
ON THE AVERAGES OF p-RANK OF GENERIC CURVES IN
POSITIVE CHARACTERISTIC

YU YANG

Abstract. Let X• def
= (X,DX) be a pointed stable curve of type (gX , nX) over an

algebraically closed field k of characteristic p > 0. Under a certain generic condition
concerning X•, we prove a formula concerning the averages of p-rank of prime-to-p cyclic
admissible coverings ofX•. Roughly speaking, this formula says that the p-rank of prime-
to-p cyclic admissible coverings of X• with Galois group Z/nZ can be determined by n,
(gX , nX), and the dual semi-graph of X• when n→∞. In particular, this formula gives
an affirmative answer (in the case of generic curves) to an open problem concerning
p-averages of tame fundamental groups of smooth pointed stable curves asked by A.
Tamagawa.
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1. Introduction

Let X• = (X,DX) be a pointed stable curve over an algebraically closed field k of
characteristic char(k) = p ≥ 0, where X denotes the underlying curve, and DX denotes
the (finite) set of marked points satisfying [K, Definition 1.1 (iv)]. Write gX for the
arithmetic genus of X and nX for the cardinality #(DX) of DX . We call (gX , nX) the
topological type (or type for short) of X•. By choosing a suitable base point of X•, we
have the admissible fundamental group (see 2.3.1)

ΠX•

of X•. The admissible fundamental groups of pointed stable curves are natural gener-
alizations of the tame fundamental groups of smooth pointed stable curves (i.e., ΠX• is
isomorphic to the tame fundamental group of X• if X• is smooth over k).

1.1. Motivation and Tamagawa’s question. We explain some backgrounds concern-
ing anabelian geometry that motivated the theory developed in the present paper.

1.1.1. When char(k) = 0, the structure of admissible fundamental group ΠX• is well-
known which is isomorphic to the profinite completion of the topological fundamental
group of a Riemann surface of type (gX , nX). In the remainder of the introduction, we
assume char(k) = p > 0.
Unlike the case of characteristic 0, the situation is quite different when char(k) = p > 0,

and the structure of ΠX• is no longer known. At present, we do not have an explicit
description of the admissible (or tame) fundamental group of any pointed stable curve
in positive characteristic. In fact, we cannot expect that the structures of admissible
fundamental groups in positive characteristic can be described explicitly in general since
there exist anabelian phenomena (i.e., the isomorphism class of X• can be completely
determined by the isomorphism class of ΠX•).

1.1.2. The original anabelian geometry suggested by A. Grothendieck in 1980s is a theory
over arithmetic fields (e.g. number fields). Roughly speaking, it means that

scheme theory = Galois actions + geometric fundamental groups,

and the Galois actions play a central role in the theory of anabelian geometry over arith-
metic fields (i.e., Galois actions determines scheme structures).

On the other hand, since the late 1990s, some results of M. Raynaud ([R2]), F. Pop-
M. Säıdi ([PS]), A. Tamagawa ([T1], [T2], [T3]), and the author of the present paper
([Y2], [Y4], [Y5]) showed evidence for very strong anabelian phenomena for curves over
algebraically closed fields of positive characteristic. This kinds of anabelian phenomena go
beyond Grothendieck’s anabelian geometry, and it means that, in positive characteristic,

scheme theory = geometric fundamental groups.

We denote by Πp′

X• the maximal prime-to-p quotient of ΠX• . The specialization theo-

rem of admissible fundamental groups implies that Πp′

X• is isomorphic to the prime-to-p
completion of the topological fundamental group of a Riemann surface of type (gX , nX)

(see 2.3.1). In particular, Πp′

X• depends only on gX if nX = 0, and 2gX +nX −1 if nX ̸= 0.
This fact means that the anabelian phenomena of curves over algebraically closed fields of
positive characteristic are arose from the complex behaviors of p-parts of open subgroups
of ΠX• .
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1.1.3. p-rank and its averages. Let H ⊆ ΠX• be an arbitrary open normal subgroup and
X•

H → X• the Galois admissible covering corresponding to H. To analyze the p-part of
H, we have an important invariant σXH

associated to X•
H (or H) which is called p-rank

(or Hasse-Witt invariant, see 2.4.1). When ΠX•/H is a p-group, σXH
can be explicitly

calculated by using the Deuring-Shafarevich formula ([C], [Su]). Then to calculate σXH
,

it sufficient to treat the case where #(ΠX•/H) is prime to p (which is the most myste-
rious part of the structures of admissible fundamental groups of curves in positive char-
acteristic). Furthermore, for anabelian geometry, we need to reconstruct the geometric
information of X• group-theoretically from its admissible fundamental group. However,
the geometric information of X• (e.g. (gX , nX)) cannot be carried out directly from σXH

in general since σXH
→∞ when #(ΠX•/H)→∞.

To overcome the gaps between the geometric information of X• and the p-rank of
admissible coverings of X•, in [T2], Tamagawa introduced the following important group-
theoretical invariant (see also Definition 2.1) concerning the p-parts of open subgroups of
ΠX• :

γav
p,n(ΠX•)

def
=

dimFp(K
ab
n ⊗ Fp)

#(Πab
X• ⊗ Z/nZ)

,

where n is an arbitrary natural number prime to p, (−)ab denotes the abelianization of
(−), and Kn denotes the kernel of the natural surjection ΠX• ↠ Πab

X• ⊗ Z/nZ. Note
that dimFp(K

ab
n ⊗ Fp) = σXKn

, where X•
Kn

denotes the Galois admissible covering of X•

corresponding to Kn.

1.1.4. Tamagawa’s p-average theorem for tame fundamental groups. Suppose that X• is
smooth over k (in this situation, ΠX• is isomorphic to the tame fundamental group of
X•). By developing a tamely ramified version of Raynaud’s theory of theta divisors,
Tamagawa obtained the following highly non-trivial result (see [T2, Theorem 0.5]) which
is very important in the theory of anabelian geometry of curves in positive characteristic:

Theorem 1.1. Let t ∈ N be a natural number. Then we have (i.e., n
def
= pt − 1)

Avrp(ΠX•)
def
= lim

t→∞
γav
p,pt−1(ΠX•) =

{
gX − 1, if nX ≤ 1,
gX , if nX > 1.

As applications, Tamagawa obtained that (gX , nX) is a group-theoretical invariant ([T2,
Theorem 0.1]), and proved a weak Isom-version of the Grothendieck conjecture for smooth
pointed stable curves of type (0, nX) over Fp ([T2, Theorem 0.2]).

1.1.5. A question of Tamagawa. We maintain the notation introduced in 1.1.4. In other
words, Theorem 1.1 says that, if pt − 1 >> 0, then the generalized Hasse-Witt invariants
(i.e., refined invariants of p-rank, see 2.4.2) are equal to Avrp(ΠX•) for almost all of the
Galois tame coverings of X• with Galois group Z/(pt − 1)Z.

On the other hand, we do not know what will happen for γav
p (ΠX•)

def
= limn→∞ γav

p,n(ΠX•)
if n is an arbitrary natural number prime to p. In [T2, Remark 4.15], Tamagawa asked
the following question:

Question 1.2. Let n be an arbitrary natural number n prime to p, and let X• be a
smooth pointed stable curve over k and ΠX• the tame fundamental group of X•. What



4 YU YANG

is γav
p (ΠX•)

def
= limn→∞ γav

p,n(ΠX•)? Does the formula

γav
p (ΠX•) =

{
gX − 1, if nX ≤ 1,
gX , if nX > 1,

hold?

1.2. A generalized version of Tamagawa’s question. Let us return to the general
case where X• is an arbitrary pointed stable curve.

1.2.1. In [Y3], under certain conditions concerning dual semi-graphs, the author gener-
alized Tamagawa’s result (i.e., Theorem 1.1) to the case of admissible fundamental groups
of pointed stable curves (see [Y3, Theorem 5.2] or Remark 4.6.2 of the present paper).
As an application, the author proved the so-called combinatorial Grothendieck conjecture
in positive characteristic ([Y2], [Y5]), and generalized [T2, Theorem 0.2] to the case of
pointed stable curves ([Y2]). Furthermore, recently, the author introduced the so-called
moduli spaces of admissible fundamental groups ([Y6]) which gives a general formulation
for describing anabelian phenomena of curves over algebraically closed fields of positive
characteristics. The generalized version of Theorem 1.1 ([Y3, Theorem 5.2]) plays one of
the central roles to established the theory of the moduli spaces of admissible fundamental
groups ([Y6, Section 5]).

