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ABSTRACT. In the present paper, we prove various explicit formulas concerning p-rank
of p-coverings of pointed semi-stable curves over discrete valuation rings. In particular,
we obtain a full generalization of Raynaud’s formula for p-rank of fibers over non-marked
smooth closed points in the case of arbitrary closed points. As an application, for abelian
p-coverings, we give an affirmative answer to an open problem concerning boundedness
of p-rank asked by Saidi more than twenty years ago.
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INTRODUCTION

Let R be a complete discrete valuation ring with algebraically closed residue field k of

characteristic p > 0 and S o Spec R. Write K for the quotient field of R,  : Spec K — S
for the generic point of S, and s : Speck — S for the closed point of S. Let 2" = (X, Dx)
be a pointed semi-stable curve of genus gx over S. Here, X denotes the underlying semi-
stable curve of 2", and Dx denotes the finite (ordered) set of marked points of :Z". Write
Xy = (X, Dx,) and 2, = (X,, Dx,) for the generic fiber and the special fiber of 2",
respectively. Moreover, we suppose that 2, is a smooth pointed stable curve over 7 (i.e.
Dy satisfies [K, Definition 1.1 (iv)]).

0.1. Raynaud’s formula for p-rank of non-finite fibers.

0.1.1.  Let G be a finite group, and let %, = (Y;, Dy, ) be a smooth pointed stable curve
over n and f, : %, — 2, a morphism of pointed stable curves over 7. Suppose that f,
is a Galois covering whose Galois group is isomorphic to G, that f,- 1(DX,,) = Dy,, and
that the branch locus of f, is contained in Dy, . By replacing S by a finite extension of
S (i.e. the spectrum of the normalization of R in a finite extension of K), f, extends to
a G-pointed semi-stable covering

over S (see Definition 1.5 and Proposition 1.6). We write #; = (Y5, Dy,) for the special
fiber of ¢ and f, : %, — Z, for the morphism of pointed semi-stable curves over s
induced by f.

Suppose that the order of GG is prime to p. Then f; is a finite, generically étale morphism
([SGA1], [V]). On the other hand, suppose that p|#G. Then the situation is quite different
from that in the case of prime-to-p coverings. The geometry of % is very complicated and
the morphism f, is not generically étale, and moreover, is not finite in general. This kind
of phenomenon is called “resolution of non-singularities” ([T2]) which has many important
applications in the theory of arithmetic fundamental groups and anabelian geometry (e.g.

[M1], [Le], [PoSt], [St]).

0.1.2. In[R], M. Raynaud investigated the geometry of reduction of étale p-group schemes
over 2, (i.e. G is a p-group), and proved an explicit formula for the p-rank (see 1.2.3 for
the definition of p-rank) of non-finite fibers of f;. More precisely, we have the following
famous result which is the main theorem of [R]:

Theorem 0.1. ([R, Théoreme 1, Théoreme 2|) Let G be a finite p-group, and let f : % —
2 be a G-pointed semi-stable covering over S and x a closed point of Z. Suppose that
z is a non-marked smooth point (i.e. x & X" U Dy_, where X5 denote the singular
locus of X) of Z5. Then we have the following formula for the p-rank of f~1(x):

a(f~!(x)) = 0.
In particular, suppose that 2~ is a smooth pointed stable curve (i.e. X is stable and
Dx =0) over S. As a direct consequence of the above formula, the following statements
hold: (i) The Jacobian of %, has potentially good reduction. (i) The dual semi-graph
(1.2.2) of % is a tree (1.1.3). (iii) The slopes of the crystalline cohomology of connected
components of vertical fibers of f are in (0,1).

Remark 0.1.1. If x is not a non-marked smooth point of 25, o(f~*(z)) is not equal to
0 in general. For instance, if x is a singular point of 275, the dual semi-graph of f~1(z) is
no longer to be a tree even the simplest case where G = Z/pZ.
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On the other hand, if G is not a p-group, the p-rank of irreducible components of %
cannot be calculated explicitly in general (see Remark 1.4.1).

0.2. Main result. We maintain the notation introduced in 0.1. In the present paper, we
give a full generalization of Raynaud’s formula. Namely, we will prove various formulas
for o(f~'(x)) where x is an arbitrary closed point of 2. Note that if f~!(z) is finite,
then o(f~'(x)) = 0 by the definition of p-rank. Moreover, since f is a Galois covering, to
calculate o(f~!(x)) = 0, we only need to calculate the p-rank of a connected component
of f~!(x). Thus, to calculate o(f~1(x)), we may assume that f~!(x) is non-finite and
connected.

0.2.1.  Our main result is the following formulas for o(f~!(z)) in terms of the orders of
inertia subgroups of irreducible components of f~!(x) which depend only on the action
of G on f~!(z) (in the introduction, we do not give the list of definitions of the notation
appeared in the main theorem, see Theorem 3.4 and Theorem 3.9 for more precise forms):

Theorem 0.2. Let G be a finite p-group, and let f : % — 2 be a G-pointed semi-stable
covering over S and x an arbitrary closed point of Z5. Suppose that f~'(x) is non-finite
and connected. Then we have (see 3.2.3 for Ug,, 3.1.5 for #1,, #1., and 1.1.1 for v(l's, ),

e(v), e (Tey))

o(f ) = Y (1#CHLA Y FCHFL)HLAL-1))+ Y (HG/#L-1).

vev(Tey ) ece(v) ecel(Tey )

Moreover, suppose that x is a singular point of Z,. Then we have a more simple form
as follows:

o(f @)= Y #G/H#I— D #G/#T+1,

#IeT(x) #JeJ (x)

where Z(x) and J(x) are the sets of minimal and mazimal orders of inertia subgroups
associated to x and f (see Definition 3.5 (b)), respectively.

0.2.2. If x is a non-marked smooth closed point of 2, Raynaud’s formula (i.e. Theorem
0.1) can be deduced by the “non-moreover” part of Theorem 0.2 (see 3.2.7). If x is a
singular closed point of 2, the p-rank o(f~!(z)) had been studied by M. Saidi under
the assumption where G is a cyclic p-group ([S1], [S2]), and his result can be deduced by
the “moreover” part of Theorem 0.2 (see Corollary 3.11). Moreover, as an application, in
Section 4 of the present paper, by applying the “moreover” part of Theorem 0.2, we give
an affirmative answer to an open problem posed by Saidi (4.0.1) when G is an abelian
p-group (see Theorem 4.3).

On the other hand, our approach to proving the formulas for o(f~!(z)) is completely
different from that of Raynaud and Saidi (Saidi’s method is close to the method of Ray-
naud), and we calculate o(f~!(z)) by introducing a kind of new object which we call
semi-graphs with p-rank (Section 2). Moreover, our method can be used not only for
calculating the p-rank of a fiber f~!(x) of a closed point z, but also for calculating the
p-rank o(%;) of the special fiber % of % (see Theorem 3.2 for a formula for o(%;)).

0.3. Strategy of proof. We briefly explain the method of proving Theorem 0.2.
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0.3.1.  We maintain the notation introduced in 0.2. To calculate the p-rank o(f~!(x)) of
f~(z), we need to calculate (i) the p-rank of the normalizations of irreducible components
of f~1(x), and (ii) the Betti number 7, (1.1.3) of the dual semi-graph ', (1.2.2) of f~!(z).
By using the general theory of semi-stable curves, (i) can be obtained by using the Deuring-
Shafarevich formula (Proposition 1.4).

The major difficulty is (ii). In the cases treated by Raynaud and Saidi, the geometry
of the fiber f~!(x) is well-managed (in fact, ', is a tree when x is a non-marked smooth
point). On the other hand, in the general case (i.e. x is an arbitrary closed point and G is
an arbitrary p-group), the geometry of f~!(z) is very complicated, and its dual semi-graph
is far from being tree-like.

0.3.2. The author of the present paper observed that we can “avoid” to compute directly
the Betti number v, of T, if f~!(x) admits a good “deformation” such that the decom-
position groups of irreducible components of the deformation are G, and that o(f~*(z))
is equal to the p-rank of the deformation. However, in general, such deformations do not
exist in the theory of algebraic geometry (i.e. we cannot find such deformations in moduli
spaces of curves, see Remark 2.4.1).

To overcome this difficulty, we introduce the so-called semi-graphs with p-rank (Section
2), and define p-rank, coverings, and G-coverings for semi-graphs with p-rank. Moreover,
we can deform semi-graphs with p-rank in a natural way, and prove that the deforma-
tions do not change the p-rank of semi-graphs with p-rank (Proposition 2.6). Then we
may obtain an explicit formula for the p-rank of G-coverings of semi-graphs with p-rank
(Theorem 2.7). Furthermore, by using the theory of semi-stable curves, we construct
semi-graphs with p-rank (Section 3) from G-pointed semi-stable coverings (in particular,
we construct a semi-graph with p-rank from f~!(z)). Together with some precise ana-
lyzations of inertia groups (Section 1) of singular points and irreducible components of
G-pointed semi-stable coverings, we obtain Theorem 0.2.

0.4. Structure of the present paper. The present paper is organized as follows. In
Section 1, we introduce some notation concerning semi-graphs, pointed semi-stable curves,
and pointed semi-stable coverings. Moreover, we prove some results concerning inertia
subgroups of singular points and irreducible components of pointed semi-stable coverings.
In Section 2, we introduce semi-graphs with p-rank, and study the p-rank of G-coverings
of semi-graphs with p-rank. In Section 3, we construct various G-coverings of semi-graphs
with p-rank from G-pointed semi-stable coverings. Moreover, by applying the results
obtained in Section 2, we obtain various formulas for p-rank concerning G-pointed semi-
stable coverings. In Section 4, we study bounds of p-rank of vertical fibers of G-pointed
semi-stable coverings by using formulas obtained in Section 3.

0.5. Acknowledgements. Parts of the results of the present paper were obtained in
April 2016. T would like to express my deepest gratitude to Prof. Michel Raynaud for
his interest in this work, positive comments, and encouraging me to write this paper. It
is with deep regret and sadness to hear of his passing. I would like to thank Prof. Qing
Liu for helpful comments concerning Proposition 1.6 and Remark 1.6.1, and to thank the
referees very much for carefully reading the manuscript and for giving me comments which
substantially helped improving the quality of the paper. This research was supported by
JSPS KAKENHI Grant Numbers 16J08847 and 20K14283.
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1. POINTED SEMI-STABLE COVERINGS

In this section, we introduce pointed semi-stable coverings of pointed semi-stable curves
over discrete valuation rings.

