Xs, then Zariski-Nagata’s purity theorem and [T, Lemma 2.1 (iii)] imply
that f−1(x) is a set of singular points of Ys. Thus, f is a finite morphism.

Second, we prove that fs is an admissible covering. If y is a smooth point, then
f(y) ∈ X is a smooth point too (cf. [R3, Lemme 6.3.5] or [Y1, Lemma 2.1]). Then
Zariski-Nagata’s purity theorem implies that the morphism fy is étale. If y is a singular
point of Ys, then f(y) ∈ X is a singular point of Xs too (cf. [R3, Lemme 6.3.5] or [Y1,
Lemma 2.1]). Then Zariski-Nagata’s purity theorem and [T, Lemma 2.1 (iii)] also imply

that the morphism of local rings ÔXs,f(y) → ÔYs,y induced by fy satisfies the condition
(iv) of Definition 1.1.

Thus, we have fs is a Galois admissible covering over s if and only if fs is generically
étale.

Definition 1.6. Let Y be a stable curve over S and f : Y → X a G-semi-stable covering
over S. Suppose that the morphism fs : Ys → Xs on special fibers induced by f is not
finite. A closed point x ∈ X is called a vertical point associated to f , or for simplicity,
a vertical point when there is no fear of confusion, if dim(f−1(x)) = 1. The inverse image
f−1(x) is called the vertical fiber associated to x.

Remark 1.6.1. Suppose that R has mixed characteristic, and k is an algebraic closure
of a finite field. Moreover, suppose that X is a stable curve over R. Then A. Tamagawa
prove that, for any closed point x, after replacing S by a finite extension of S, there exists
a finite group G and a G-stable covering f : Y → X over S such that x is a vertical point
associated to f (cf. [T, Theorem 0.2 (v)]).

Next, we recall some results concerning the p-ranks of vertical fibers. First, in the case
of smooth points, the following result was proved by Raynaud (cf. [R1, Théorème 1]).

Proposition 1.7. Let G be a finite p-group, Y a stable curve over S, f : Y → X a
G-semi-stable covering over S, and x a vertical point associated to f . Suppose that x is
a smooth point of Xs. Then the p-rank of each connected component of the vertical fiber
f−1(x) associated to x is equal to 0.
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In the remainder of this section, let Y be a stable curve over S, f : Y → X a Z/pZ-
stable covering over S and x a vertical point associated to f ; moreover, we suppose that x
is a singular point of Xs. Then there are two irreducible components X1 and X2 (which
may be equal) of Xs such that x ∈ X1 ∩ X2. Write Y1 (resp. Y2) for an irreducible
component of Ys such that fs(Y1) = X1 (resp. fs(Y2) = X2). Since Y is a stable curve
over S, the action of Z/pZ on the generic fiber Yη induces an action of Z/pZ on the special
fiber Ys. Write I1 (resp. I2) for the inertia group of Y1 (resp. Y2) (note that I1 (resp. I2)
does not depend on the choices of Y1 (resp. Y2)).

Write Y ′ for the normalization of X in the function field K(Y ) induced by f and
f ′ : Y ′ → X for the normalization morphism. Let y′ ∈ Y ′ be the closed point such that
f ′(y′) = x. Since x is a vertical point associated to f , the closed point y′ is not a node of
the special fiber Y ′

s of Y ′. We consider the morphism SpecOY ′,y′ → SpecOX,x induced by
f ′. Since Z/pZ is a p-group, the Zariski-Nagata’s purity theorem and [T, Lemma 2.1 (iii)]
imply that, if I1 = I2 = {1}, the morphism SpecOY ′,y′ → SpecOX,x is étale. This means
that y′ is a node. Thus, either I1 ∼= Z/pZ or I2 ∼= Z/pZ holds. Without loss of generality,
we may assume that I1 ∼= Z/pZ. Note that f−1(x) is connected. For the p-rank of f−1(x),
we have the following lemma.

Lemma 1.8. Write Γx for the dual graph of the semi-stable curve f−1(x)red ⊂ Ys over s,
where (−)red denotes the reduced induced closed subscheme of (−).

(a) If I1 ∼= Z/pZ, and I2 is trivial, then σ(f−1(x)) = 0.
(b) If I1 = I2 ∼= Z/pZ, then one of the following conditions holds: (i) σ(f−1(x)) is

equal to 0; (ii) σ(f−1(x)) = rank(H1(Γx,Z)) = p− 1; (iii) σ(f−1(x)) = p− 1 and Γx is a
tree.