1.2.2. [Y3, Theorem 5.2] says that, under certain conditions of dual semi-graph of X•, if
pt−1 >> 0, then the generalized Hasse-Witt invariants can be completely determined by
(gX , nX) and the dual semi-graph of X• for almost all of the Galois admissible coverings
of X• with Galois group Z/(pt − 1)Z. Moreover, we may ask the following generalized
version of Tamagawa’s question (=Question 1.2):

Question 1.3. Let n be an arbitrary natural number n prime to p, and let X• be
an arbitrary pointed stable curve over k and ΠX• the admissible fundamental group of
X•. What is γav

p (ΠX•)? Does the following formula (see 2.2.1 for ΓX•, 2.1 for v(ΓX•),

Definition 4.2 for Etre
X•, and Definition 4.1 for E>1

v )

γav
p (ΠX•) = gX − rX −#(v(ΓX•)) + #(Etre

X•) +
∑

v∈v(ΓX• )

#(E>1
v )

hold?

Note that Question 1.3 coincides with Question 1.2 if X• is smooth over k. Question
1.3 is very important for the following reason. If the formula mentioned in Question 1.3
holds for arbitrary pointed stable curves, then the main result of [Y6, Section 5] can
be extended to the case of arbitrary pointed stable curves, in particular, to the case of
stable curves (i.e., DX = ∅). This is one of main steps to prove the main conjecture
(=the Homeomorphism Conjecture, see [Y6, Section 3.3]) of the theory of moduli spaces
of admissible fundamental groups for higher-dimensional moduli spaces.

1.3. Main result. In the present paper, we solve Question 1.3 under a “generic” condi-
tion. Our main theorem of the present paper is as follows (see also Theorem 4.6):

Theorem 1.4. Let X• be a component-generic pointed stable curve (2.2.3) of type (gX , nX)
over an algebraically closed field k of characteristic p > 0, ΓX• the dual semi-graph, rX
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the Betti number of ΓX• (2.2.1), and ΠX• the admissible fundamental group of X•. Then
we have the following formula:

γav
p (ΠX•) = gX − rX −#(v(ΓX•)) + #(Etre

X•) +
∑

v∈v(ΓX• )

#(E>1
v ).

1.4. Structure of the present paper. The present paper is organized as follows. In
Section 2, we recall some notation concerning semi-graphs, pointed stable curves, admis-
sible fundamental groups, p-rank, and generalized Hasse-Witt invariants. In Section 3,
we prove Theorem 1.4 in the case of smooth component-generic pointed stable curves. In
Section 4, we prove Theorem 1.4 in general.

1.5. Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
20K14283, and by the Research Institute for Mathematical Sciences (RIMS), an Interna-
tional Joint Usage/Research Center located in Kyoto University.

2. Preliminaries

In this section, we set up notation and terminology concerning semi-graphs, pointed
stable curves, admissible coverings and admissible fundamental groups.

2.1. Semi-graphs. Let Γ be a semi-graph ([M, Section 1]). Roughly speaking, a semi-
graph consists of the following data: a set of vertices, a set of open edges, a set of closed
edges, and a set of coincidence maps between the sets of (open and closed) edges and the
set of vertices.

(a) We shall denote by v(Γ), eop(Γ), and ecl(Γ) the set of vertices of Γ, the set of open
edges of Γ, and the set of closed edges of Γ, respectively.

(b) The semi-graph Γ can be regarded as a topological space with natural topology
induced by R2, where R denotes the field of real number. We define an one-point com-
pactification Γcpt of Γ as follows: if eop(Γ) = ∅, we put Γcpt = Γ; otherwise, the set of

vertices of Γcpt is the disjoint union v(Γcpt)
def
= v(Γ) ⊔ {v∞}, the set of closed edges of

Γcpt is ecl(Γcpt)
def
= eop(Γ) ∪ ecl(Γ), the set of open edges of Γ is empty, and every edge

e ∈ eop(Γ) ⊆ ecl(Γcpt) connects v∞ with the vertex of Γ that is abutted by e.
(c) Let v ∈ v(Γ). We shall say that Γ is 2-connected at v if Γ \ {v} is either empty

or connected. Moreover, we shall say that Γ is 2-connected if Γ is 2-connected at each
v ∈ v(Γ). Note that, if Γ is connected, then Γcpt is 2-connected at each v ∈ v(Γ) ⊆ v(Γcpt)
if and only if Γcpt is 2-connected.

2.2. Pointed stable curves.

2.2.1. Settings. In the remainder of this section, we maintain the following notation.
Let k be an algebraically closed field of characteristic p > 0 and

X• = (X,DX)

a pointed stable curve of type (gX , nX) over k. Here, X denotes the underlying curve
of X•, and DX denotes the (finite) set of marked points of X• satisfying [K, Definition
1.1 (iv)]. In particular, if DX = 0, we shall call X• = X stable. Write ΓX• for the dual

semi-graph of X• (e.g. [Y1, Definition 3.1]) and rX
def
= dimQ(H

1
sing(ΓX• ,Q)) for the Betti

number of the semi-graph ΓX• , where Q denotes the field of rational number.
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2.2.2. Let v ∈ v(ΓX•) and e ∈ eop(ΓX•) ∪ ecl(ΓX•). We write Xv for the irreducible
component of X corresponding to v, write xe for the singular point of X• (or X) corre-
sponding to e if e ∈ ecl(ΓX•), and write xe for the marked point of X• corresponding to e

if e ∈ eop(ΓX•). Moreover, write X̃v for the smooth compactification of UXv

def
= Xv \Xsing

v ,
where (−)sing denotes the singular locus of (−). We put

X̃•
v = (X̃v, DX̃v

def
= (X̃v \ UXv) ∪ (DX ∩Xv))

a smooth pointed stable curve of type (gv, nv) over k. We shall call X̃•
v the smooth pointed

stable curve of type (gv, nv) associated to v, or the smooth pointed semi-stable curve
associated to v for short.

2.2.3. LetMg,n,Z be the moduli stack parameterizing pointed stable curves of type (g, n)

over SpecZ, Fp the algebraic closure of Fp in k,Mg,n
def
= Mg,n,Z×ZFp, and M g,n the coarse

moduli space ofMg,n. Then X• → Spec k determines a morphism cX : Spec k →MgX ,nX

and X̃•
v → Spec k, v ∈ v(ΓX•), determines a morphism cv : Spec k →Mgv ,nv . Moreover,

we have a clutching morphism of moduli stacks ([K, Definition 3.8])

c :
∏

v∈v(ΓX• )

Mgv ,nv →MgX ,nX

such that c ◦ (
∏

v∈v(ΓX• ) cv) = cX . We shall say that X• is a component-generic pointed
stable curve over k if the image of∏

v∈v(ΓX• )

cv : Spec k →
∏

v∈v(ΓX• )

Mgv ,nv

is a generic point in
∏

v∈v(ΓX• ) M gv ,nv . Note that, if X
• is smooth component-generic, then

cX is a geometric point over the generic point of M gX ,nX
.

2.3. Admissible fundamental groups. We maintain the settings introduced in 2.2.1.

2.3.1. By choosing a base point x ∈ X \ Xsing, we have the admissible fundamental
group πadm

1 (X•, x) of X• (see [Y5, 2.1.5] and [Y6, 1.2.2] for the definitions of admissible
coverings, multi-admissible coverings, Galois admissible coverings, Galois multi-admissible
coverings, and admissible fundamental groups). Since we only focus on the isomorphism
class of πadm

1 (X•, x) in the present paper, for simplicity of notation, we omit the base
point x and denote by

ΠX•

the admissible fundamental group πadm
1 (X•, x). Note that, by the definition of admissible

coverings, the admissible fundamental group of X• is naturally isomorphic to the tame
fundamental group of X• when X• is smooth over k. Moreover, the structure of the
maximal prime-to-p quotient of ΠX• is well-known, and is isomorphic to the prime-to-p
completion of the following group

⟨a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1⟩.
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2.3.2. We denote by Πét
X• and Πtop

X• the étale fundamental group of the underlying curve
X of X• and the profinite completion of the topological fundamental group of ΓX• , re-
spectively. We have the following natural surjective open continuous homomorphisms (for
suitable choices of base points)

ΠX• ↠ Πét
X• ↠ Πtop

X• .

Moreover, for each v ∈ v(ΓX•), we denote by

ΠX̃•
v

the admissible fundamental group of X̃•
v (i.e., the tame fundamental group of the smooth

pointed stable curve associated to v). Then we have a natural outer injective homomor-
phism ΠX̃•

v
↪→ ΠX• (i.e., up to inner automorphisms of ΠX•).

2.3.3. We put

X̂
def
= lim←−

H⊆ΠX• open

XH , DX̂

def
= lim←−

H⊆ΠX• open

DXH
, ΓX̂•

def
= lim←−

H⊆ΠX• open

ΓX•
H
.

We call

X̂• = (X̂,DX̂)→ X•

the universal admissible covering of X• corresponding to ΠX• , and ΓX̂• the dual semi-

graph of X̂•. Note that Aut(X̂•/X•) = ΠX• , and that ΓX̂• admits a natural action of
ΠX• .