1.1. Semi-graphs. We begin with some general remarks concerning semi-graphs (see
also [M2, Section 1]).

1.1.1. A semi-graph G consists of the following data:

(i) A set v(G) whose elements we refer to as vertices.

(ii) A set e(G) whose elements we refer to as edges. Moreover, any element
e € e(G) is a set of cardinality 2 satisfying the following property: for each
e # e € e(G), we have eNe' = ().

(iii) A set of maps {C®}eee(e) such that (¥ : e = v(G) U {v(G)} is a map
from the set e to the set v(G) U {v(G)}, and that #((¢%)*({v(G)})) €
{0,1}, where #(—) denotes the cardinality of (—).

Let e € ¢(G) be an edge of G. We shall refer to an element b € e as a branch of the
edge e. We shall call that e € e(G) is closed (resp. open) if #((¢€)"1({v(G)})) = 0 (resp.
#((CE)1{v(G)})) = 1). Moreover, write e?(G) for the set of closed edges of G and
e°P(G) for the set of open edges of G. Note that we have e(G) = e?(G) U e°?(G).

Let v € v(G) be a vertex of G. Write b(v) for the set of branches UGEe(G)(Cf’)_l(U), e(v)
for the set of edges which abut to v, and v(e) for the set of vertices which are abutted by
e. Note that we have #(v(e)) < 2. We shall call a closed edge e € e(G) loop if #v(e) = 1
(i.e. #(¢%(e)) = 1). Moreover, we use the notation e'®(v) to denote the set of loops which
abut to v.

Example 1.1. Let us give an example of semi-graph to explain the above definitions. We
use the notation “e” and “o with a line segment” to denote a vertex and an open edge,
respectively.
Let G be a semi-graph as follows:
€1

G: es ‘ V2 ey

Then we have v(G) = {vy, 12}, e(G) = {e1, €2, e3,e4}, €(G) = {e1, €2, 3}, eP(G) = {e4},
Eler) = ¢E(e2) = {v1,v2}, Gles) = {u}, and (€ (es) = {v2, {v(G)}}. Moreover, we
have e?(G) = eP(v)) = {es}, v(er) = v(ex) = {v1, v}, v(ez) = {vi}, v(es) = {va},
e(v1) = {e1, ez, e3}, and e(ve) = {e1, ea,€4}.
1.1.2. Let G be a semi-graph. We shall call G’ a sub-semi-graph of G if G’ is a semi-graph
satisfying the following conditions:

(i) v(G’) (resp. e(G')) is a subset of v(G) (resp. e(G)).

(ii) If e € e(G'), then (% (e) o CE(e).

(iii) If e = {by, ba} € €°P(G’) such that ((b;) € v(G') and (C(by) & v(G'),

then ¢ (b1) = ¢F(by) and ¢F' (b2) © {v(G)}.
Moreover, we define a semi-graph G \ G’ as follows:
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(i) v(6\ @) = v(€) \ v(C)
(i) e1(G\ G) ¥ {e € ¢!(G) | v(e) Cv(G\ &) in G}.
(ifi) eP(G\G) ¥ {e € e(G) | v(e)Nv(G') # 0 in G and v(e)Nv(G\G') #
0 in GU{e € e®(G) | v(e) Nv(G\G') # 0 in G}.
(iv) For each e = {b;}icq12) € €(G\ G') Ue®®(G \ G'), we put
(O (3, 9t { ¢ (b)), if (2(b:) & v(G) and (F(bi) # {v(G)},
e ! {v(G\ G}, otherwise.

Example 1.2. We give some examples to explain the above definition. Let G be the
semi-graph of Example 1.1 and G’ be a sub-semi-graph as follows:

€9
G’ eq (]

€3

Moreover, the semi-graph G \ G’ is the following:

€2
G\G" U2 €4

€3

Remark 1.2.1. We explain the motivation of the constructions of G’ and G \ G’. Let
2 = (X, Dx) be a pointed semi-stable curve (1.2.1) over an algebraically closed field
such that the dual semi-graph I'y- (1.2.1) is equal to G defined in Example 1.1. Write X,
and X, for the irreducible components corresponding to v, and vy, respectively. Then
we have the following natural pointed semi-stable curves:

def

(X’U17DX111 déf le mXUz)v (szvDXUQ = (Xv1 vaz) UDX)

whose dual semi-graphs are equal to G’ and G \ G’ defined in Example 1.2, respectively.

1.1.3. A semi-graph G will be called finite if v(G) and e(G) are finite. In the present
paper, we only consider finite semi-graphs. Since a semi-graph can be regarded as a
topological space (i.e. a subspace of R?), we shall call G connected if G is connected as a
topological space. Moreover, we write

v ¥ dime(H'(G, C))

for the Betti number of G, where C denotes the field of complex numbers. In particular,
we shall call G a tree (or G tree-like) if v = 0.

Let G and H be two semi-graphs. A morphism between semi-graphs G — H is a
collection of maps v(G) — v(H), e(G) — ¢ (H), and e°?(G) — ¢°P(H) satisfying the
following: for each eg € e(G), write ex € e(H) for the image of eg; then the map eg — ey
is a bijection, and is compatible with the {(F}eec(c) and {(F}eceq).
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1.2. Pointed semi-stable curves.

12.1. Let ¥ & (C,D¢) be a pointed semi-stable curve over a scheme A, namely, a

marked curve over A such that every geometric fiber Cz, a € A, is a semi-stable curve,
and that De. C C2™, where C5™ denotes the smooth locus of Cz. We shall call C' the
underlying curve of ¢ and the finite (ordered) set D¢ the set of marked points of €. In
particular, we shall call that % is a pointed stable curve if D¢ satisfies [K, Definition 1.1

(iv)].

1.2.2. Suppose that A is the spectrum of an algebraically closed field. We write Irr(C')
for the set of the irreducible components of C' and C*"¢ for the set of singular points (or
nodes) of C. We define the dual semi-graph Iy of the pointed semi-stable curve & to be
the following semi-graph:

(i) v(Ty) = {ve}Een(c)-
def

(ii) ¢ (T) = {ex}acome and eP(T) < {embmene.
(iii) For each es = {b}, 0%} € e?(I'y), s € C*"8, we put

CRENEC

e (ey) dof {vg e v(ly) | s € E}.

€s

(iv) For each e,, = {b},,02,} € e°?(T'y), m € D¢, we put

m)m

Chr ) = vp, (2 (0) < {u(T)},
where E is the irreducible component of C satisfying m € E.

Moreover, we put
ve & r, = dime(H' Ty, C)) (1.1.3).

Let v € v(T'y) (resp. e € e (Ty), e € eP(I'y)). We write C, (resp. ¢, c.) for the irre-
ducible component of C' corresponding to v (resp. the singular point of C' corresponding
to e, the marked point of € corresponding to e) and C, for the normalization of C,.

Example 1.3. We give an example to explain dual semi-graphs of pointed semi-stable

curves. Let € & (C, D¢) be a pointed semi-stable curve over k whose irreducible com-

ponents are C,, and C,,, whose node is c.,, and whose marked point is ¢, € C,,. We use
(1P

the notation “e” and “o” to denote a node and a marked point, respectively. Then % is
as follows:

We write v; and vy for the vertices of I'y corresponding to C,, and C,,, respectively, e;
for the closed edge corresponding to c.,, and es for the open edge corresponding to c,.

Moreover, we use the notation “e” and “o with a line segment” to denote a vertex and
an open edge, respectively. Then the dual semi-graph I'¢ of € is as follows:



8 YU YANG

1.2.3. Let C be a disjoint union of projective curves over an algebraically closed field of
characteristic p > 0. We define the p-rank (or Hasse- Witt invariant) o(C) of C' to be

o(C) < dimg, (HL(C, F,)).

Moreover, let ¢ = o (C, D¢) be a pointed semi-stable curve over an algebraically closed

field of characteristic p > 0. Write I'y for the dual semi-graph of 4. Then we put

U(Cg)d: C) =y + Z

’UE’U Fc)

1.2.4. Let G be a finite p-group. The p-rank of a Galois covering whose Galois group is
isomorphic to G can be calculated by the Deuring-Shafarevich formula (or Crew’s formula)
as follows:

Proposition 1.4. ([C, Corollary 1.8]) Let h : C' — C be a (possibly ramified) Galois
covering of smooth projective curves over an algebraically closed field of characteristic
p > 0 whose Galois group is a finite p-group G. Then we have

o(C") — 1 = #G(o( —1+Z eo — 1),

where (C')" denotes the set of closed points of C' and es denotes the ramification index
at .

Remark 1.4.1. We maintain the notation introduced in Proposition 1.4. Suppose that
G is not a p-group. Then o(C’) cannot be calculated explicitly in general. In fact, the
p-rank (or more precisely, generalized Hasse-Witt invariants) of prime-to-p étale coverings
can almost determine the isomorphism class of C' (e.g. [T1], [Y1]).

1.3. Pointed semi-stable coverings.

1.3.1. Settings. We fix some notation of the present subsection. Let R be a complete
discrete valuation ring with algebraically closed residue field k of characteristic p > 0

and K the quotient field. We put S & Spec R. Write n and s for the generic point and
the closed point corresponding to the natural morphisms Spec K — S and Speck — S,
respectively. Let 2 = (X, Dx) be a pointed semi-stable curve over S. Write %, o
(Xy, Dx,) for the generic fiber of 2", Z; def (X5, Dx,) for the special fiber of 2", and
[’y for the dual semi-graph of Z5. Moreover we suppose that 2, is a smooth pointed
stable curve over n (note that £ is not a pointed stable curve in general).
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def : . .
1.3.2. Letl:# = (W,Dy) — % be a morphism of pointed semi-stable curves over S
and G a finite group. We define pointed semi-stable coverings as follows:

Definition 1.5. The morphism [ is called a pointed semi-stable covering (resp. G-pointed
semi-stable covering) over S if the morphism

def
l77 : WT] = (WWDWn) — c%, = (X7}7DX7;>
over 7 induced by [ on generic fibers is a finite generically étale morphism (resp. a Galois
covering whose Galois group is isomorphic to G) such that the following conditions hold:

(i) The branch locus of /,, is contained in Dy, .