Proof. The lemma follows immediately from [S1, Proposition 1] or [Y2, Theorem 4.8 and
Corollary 4.10] when G = Z/pZ.

Remark 1.8.1. In fact, Säıdi obtained a p-rank formula for vertical fibers in the case
where G is a cyclic p-group (cf. [S1, Proposition 1]). Moreover, the author generalizes
the p-rank formula to the case where G is an arbitrary p-group (cf. [Y2, Theorem 4.8 and
Corollary 4.10]).

Remark 1.8.2. We can construct some Z/pZ-stable coverings which satisfy the condi-
tions of Lemma 1.8 (a) and Lemma 1.8 (b)-(ii). However, the author does not know
that how to construct a Z/pZ-stable covering which satisfies the conditions of Lemma 1.8
(b)-(i) or Lemma 1.8 (b)-(iii).

Remark 1.8.3. Y. Hoshi obtained an anabelian pro-p good reduction criterion for a
smooth proper ordinary hyperbolic curve (i.e., the reduction is an ordinary stable curve)
over a p-adic field (cf. [H]). It is very interesting for the author to know whether or not the
pro-p good reduction criterion of Hoshi can be extended to arbitrary proper hyperbolic
curves. One of the main technical difficulties is how to construct a p-covering of a given
proper hyperbolic curve such that there exist two irreducible components whose p-ranks
are positive. We have the following question:

Question: Suppose that dimFp(H
1
ét(Xη,Fp))− σ(Xs) > 0 (note that, if char(K) = 0,

the inequality always holds). After replacing S by a finite extension of S, does there

6



exist a Z/pZ-stable covering over S such that, for some vertical point x, the vertical fiber
associated to x satisfies the conditions of Lemma 1.8 (b)-(iii)?

Proposition 1.9. Suppose that the semi-stable curve f−1(x)red over s is ordinary. If
I1 = I2 ∼= Z/pZ, then σ(f−1(x)) = p− 1.

Proof. We maintain the notations introduced in the proof of Lemma 1.8. If σ(f−1(x)) = 0,
then for each 1 ≤ i ≤ n, IPi

∼= Z/pZ. This means that Vi ⊂ Ys is a projective line for
each 1 ≤ i ≤ n. Since Ys is a stable curve over s, we have Vi ∩ h−1(B)red ̸= ∅ for each
1 ≤ i ≤ n. Thus, h−1(B)red ̸= ∅. On the other hand, since Ys is a stable curve over s,
Proposition 1.7 implies that h−1(B)red is not ordinary. This is a contradiction. Then the
proposition follows from Lemma 1.8 (b).

2 Ordinariness of stable coverings

In this section, we prove our main theorem of the present paper.

Definition 2.1. Let C1 and C2 be two semi-stable curves over an algebraically closed
field l of characteristic p > 0, ψ : C2 → C1 a finite surjective morphism over l, and
G ⊆ Aut(C2/C1) a finite p-group. We shall call ψ a Galois covering with Galois group G
if G acts generically freely on C2, G acts freely at the nodes of C2, and ψ is equal to the
quotient morphism C2 → C2/G.

Lemma 2.2. Let G be a p-group, C1 and C2 two semi-stable curves over an algebraically
closed field l of characteristic p > 0, and ψ : C2 → C1 a Galois covering with Galois group
G. Then we have

σ(C2)− 1 = (#G)(σ(C1)− 1) +
∑

c2∈Ccl
2

(ec2 − 1),

where Ccl
2 denotes the set of closed points of C2, and ec2 denotes the ramification index of

ψ at c2.

Proof. There exist many proofs of the lemma. For example, it is easy to see that the
proof of the Deuring-Shafarevich formula given in [B, Theorem 3.1] can be extended to
the case where ψ is a Galois covering of semi-stable curves.

Remark 2.2.1. Lemma 2.2 extends the Deuring-Shafarevich formula to Galois cover-
ings of semi-stable curves. Moreover, the author also extended the Deuring-Shafarevich
formula to a more general case by using the theory of semi-graphs with p-rank (cf. [Y2,
Theorem 4.5]).