Write πX : ΓX̂• → ΓX• for the map of dual semi-graphs induced by the universal
admissible covering. For every e ∈ eop(ΓX•) ∪ ecl(ΓX•), write ê ∈ π−1

X (e) ⊆ eop(ΓX̂•) ∪
ecl(ΓX̂•) for an edge over e and write

Iê ⊆ ΠX•

for the stabilizer of ê. Note that Iê is isomorphic to Ẑ(1)p′ , where Ẑ(1)p′ denotes the

maximal prime-to-p quotient of Ẑ(1).

2.4. p-rank, generalized Hasse-Witt invariants, and their averages. We maintain
the settings introduced in 2.2.1.

2.4.1. The p-rank (or Hasse-Witt invariant) of X• is defined to be

σX
def
= dimFp(Pic

0
X/k(k)[p]),

where (−)[p] denotes the subgroup of p-torsion points of (−). Note that we have

σX = dimFp(Π
ab
X• ⊗ Fp) = dimFp(Π

ét,ab
X• ⊗ Fp),

where (−)ab denotes the abelianization of (−). Moreover, we have the following well-
known fact

σX =
∑

v∈v(ΓX• )

σX̃v
+ rX .
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2.4.2. Let n be an arbitrary positive natural number prime to p and µn ⊆ k× the group
of nth roots of unity. Fix a primitive nth root ζ, we may identify µn with Z/nZ via the
homomorphism ζ i 7→ i. Let α ∈ Hom(Πab

X• ,Z/nZ). We denote by X•
α = (Xα, DXα)→ X•

the Galois multi-admissible covering with Galois group Z/nZ corresponding to α. We put

Hα
def
= H1

ét(Xα,Fp)⊗Fp k.

The finite dimensional k-linear space Hα is a finitely generated k[µn]-module induced by
the natural action of µn on Xα. Then we have the following canonical decomposition

Hα =
⊕

i∈Z/nZ

Hα,i,

where ζ ∈ µn acts on Hα,i as the ζ i-multiplication.
We call

γα,i
def
= dimk(Hα,i), i ∈ Z/nZ,

a generalized Hasse-Witt invariant (see [N], [T2] for the case of étale or tame coverings
of smooth pointed stable curves) of the cyclic multi-admissible covering X•

α → X•. In
particular, we call

γα,1

the first generalized Hasse-Witt invariant of the cyclic multi-admissible covering X•
α →

X•. Note that the above decomposition implies

dimk(Hα) =
∑

i∈Z/nZ

γα,i.

In particular, if Xα is connected, then dimk(Hα) = σXα .

2.4.3. Next, we introduce the main object of the present paper.

Definition 2.1. Let n be an arbitrary positive natural number prime to p and Π an

arbitrary profinite group. We put Kn
def
= ker(Π ↠ Πab ⊗ Z/nZ) and

γav
p,n(Π)

def
=

dimFp(K
ab
n ⊗ Fp)

#(Πab ⊗ Z/nZ)
.

Morever, we put

γav
p (Π)

def
= lim

n→∞
γav
p,n(Π)

when the limit exists, and we shall call γav
p (Π) the prime-to-p limit of p-averages of Π. In

particular, if Π = ΠX• and X•
Kn

denotes the Galois admissible covering of X• correspond-
ing to Kn ⊆ ΠX• , we have

γav
p (ΠX•) = lim

n→∞

σXKn

#(Πab
X• ⊗ Z/nZ)

.

3. p-averages for smooth component-generic curves

In this section, we calculate the prime-to-p limit of p-averages for smooth component-
generic pointed stable curves. The main result of the present section is Proposition 3.5.

3.1. Étale fundamental group case. In this subsection, we compute the p-averages for
étale fundamental groups of arbitrary smooth stable curves.
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3.1.1. Settings. We maintain the settings introduced in 2.2.1. LetX• be a pointed stable
curve of type (gX , nX) over an algebraically closed field k of characteristic p > 0 and ΠX•

the admissible fundamental group of X•. Moreover, we suppose the following conditions
hold:

⋄ X• is an arbitrary smooth pointed stable curve.
⋄ nX = 0 (i.e., X• = (X, ∅)).

Thus, we have that ΠX• is the étale fundamental group of X•. Note that since X• is
pointed stable, we have gX ≥ 2.

3.1.2. Let n be an arbitrary positive natural number prime to p, t the order of p in
(Z/nZ)×, and µn ⊆ k× the group of nth roots of unity. Fix a primitive nth root ζ, we
may identify µn with Z/nZ via the homomorphism ζ i 7→ i.

We put (see 2.4.2 for γα,1)

Hom(ΠX• ,Z/nZ)ord def
= {α ∈ Hom(ΠX• ,Z/nZ) | γα,1 = gX − 1},

where “ord” means “ordinary”. Then we have the following result.

Lemma 3.1. We maintain the notation introduced above. Then we have

#(Hom(ΠX• ,Z/nZ)ord) ≥ n2gX − 3gX−1gX !(p− 1)tn2gX−2 − 1.

In particular, we have

#(Hom(ΠX• ,Z/nZ)ord) ≥ n2gX − 3gX−1gX !(p− 1)n2gX−1 − 1.

Proof. Let α ∈ Hom(ΠX• ,Z/nZ) \ {0} be an arbitrary element and fα : Xα → X the
étale covering corresponding to α. Then we have

fα,∗(OXα)
∼=

⊕
i∈Z/nZ

L⊗i
α

for some line bundle Lα on X such that ζ ∈ µn acts locally on L⊗i
α as ζ i-multiplication.

Let Fk be the absolute Frobenius morphism on Spec k and FX/k : X → X1
def
= X×k,Fk

k
the relative Frobenius morphism over k. Let JX1 be the Jacobian of X1 and

ΘRT ⊆ JX1

the Raynaud-Tamagawa theta divisor associated to the vector bundle FX/k,∗(OX)/OX1

(see [R1, Section 4]). Write Lα,1 for the line bundle on X1 induced by Lα via the natural
morphism X1 → X and [Lα,1] for the point of JX1 corresponding to Lα,1. Then the
definition of ΘRT implies that [Lα,1] ∈ ΘRT if and only if the homomorphism

ϕLα,1 : H
1(X1,Lα,1)→ H1(X1,L⊗p

α,1)

induced by the absolute Frobenius morphism FX1 on X1 is an injection. By [T2, Corollary
3.10 (iii)], we have

#{α ∈ Hom(ΠX• ,Z/nZ) \ {0} | ϕ
L⊗pj

α,1

is injective for all j ∈ {0, 1, . . . , t− 1}}

≥ n2gX − 3gX−1gX !(p− 1)tn2gX−2 − 1.

Then the lemma follows immediately from the following observation

{α ∈ Hom(ΠX• ,Z/nZ) \ {0} | ϕ
L⊗pj

α,1

is injective for all j ∈ {0, 1, . . . , t− 1}}

⊆ Hom(ΠX• ,Z/nZ)ord.
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This completes the proof of the lemma. □

3.1.3. Let G be a finite cyclic group and M a finite k[G]-module. Suppose that #(G) is

prime to p. For any τ ∈ G, we put M τ def
= {m ∈M | τ ·m = m} ⊆M and

MG-prim def
= M/(

∑
σ ̸=1

M τ ) =
∑

χ:G→k× non-trivial

Mχ,

where (−)χ denotes the subspace of (−) associated to the character χ, Then we have the
following proposition.

Proposition 3.2. We maintain the settings introduced in 3.1.1. Then we have

γav
p (ΠX•) = gX − 1.

Proof. Let n be an arbitrary natural number prime to p, Kn the kernel of the natural
homomorphism ΠX• ↠ Πab

X• ⊗ Z/nZ, and X•
Kn

the Galois admissible covering of X•

(=Galois étale covering of X since nX = 0) corresponding to Kn.
We put

CKn

def
= {H ⊆ ΠX• an open normal subgroup | Kn ⊆ H, ΠX•/H is cyclic}.

Since n is prime to p, we have the following canonical decomposition as k[Πab
X• ⊗ Z/nZ]-

modules

H1
ét(XKn ,Fp)⊗Fp k =

⊕
χ:Πab

X•⊗Z/nZ→k×

(H1
ét(XKn ,Fp)⊗Fp k)χ

=
⊕

H∈CKn

((H1
ét(XKn ,Fp)⊗Fp k)

H/Kn)(ΠX•/H)-prim

=
⊕

H∈CKn

(H1
ét(XH ,Fp)⊗Fp k)

(ΠX•/H)-prim,

where XH denotes the underlying curve of the pointed stable curve X•
H corresponding to

H ⊆ ΠX• . Fix a primitive nth root ζ, we may identify µn with Z/nZ via the homomor-
phism ζ i 7→ i. Thus, we obtain

σXKn
= dimk(H

1
ét(XKn ,Fp)⊗Fp k) =

∑
α∈Hom(ΠX• ,Z/nZ)

γα,1.

Note that 0 ≤ γα,1 ≤ gX − 1 = dimk(H
1(X,Lα)) for all α ∈ Hom(ΠX• ,Z/nZ) \ {0}.