(11) l;l(DXn) = DWn'

(iii) The following universal property holds: if g : #' — 2 is a morphism
of pointed semi-stable curves over S such that the generic fiber %, of #"
and the morphism g, : #," — Z;, induced by g on generic fibers are equal to
W, and l,, respectively, then there exists a unique morphism h : #' — #
such that g =1l o h.

We shall call [ a pointed stable covering (resp. G-pointed stable covering) over S if [ is
a pointed semi-stable covering (resp. G-pointed semi-stable covering) over S, and 2
is a pointed stable curve over S. We shall call [ a semi-stable covering (resp. stable
covering, G-semi-stable covering, G-stable covering) over S if [ is a pointed semi-stable
covering (resp. pointed stable covering, G-pointed semi-stable covering, G-pointed stable
covering) over S, and Dy is empty.

1.3.3.  We have the following proposition.

Proposition 1.6. Let f, : %, def (Y, Dy,) — Z, be a finite morphism of pointed

smooth curves over 1. Suppose that the branch locus of f, is contained in Dx, and
that fn_l(DXn) = Dy,. Then, by replacing S by a finite extension of S, f, extends to a
pointed semi-stable covering f : % = (Y, Dy) — 2 over S such that the restriction of f
to the generic fibers is f,.

Proof. The proposition follows from [Liu, Theorem 0.2 and Remark 4.13]. U

Remark 1.6.1. We maintain the notation introduced in Proposition 1.6. In fact, we have
that f, extends uniquely to a pointed semi-stable covering f. Let us explain roughly in
this remark.

By adding some marked points, we may obtain a pointed stable curve .2 244 o (X2 D yaaa)
whose underlying curve X244 is X, and whose set of marked points contains Dx. Write
D xgaa for Dyaaal,, and Dygaa for f- l(Dngd). Then Dygaa contains Dy,. Moreover, we
have a finite morphism of pointed smooth curves

add . add add
Lo = 2,

over 1 induced by f,,.
By applying Proposition 1.6 and by replacing S by a finite extension of .S, f;dd extends
to a pointed semi-stable covering

fadd , gyradd def (Y29 Dyaaa) — 2774

over S. Since 224 is a pointed stable curve over S, we see that 2244 is a pointed stable
model of %add. Then the uniqueness of 244 follows from the uniqueness of the pointed

stable model #2dd
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We put D & p2dd\ Dy and Dy ' D). Let Con(Y24d) be the subset of the
set of irreducible components of Y24 consisting of all irreducible components E of Y244
satisfying the following conditions: (i) E is isomorphic to Py; (ii) E N D§ # 0 and
E N Dy = 0; (iii) f~4(E) is a closed point of 2244, Note that Con(Y*) may be an
empty set. Then by forgetting the marked points D§’ and by contracting the irreducible
components of Con(Y4) ([BLR, 6.7 Proposition 4]), we obtain a pointed semi-stable
curve % and a morphism of pointed semi-stable curves f : % — 2 over S induced by
344 We see that f is a pointed semi-stable covering over S, and that f does not depend
on the choices of D yaaa. Moreover, the uniqueness follows from the uniqueness of fa4d.

1.3.4. 1If a G-pointed semi-stable covering over S is finite, then it induces a morphism of
dual semi-graphs of special fibers. More precisely, we have the following result:

Proposition 1.7. Let G be a finite group, f : % = (Y,Dy) — Z a finite G-pointed
semi-stable covering over S, and Iy, the dual semi-graph of %;. Then the images of nodes
(resp. smooth points) of the special fiber % of % are nodes (resp. smooth points) of Zs.
In particular, the map of dual semi-graphs Iy, — 14, induced by the morphism of the
special fibers fs: % — 25 over s induced by f is a morphism of semi-graphs (1.1.3).

Proof. Let y be a closed point of . Write I, C G for the inertia subgroup of y. Thus,
the natural morphism %/, — %2 induced by f is étale at the image of y of the quotient
morphism % — #/1,. Then to verify the proposition, we may assume that G = I,,.

If y is a smooth point, then z is a smooth point ([R, Proposition 5]). If y is a node, let
Y1 and Y3 be the irreducible components (which may be equal) of the underlying curve of
the special fiber % of % containing y. Write D; C G and Dy C G for the decomposition
subgroups of Y7 and Y3, respectively. The proof of [R, Proposition 5] implies the following:
(i) If Dy and D are not equal to I, = G, then x is a smooth point. (ii) If D; = Dy = G,
then z is a node.

Next, we prove that the case (i) will not occur. If D; and D, are not equal to G,

then, for each 7 € G\ D; (or 7 € G\ D3), we have 7(Y7) = Y3 and 7(Y3) = Y;. Thus,

we obtain D % Dy = D,. Moreover, D is a normal subgroup of G. By replacing

I, by 1,/D and % by % /D, and by applying the case (ii), we may assume that D is
trivial. Then f; is étale at the generic points of Y} and Y5. Consider the local morphism
fy : Spec Oy, — Spec O 4 5(,) induced by f. Since f, is étale at all the points of Spec Oy ,,
corresponding to the prime ideals of Oy , of height 1, the Zariski-Nagata purity theorem
implies that f, is étale. This means that if f(y) is a smooth point, y is a smooth point
too. This contradicts our assumption. We complete the proof of the proposition. 0]

1.3.5.  On the other hand, pointed semi-stable coverings are not finite morphisms in
general.

Definition 1.8. Let f : % — 2 be a pointed semi-stable covering over S. A closed
point x € 2 is called a wvertical point associated to f, or for simplicity, a vertical point
when there is no fear of confusion, if f~(z) is not a finite set. The inverse image f~!(z)
is called the vertical fiber associated to f and x.

Remark 1.8.1. We maintain the notation introduced above. Then the specialization
homomorphism of admissible fundamental groups of generic fiber and special fiber of 2
is not an isomorphism in general. When char(K’) = 0, this result follows from (%) < gx,
where gx denotes the genus of 2. On the other hand, when char(K) = p > 0, this result
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is highly nontrivial ([T1, Theorem 0.3] and [Y3, Theorem 5.2 and Remark 5.2.1]). Then
we may ask the following problem:

By replacing S by a finite extension of S, does there exist a pointed semi-
stable covering f : % — 2 over S such that the set of vertical points
associated to f is not empty?

Suppose char(K) = 0. The problem was solved by A. Tamagawa ([T2, Theorem 0.2]). In
fact, Tamagawa proved a very strong result as following:

Suppose that char(K) = 0, that k is an algebraic closure of a finite field,
and that 2" is a pointed stable curve over S. Let x € 2" be a closed point
of 2. Then there exists a pointed stable covering f : # — 2 over S
such that x is a vertical point associated to f.

Moreover, the author generalized this result to the case where k is an arbitrary alge-
braically closed field ([Y2, Theorem 3.2]). On the other hand, suppose that char(K) =
p > 0. The problem was solved by the author when 2 is irreducible ([Y2, Theorem 0.2]).

1.3.6. For the p-rank of vertical fibers of pointed semi-stable coverings, we have the
following famous result proved by Raynaud, which is the main theorem of [R].

Theorem 1.9. ([R, Théoreme 2|) Let G be a finite p-group, f : % — 2 a G-pointed
semi-stable covering over S, and x a vertical point associated to f. If z is a non-marked
smooth point of Z; (i.e. * € X*™8 U Dy, ), then we have o(f~'(x)) =0,

1.3.7. In the remainder of the present paper, we will generalize Theorem 1.9 to the
case where x is an arbitrary (possibly singular) closed point of 2". Namely, we will give
an explicit formula for p-rank of vertical fibers associated to arbitrary vertical points of
G-pointed semi-stable coverings, where G is a finite p-group.

1.4. Inertia subgroups and a criterion for vertical fibers. In this subsection, we
study the relationship between the inertia subgroups of nodes and the inertia subgroups
of irreducible components of special fibers of G-pointed semi-stable coverings. The main
result of the present subsection is Proposition 1.12.

1.4.1. Settings. We maintain the settings introduced in 1.3.1.
1.4.2. Firstly, we have the following lemmas.

Lemma 1.10. Let G be a finite group, f : % = (Y,Dy) — Z a finite G-pointed semi-
stable covering over S, %, = (Y, Dy,) the special fiber of %, and y € % a node. Let
Y1 and Ys (which may be equal) be the irreducible components of % containing y. Write
I, € G (resp. Iy, C G, Iy, C G) for the inertia subgroup of y (resp. Y1, Y2). Suppose
that G is a p-group. Then the inertia subgroup I, is generated by Iy, and Iy,.

Proof. Write I for the group generated by Iy, and Iy,. Then we have I C [,. Consider
the quotient % /I. We obtain morphisms of pointed semi-stable curves u; : % — % /I
and py : % /1 — Z over S such that psopy = f. Note that #7/1 is a pointed semi-stable
curve over S ([R, Appendice, Corollaire]), and that pu;(y) is a node of the special fiber
(% /1)s of /1 (Proposition 1.7). Moreover, p is generically étale at the generic points
of p11(Y1) and py(Ys). Then by applying the well-known result concerning the structures
of étale fundamental groups of nodes of pointed stable curves (e.g. [T2, Lemma 2.1 (iii)])
to the local morphism Spec O /1., (y) — Spec Oz s, induced by ps, we obtain that o
is tamely ramified at p;(y). Moreover, since G is a p-group, ps is étale at p;(y). This
means I, C /. Namely, we have I, = I. We complete the proof of the lemma. O
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Lemma 1.11. ([T2, Propoisiton 4.3 (ii)]) Let G be a finite group, [ : % — Z a G-pointed
semi-stable covering over S, and x a node of Z,. Suppose that, for each irreducible

component Z aof @ of Spec @%SI and each point w of the fiber % X 4 z, the natural
morphism from the integral closure W?* of Z in k(w)® to Z is wildly ramified, where k(w)*
denotes the mazximal separable subextension of k(z) in k(w). Then x is a vertical point
associated to f (i.e. f~'(x) is not finite).

Remark 1.11.1. In [T2], Tamagawa only treated the case where f is a stable covering.
It is easy to see that Tamagawa’s proof also holds for pointed semi-stable coverings.