Definition 2.3. Let Γ be a finite graph. We use the notation v(Γ) to denote the set
of vertices of Γ and e(Γ) to denote the set of edges of Γ. For an edge e ∈ e(Γ), we use
the notation v(e) to denote the set of vertices which are abutted by e. We define an
equivalence relation “ ∼ ” on e(Γ) as follows: e1 ∼ e2 if v(e1) = v(e2). Then we obtain
a new finite graph Γind := Γ/ ∼. We shall call Γind the induced graph of Γ. Note that
v(Γind) = v(Γ) and e(Γind) = e(Γ)/ ∼.
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Definition 2.4. Let Y be a stable curve over S and f : Y → X a Z/pZ-stable covering
over S. For each irreducible component Yv of the special fiber Ys of Y , write Xv for
f(Yv). We shall call fs p-new-ordinary if, for each irreducible component Yv ⊆ Ys,
one of the following conditions holds: (i) if fs|Yv is a constant morphism (i.e., f(Yv) is a
point), then Yv is ordinary; (ii) if the restriction morphism fs|Yv is generically étale, then

f̃s|Yv : Ỹv → X̃v induced by fs|Yv is p-new-ordinary (cf. Definition 1.4), where (̃−) denotes
the normalization of (−).

Remark 2.4.1. Note that, if Xs is ordinary, then fs is p-new-ordinary if and only if Ys
is ordinary.

Definition 2.5. Let Z be a stable curve over an algebraically closed field. We shall call
Z sturdy if the genus of the normalization of each irreducible component of Z is ≥ 2.

Now, let us prove the main theorem.

Theorem 2.6. Let f : Y → X be a Z/pZ-stable covering over S. Suppose that Xs is
sturdy, and the morphism fs : Ys → Xs over s induced by f is p-new-ordinary. Then fs
is an admissible covering. If, moreover, we suppose that the p-rank of the normalization
of each irreducible component of Xs is ≥ 2, then fs is an admissible covering if and only
if

σ(Ys) = p(σ(Xs)− 1) + 1.

Proof. Write {X ét
i }i∈I (resp. {X in

j }j∈J) for the set of stable subcurves of Xs such that the
following conditions hold: (i) for each i ∈ I (resp. j ∈ J), fs is generically étale over X ét

i

(resp. purely inseparable over X in
j ); (ii) for each i ∈ I (resp. j ∈ J) and each irreducible

component Xv ⊆ Xs, if Xv ∩X ét
i ̸= ∅ and Xv ̸⊆ X ét

i (resp. Xv ∩X in
j ̸= ∅ and Xv ̸⊆ X in

j ),
then fs is purely inseparable (resp. fs is generically étale) over Xv. Then we have

Xs = (∪i∈IX
ét
i ) ∪ (∪j∈JX

in
j ).

For each i ∈ I (resp. j ∈ J), we write ΓX ét
i
(resp. ΓXin

j
) for the dual graph of X ét

i (resp.

X in
j ) and g(X ét

i ) (resp. g(X in
j )) for the genus of X ét

i (resp. X in
j ).

Write V for the set of vertical points associated to f . For each vertical point x ∈ V ,
write Ex for the vertical fiber associated to x (note that Ex is connected) and g(Ex) for
the genus of Ex. If V contains a smooth point of Xs, then Proposition 1.7 and Definition
2.4 imply that fs is not p-new-ordinary. Thus, V is contained in the singular locus of Xs.
For each singular point x′ of Xs, Remark 1.5.2 implies that fs is étale over x′. Thus, we
have V ⊆ ∪j∈JX

in
j . This means that, for each x ∈ V , we have either x ∈ ∪j∈JX

in
j \∪i∈IX

ét

or x ∈ (∪j∈JX
in
j ) ∩ (∪i∈IX

ét).
In order to prove the theorem. we will calculate the p-rank of Ys by using the Deuring-

Shafarevich formula. By applying Lemma 2.2, we may assume that X ét
i is irreducible for

each i ∈ I. Let L := ∪je(ΓXin
j
) ⊆ e(ΓXs) (cf. Definition 2.3). We have the following

claim:

Claim 1: We may deform the stable curve Xs along L to obtain a new stable
curve over η := SpecK such that the set of edges of the dual graph of the new
stable curve may be naturally identified with e(ΓXs) \ L.
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Let us prove Claim 1. Suppose that ϕs : s → Mg(X),S := Mg(X) ×SpecZ S is the
classifying morphism determined by Xs → s. Thus the completion of the local ring of the
moduli stack at ϕs is isomorphic to RJt1, ..., t3g(X)−3K, where the t1, ..., t3g(X)−3 are indeter-
minates. Furthermore, the indeterminates t1, ..., tm may be chosen so as to correspond to
the deformations of the nodes of Xs. Suppose that {t1, ..., td} is the subset of {t1, ..., tm}
corresponding to the subset L ⊆ e(ΓXs). Now fix a morphism S → SpecRJt1, ..., t3g(X)−3K
such that td+1, ..., tm 7→ 0 ∈ R, but t1, ..., td map to nonzero elements of R. Then the com-
posite morphism ϕ : S → SpecRJt1, ..., t3g(X)−3K → Mg(X),S determines a stable curve X
over S. Moreover, the special fiber of X is naturally isomorphic to Xs over s. Write X∗

s

for the geometric generic fiber X ×η η over η and ΓX∗
s
for the dual graph of X∗

s . It follows
from the construction of X∗

s that we have two natural maps

v(ΓXs) → v(ΓX∗
s
), e(ΓXs) \ L

∼→ e(ΓX∗
s
)

(the latter of which is a bijection). This completes the proof of Claim 1.

Note that
#v(ΓX∗

s
) = #I +#J.

Write ni for #(X ét
i ∩ (∪j∈JX

in
j )), rXs for rank(H1(ΓXs ,Z)), rindX∗

s
for rank(H1(Γind

X∗
s
,Z)),

rXin
j
for rank(H1(ΓXin

j
,Z)), and rinXs

for
∑

j∈J rXin
j
, respectively, where Γind

X∗
s
denotes to the

induced graph of ΓX∗
s
(cf. Definition 2.3). Then we have

rXs = rindX∗
s
+ rinXs

+
∑
i∈I

ni −#e(Γind
X∗

s
).

For each i ∈ I (resp. j ∈ J), write Y ét
i (resp. Y in

j ) for the closed subscheme f−1
s (X ét

i )red

of Ys (resp. {f−1
s (X in

j \ ∪i∈IX ét
i )red} of Ys, where {−} denotes the closure of {−}), and

g(Y ét
i ) (resp. g(Y in

j )) for the genus of Y ét
i (resp. Y in

j ). Then we have

Y ét
i = F ét

i ∪ (∪x∈V∩X ét
i
Ex)

(resp. Y in
j = F in

j ∪ (∪x∈Xin
j ∩(V\X ét

i )Ex)),

where F ét
i (resp. F in

j ) denotes the closed subscheme of Y ét
i (resp. Y in

j ) which is generically
étale over X ét

i (resp. purely inseparable over X in
j ). Next, we start to prove the theorem.

Step 1: For any i ∈ I (resp. j ∈ J), let us calculate g(Y ét
i ) and σ(Y ét

i )
(resp. g(Y in

j ) and σ(Y in
j )) under the assumption that fs is p-new-ordinary,

respectively.

If F ét
i is irreducible, by the Riemann-Hurwitz formula and Lemma 1.8 (a), we have

g(Y ét
i ) = p(g(X ét

i )− 1) +
1

2
· deg(Ri) + 1 + (p− 1)#(V ∩X ét

i ),

where Ri denotes the ramification divisor of fs|F ét
i
: F ét

i → X ét
i . Note that we have

#Supp(Ri) + #(V ∩X ét
i ) = ni.

9



Moreover, since we assume that fs is p-new-ordinary, Remark 1.4.2 and Definition 2.4
imply that deg(Ri) = 2#Supp(Ri)(p− 1). Thus, we obtain

g(Y ét
i ) = p(g(X ét

i )− 1) + ni(p− 1) + 1.

For the p-rank of Y ét
i , we have

σ(Y ét
i ) = p(σ(X ét

i )−1)+(p−1)(#deg(Ri)+#(V∩X ét
i ))+1 = p(σ(X ét

i )−1)+ni(p−1)+1.

If F ét
i is disconnected, then we have V ∩X ét

i = X ét
i ∩ (∪jX

in
j ). Since we assume that

fs is p-new-ordinary, Lemma 1.8 (a) and Definition 2.4 imply that F ét
i

∼= X ét
i , and for

any x ∈ V ∩ X ét
i , all the irreducible components of Ex are isomorphic to P1. Note that

rank(H1(ΓY ét
i
,Z)) is equal to (ni − 1)(p− 1). Thus, we have

g(Y ét
i ) = pg(X ét

i ) + (ni − 1)(p− 1) = p(g(X ét
i )− 1) + ni(p− 1) + 1

and
σ(Y ét

i ) = pσ(X ét
i ) + (ni − 1)(p− 1) = p(σ(X ét

i )− 1) + ni(p− 1) + 1.