By applying Lemma 3.1, we have

(n2gX − 3gX−1gX !(p− 1)n2gX−1 − 1)(gX − 1) ≤ σXKn
≤ (n2g − 1)(gX − 1) + gX .

Then the proposition follows immediately from #(ΠX• ⊗ Z/nZ) = n2gX . □

3.2. Tame fundamental group case. In this subsection, by using Proposition 3.2,
we compute the p-averages for tame fundamental groups of smooth component-generic
pointed stable curves.
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3.2.1. Settings. We maintain the notation introduced in 2.2.1. Let X• be a pointed
stable curve of type (gX , nX) over an algebraically closed field k of characteristic p > 0
and ΠX• the admissible fundamental group of X•. Moreover, we suppose the following
condition holds:

⋄ X• is a smooth component-generic pointed stable curve (2.2.3).

Thus, we have that ΠX• is the tame fundamental group of X•.

3.2.2. We introduce a singular pointed stable curve. Let X•
s = (Xs, DXs) be a pointed

stable curve of type (gs, ns) over an algebraically closed field ks of characteristic p > 0
satisfying the following conditions:

⋄ gs ≥ 1 and ns ≥ 2.
⋄ Irr(Xs) = {Xs,1, Xs,2} and Xs,1, Xs,2 are smooth over ks, where Irr(−) denotes the
set of irreducible components of (−).
⋄ The genus of Xs,1, Xs,2 are gs, 0, respectively.
⋄ Xsing

s = {xs} (i.e., Xs,1 ∩Xs,2 = {xs}), and DXs is contained in Xs,2.

Then we obtain the following pointed stable curves (2.2.2)

X•
s,1

def
= (Xs,1, DXs,1

def
= {xs}), X•

s,2
def
= (Xs,2, DXs,2

def
= {xs} ∪ {DXs})

of types (gs, 1) and (0, ns + 1), respectively.
Let ΠX•

s
and ΠX•

s,i
, i ∈ {1, 2}, be the admissible fundamental groups of X•

s and X•
s,i,

respectively. Then we have a natural outer injection ϕi : ΠX•
s,i

↪→ ΠX•
s
(2.3.2). Then we

have the following result:

Lemma 3.3. We maintain the notation introduced above. Then we have

γav
p (ΠX•

s
) = gs.

Proof. Let n be an arbitrary natural number prime to p, Ks,n the kernel of the natural
homomorphism ΠX•

s
↠ Πab

X•
s
⊗ Z/nZ, and f •

s,n : X•
s,Ks,n

→ X•
s the Galois admissible

covering over ks corresponding to Ks,n ⊆ ΠX•
s
. We put Ks,i,n

def
= ϕ−1

i (Ks,n).

Write ΓX•
s
for the dual semi-graph of X•

s . We see that Γcpt
X•

s
is 2-connected (2.1 (b), (c)).

By applying [Y3, Corollary 3.5], we obtain

Ks,i,n = ker(ΠX•
s,i
→ Πab

X•
s,i
⊗ Z/nZ).

Then we have (see 2.2.1 for rXs,Ks,n
and 2.1 (a) for ecl(ΓX•

s,Ks,n
) and v(ΓX•

s,Ks,n
))

σXs,Ks,n
= dimFp(K

ab
s,n ⊗ Fp)

= rXs,Ks,n
+

∑
i∈{1,2}

#(Πab
X•

s
⊗ Z/nZ)

#(Πab
X•

s,i
⊗ Z/nZ)

· dimFp(K
ab
s,i,n ⊗ Fp)

= #(ecl(ΓX•
s,Ks,n

))−#(v(ΓX•
s,Ks,n

)) + 1 +
∑

i∈{1,2}

#(Πab
X•

s
⊗ Z/nZ)

#(Πab
X•

s,i
⊗ Z/nZ)

· dimFp(K
ab
s,i,n ⊗ Fp).

Note that

#(v(ΓX•
s,Ks,n

)) =
∑

i∈{1,2}

#(Πab
X•

s
⊗ Z/nZ)

#(Πab
X•

s,i
⊗ Z/nZ)

.
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On the other hand, since the type of X•
s,1 is (gs, 1), we have that f •

s,n is étale over the

singular point xs ∈ Xs, and that Πab
X•

s,1
= Πét,ab

X•
s,1
. This implies

#(ecl(ΓX•
s,Ks,n

)) = #(Πab
X•

s
⊗ Z/nZ).

Thus, we have

γav
p (ΠX•

s
) = 1 + γav

p (ΠX•
s,1
) + γav

p (ΠX•
s,2
)

= 1 + γav
p (Πét

X•
s,1
) + γav

p (ΠX•
s,2
).

Proposition 3.2 implies γav
p (Πét

X•
s,1
) = gs − 1. Furthermore, [T2, Appendix, Theorem A.1]

implies 0 = γav
p (ΠX•

s,2
) ≤ 0. Then we obtain

γav
p (ΠX•

s
) = gs.

This completes the proof of the lemma. □

3.2.3. We maintain the settings introduced in 3.1.1. Moreover, we suppose gX ≥ 1 and
nX ≥ 2. Since we assume that X• is a component-generic pointed stable curve over k,
there exist a discrete valuation ring R of equal characteristic with algebraically closed
residue field kR and a pointed stable curve X • of type (gX , nX) over R satisfying the
following conditions:

⋄ Write η
def
= SpecKR and s

def
= Spec kR for the generic point and the closed point of

SpecR, respectively, where KR denotes the quotient field of R. Then we have
(i) There exists an algebraically closed field k′ containing KR and k such
that X • ×R k′ is k′-isomorphic to X• ×k k

′.

(ii) The special fiber X •
s

def
= X • ×R kR satisfying the conditions which

were mentioned at the beginning of 3.2.2.

We write KR for the algebraic closure of KR in k′ and put X •
η

def
= X • ×R KR. Then we

obtain the following specialization surjective homomorphism of admissible fundamental
groups (which is not an isomorphism)

spR : ΠX• ∼= ΠX •
η
↠ ΠX •

s
.

We have the following lemma.

Lemma 3.4. We maintain the notation introduced above. Then we have

γav
p (ΠX•) = γav

p (ΠX •
η
) ≥ γav

p (ΠX •
s
).

Proof. Note that spR induces an isomorphism

spp
′
: Πp′

X •
η
↠ Πp′

X •
s
,

where (−)p′ denotes the maximal prime-to-p quotient of (−). Then the lemma follows
immediately from the definition of the prime-to-p limits of p-averages. □

Remark 3.4.1. Note that Lemma 3.4 holds for an arbitrary pointed stable curve X • over
an arbitrary discrete valuation ring R.
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3.2.4. We have the following result.

Proposition 3.5. We maintain the settings introduced in 3.1.1. Then we have

γav
p (ΠX•) =

{
gX − 1, if nX ≤ 1,
gX , if nX > 1.

Proof. Suppose gX = 0. Then the proposition follows immediately from [T2, Appendix,
Theorem A.1].

Suppose nX ≤ 1. Then all abelian admissible coverings of X• are étale. This implies
γav
p (ΠX•) = γav

p (Πét
X•). Thus, the proposition follows from Proposition 3.2.

Suppose gX ≥ 1 and nX ≥ 2. Then the proposition follows from [T2, Appendix,
Theorem A.1], Lemma 3.3, and Lemma 3.4. □

4. p-averages for arbitrary component-generic curves

In this section, we generalize Proposition 3.5 to the case of arbitrary (possibly singu-
lar) component-generic pointed stable curves. The main result of the present section is
Theorem 4.6.

4.1. Notation. We introduced some notation.

4.1.1. Settings. We maintain the notation introduced in 2.2.1.

4.1.2. Let v ∈ v(ΓX•) ⊆ v(Γcpt
X•) be an arbitrary vertex of ΓX• (see 2.1 (b) for Γcpt

X•) and

X̃•
v the smooth pointed stable curve of type (gv, nv) associated to v (2.2.2). Write Γv

for the dual semi-graph of X̃•
v . Then we obtain a map of semi-graphs ρ′v : Γv → ΓX•

induced by the natural morphism UXv ↪→ X and the natural map of sets of closed points
DX̃v

→ DX ∪Xsing. We put

ρv : Γv
ρ′v→ ΓX• → Γcpt

X• ,

where ΓX• → Γcpt
X• is the natural map of semi-graphs induced by the definition of Γcpt

X• .

Definition 4.1. We maintain the notation introduced above. Let π0(v) be the set of
connected components of Γcpt

X• \ {v}. We put

⋄ Ev,C
def
= {e ∈ eop(Γv) | ρv(e) ∩ C ̸= ∅}, C ∈ π0(v),

⋄ E>1
v

def
= {C ∈ π0(v) | #(Ev,C) > 1},

⋄ E=1
v

def
= {C ∈ π0(v) | #(Ev,C) = 1}.