1.4.3. Next, we prove a criterion for existence of vertical fibers over nodes as follows:

Proposition 1.12. Let G be a finite group, f : % = (Y,Dy) — Z a G-pointed semi-
stable covering over S, %, = (Y, Dy,) the generic fiber of % over n, % = (Ys, Dy,) the
special fiber of % over s, and x a node of Zs. Write g : %" — X for the normalization
morphism of 2 in the function field K(Y') induced by the natural injection K(X) —
K(Y) induced by f. We obtain a natural morphism of fiber surfaces vy : % — &'
induced by f such that vy oYy = f. Write X1 and Xy (which may be equal) for the
irreducible components of % containing x. Let y' € ¢;1($)red, and let Y7 and Yy be the
irreducible components of % such that y' € (Y1) Ny (Ys). Write Iy, C G and Iy, C G
for the inertia subgroups of Y1 and Y, respectively. Suppose that neither Iy, C Iy, nor
Iy, D Iy, holds. Then x is a vertical point associated to f (i.e. f~1(x) is not finite).

Proof. To verify the proposition, we may assume that z is not a vertical point associated
to f. Then f~!(x) is a finite set. Let a € 15" (x) and b € ;" (a). Thus, 11 induces
an isomorphism Spec Oy, — Spec Oy .. Write y for 1,1 (y)rea. By replacing 2 by the
quotient ¢ /D,, and G by D, C G, respectively, where D, C G denotes the decomposition
group of y, we may assume f1(2)q = {y} C Y1 NYs.

Consider the quotient curve % /Iy, (resp. % /Iy,) over S. Note that # /Iy, (resp.
% |1Iy,) is a pointed semi-stable curve over S. We obtain the following morphisms of
pointed semi-stable curves

MY — XLy, (vesp. Ao : ¥ — ¥ /1y,),

p1: Y Iy, — 2 (vesp. po : % /Iy, = Z7)
over S such that pu; o Ay = f (resp. pg o Ay = f). Note that py (resp. o) is étale at the
generic point of A\j(Y7) (resp. A2(Y3)) of degree #G/#1y, (resp. #G/#Iy,).
If py (resp. o) is also generically étale at the generic point of Aj(Ys) (resp. A2(Y7)),
then, by applying [T2, Lemma 2.1 (iii)] to

Spec O 1y, (y) = Spec Oz (resp. Spec Ow /1y, Ma(y) — Spec Oz ),

we obtain that Spec @Al(yl))\l(y) — Spec @Xl,x (resp. Spec 6,\2(y2)7>\2(y) — Spec @XN)
induced by gy (resp. p2) is tamely ramified with ramification index ¢; (resp. t2). Thus,
we have (t1,p) = 1 (resp. (t2,p) = 1). On the other hand, since Iy, (resp. Iy,) does
not contain Iy, (resp. Ily,), and Iy, (resp. Iy,) is a p-group, we have p|t; (resp. plts2).
This is a contradiction. Thus, p; (resp. p9) is not generically étale at the generic point
of A\1(Ys) (resp. Ao(Y7)). Thus, the morphism Spec (/9\>\1(y1)7)\1(y) — Spec 6X1,x (resp.
Spec (/9\,\2(3/2),,\2@) — Spec @\Xg,z) induced by p; (resp. pg) is wildly ramified. Lemma 1.11
implies that = is a vertical point associated to f. This contradicts our assumptions. We
complete the proof of the proposition. 0
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The following corollary follows immediately from Lemma 1.10 and Proposition 1.12.

Corollary 1.13. Let G be a finite group, f : % = (Y, Dy) — 2 a G-pointed semi-stable
covering over S, %, = (Ys, Dy,) the special fiber of %, and y € % a node. Let Y7 and
Y, (which may be equal) be the irreducible components of %; containing y. Write I, C G
(resp. Iy, C G, Iy, C G) for the inertia subgroup of y (resp. Y1, Ya). Suppose that [ is a
finite morphism. Then either Iy, C Iy, or Iy, D Iy, holds. Moreover, if G is a p-group,
then the inertia subgroup I, is equal to either Iy, or Iy,.

2. SEMI-GRAPHS WITH p-RANK

In this section, we develop the theory of semi-graphs with p-rank. The main result of
the present section is Theorem 2.7.

2.1. Semi-graphs with p-rank and their coverings.
2.1.1.  We define semi-graphs with p-rank as follows:

Definition 2.1. Let G be a semi-graph (1.1.1) and og : v(G) — Z a map. We shall call

the pair & o (G,0s) a semi-graph with p-rank. Moreover, we call that the semi-graph
G is the underlying semi-graph of &, and that the map og is the p-rank map of &. We
define the p-rank o(®) of & to be

o(®)E Y os(v) + 7.

vev(G)

A morphism of semi-graphs with p-rank b : &' — &2 is defined by a morphism of the
underlying semi-graphs 3 : G! — G2. We shall refer to the morphism /3 as the underlying
morphism of b.

A semi-graph with p-rank is called connected if the underlying semi-graph G is a con-
nected semi-graph.

Remark 2.1.1. We explain the geometric motivation of the above definitions. Let 2 o

(X, Dx) be a pointed semi-stable curve over an algebraically closed field of characteristic
p > 0. Write I' - for the dual semi-graph (1.2.2) of 2" and we define or . (v), v € v(I'y), to
be the p-rank (1.2.3) of the normalization of the irreducible component X, corresponding
to v. Then (I'y, or, ) is a semi-graph with p-rank. On the other hand, a semi-graph with

def . . . . o ..
prank & = (G, o) is not arose from a pointed semi-stable curve in positive characteristic
in general since oy can attain negative integers.

2.1.2. Settings. Let GG be a finite p-group of order p".

2.1.3. Letb: el ¥ (G, 041) — &2 &f (G?,042) be a morphism of semi-graphs with
p-rank and 3 : G! — G? the underlying morphism of b.

Definition 2.2. (a) We shall call that b is p-étale (resp. purely inseparable) at an edge
e € e(Gh) if #8771 (B(e)) = p (resp. #8771 (B(e)) = 1). We shall call that b is p-generically
étale at v € v(G') if one of the following conditions holds (see 1.1.1 for e(v)):

(Type-D): #6-1(8(v)) = p and oe1(v) = oe2(B(v).

(Type-II): #57'(B(v)) = 1 and

oe1 (V) = 1 = ploe2(B0)) = 1)+ 3 (ot — 1)
Z() #51(B(e)
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(b) We shall call that b is purely inseparable at v € v(G') if #571(8(v)) = 1, b is purely
inseparable at each element of e(v), and og1(v) = oe2(8(v)).
(c) We shall call that b is a p-covering if the following conditions hold (see 1.1.1 for
v(e)):
(i) There exists a Z/pZ-action (which may be trivial) on G! and a trivial
Z /pZ-action on G* such that the underlying morphism 3 of b is compatible
with the Z/pZ-actions.
(i) The natural morphism G'/(Z/pZ) — G? induced by 3 is an isomor-
phism, where G'/(Z/pZ) denotes the quotient semi-graph.
(iii) For each v € v(G?), b is either p-generically étale or purely inseparable
at v.
(iv) Let e € e(G') and v(e) = {v,v'} (note that v = v’ if and only if e is
a loop (1.1.1)). Suppose that b is p-generically étale at v and v’. Then b
is p-étale at e.
(v) for each v € v(G'), then og1(v) = og1(7(v)) for each T € Z/pZ.
Note that the definition of p-coverings implies that the identity morphism of a semi-graph
with p-rank is a p-covering.
(d) We shall call that b is a covering if b is a composite of p-coverings.
(e) We maintain the notation introduced in 2.1.2. We shall call

(I)Z{l}:GTCGrflC"'CG1CG0:G

a mazimal normal filtration of G if G; is a normal subgroup of G and G,;/Gj41 = Z/pZ
for j € {0,...,r —1}. Note that since G is a p-group, a maximal normal filtration of G
exists.

Suppose that G' admits a G-action (which may be trivial), that G* admits a trivial
G-action, and that the underlying morphism S of b is compatible with the G-actions. A
maximal normal filtration ® of GG induces a sequence of semi-graphs:

Gl=¢, 5¢g, " Ag,,

where G;, j € {0,...,7}, denotes the quotient semi-graph G'/G;. We shall call that b
is a G-covering if there exist a maximal normal filtration ® of G and a set of p-coverings
{b; : ®; = &,_1, j=1,...,r} such that the following conditions are satisfied:

(i) The underlying semi-graph of &, is equal to G, for j € {0,...,r} such

that Gy = G2.

(ii) The underlying morphism of b; is equal to 3; for j € {1,...,7}.

(iii) The composite morphism by o - -- o b, is equal to b.

(f) Let b : ! — &2 be a G-covering. By the above definition of G-coverings, we obtain

a maximal normal filtration ® of G and a sequence of p-coverings:

Dy G =6, B 6, 5B, =62
We shall call ®g1/62 a sequence of p-coverings induced by .

Remark 2.2.1. We explain the geometric motivation of the above definitions. Let R be

a discrete valuation ring with algebraically closed residue field of characteristic p > 0, and

let f: < (Y,Dy) - & o (X, Dx) be a finite G-pointed semi-stable covering over

R (Definition 1.5). Write (I's,, o1, ) and (I'z,,or,. ) for the semi-graphs with p-rank
associated to the special fibers % and X; of % and 2" (see Remark 2.1.1), respectively.
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Then the morphism of special fibers induced by f induces a G-covering (I'g,, or,, ) —
(2,01, ) (see Section 3.1).

On the other hand, the definitions of p-étale, purely inseparable, p-generically étale,
purely inseparable, and p-coverings of semi-graphs with p-rank are motivated by p-étale,
purely inseparable, p-generically étale, purely inseparable, and p-coverings of special fibers
of finite Z/pZ-pointed semi-stable coverings over R. In particular, Definition 2.2 (a-Type-
IT) is motivated by the Deuring-Shafarevich formula (see Proposition 1.4), and Definition
2.2 (c-iv) is motivated by the Zariski-Nagata purity theorem of finite Z/pZ-pointed semi-
stable coverings over R.

2.14. Let b: &' — &2 be a G-covering, 3 : G! — G? the underlying morphism of b,
v! € v(G'), and €' € e(G'). By the definition of G-coverings, we have a maximal normal
filtration ® of G and a sequence of p-coverings induced by &:

Dy 16 =6, 56, 5B e, =62

Write 8 : G; — G,_1, j € {1,...,r}, for the underlying morphism of b;. Write v; (resp.
e;) for the image (41 0...0B,(v') (vesp. Bj410...006.(e")), j € {0,...,r — 1}, and v, for
vt. We put
#] | = p#{je{l,...,r} | b is purely inseparable at v;}
vt )
#I | = p#{jE{l,...,r} | b; is purely inseparable at e;}
et .