On the other hand, since we assume that fs is p-new-ordinary, by Proposition 1.9, for
each x ∈ X in

j ∩ (V \ ∪iX
ét
i ), we have σ(Ex) = g(Ex) = p− 1. Then we obtain

g(Y in
j ) = g(F in

j ) +
∑

x∈Xin
j ∩(V\∪iX ét

i )

g(Ex) = g(X in
j ) + (p− 1)#(X in

j ∩ (V \ ∪iX
ét
i ))

and

σ(Y in
j ) = σ(F in

j ) +
∑

x∈Xin
j ∩(V\∪iX ét

i )

σ(Ex) = σ(X in
j ) + (p− 1)#(X in

j ∩ (V \ ∪iX
ét
i ))

where g(F in
j ) denotes the genus of F in

j .

Step 2: Let us prove the first part of the theorem (i.e., fs is an admissible
covering under the assumption that fs is p-new-ordinary.). The idea of the
proof of the first part of the theorem is by comparing the genus of generic fiber
Yη with the genus of special fiber Ys. We will compute the genus of generic
fiber of Yη by applying Riemann-Hurwitz formula, and compute the genus of
special fiber Ys by applying the properties of p-new-ordinary and the results
obtained in Step 1.

Write mj for #(X in
j ∩ (V \ ∪iX

ét
i )). Then we have

g(Ys) =
∑
i

g(Y ét
i ) +

∑
j

g(Y in
j ) + rXs − rinXs

=
∑
i

(p(g(X ét
i )− 1) + ni(p− 1) + 1) +

∑
j

(g(X in
j ) +mj(p− 1)) + rXs − rinXs

.
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On the other hand, by applying the Riemann-Hurwitz formula to fη : Yη → Xη, we obtain
that the genus g(Yη) of the generic fiber Yη is equal to

p((
∑
i

g(X ét
i ) +

∑
j

g(X in
j ) + rXs − rinXs

)− 1) + 1.

Since g(Yη) is equal to g(Ys), we obtain

(1− p)(
∑
j

(g(X in
j )−mj)− 1 + rXs − rinXs

−
∑
i

(ni − 1)) = 0.

Then we have

0 =
∑
j

(g(X in
j )−mj)− 1 + rXs − rinXs

−
∑
i

(ni − 1)

=
∑
j

(g(X in
j )−mj)− 1 + rindX∗

s
+
∑
i

ni −#e(Γind
X∗

s
)−

∑
i

(ni − 1)

=
∑
j

(g(X in
j )−mj)− 1 + rindX∗

s
−#e(Γind

X∗
s
) + #I

By applying Euler-Poincaré characteristic formula for the graph Γind
X∗

s
, we obtain

rindX∗
s
−#e(Γind

X∗
s
) + #I − 1 = −#v(Γind

X∗
s
) + #I = −#J.

Then we have

0 =
∑
j

(g(X in
j )−mj)−#J =

∑
j

(g(X in
j )−mj − 1).

On the other hand, by the assumptions that Xs is sturdy, we have

g(X in
j ) =

∑
v∈v(Γ

Xin
j
)

g(X̃v) + rXin
j

≥ 2 ·#v(ΓXin
j
) + rXin

j
= #v(ΓXin

j
) + #e(ΓXin

j
) + 1,

where X̃v denotes the genus of the normalization ofXv, and g(X̃v) denotes the genus of X̃v.
If {X in

j }j∈J is not empty, since #e(ΓXin
j
) ≥ mj, we have

∑
j(g(X

in
j )−mj − 1) > 0. Then

we obtain a contradiction. Thus, {X in
j }j∈J is empty. This means that fs is generically

étale. Then by Remark 1.5.2, we have fs is an admissible covering.

Step 3: Let us prove the “moreover” part of the theorem. The idea of the
proof of the “moreover” part is by comparing the p-rank of Ys with the p-rank
of Ys when fs is p-new-ordinary. We will compute the p-rank of Ys by applying
Deuring-Shafarevich formula, the properties of p-new ordinary, and the results
obtained in Step 1.
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If fs is an admissible covering, then the “moreover” part follows from Lemma 2.2.
Thus, we suppose that σ(Ys) = p(σ(Xs)− 1) + 1. Then we have

σ(Ys) = p(σ(Xs)− 1) + 1

= p((
∑
i

σ(X ét
i ) +

∑
j

σ(X in
j ) + rXs − rinXs

)− 1) + 1.