Note that the definitions imply

eop(Γv) =
∪

C∈π0(v)

Ev,C , #(π0(v)) = #(E=1
v ) + #(E>1

v ).

4.1.3. Let X•
v∞ = (Xv∞ , DXv∞ ) be a smooth pointed stable curve of type (gv∞ , nv∞) over

k such that gv∞ ≥ 2 and nv∞ = nX . Write Γv∞ for the dual semi-graph of X•
v∞ . If nX ̸= 0,

we fix a bijection DXv∞

∼→ DX . Then we may glue X• and X•
v∞ along the sets of marked

points DX and DXv∞ , and obtain a stable curve X ′
∞ of type (gX + gv∞ + nX − 1, 0) over

k. We define a stable curve X∞ of type (gX∞ , 0) over k to be

X∞
def
=

{
X, if nX = 0,
X ′

∞, if nX ̸= 0.
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Write ΓX∞ for the dual semi-graph of X∞. Note that by the construction of X∞, Γcpt
X• is

naturally isomorphic to ΓX∞ . Then we may identify Γcpt
X• with ΓX∞ .

Let R be a complete discrete valuation ring of equal characteristic with residue field
k, K the quotient field of R, and K an algebraic closure of K. Let L ⊆ ecl(ΓX∞) be an
arbitrary subset of closed edges. We may deform the pointed stable curve X∞ along L to
obtain a new pointed stable curve over K such that the set of edges of the dual semi-graph
of the new stable curve may be naturally identified with e(ΓX∞) \ L. Suppose that

cs : Spec k →MgX∞R
def
= MgX∞

×Z R

is the classifying morphism determined by X∞ → Spec k. Thus the completion of the
local ring of the moduli stack at cs is isomorphic to RJt1, ..., t3gX∞−3K, where t1, ..., t3gX∞−3

are indeterminates. Furthermore, the indeterminates t1, ..., tm may be chosen so as to
correspond to the deformations of the nodes of X∞. Suppose that {t1, ..., td} is the
subset of {t1, ..., tm} corresponding to the subset L ⊆ ecl(ΓX∞). Now fix a morphism
SpecR→ SpecRJt1, ..., t3gX∞−3K such that td+1, ..., t3gX∞−3 7→ 0 ∈ R, but t1, ..., td map to
nonzero elements of R. Then the composite morphism

c : SpecR→ SpecRJt1, ..., t3gX∞−3K→MgX∞ ,R

determines a stable curve X∞ → SpecR. Moreover, the special fiber X∞ ×R k of X∞ is
naturally isomorphic to X∞ over k. Write

X\L
∞

for the geometric generic fiber X∞×K K of X∞ over K and Γ
X

\L
∞

for the dual semi-graph

of X
\L
∞ . It follows from the construction of X

\L
∞ that we have a natural bijective map

e(ΓX∞) \ L ∼→ e(Γ
X

\L
∞
).

Let v ∈ v(ΓX•) ⊆ v(ΓX∞) = v(Γcpt
X•) be an arbitrary vertex of ΓX• and

Lv
def
= {e ∈ ecl(ΓX∞) | e does not meet v}.

We put

Xdef
v

def
= X\Lv

∞ ,

and ΓXdef
v

the dual semi-graph of Xdef
v . Then we have the following definition.

Definition 4.2. Let v ∈ v(ΓX•) ⊆ v(ΓX∞) = v(Γcpt
X•) and e ∈ ecl(ΓX•) ⊆ ecl(ΓX∞) =

ecl(Γcpt
X•). We shall say that v is a tree-like vertex if ΓXdef

v
is a tree (i.e., the Betti number

of ΓXdef
v

is 0), and that e is a tree-like edge if there exists a vertex w ∈ v(ΓX•) such that
Ew,C = {e} for some C ∈ E=1

w . We put

⋄ V tre
X•

def
= {v ∈ v(ΓX•) | v is tree-like},

⋄ V tre,gv=0
X•

def
= {v ∈ V tre

X• | gv = 0},
⋄ Etre

X•
def
= {e ∈ ecl(ΓX•) | e is tree-like}.

Note that we have
Etre

X• =
∪

v∈v(ΓX• )

∪
C∈π0(v) s.t. C∈E=1

v

Ev,C .

4.2. Upper bounds of the p-averages of irreducible components. In this subsec-
tion, we compute upper bounds of the p-averages concerning irreducible components.
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4.2.1. Settings. We maintain the notation introduced in 2.2.1. Let X• be an arbitrary
pointed stable curve of type (gX , nX) over an algebraically closed field k of characteristic
p > 0, ΓX• the dual semi-graph of X•, and ΠX• the admissible fundamental group of X•.

Let v ∈ v(ΓX•) be a vertex of ΓX• , X̃•
v the smooth pointed stable curve of type (gv, nv)

associated to v, and ΠX̃•
v
the admissible fundamental group of X̃•

v . We denote by

ϕab
v : Πab

X̃•
v
→ Πab

X•

the homomorphism induced by the natural outer injection ΠX̃•
v
→ ΠX• . Note that ϕab

v is

not an injection if ΓX• is not 2-connected ([Y3, Corollary 3.5]). We put

Mv
def
= Im(ϕab

v ).

4.2.2. Let n be a natural number prime to p,

Hv,n
def
= ker(Πv ↠ Πab

v

ϕab
v↠ Mv ⊗ Z/nZ),

and X•
Hv,n
→ X̃•

v the Galois admissible covering over k corresponding to Hv,n. For each

C ∈ π0(v), we put D′
X̃v,C

def
= {xe ∈ DX̃v

| e ∈ Ev,C} (see Definition 4.1). We define a

smooth pointed semi-stable curve of type (gv, nv,C
def
= (#Ev,C)) over k to be

X̃•
v,C = (X̃v,C , DX̃v,C

)
def
= (X̃v, D

′
X̃v,C

).

Then we have the following result.

Proposition 4.3. We maintain the notation introduced above. Then the following state-
ments hold (see Definition 4.1 for E>1

v ):
(i) Suppose (gv,#(E>1

v )) = (0, 0). Then we have

lim
n→∞

σXHv,n

#(Mv ⊗ Z/nZ)
= lim

n→∞

dimFp(H
ab
v,n ⊗ Fp)

#(Mv ⊗ Z/nZ)
= 0.

(ii) Suppose (gv,#(E>1
v )) ̸= (0, 0). Then we have

lim sup
n→∞

σXHv,n

#(Mv ⊗ Z/nZ)
= lim sup

n→∞

dimFp(H
ab
v,n ⊗ Fp)

#(Mv ⊗ Z/nZ)
≤ gv +#(E>1

v )− 1,

where lim sup(−) denotes the limit superior of (−).

Proof. (i) Since XHv,n is isomorphic to P1
k for all natural numbers prime to p, (i) follows

immediately from that σXHv,n
= 0.

(ii) We put

SHv,n

def
= {H ⊆ ΠX̃•

v
an open normal subgroup | Hv,n ⊆ H, ΠX̃•

v
/H is cyclic}.

Note that #(ΠX̃•
v
/H), H ∈ SHv,n , is prime to p. Write X•

H
def
= (XH , DXH

) for the pointed

stable curve over k corresponding to H. Since Mv⊗Z/nZ is an abelian group, we have the

following canonical decomposition as k[Mv⊗Z/nZ]-modules (see 3.1.3 for (−)(ΠX̃•
v
/H)-prim

)

H1
ét(XHv,n ,Fp)⊗ k =

⊕
χ:Mv⊗Z/nZ→k×

(H1
ét(XHv,n ,Fp)⊗ k)χ
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=
⊕

H∈SHv,n

(H1
ét(XHv,n ,Fp)

H/Hv,n ⊗ k)
(Π

X̃•
v
/H)-prim

=
⊕

H∈SHv,n

(H1
ét(XH ,Fp)⊗ k)

(Π
X̃•

v
/H)-prim

.

On the other hand, we put (i.e., the subset of Hom(Πab
X̃•

v
,Z/nZ) corresponding to SHv,n)

THv,n

def
= {α ∈ Hom(Πab

X̃•
v
,Z/nZ) | Hv,n ⊆ ker(ΠX̃•

v
↠ Πab

X̃•
v

α→ Z/nZ)}.

Then we have
σXHv,n

= dimk(H
1
ét(XHv,n ,Fp)⊗ k) =

⊕
α∈THv,n

γα,1.

Let f •
v,α : X•

v,α → X̃•
v be the Galois multi-admissible covering with Galois group Z/nZ.

Fix a primitive nth root ζ, we may identify µn with Z/nZ via the homomorphism ζ i 7→ i.
Then we have

fv,α,∗OXv,α
∼=

⊕
i∈Z/nZ

Lα,i,

where Lα,0
∼= OX̃v

, and ζ ∈ µn acts locally on Lα,i as ζ i-multiplication. Moreover, we

have L⊗n
α,1
∼= OX̃v

(−Dα) for some effective divisor Dα on X̃v whose support is contained

in DX̃v
\ (

∪
C∈E=1

v
DX̃v,C

) (see Definition 4.1 for E=1
v ). Note that deg(Dα) is divided by n.