Note that #1,, and #I.1 do not depend on the choice of ®. Moreover, we put D, def

{reG|r(v')=02'}, and
#D
the cardinality of D,.

2.1.5. We maintain the notation introduced in 2.1.4. If e! € e(v!), then we have
#1,|#1,1. In particular, if e! is a loop, then Definition 2.2 (c-iv) implies that #/1,1 = #1.1.
Moreover, Definition 2.2 (c-iv) also implies that #/.1|#D,:. Write v? (resp. €?) for S(v?!)
(resp. B(el)). Let (v!) (resp. (e')') be an arbitrary element of 371(v?) (resp. 571(e?)). By
the action of G on G, we have # /1,1 = # oy, #ler = #l 1y, and # Dy = # D1y, Thus,
we may use the notation #I, (resp. #l.2, #D,2) to denote #1,1 (resp. #Il., #D,1).
Namely, #1,1 (resp. #1.1, #D,1) does not depend on the choice of v* € f71(S(v!)). Then
we have #Iv2‘#162|#Dv2.

2.1.6.  We maintain the notation introduced in 2.1.4 and 2.1.5. One may compute the p-
rank g1 (v!) by using Definition 2.2 (a). Then we have the following Deuring-Shafarevich
type formula for the p-rank of G-coverings (see Proposition 1.4 for the Deuring-Shafarevich
formula for curves)

o1 (V') = 1= (#Dp2 /#1,2) (062 (") = 1)+ Y (#Dp2/#Ie2)(#Ie2 [#1,2 — 1)

e2ee(v?)

= (#Dw2 /#12)(0e2(V") = 1)+ Y (#Dy/#Le)(#e2 [#1,2 — 1).
e2ee(v?)\elP (v2)
Here, the second equality follows from Definition 2.2 (c-iv) .
2.2. An operator concerning coverings. In this subsection, we introduce an operator

(or a deformation) concerning coverings of semi-graphs with p-rank which is a key in our
computations of p-rank.
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2.2.1. Settings. We fix some notation. Let G be a finite p-group of order p”, and let
b:o! X (G, 041) — &2 oo (G?, 0g2) be a covering of semi-graphs with p-rank (Definition
2.2 (d)) and B : G* — G? the underlying morphism of b (Definition 2.1). We put

VI {v e (@) | #871(B(") = 1} Cv(GY),

Ve B C u(@),
Moreover, we suppose that G!, G? are connected, that G! (resp. G?) admits an action
(resp. a trivial action) of G such that § is a G-equivariant, and that G'/G = G?.

2.2.2. Let v* € v(G?) and v' € f7'(v?). Firstly, we define a new semi-graph G.,
associated to v? as follows (see Example 2.3 below): (a) Suppose v? € V2. We put

G, ' GL. (b) Suppose v & V2. We have the following:
() 0(Gla) = G\ 57 (0") U{el}, e(Gle) = e(GY), and e®(Gy) =
e°P(G'), where v? is a new vertex and L means disjoint union.

1
(ii) The collection of maps {CS 1. is as follows:

(1) For each e € e°?(G],) o e°?(G') and b € e (i.e. a branch of
e, see 1.1.1), we put

{v(G2)}, if Cf’i(b) ={v
(b) =4 7, if ¢ (b) € B~

¢S (b), otherwise.

(G},
(%),

Gl
v2

Ce

(2) For each e € e?(GL,) o

Gl _ [ 02, if &' (b) € B (v?),
G (b) _{ ¢E'(b), otherwise.

Next, we define a morphism of semi-graphs [, : (G’yllj2 — G? as follows (see Example 2.3
below):

(i) For each v € v(G.,), we put

e (G') and b € e, we put

V2, if v =12

Buz(v) = { B(v), otherwise.

def

= B(e).

Example 2.3. We give an example to explain the above constructions. We use the

notation “e” and “o with a line segment” to denote a vertex and an open edge, respectively.
Let p = 2, and let G', G? be the semi-graphs below. Moreover, let 3 : G! — G2

be a morphism of semi-graphs such that B(v}) = v2, B(vl) = vZ, B(vi) = B(vd) = v,

B(er) = Bled) = €2, B(ed) = B(e]) = e3, and S(es) = e5. Note that G' admits an action

of Z/27Z such that G'/(Z/pZ) = G*. Then we have the following:

(ii) For each e € e(Gl,) = e?(GL.) U eP(G];), we put B,2(e)
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By the definitions of ((}71}2 and [3,2, we have the following:

1 9 1
e e
10; €3
1 11 B 2 2 2 2
Gl: Y Uy €5 " G2 Uy U7 Uy €3
by - : .—.—.—062 >
: 1 1 2
€2 €4

2.2.3.  We maintain the notation introduced in 2.2.2. Next, we define a p-rank map

os1, 1 v(G),) — Z for G|, as follows: (a) Suppose v*> € V. We put og1_ L ger. (b)

Suppose v? ¢ V2. Let v € v(G}2). We have the following:

(i) If v # v, we put og1, (v) o o1 (V).

(i) If v = v, we put (see 1.1.1 for e(v?) and 2.1.6 for #1712, #1.)
def

0ot (02) & (HG/#1,2) (002 (v2) = 1)+ > (HG/#L)#L/#12 — 1)+ 1.

ece(v?)

2.2.4. We maintain the notation introduced in 2.2.2 and 2.2.3. Let v?* € v(G?*). We
define a semi-graph with p-rank and a morphism of semi-graphs with p-rank associated
to b: &' — &2 and v?, respectively, to be

def
611)2 = (G1270612), beQ . 611}2 — 62,

v

where the underlying morphism of b2 is (.

2.2.5.  We maintain the settings introduced in 2.2.1. Let &°\ {V}, i € {1,2}, be the
(possibly non-connected) semi-graph with p-rank whose underlying semi-graph is G*\ {V}
(in the sense of Definition 1.1.2 (b)), and whose p-rank map is i |, i\ {vi}). We shall call
b: &' — &% a quasi-G-covering if the covering &' \ {V1} — &2\ {V?} induced by b is a
G-covering.

Definition 2.4. Let b : &' — &2 be a quasi-G-covering of connected semi-graphs with
p-rank and v? € v(G?). We define an operator =%, [v?] on b : &' — &2 to be

=0 (b: 6" - &%) Lo, : 6L, - &2

Here =%, means that “from (Type-I) to (Type-II)” in the sense of Definition 2.2 (a).

Remark 2.4.1. Suppose that b : &' — &% is a G-covering of semi-graphs with p-rank.

Then o1 (v7) is not contained in Zxg in general. Thus, by2 : &}, — & cannot be arose

from a G-pointed semi-stable covering in general (see also Remark 2.2.1). On the other
hand, in the next subsection, we will see (Proposition 2.6 below) that the operator defined
above does not change global p-rank (i.e. o(&L,) = o(6%)).

2.2.6. Let b: &' — &2 be a quasi-G-covering and v?* € v(G?). Then the semi-graph
with p-rank G!, admits a natural G-action as follows:

(i) The action of G on v(Gl; \ {v}) = v(G') \ B~ (v?) (vesp. e(Gl.) =

e(G')) is the action of G on v(G!)\ f71(v?) (resp. e(G')) induced by the

action of G on G*.

(ii) The action of G on v? is a trivial action.
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We see immediately that b,z : &), — & is a quasi-G-covering.
Let b : 8! — &2 be a G-covering. Suppose that G is an abelian p-group. Then together
with the G-action defined above, it is easy to check that b,z : (’511]2 — 62 is a G-covering.

On the other hand, if G is not abelian, then b2 : &!, — &2 is not a G-covering in

general for the followmg reason. Let w < v? = B! (v?). With the action of G on &,

defined above, if I,1, v! € 371(v?), is not a normal subgroup of G, then the order #1I,, of

the inertia subgroup I, of w is not equal to #I[,2 = o #1, (2.1.5) in general. If b2 is a

G-covering, we have (2.1.6)
Oor, (W) = (HG/#1) (002 (vF) = 1)+ Y (#C/#L)# e/l — 1) +1
e€e(v?)
which is not equal to (2.2.3 (b—ii))
#HGH#12(062 (V%) = 1)+ > #G/H#L(H#/#,2 — 1) + 1
ece(v?)
in general if #1,, # #1I,2. This contradicts the definition of &';. Thus, b2 : &, — &? is

not a G-covering in general.

2.3. Formula for p-rank of coverings. In this subsection, we give an explicit formula
(i.e. Theorem 2.7) for the p-rank of G-coverings of semi-graphs with p-rank.

2.3.1. Settings. We maintain the settings introduced in 2.2.1. Moreover, we assume that
b: 6! (G 04) = 82 Y (G2, 062) is a quasi-G-covering (2.2.5).

2.3.2. Firstly, we have the following lemma.

Lemma 2.5. Let i € {1,...,n}, and let G be a connected semi-graph, G; a connected
sub-semi-graph of G (1.1.2), and v; € v(G;) a vertex of G;. Suppose GsNG, = 0 for each
s,t €{1,...,n} if s £t. Let G° be a semi-graph defined as follows:

(i) v(G°) = v(G) U {v°}, eP(G°) = e(G), e(G°) = e(G) U {ef bier,..ny-

(ii) Let e € e(G®) \ {€§}icq,.ny = €(G) and b € e a branch of e (1.1.1).

We put

s [ M), i CED) £ {u(G)),
G (“—{ {0(G%)}, if CE(B) = {u(G)).
(5 () =

(iii) Let e = {bs, b2 }. We put (& (ble) = v, (& (b2
Then we have (see 1.1.3 for vg, Yge)

676

76 = Yee —n+ 1.
Proof. The lemma follows from the construction of G°. U

2.3.3.  We have the following key proposition which says that the operator introduced in
Definition 2.4 does not change the p-rank of semi-graphs with p-rank.