Write mj for #(X in
j ∩ (V \∪iX

ét
i )). On the other hand, σ(Ys) attains its maximum if and

only if fs is p-new-ordinary. Moreover, if fs is p-new-ordinary, the p-rank of Ys is∑
i

σ(Y ét
i ) +

∑
j

σ(Y in
j ) + rXs − rinXs

=
∑
i

(p(σ(X ét
i )− 1) + ni(p− 1) + 1) +

∑
j

(σ(X in
j ) +mj(p− 1)) + rXs − rinXs

.

Thus, we have

σ(Ys) = p((
∑
i

σ(X ét
i ) +

∑
j

σ(X in
j ) + rXs − rinXs

)− 1) + 1

≤
∑
i

(p(σ(X ét
i )− 1) + ni(p− 1) + 1) +

∑
j

(σ(X in
j ) +mj(p− 1)) + rXs − rinXs

.

Similar arguments to the arguments given in the proof above imply that∑
j

(σ(X in
j )−mj − 1) ≤ 0.

On the other hand, since σ(X̃v) ≥ 2 for each v ∈ v(ΓXin
j
), we have

σ(X in
j ) =

∑
v∈v(Γ

Xin
j
)

σ(X̃v) + rXin
j

≥ 2 ·#v(ΓXin
j
) + rXin

j
= #v(ΓXin

j
) + #e(ΓXin

j
) + 1.

If {X in
j }j∈J is not empty, since #e(ΓXin

j
) ≥ mj, we have

∑
j(σ(X

in
j )−mj − 1) > 0. Then

we obtain a contradiction. Thus, {X in
j }j∈J is empty. This means that fs is generically

étale. Then by Remark 1.5.2, we have fs is an admissible covering. We complete the
proof of the theorem.

By applying Theorem 2.6, we generalize the main result of [R3] as follows. Moreover,
we obtain a numerical criterion for the admissibility of G-stable coverings if G is a p-group.

Corollary 2.7. Let G be a finite solvable group, Y a stable curve over S, and f : Y → X
a G-stable covering over S. Suppose that Xs is sturdy, and that Ys is ordinary (i.e.,
σ(Ys) = g(Ys) = (#G)(g(Xs)− 1) + 1). Then the morphism fs : Ys → Xs over s induced
by f is an admissible covering. Moreover, suppose that the p-rank of the normalization
of each irreducible component of Xs is ≥ 2, and that G is a p-group. Then the morphism
fs : Ys → Xs over s induced by f is an admissible covering if and only if

σ(Ys)− 1 = (#G)(σ(Xs)− 1).
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Proof. If Xs is not ordinary, then Ys is not ordinary. Thus, we may assume that Xs is
ordinary. Since G is a finite solvable group, we have a series of subgroups

{1} =: Gm+1 ⊂ Gm ⊂ Gm−1 ⊂ ...... ⊂ G0 := G

such that Gi/Gi+1, i = 0, . . . ,m, is a cyclic group of prime order. Note that Yi :=
Y/Gm+1−i, i = 0, . . . ,m, is a semi-stable curve over S. Then the series of subgroups of G
induces a sequence of morphisms of semi-stable curves

Y =: Y0
f0→ Y1

f1→ ......
fm−1→ Ym

fm→ X.

such that fm ◦ ...... ◦ f0 = f .
Suppose that fs is not an admissible covering. Then there exists 0 ≤ w ≤ m such that

(fj)s is an admissible covering for each j ≥ w+1 and (fw)s is not an admissible covering.
Note that since an admissible covering of a sturdy stable curve is sturdy, Yw+1 is sturdy.
Moreover, Yj, j ≥ w, is a stable curve over S, and fj, j ≥ w is a Gj/Gj+1-stable covering
over S.

If (Yw+1)s is not ordinary, then Ys is not ordinary. Thus, we may assume (Yw+1)s
is ordinary. Since (fw)s is not an admissible covering, Gw/Gw+1 is isomorphic to Z/pZ.
Then the corollary follows from Theorem 2.6.

The “moreover” part follows immediately from the “moreover” part of Theorem 2.6
and Lemma 2.2.
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