We put

s(Dα)
def
=

deg(Dα)

n
.

Then we have that s(Dα) ≤ #(E>1
v ), and that the Riemann-Roch theorem implies

dimk(H
1(X̃v,Lα,1)) = gv + s(Dα) − 1. Write t for the order of p in (Z/nZ)× and

tα ∈ {0, 1, . . . , t− 1} for an integer such that

s(ptαDα) = minj∈{0,1,...,t−1}{s(pjDα)}.
Then we obtain

γα,1 ≤ dimk(H
1(X̃v,Lα,ptα )) = gv + s(ptαDα)− 1.

Note that we have DX̃v,C
⊆ DX̃v

. We put

Dα,C
def
= Dα|D

X̃v,C
, C ∈ π0(v).

Since α ∈ THv,n , [Y3, Proposition 3.4 (ii)] implies that deg(Dα,C) is divided by n. Then
we put

s(Dα,C)
def
=

deg(Dα,C)

n
.

Moreover, we put

AHv,n,C
def
= {α ∈ THv,n | s(Dα,C) = 1}, C ∈ π0(v),

AHv,n

def
=

∩
C∈π0(v)

AHv,n,C .

Then we have s(Dα) = #(E>1
v ) for all α ∈ AHv,n . Thus, we obtain

γα,1 ≤ gv +#(E>1
v )− 1, α ∈ AHv,n .
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By applying [T2, p99 Appendix, A.3], we obtain

lim
n→∞

#(AHv,n,C)

n2gv+#(Ev,C)−1
= 1.

Furthermore, we see

lim
n→∞

#(AHv,n)

n2gv+
∑

C∈π0(v)
(#(Ev,C)−1)

= 1 (or lim
n→∞

#(THv,n \AHv,n)

n2gv+
∑

C∈π0(v)
(#(Ev,C)−1)

= 0).

Note that γα,1 ≤ gv +#(E>1
v )− 1 for all α ∈ AHv,n . We obtain

σXHv,n
≤ #(AHv,n)(gv +#(E>1

v )− 1) + #(THv,n \AHv,n)(gv + nv − 2)

≤ #(THv,n)(gv +#(E>1
v )− 1) + #(THv,n \AHv,n)(gv + nv − 2).

By applying [Y3, Proposition 3.4 (ii)], we obtain (see Definition 4.1 for Ev,C)

#(Mv ⊗ Z/nZ) = n2gv+
∑

C∈π0(v)
(#(Ev,C)−1).

Thus, we have

lim sup
n→∞

σXHv,n

#(Mv ⊗ Z/nZ)
≤ gv +#(E>1

v )− 1.

This completes the proof of the proposition. □

4.3. The p-averages of irreducible components. In this subsection, we compute the
p-averages concerning irreducible components of component-generic pointed stable curves.

4.3.1. Settings. We maintain the settings introduced in 4.2.1. Moreover, we suppose the
following holds:

⋄ X• is an arbitrary component-generic pointed stable curve (2.2.3).

4.3.2. Let v ∈ v(ΓX•) and (gv, nv) the type of the smooth pointed stable curve X̃•
v

associated to v. Let X•
v,s = (Xv,s, DXv,s) be a pointed stable curve of type (gv, nv) over an

algebraically closed field kv,s of characteristic p > 0 satisfying the following conditions:

⋄ Suppose #(E>1
v ) ≤ 1. Then we have kv,s = k and

X•
v,s

def
= X̃•

v .

⋄ Suppose gv = 0 and #(E>1
v ) = 2. We put E>1

v = {C1, C2}. Then we have

Irr(Xv,s)
def
= {PC1 , PC2}

such that
(i) PCi

, i ∈ {1, 2}, is isomorphic to P1
kv,s

;

(ii) #(PC1 ∩ PC2) = 1 and #(Xsing
v,s ) = 1;

(iii) #(DXv,s∩PC1) = #(Ev,C1)+#(E=1
v ) and #(DXv,s∩PC2) = #(Ev,C2);

(iv) P •
Ci

def
= (PCi

, DPCi

def
= (DXv,s ∩ PCi

) ∪ (PC1 ∪ PC2)), i ∈ {1, 2}, is a

smooth component-generic pointed stable curve of type (0,#(Ev,Ci
)+1).

⋄ Suppose that either gv ≥ 1 or #(E>1
v ) > 2 holds. Then we have

Irr(Xv,s)
def
= {Zv} ∪ {PC}C∈E>1

v

such that
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(i) Zv is a smooth projective curve over kv,s of genus gv;
(ii) PC , C ∈ E>1

v , is isomorphic to P1
kv,s

over kv,s;

(iii) #(PC ∩ Zv) = 1 for all C ∈ E>1
v and #(Xsing

v,s ) = #(E>1
v );

(iv) #(DXv,s ∩ PC) = #(Ev,C), C ∈ E>1
v ;

(v) #(DXv,s ∩ Zv) = #(E=1
v );

(vi) P •
C

def
= (PC , DPC

def
= (DXv,s ∩ PC) ∪ (Zv ∩ PC)), C ∈ E>1

v , is a smooth
component-generic pointed stable curve over kv,s of type (0,#(Ev,C)+1);

(vii) Z•
v

def
= (Zv, DZv

def
= (Zv ∩DXv,s) ∪ (Zv ∩ (

∪
C∈E>1

v
PC))) is a smooth

component-generic pointed stable curve over kv,s of type (gv,#(π0(v))).

Let ΠX•
v,s
, ΠZ•

v
, and ΠP •

C
, C ∈ E>1

v , be the admissible fundamental groups of X•
v,s,

Z•
v , and P •

C , respectively. We have natural outer injections ϕZv : ΠZ•
v
↪→ ΠX•

v,s
and

ϕC : ΠP •
C
↪→ ΠX•

v,s
, C ∈ E>1

v . Write ΓX•
v,s
, ΓZ•

v
, and ΓP •

C
, C ∈ E>1

v , for the dual semi-
graphs of X•

v,s, Z
•
v , and P •

C , respectively.

4.3.3. We maintain the notation introduced in 4.3.2. We put

Bv
def
= {Ev,C}C∈E=1

v
∪ ecl(ΓX•

v,s
),

Sv
def
= {xe is a closed point of Xv,s corresponding to e ∈ Bv},

and put

BZv

def
= {e ∈ eop(ΓZ•

v
) | xe ∈ Sv},

Bv,C
def
= {e ∈ eop(ΓP •

C
) | xe ∈ Sv}, C ∈ E>1

v .

Note that by the above constructions, we have

⋄ #(Bv) = #(Bv,C1) and #(Bv,C2) = 1 if gv = 0 and #(E>1
v ) = 2.

⋄ #(Bv) = #(BZv) and #(Bv,C) = 1 if either gv ≥ 1 or #(E>1
v ) > 2 holds.

We put (see 2.3.3 for notation concerning universal admissible coverings and their dual
semi-graphs)

B̂v
def
= π−1

Xv,s
(Bv) ⊆ ΓX̂•

v,s
,

B̂Zv

def
= π−1

Zv
(BZv) ⊆ ΓẐ•

v
,

B̂v,C
def
= π−1

PC
(Bv,C) ⊆ ΓP̂ •

C
, C ∈ E>1

v .

Furthermore, we put

IBv ⊆ ΠX•
v,s
, IBZv

⊆ ΠZ•
v
, IBv,C

⊆ ΠP •
C
, C ∈ E>1

v ,

the closed normal subgroup generated by {Iê}ê∈B̂v
, {Iê}ê∈B̂Zv

, {Iê}ê∈B̂v,C
, respectively.

Then the theory of admissible fundamental groups implies immediately

ϕ−1
Zv
(IBv) = IBZv

, ϕ−1
C (IBv) = IBv,C

, C ∈ E>1
v .

Moreover, we have the following lemma.

Lemma 4.4. We maintain the notation introduced above. Then we have

γav
p (ΠX•

v,s
/IBv) = gv +#(E>1

v )− 1.
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Proof. Suppose #(E>1
v ) ≤ 1. Then the lemma follows immediately from Proposition 3.5.

Thus, to verify the lemma, we may assume #(E>1
v ) ≥ 2.

Let n be an arbitrary natural number prime to p and C ∈ E>1
v . We put

Kv,s,n
def
= ker(ΠX•

v,s
↠ Πab

X•
v,s
⊗ Z/nZ), KZv ,n

def
= ϕ−1

Zv
(Kv,s,n), Kv,C,n

def
= ϕ−1

C (Kv,s,n),

and

IBv ,n
def
= Kv,s,n ∩ IBv , IBZv ,n

def
= KZv ,n ∩ IBZv

, IBv,C ,n
def
= Kv,C,n ∩ IBv,C

.