Proposition 2.6. We maintain the settings introduced in 2.5.1. Let v* € v(G?) be an
arbitrary vertex of G* and =1, [v?](b : &' — &2) = b2 : &L, — &2 (Definition 2.4).
Then we have

0(&") = 0(8,2),
where o(®') and o(SL,) are the p-rank of ' and &,, respectively, defined in Definition
2.1.
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Proof. Suppose #87'(v?) = 1 (i.e. v* € V?). Then the proposition is trivial since
®! = &!,. Thus, we may assume #4571 (v?) # 1 (i.e. v* ¢ V?).

Write £,z for the underlying morphism of b,2. Moreover, we put

W B, WE BR0%) = {2}

For simplicity, we shall write v (resp. y 23,7, 7{‘{@2}) for the Betti number (1.1.3) of G!
(resp. G'\ W, Gl,, GL, \ W*), where G' \ W and G}, \ W* are semi-graphs defined in
Definition 1.1.2.

Then we have

o(B") =12y +7 — N2y T Z og1(v) + Z oe1(v),

’UGU(GI\W) veW
0(®12) = o1, (V) + Mgy +7 = Wy + D e, (v).
vEU(GiQ\W*)
Note that the construction of &}, (2.2.2, 2.2.3) implies
def def *
A= Z Ol (U) = Z 0‘@5:}2 (U), B = 7\{7)2} = 7\{1)2}
vev(GL\W) UGU(GiQ\W*)

We calculate v — 7 2y and 7" — yi‘{vg}. By applying Lemma 2.5, it is sufficient to treat
the case where G' \ W = G, \ W* is connected. Then we obtain (see 1.1.1 for e(v?),
eP(v?) and 2.1.4, 2.1.5 for #D,z2, #1,2, #1,)

T = HOMHD(( DD #De/#L) ~ 1)+ HP W) KO ),

e€(e(v)NeI G\l (12)
7 Rry = ( > HG/H#L) — 1+ #e®(v2)(#G/#1,2).
ee(e(v)neN(G)\elP(v2)

On the other hand, for each v € W & 8-1(v2), we have (2.1.6)

Ol (U) = (#Dv2/#lv2)(062 (Ug) - 1) + Z (#D’U2/#I€)(#I€/#I’U2 - 1) +1

ece(v?)
= (#Dp[#12) (062 (V") = 1)+ Y (#Dp/H#L)(#1/#12 — 1) + 1.
ece(v?)\eP(v2)
Moreover, the construction of &, (2.2.3) implies that

o, (v7) = (#G/#1,2)(062(v%) = 1) + Y (#G/#IL)H#]/#12 —1) +1

ece(v?)

= (#G/#12)(002(V") = 1)+ Y (HG/H#IL)HI/#12 — 1)+ 1

e€e(v2)\eP(v2)

We obtain
o(B) =A+ B+ oe(v) +7— N
veW
—A+B+Y ((#sz/#_fvz)(a@Q(W) D+ Y (#Dp/HL)HL #e— 1)+ 1)
veEW ece(v2)\elP (v2)
+(#G/#D.2) ( 3 #Da [#1) = 1) + #EP () HG /#1,2)

e€(e(v?)Ne(G?))\e'P (v?)
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= A+B+(#G/#Dv2) ((#DUQ/#IUZ)<O-®2 (UQ)_l)—'_ Z (#Dlﬂ/#[e)(#le/#]v?_1)+1)

ece(v2)\elP (v2)

T#EGHDA(( DD #Dw L) — 1) + ) HG )

e€(e(v?)Ne(G?))\e'? (v?)

= A+ B+ (#G/#1,2)06:(0°) — #G[#Lo+ Y #GH#L2— > #G/#L

ece(v2)\elP(v2) e€e(v?)\elP (v2)

+ > HG[HI, + #EP () (HG [#1,2)

e€(e(v?)Nel(G2))\elP (v2)

= A+ B+ (#G/#12)0w ()~ #G/#1a+ > H#C/#Ls

e€e(v?)\eP(v2)
- > HGJH#], + #eP(0?) (#G/#1,2).
e€(e(v?)NeP(G2))\e'P (v?)
Note that the last equality holds since we have
e(v?) \ eP(v?) = ((e(v?) Ne™(G*) \ eP(v?)) U ((e(v?) N eP(G)) \ €P(v?)).
On the other hand, we obtain
0(62) = A+ B+ 01 () 7" = N2y

= A+ B+ (#G/#12)(0e2(v%) = 1)+ Y (HG/H#L)HL/#]2 — 1) + 1

e€e(v2)\eP(v2)

+( > #HG/H#I) — 1+ #eP(0)(#G/#1,2)

e€(e(v?)Ne!(G2))\e'P (v?)

= A+ B+ (#G/#12)06: (V") — #G/#12+ > #G/#l,

ece(v2)\elP(v2)

- > HG[#1. + #eP(07)(#G/#1,2).
e€(e(v2)NeoP (G2))\e!P (v2)
Namely, we have
(&) = o (&),
We complete the proof of the proposition. O

2.3.4. The main result of the present section is as follows:

Theorem 2.7. Let b : &' — &2 be a G-covering of connected semi-graphs with p-rank
(Definition 2.2 (e)). Then we have (see 1.1.1 for e(v), e®(v))

0o(@) = > (#G/#L) o)~ 1)+ > HCHLIHL/#,—1) +1)

vev(G2) e€e(v)\e'P (v)
+ > HG/HEL -1+ D H#HPW)(HG/HL - 1) + e
ece (G2)\elP(G2) ve(G2)

Proof. By applying Proposition 2.6 and the operator =, (Definition 2.4), we may con-
struct a quasi-G-covering b* : &1* — &2 from b such that the following conditions are
satisfied:
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(i) We have #(8*)"*(v) = 1 for each v € v(G?), where $* denotes the
underlying morphism of b*.
(ii) For each v € v(G?) and v* € (8*)~*(v), we have

ogi (V) = (HG/#1,) (062 (v) = 1) + Y (H#G/#IL)(F#/#1, — 1) + 1

ece(v)

= (#G/#Iv)(062 (U) - 1) + Z (#G/#]e)<#le/#lv - 1) + 1.
ece(v)\elP(v)
(iii) (&) = o(B1).
Write GU* for the underlying semi-graph of &*. We observe that

Yerr =Te+ Y. (HG/HL-1)— > #eP0)+ Y HeP(W)(HG/HL)

e€e?(G2)\elP(G2) ve(G?) vev(G?)
=qe:+ Y HGHL -1+ > #eP)(HG/HI, - 1)
ecel(G2)\elP (G2) veV(G2)

Thus, we obtain

o(®") =o(&") = Y ((#G/#L) e (0) =D+ Y. (HG/HL) L/ #L—1)+1)

vev(G?) e€e(v)\e'P(v)
+ Y HGHL -1+ D #P)HG/H#L — 1) + 6.
ecel(G2)\elr(G2) vev(G2)
This completes the proof of the theorem. O

2.3.5.  We introduce a kind of special semi-graph. Let n be a positive natural number and
P,, a semi-graph (see Example 2.8 below) such that the following conditions are satisfied:

() v(P,) ={Pr,..., P}, e (P,) ={e12,.--,en_1n}, and e®P(P,) = {eo 1y €nmnil}-
(i) Cor, (eo1) = {Pr, {v(Py)} }, Cenn+1(€nn+1) = {Po, {v(P,)}}, and ¢ (eii1) =
{P,P1},ie{l,...,n—1}.

Example 2.8. We give an example to explain the notion defined above. If n = 3, then
P5 is as follows:

P €0,1 Py P, Py €34
3: ot ® ® ® o

€12 €23

Definition 2.9. Let [P, be a semi-graph defined above and oy, : v(P,,) — Z a map such
that o, (P;) = 0 for each i = {1,...,n}. We define a semi-graph with p-rank 3, to be

def
and shall call %3, an n-chain.

Remark 2.9.1. In Section 3.3, we will see that n-chains can be naturally arose from
quotients of the vertical fibers associated to singular vertical points (Definition 1.8) of
G-pointed semi-stable coverings.
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2.3.6. When &% = ‘B, is a n-chain, Theorem 2.7 has the following important conse-
quence.

Corollary 2.10. Let b : & — B, be a G-covering of connected semi-graphs with p-rank.

Then we have
n+1

o(®) =Y H#G/#Ip Y #G/#I, ,, +1.
=1 i=1

Proof. The construction of P, implies

D #PW)HG/#L, —1) =, = 0.

vev(Py)

Then the corollary follows immediately from Theorem 2.7. U

3. FORMULAS FOR p-RANK OF COVERINGS OF CURVES

In this section, we construct various semi-graphs with p-rank from G-pointed semi-
stable coverings. Moreover, we prove various formulas for p-rank concerning G-pointed
semi-stable coverings when G is a finite p-group. More precisely, we prove a formula for p-
rank of special fibers (see Theorem 3.2), a formula for p-rank of vertical fibers over vertical
points (see Theorem 3.4), and a simpler form of Theorem 3.4 when the vertical points
are singular (see Theorem 3.9 which plays a key in Section 4). In particular, Theorem
3.4 and Theorem 3.9 generalize Raynaud’s result (Theorem 1.9) to the case of arbitrary
closed points.

3.1. p-rank of special fibers.

3.1.1. Settings. We maintain the settings introduced in 1.3.1. Let G be a finite p-group
of order p", and let f : % = (Y, Dy) - 2 = (X, Dx) be a G-pointed semi-stable covering
(Definition 1.5) over S. Moreover, let

@Z{l}ZGrCGT_lC"'CG1CG0:G
be a maximal normal filtration (Definition 2.2) of G. By applying [R, Appendice, Corol-

laire], we have that 2" = (X" D ys) gy /G is a pointed semi-stable curve over S.
Write h : % — 275" and g : 275" — 2 for the natural morphisms of pointed semi-stable

curves over S induced by f such that f =goh: % N N

3.1.2. Let j € {0,...,7}. [R, Appendice, Corollaire] implies that #%; o /G, is a
pointed semi-stable curve over S. Then the maximal normal filtration ® of G induces a
sequence of morphism of pointed semi-stable curves

Dy gt U Ly gy 52 g 1 g

over S such that ¢; o ..o ¢, = h. Note that ¢; is a finite Z/pZ-pointed semi-stable
covering over S.