Since Γcpt
X•

Kv,s,n
is 2-connected (2.1), where X•

Kv,s,n
denotes the Galois admissible covering of

X•
v,s corresponding to Kv,s,n ⊆ ΠX•

v,s
, [Y3, Corollary 3.5] implies that the homomorphisms

Kab
Zv ,n ↪→ Kab

v,s,n, Kab
v,C,n ↪→ Kab

v,s,n

induced by the natural injections ϕZv |KZv,n
: KZv ,n ↪→ Kv,s,n and ϕC |Kv,C,n

: Kv,C,n ↪→
Kv,s,n are injections.

We denote by

IBv ,n
def
= Im(IBv ,n ↪→ Kv,s,n ↠ Kab

v,s,n),

IBZv ,n
def
= Im(IBZv ,n

↪→ KZv ,n ↠ Kab
Zv ,n),

IBv,C ,n
def
= Im(IBv,C ,n ↪→ Kv,C,n ↠ Kab

v,C,n).

Then we have

(KZv ,n/IBZv ,n
)ab ∼= Kab

Zv ,n/IBZv ,n
↪→ Kab

v,s,b/IBv ,n
∼= (Kv,s,b/IBv ,n)

ab,

(Kv,C,n/IBv,C ,n)
ab ∼= Kab

v,C,n/IBv,C ,n ↪→ Kab
v,s,b/IBv ,n

∼= (Kv,s,b/IBv ,n)
ab.

Write Y •
v,n for the Galois admissible covering of X•

v,s with Galois group (ΠX•
v,s
/IBv)

ab ⊗
Z/nZ, ΓY •

v,n
for the dual semi-graph of Y •

v,n, and rYv,n for the Betti number of ΓY •
v,n
. Thus,

we obtain

γav
p (ΠX•

v,s
/IBv) = lim

n→∞

dimFp((Kv,s,b/IBv ,n)
ab ⊗ Fp)

#((ΠX•
v,s
/IBv)

ab ⊗ Z/nZ)

= lim
n→∞

rYv,n

#((ΠX•
v,s
/IBv)

ab ⊗ Z/nZ)
+ lim

n→∞

dimFp((KZv ,n/IBZv ,n
)ab ⊗ Fp)

#((ΠZ•
v
/IBZv

)ab ⊗ Z/nZ)

+
∑

C∈E>1
v

lim
n→∞

dimFp((Kv,C,n/IBv,C ,n)
ab ⊗ Fp)

#((ΠP •
C
/IBv,C

)ab ⊗ Z/nZ)

= lim
n→∞

rYv,n

#((ΠX•
v,s
/IBv)

ab ⊗ Z/nZ)
+ γav

p (ΠZ•
v
/IBZv

) +
∑

C∈E>1
v

γav
p (ΠP •

C
/IBv,C

).

Note that Y •
v,n → X•

v,s is étale over Sv (4.3.3). Then we have

lim
n→∞

#(ecl(ΓY •
v,n
))

#((ΠX•
v,s
/IBv)

ab ⊗ Z/nZ)
= #(ecl(ΓX•

v,s
)) = #(E>1

v ).

Suppose gv = 0 and #(E>1
v ) ≥ 3. We have that ΠZ•

v
/IBv is trivial, and that ΠP •

C
/IBv,C

is non-trivial. Then we obtain

lim
n→∞

#(v(ΓY •
v,n
))

#((ΠX•
v,s
/IBv)

ab ⊗ Z/nZ)
= 1, γav

p (ΠZ•
v
/IBv) = 0.
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On the other hand, ΠP •
C
/IBv,C

is naturally isomorphic to the admissible fundamental
group (=tame fundamental group since PC is non-singular) of (PC , DXv,s ∩PC). Then we
have γav

p (ΠP •
C
/IBv,C

) = 0. Thus, we obtain

γav
p (ΠX•

v,s
/IBv) = #(E>1

v )− 1.

Suppose that either gv ≥ 1 or gv = 0 and #(E>1
v ) = 2 hold. Then ΠZ•

v
/IBv and

ΠP •
C
/IBv,C

are non-trivial. This means

lim
n→∞

#(v(ΓY •
v,n
))

#((ΠX•
v,s
/IBv)

ab ⊗ Z/nZ)
= 0.

On the other hand, since ΠZ•
v
/IBZv

is naturally isomorphic to the étale fundamental group
of Zv and ΠP •

C
/IBv,C

is naturally isomorphic to the admissible fundamental group (=tame
fundamental group since PC is non-singular) of (PC , DXv,s ∩ PC), Proposition 3.2 and
Proposition 3.5 imply

γav
p (ΠZ•

v
/IBv) =

{
0, if gv = 0,
gv − 1, if gv ≥ 1,

γav
p (ΠP •

C
/IBv,C

) = 0.

Then we obtain

γav
p (ΠX•

v,s
/IBv) = gv +#(E>1

v )− 1.

This completes the proof of the lemma. □

4.3.4. We have the following result.

Proposition 4.5. We maintain the settings introduced in 4.3.1 and maintain the notation
introduced in Proposition 4.3. Let v ∈ v(ΓX•). Then we have (see 4.2.2 for Hv,n)

lim
n→∞

σXHv,n

#(Mv ⊗ Z/nZ)
=

lim
n→∞

dimFp(H
ab
v,n ⊗ Fp)

#(Mv ⊗ Z/nZ)
=

{
0, if (gv,#(E>1

v )) = (0, 0),
gv +#(E>1

v )− 1, if (gv,#(E>1
v )) ̸= (0, 0).

Proof. If (gv,#(E>1
v )) = (0, 0), then the proposition follows from Proposition 4.3 (a). To

verify the proposition, we may assume (gv,#(E>1
v )) ̸= (0, 0).

Since we assume that X• is a component-generic pointed stable curve, for each v ∈
v(ΓX•), there exist a discrete valuation ring Rv of equal characteristic with algebraically
closed residue field kRv and a pointed stable curve X •

v of type (gv, nv) over Rv satisfying
the following conditions:

⋄ Write ηv
def
= SpecKRv and sv

def
= Spec kRv for the generic point and the closed point

of SpecRv, respectively, where KRv denotes the quotient field of Rv. Then we have
(i) There exists an algebraically closed field k′

v containingKRv and k such

that X •
v ×Rv k

′
v is k′

v-isomorphic to X̃•
v ×k k

′
v.

(ii) The special fiber X •
v,s

def
= X •

v ×Rv kRv satisfying the conditions defined
in 4.3.2.
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We write KRv for the algebraic closure of KRv in k′
v and put X •

ηv

def
= X •

v ×Rv KRv . Then we
obtain the following specialization surjective homomorphism of admissible fundamental
groups (which is not an isomorphism)

spRv : ΠX̃•
v

∼= ΠX •
ηv

↠ ΠX •
v,s
.

Moreover, spRv induces an isomorphism of maximal prime-to-p quotients

spp
′

Rv
: Πp′

X̃•
v

∼= Πp′

X •
ηv

↠ Πp′

X •
v,s
.

On the other hand, let H ⊆ ΠX̃•
v
be an arbitrary open normal subgroup such that

#(ΠX̃•
v
/H) is prime to p, and let Hs

def
= spRv(H) ⊆ ΠX •

v,s
. Write f •

Hs
: X •

Hs
→ X •

v,s for the
Galois admissible covering corresponding to Hs. Write DE=1

v
⊆ DX •

v
for the subset of the

marked points of X •
v such that {xe ×k k

′
v}e∈E=1

v
⊆ DX̃•

v
×k k

′
v is equal to DE=1

v
×Rv k

′
v via

the isomorphism X •
v ×Rv k

′
v
∼= X̃•

v ×k k
′
v. Since #(ΠX̃•

v
/H) = #(ΠX •

v,s
/Hs) is prime to p,

the isomorphism spp
′

Rv
and [Y3, Proposition 3.4 (ii)] imply that H contains Hv,n if and

only if f •
Hs

is étale over DE=1
v
×Rv kRv and X sing

v,s . This means that H contains Hv,n if and
only if Hs contains IBv (see 4.3.3 for IBv). Then the surjection spRv implies

lim
n→∞

dimFp(H
ab
v,n ⊗ Fp)

#(Mv ⊗ Z/nZ)
≥ γav

p (ΠX •
v,s
/IBv).

Thus, the proposition follows immediately from Proposition 4.3 (ii) and Lemma 4.4. We
complete the proof of the proposition. □

4.4. Admissible fundamental group case. In this subsection, we generalize Proposi-
tion 3.5 to the case of arbitrary component-generic pointed stable curves.

4.4.1. The main result of the present paper is as follows.

Theorem 4.6. Let X• be a component-generic pointed stable curve (2.2.3) of type (gX , nX)
over an algebraically closed field of characteristic p > 0, ΓX• the dual semi-graph, rX the
Betti number of ΓX•, and ΠX• the admissible fundamental group of X•. Then we have
the following formula (see Definition 2.1 for γav

p (ΠX•), 2.1 for v(ΓX•), Definition 4.2 for

Etre
X•, and Definition 4.1 for E>1

v ):

γav
p (ΠX•) = gX − rX −#(v(ΓX•)) + #(Etre

X•) +
∑

v∈v(ΓX• )

#(E>1
v ).

Proof. Let n be an arbitrary number prime to p, Kn the kernel of ΠX• ↠ Πab
X• ↠ ΠX• ⊗

Z/nZ, and X•
Kn

the Galois admissible covering of X• corresponding to Kn ⊆ ΠX• . Then
we have

dimFp(K
ab
n ⊗ Fp) = rXKn

+
∑

v∈v(ΓX• )

#(Πab
X• ⊗ Z/nZ)

#(Mv ⊗ Z/nZ)
· dimFp(H

ab
v,n ⊗ Fp),

where Hv,n is the profinite group defined in 4.2.2, Mv is the profinite group defined in
4.2.1, and rXKn

denotes the Betti number of the dual semi-graph of X•
Kn

.

Let e ∈ ecl(ΓX•) be a closed edge and ê ∈ π−1
X (e) ⊆ ecl(Γ̂X•) (2.3.3). We put

Ie,n
def
= Im(Iê ↪→ ΠX• ↠ Πab

X• ⊗ Z/nZ).
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Note that Ie,n depends only on e ∈ ecl(ΓX•). Then we have

rXKn
= #ecl(ΓX•

Kn
)−#v(ΓX•

Kn
) + 1

=
∑

e∈ecl(ΓX• )

#(Πab
X• ⊗ Z/nZ)
#(Ie,n)

−
∑

v∈v(ΓX• )

#(Πab
X• ⊗ Z/nZ)

#(Mv ⊗ Z/nZ)
+ 1.

Moreover, we see immediately

#Ie,n =

{
1, if e ∈ Etre

X• ,
n, otherwise.

On the other hand, [Y3, Proposition 3.4 (ii)] implies that Mv⊗Z/nZ is trivial if and only
if (gv,#(E>1

v )) = (0, 0) (or equivalently, v ∈ V tre,gv=0
X• (Definition 4.2)). Then we obtain

#(Mv ⊗ Z/nZ) = 1, v ∈ V tre,gv=0
X• .

Then we obtain

γav
p,n(ΠX•)

def
=

dimFp(K
ab
n ⊗ Fp)

#(Πab
X• ⊗ Z/nZ)

=
∑

v∈v(ΓX• )

dimFp(H
ab
v,n ⊗ Fp)

#(Mv ⊗ Z/nZ)

+#(Etre
X•) +

∑
e∈ecl(ΓX• )\

∪
v∈v(ΓX• ) E

=1
v

1

n

−
∑

v∈v(ΓX• )\V tre,gv=0
X•

1

#(Mv ⊗ Z/nZ)
−#(V tre,gv=0

X• ) +
1

#(Πab
X• ⊗ Z/nZ)

.

Thus, by applying Proposition 4.5, we obtain

γav
p (ΠX•)

def
= lim

n→∞
γav
p,n(ΠX•) =

∑
v∈v(ΓX• ) s.t. (gv ,#(E>1

v )) ̸=(0,0)

(gv+#(E>1
v )−1)+#(Etre

X•)−#(V tre,gv=0
X• )

=
∑

v∈v(ΓX• )

gv +
∑

v∈v(ΓX• )

#(E>1
v )−#(v(ΓX•)) + #(V tre,gv=0

X• ) + #(Etre
X•)−#(V tre,gv=0

X• ).

= gX − rX −#(v(ΓX•)) + #(Etre
X•) +

∑
v∈v(ΓX• )

#(E>1
v ).

This completes the proof of the theorem. □

Remark 4.6.1. We maintain the settings of Theorem 4.6. Suppose that X• is smooth
over k. It is easy to check that the formula of Theorem 4.6 coincides with the formula of
Proposition 3.5.

Remark 4.6.2. In this remark, we take the opportunity to correct an unfortunate error
in [Y3, Theorem 5.2 and Theorem 6.6]. Since #(Mv ⊗ Z/nZ) = 1, v ∈ V tre,gv=0

X• , the
correct forms of [Y3, Theorem 5.2 and Theorem 6.6] are as follows:
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[Y3, Theorem 5.2]. Let n
def
= pt − 1, and let X• be an arbitrary pointed stable curve over

an algebraically closed field of characteristic p > 0 of type (gX , nX). Then we have

gX − rX −#(V tre
X• ) + #(Etre

X•)−
∑

v∈v(ΓX• ) s.t. #(E>1
v )>1

gv

≤ lim sup
t→∞

dimFp(K
ab
n ⊗ Fp)

#(Πab
X• ⊗ Z/nZ)

≤ gX − rX −#(v(ΓX•)) + #(Etre
X•) +

∑
v∈v(ΓX• )

#(E>1
v ).

In particular, if #(E>1
v ) ≤ 1 for each v ∈ v(ΓX•), then we have

Avrp(ΠX•) = gX − rX −#(V tre
X• ) + #Etre

X• −
∑

v∈v(ΓX• ) s.t. #(E>1
v )>1

gv

= gX − rX −#(v(ΓX•)) + #(Etre
X•) +

∑
v∈v(ΓX• )

#(E>1
v )

= gX − rX −#(V tre
X• ) + #(Etre

X•).

[Y3, Theorem 6.6]. Let n
def
= pt− 1, and let X• be an arbitrary component-generic pointed

stable curve over an algebraically closed field of characteristic p > 0 of type (gX , nX).
Then we have

Avrp(ΠX•)
def
= lim

t→∞

dimFp(K
ab
n ⊗ Fp)

#(Πab
X• ⊗ Z/nZ)

= gX − rX −#(v(ΓX•))+#(Etre
X•)+

∑
v∈v(ΓX• )

#(E>1
v ).

On the other hand, the applications of [Y3, Theorem 5.2 and Theorem 6.6] (e.g. [Y5],
[Y6]) still hold since we only use the formulas when Γcpt

X• is 2-connected.

Remark 4.6.3. Since we assume n
def
= pt − 1 in [Y3, Theorem 6.6], Theorem 4.6 is a

generalization of [Y3, Theorem 6.6].
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Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 335–351,
Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002.

[Su] D. Subrao, The p-rank of Artin-Schreier curves. Manuscripta Math. 16 (1975), 169-193.



24 YU YANG

[T1] A. Tamagawa, On the fundamental groups of curves over algebraically closed fields of char-
acteristic > 0. Internat. Math. Res. Notices (1999), 853–873.

[T2] A. Tamagawa, On the tame fundamental groups of curves over algebraically closed fields
of characteristic > 0. Galois groups and fundamental groups, 47-105, Math. Sci. Res. Inst.
Publ., 41, Cambridge Univ. Press, Cambridge, 2003.

[T3] A. Tamagawa, Finiteness of isomorphism classes of curves in positive characteristic with
prescribed fundamental groups. J. Algebraic Geom. 13 (2004), 675-724.

[Y1] Y. Yang, p-groups, p-rank, and semi-stable reduction of coverings of curves, preprint. See
http://www.kurims.kyoto-u.ac.jp/~yuyang/

[Y2] Y. Yang, On the admissible fundamental groups of curves over algebraically closed fields of
characteristic p > 0, Publ. Res. Inst. Math. Sci. 54 (2018), 649–678.

[Y3] Y. Yang, On the averages of generalized Hasse-Witt invariants of pointed stable curves in
positive characteristic. Math. Z. 295 (2020), 1–45.

[Y4] Y. Yang, Maximum generalized Hasse-Witt invariants and their applications to anabelian
geometry. Selecta Math. (N.S.) 28 (2022), Paper No. 5, 98 pp.

[Y5] Y. Yang, On topological and combinatorial structures of pointed stable curves over alge-
braically closed fields of positive characteristic, to appear in Math. Nachr.

[Y6] Y. Yang, Moduli spaces of fundamental groups of curves in positive characteristic I, preprint.
See http://www.kurims.kyoto-u.ac.jp/~yuyang/

http://www.kurims.kyoto-u.ac.jp/~yuyang/
http://www.kurims.kyoto-u.ac.jp/~yuyang/

	1. Introduction
	1.1. Motivation and Tamagawa's question
	1.2. A generalized version of Tamagawa's question
	1.3. Main result
	1.4. Structure of the present paper
	1.5. Acknowledgments

	2. Preliminaries
	2.1. Semi-graphs
	2.2. Pointed stable curves
	2.3. Admissible fundamental groups
	2.4. p-rank, generalized Hasse-Witt invariants, and their averages

	3. p-averages for smooth component-generic curves
	3.1. Etale fundamental group case
	3.2. Tame fundamental group case

	4. p-averages for arbitrary component-generic curves
	4.1. Notation
	4.2. Upper bounds of the p-averages of irreducible components
	4.3. The p-averages of irreducible components
	4.4. Admissible fundamental group case

	References