Write Iy, for the dual semi-graph (1.2.2) of the special fiber (%), of %;. Then, for each
g €{1,...,r}, the morphism of the special fibers (¢,)s : (#;)s — (#;-1), induces a map of
semi-graphs 3 : I's; — I'y;_,. Moreover, Proposition 1.7 implies that 3;, j € {1,...,r},
is a morphism of semi-graphs.
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3.1.3. Semi-graph with p-rank associated to (%;),. Let v € v(I'y,) and j € {0,...,r}. We

write ?m for the normalization of the irreducible component Y;, C (%;), corresponding
to v. We define a semi-graph with p-rank associated to (%;)s to be

def .
@gyj = (G%,U@@{j), RS {0,...,7‘},

o o(Y;,) for v e v(Ga;).

where Gy, Lof Iy, and og,, (v)
3.1.4. G-covering of semi-graphs with p-rank associated to f. The sequence of pointed
semi-stable coverings ®4 4 induces a sequence of morphisms of semi-graphs with p-

rank

def b, b1 b
@@@/@%Sst . 60} = @gyr — @%71 — ... # ®%sst

where b; : &y — &y, j € {1,...,7}, is induced by §; : I'y, — I'y,_,. By using the
Deuring-Shafarevich formula (Proposition 1.4) and the Zariski-Nagata purity theorem
([SGAL, Exposé X, Théoreme de pureté 3.1]), we see that b;, j € {1,...,r}, is a p-
covering (Definition 2.2 (c)). Moreover, b © b0 0b, is a G-covering (Definition 2.2
(e)). Then we have

def
= Qj%’

0(By) = o(%).

Summarizing the discussions above, we obtain the following proposition.

Proposition 3.1. We maintain the notation introduced above. Let f : % — Z be a
G-pointed semi-stable covering over S and %, the special fiber of % over s. Then there
exists a G-covering of semi-graphs with p-rank b : &y — B gt associated to f (which is
constructed above) such that o(%;) = 0, (G ).

3.1.5.  We maintain the notation introduced in 3.1.1 and write I" g for the dual semi-
graph of the special fiber 2" = (X, Dxss) of 27", Let v € v(I'gst) and e € e(T"gsst)
(1.1.1). We write Y, and v, for an irreducible component of A~!(X,).cq and a closed point
of h™Y(x¢)req, Tespectively, where X, and . denote the irreducible component and the
closed point of 2 corresponding to v and e (1.2.2), respectively. Write Iy, C G and
I,, C G for the inertia subgroup of Y, and y., respectively. Note that since #Iy, and
#1,. do not depend on the choices of Y, and y., respectively, we may denote #1Iy, and
#1,, by #I1, and #I., respectively. We put (see 1.1.1 for v(e))

HIT def MaXyey(e){# v}, € € eCl(FQ/’;sst).

Note that Corollary 1.13 implies that #1, = #I2".
We have the following formula for p-rank of special fibers of G-pointed stable coverings
when G is a finite p-group.

Theorem 3.2. We maintain the settings introduced above. Let G be a finite p-group, and
let f:% — 2 be a G-pointed semi-stable covering over S. Then we have (see 1.2.2 for

X,, 1.1.1 for e (Dysst), €P(Lgsst), e(v), €®(v), and 1.1.3 for M yest )

o@)= > (1+HCHLER) -1+ Y HCHFLHL/#], 1))

UE’U(F%'Ssst) ece(v)\elP(v)

+ > #G/#L =1+ Y #POHG/HL — 1) + 0, -

eeed(f‘%syD N\e'P (T %gst) 'UE’U(F%Ssst)
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In particular, if f: % — Z is a G-semi-stable covering (i.e. Dx =0), then we have

o@) = 3 (1+ FCHLEX) -~ 1)+ Y HCHH L 1)

vEV( gosst) ece(v)\eP(v)
+ > HG/HI =1+ Y #PW)HG/#L — 1)+
GEECI(F%Ssst)\elp(F%Ssst) vev(D %Ssst)
Proof. The theorem follows from Theorem 2.7 and Proposition 3.1. U

Remark 3.2.1. Note that it is easy to check that the formula of Theorem 3.2 depends
only on the G-pointed stable coverings.

3.2. p-rank of vertical fibers.

3.2.1. Settings. We maintain the settings introduced in 3.1.1. Let x be a vertical point
(Definition 1.8) associated to f. Write ¢ : Y’ — X for the normalization of X in the
function field K (Y') induced by the natural injection K(X) < K(Y) induced by f. Then
Y’ admits a natural action of GG induced by the action of G on the generic fiber of Y.

Let y' € ¢~(x). Write I, C G for the inertia subgroup of y'. Proposition 1.6 implies
that the morphism of pointed smooth curves (Y, /I, Dy, /I,,) — Z; over 1 induced by
f extends to a pointed semi-stable covering Z’/Iy, — Z over S. In order to calculate the
p-rank of f~1(x), since the morphism %, — 2 Is finite étale over z, by replacing 2~ by
Q/Iy,, we may assume that G is equal to I,. In the remainder of this subsection, we shall
assume G = I, (note that G = I, if and only if f~!(x) is connected).

3.2.2. Write 2" = (X3, Dxs) and % = (Y;, Dy,) for the special fibers of 2" and
% over s, respectively. By the general theory of semi-stable curves, ¢g7!(x)eq C X5 and
FHZ)rea = B9 (x))rea C Vs are semi-stable curves over s, where (—),.q denotes the
reduced induced closed subscheme of (—). In particular, the irreducible components of
97 (2)rea are isomorphic to Pj}.

Write Vx for the set of closed points

g_l(x)red NA{XEN g (@)rea )

where { X5t \ g=1(x),.q} denotes the topological closure of X5\ ¢71(),eq in X, Write
Vy C % for the set of closed points {h™(q)red }qevy- We have #Vy = 1if x is a smooth
point of 2, and #Vx = 2 if x is a node of Z.

3.2.3.  We define two pointed semi-stable curves over s to be

gX déf (g_l(.iﬂ)red, (DXssc N g_l(.ilﬁ)red) U VX),

& E (F(@)reas (Dy N F7H (@) rea) U V).

Then we obtain a finite morphism of pointed semi-stable curves pg, /s, : &y — &x induced
by h. Since f~!(z) is connected, & admits a natural action of G induced by the action
of G on the special fiber %; of #". Write ', and I'g, for the dual semi-graphs of & and
&x, respectively. Note that ', is a tree, and is not a n-chain (Definition 2.9) in general
if x is not a node. We obtain a map of semi-graphs

(Sgy/gx : ng — ng

induced by pg, /¢, . Moreover, Proposition 1.7 implies that the map ds, /e, : ', — Ly
is a morphism of semi-graphs.
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3.2.4. Semi-graphs with p-rank associated to & and Ex. Let v € v(I'g, ). Write 571, for
the normalization of the irreducible component Y, C &y corresponding to v. We define
semi-graphs with p-rank associated to &y and &y, respectively, as follows:

eY déf (]E’Yao-@y)7 @X déf (EX7o-Qfx)7

def def

where Ey & I, Ex = Tgy, 06, (v) = o(Y,) for v € v(By), and oey (W) 0 for

w e v(Ey).

3.2.5. G-coverings of semi-graphs with p-rank associated to vertical fibers. The morphism
of dual semi-graphs ds, /¢, : I's, — s, induces a morphism of semi-graphs with p-rank

Ogy /ey - ¢y — Ey.

Moreover, we see that 0¢, /¢, is a G-covering. Then we have

o(€y) = o (f 7 (2)wea) = o(f (2)).
Summarizing the discussions above, we obtain the following proposition.

Proposition 3.3. We maintain the notation introduced above. Let f : % — Z be a
G-pointed semi-stable covering over S and x a vertical point associated to f. Suppose that
[ (x) is connected. Then there exists a G-covering of semi-graphs with p-rank Ve, /e, :
¢y — Ex associated to f and x (which is constructed above) such that o(€y) = o(f~(z)).

3.2.6. Then we have the following formula for p-rank of vertical fibers.

Theorem 3.4. We maintain the settings introduced in 1.5.1. Let G be a finite p-group,
and let f: % — 2 be a G-pointed semi-stable covering (Definition 1.5) over S and x
a vertical point (Definition 1.8) associated to f. We maintain the notation introduced in
3.2.2 and 3.2.3. Suppose that f~1(x) is connected. Then we have (see 3.1.5 for #1,, #1.,
and 1.1.1 for v(Tgy ), e(v), e(Tey))

o(f @) = Y (1HC/HLA Y HC/HL)HL/#L-1))+ Y (HG/#I-1),

vev(Tey ) ece(v) e€el(Tgy )
Proof. The theorem follows from Theorem 2.7 and Proposition 3.3. U

3.2.7.  'We maintain the notation introduced in Theorem 3.4. We explain that Raynaud’s
result (i.e. Theorem 1.9) can be directly calculated by using Theorem 3.4 if z € X\
(XE™8 U Dy, ). Note that, since z & Dx_, we have ¢~ (2)req N Dxse = 0.

Let X{ be the irreducible component of X which contains z. Moreover, we write X
for the strict transform of X, under the birational morphism g : 2™ — 2. Then there
exists a unique irreducible component X; C ¢ '(7),eq € X such that X, N X; # 0.
Note that #(X,N X;) = 1. Write v; for the vertex of v(I's, ) corresponding to X;. Since
Iy, is a connected tree, for each v € v(I'g, ), there exists a path [(vy,v) connecting v,
and v. We define

leng(l(1,)) = #{l(01,0) N0 (T, )}
to be the length of the path [(vy,v). Moreover, for each v € v(I's, ), we write

lvl U
for the path such that leng(l,, ,) = min{leng(I(vi,v)) }i(w;,0)-
By applying the general theory of semi-stable curves, Lemma 1.10, and Corollary 1.13,
one may prove the following:
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Let v,v" € v(lg,) and X,, X, the irreducible components of ¢~ (z)eq

corresponding to v, v’, respectively. Suppose that {x.} o X, NXy #0,
and that leng(l,, ,) < leng(l,, /). Write e € e(T's,) for the closed edge
corresponding to x.. Then we have #1, = #1. and #1,|#1,.
Note that the inertia subgroup of the unique open edge of I'g, (which abuts to vy) is
equal to G. Then Theorem 3.4 implies that o(f~!(z)) = 0.

3.3. p-rank of vertical fibers associated to singular vertical points. In this sub-
section, we will see that Theorem 3.4 has a very simple form if = is a singular vertical
point which plays a central role in Section 4.

3.3.1. Settings. We maintain the settings introduced in 3.2.1. Moreover, we suppose
that the vertical point z is a node of Z5. Write X| and X} (which may be equal) for the
irreducible components of Z; containing x. Write X; and X, for the strict transforms of
X and X} under the birational morphism g : 25" — 27, respectively.

By the general theory of semi-stable curves, ¢7'(2),.q € X5 is a semi-stable curve
over s and ¢~ (2)reqa N Dxst = . Moreover, the irreducible components of ¢~'(2)yeq are
isomorphic to Pi. Let C be the semi-stable subcurve of g~*(z),q which is a chain of
projective lines (J;_; P; such that the following conditions are satisfied:

(i) For any w,t € {1,...,n},P, NP, =0 if lw—1¢t > 2, and P, NP, is
reduced to a point if |w — t| = 1;

(ii) PL N X, (resp. P, N Xy) is reduced to a point.

(iil) CN{X\ g7 )rea} = (PINX7)U (PN X3), where { X5\ ¢71(%)rea }
denotes the topological closure of X5\ g7 (x)eq in X

Then we have
g H2)ea = CU B,
where B denotes the topological closure of g7 (2)eq \ C' in ¢~ (2).eq. Note that BNC are

smooth points of C'. Then Theorem 1.9 (or 3.2.7) implies that the p-rank of the connected
components of h~!(B) are equal to 0. Thus, we have o(f~!(z)) = a(h71(C)).

3.3.2.  We introduce the following notation concerning inertia subgroups of irreducible
components of vertical fibers.

Definition 3.5. We maintain the notation introduced above.

(a) Let V, def {Vo, Vi,..., Vo, V1) be a set of irreducible components of the special
fiber %, of %'. We shall call V, a collection of vertical fibers associated to x if the following
conditions are satisfied:

(i) h(V;) = P, for i € {1,...,n}.

(ii) A(Vp) = X1 and h(V,41) = Xo.

(iti) The union U Vi € % is a connected semi-stable subcurve of %
over s. Note that we have (|J;_, V;) N Dy, = 0.

Moreover, we write Iy, C G, i € {0,...,n+ 1}, for the inertia subgroup of V;, and put

def
Ty, YLy, .. I}

Note that Corollary 1.13 implies that either Iy, C Iy, , or Iy, 2 Iy, holds for i €
{0,....,n}.

(b) Let (u,w) € {0,...,n+ 1} x{0,...,n+ 1} be a pair such that v < w. We shall
call that a group I;T;j} is a minimal element of 7, if one of the following conditions are
satisfied, where “ C 7 means that “is a subset which is not equal”:
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(i)u:O,w%O,w%n—i—l,and]{)ffu“:]‘/o:Ivl:--- ] C]Vw+1-
(11> u 7& 0, w=n+ 1a and IVu—1 ) [Vu IVu+1 = IVn+1 = Itrtn?lln-i-l
(111) U 7é 0, w 7£ n+ 1, and [Vu 1 [315)1 = I\/u = [Vu+1 cee = [Vw C [Vw+1'

Note that we do not define Iéfloin. We shall call that a group J;'5* is a mazimal element of
7y, if one of the following conditions are satisfied:

(i) (u,w) = (0,n+1) and J53%, = Iy, for all i € {0,...,n + 1}.

(i) u=0,w#n+1,and Jyo* = Iy, = Iy, = --- = Iy, D Iy, ,
(iii) u #O0,w =n+1,and Iy, , C Iy, = Iy, , - = Iy, = Jy3,.
(iv) u#0,w#n-+1,and Iy, , C Jow =1Iv, =1y, =1y, DIy,
Moreover, we put
def min
I(z) = L {#10
Ipin : a minimal element of Ty,
def max
J(x) = || {#Juw

Jipex : a maximal element of 7y,

where L means disjoint union.

Note that the set Z(x) may be empty (e.g. if Iy, C Iy, C --- C Iy,,,, then Z(x) is
empty). On the other hand, since #1y;, i € {0,...,n+ 1}, does not depend on the choice
of Vi (i.e. if h(V;) = h(V]) for irreducible components V;, V; of %, then #Iy, = #Iy),
Z(z) and J(x) do not depend on the choice of V.

We shall call Z(x) the set of minimal orders of inertia subgroups associated to x and f,
and J () the set of maximal orders of inertia subgroups associated to x and f, respectively.

3.3.3.  We have the following lemmas.

Lemma 3.6. We maintain the notation introduced above. Let y; € V; be a closed point
and I,, € G, i € {1,...,n} the inertia subgroup of y;. Write Rayy., i = 1,...,n, for the
set of the closed points h™'(C' N B)rea N'V;. Then we have I, = Iy, for any y; € Rayy,.

Proof. Since I, 2 Iy,, we only need to prove that I,, C Iy,. Note that Iy, is a normal sub-
group of 1, To verify the lemma, by replacmg G and 2=t by I, and ¥ /I, respectively,
we may assume G = I,,. Then we have #h™ (h(Y;))rea = 1.

We consider the quotient #/Iy,. By [R, Appendice Corollaire], we have that % /Iy, is
a pointed semi-stable curve over S. Write hy, for the quotient morphism & — & /1y,
and gr, for the morphism # /Iy, — 2 st induced by h such that h = gry, © hr, .
Write F,, for the connected component of h_l(B)red which contains y;. By contract-
ing hr, (Ey,) C % /Iy, xs s (vesp. h(E,,) C 2Z*) ([BLR, 6.7 Proposition 4]), we obtain
a fiber surface (% /Iy,)¢ and a semi-stable curve (Z™*%)¢ over S. Moreover, we have
contracting morphisms as follows:

Chiy, (By;) Y Ly, = (Y[ 1,)°, cn,,) + 50— (254
Furthermore, we obtain a morphism of fiber surfaces
i (Z ) Iy)" = ()"
induced by gr,, such that ¢y, © gr, = g7, © Cny, (). Note that (cum,) o h)(y:) is

a smooth point of the special fiber of (27")¢, and g7 is étale at the generic point of
(Chr,, (84,) © Py, ) (V2)-
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We put y; = (¢hr, (Byy) © hry)(ys) € (#/1v,)¢ and xf def (chie,) © h)(yi) € (Z)e.
Consider the local morphism

Gye : Spec (’)(g//fvi)cgz; — Spec O(grsstye ge

induced by g7, . Note that [R, Proposition 1] implies that Spec O 1, )e ye X5 8 is irre-
ducible. Then Zgyg is generically étale at the generic point of Spec O 1y, )eye X5 5. Thus,
the Zariski-Nagata purity theorem implies that g,c is étale.

If Iy, # I, then g, is not an identity. Namely, we have #h~'(h(y;))rea # 1. This
contradicts our assumption. Then we obtain Iy, = I,,. We complete the proof of the
lemma. 0

Lemma 3.7. We maintain the notation introduced in above. Then we have

G = <[V07 IVn+1>v
where (Iy,, Iy, ,) denotes the subgroup of G generated by Iy, and Iy, ,.

Proof. Suppose that G # (Iy,, Iy, ,,). Since G is a p-group, there exists a normal subgroup
H C G of index p such that (Iy, Iv,,,) € H. Write 2 for the normalization of 2" in the
function field K(Y) induced by the natural injection K (X) — K(Y') induced by f. The
normalization %’ admits an action of G induced by the action of G on %'. Consider the
quotient ¢”/H. Then we obtain a morphism of fiber surfaces fy : #'/H — 2 over S
induced by f. Moreover, #'/H admits an action of G/H = Z/pZ induced by the action
of G on #&'. Then fy is generically étale over X| and X). Thus, [T2, Lemma 2.1 (iii)]
implies that fg is étale above . Then f~!(z) is not connected. This contradicts our
assumptions. We complete the proof of the lemma. O

3.3.4. We define pointed semi-stable curves over s as follows:

def _

G = (W (Crea, H((CNX1) U (C N X)),

“x € (C,(CNX)U(CNX)).

Moreover, we have a natural morphism of pointed semi-stable curves
Py jex @ Gy — Cx

over s induced by h : % — 25" Since f~()yeq is connected, €y admits a natural action
of G induced by the action of G on f~(),q. Write 'y, and 'y, for the dual semi-graphs
of ¢y and Ex, respectively. Proposition 1.7 implies that the map of semi-graphs

5(gy/<gx : chy — F(gx

induced by pe, /%, is a morphism of semi-graphs.

3.3.5. Semi-graphs with p-rank associated to vertical fibers over singular vertical points.
Let v € v(I'y, ) and Y, the normalization of the irreducible component Y, C % corre-
sponding to v. We define semi-graphs with p-rank associated to 6y and %, respectively,

as follows:
def def

Q:Y == ((CY7O-€y)7 C)( - (CX7U¢X)7

def def a

where Cy & Iy, Cx = Ty, 0¢y(v) = o(Y,) for v € v(Cy), and o¢, (w) 0 for

w € U((Cx).
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3.3.6. G-coverings of semi-graphs with p-rank associated to vertical fibers over singular
vertical points. The morphism of dual semi-graphs o4, /¢, : I'g, — D'y, induces a mor-
phism of semi-graphs with p-rank

DQ:Y/QX : €Y — Q:X.

Moreover, by Lemma 3.6, we see that o¢, (v) satisfies the Deuring-Shafarevich type for-
mula for v € v(Cy). This implies that 0¢, /¢, is a G-covering of semi-graphs with p-rank.
Note that by the above construction, €x is an n-chain (Definition 2.9). Furthermore, we
have

o(Cy) =o(h™(C)) = a(f(2)).

Summarizing the discussion above, we obtain the following proposition.

Proposition 3.8. We maintain the notation introduced above. Let f : % — X be a G-
pointed semi-stable covering over S and x € X a vertical point associated to f. Suppose
that f~1(x) is connected, and that x is a node of Z,. Then there exists a G-covering of
semi-graphs with p-rank d¢, je, : €y — Cx associated to f and x (which is constructed
above) such that €x is an n-chain and o(Cy) = o(f~(z)).

3.3.7. Then we have the following theorem.

Theorem 3.9. We maintain the settings introduced in 1.3.1. Let G be a finite p-group,
and let f : % — A be a G-pointed semi-stable covering (Definition 1.5) over S and
r € Z; avertical point (Definition 1.8) associated to f. Suppose that f~'(x) is connected,
and that x is a node of Z5. Let Z(x) and J(x) be the sets of minimal and mazimal orders
of inertia subgroups associated to x and f (Definition 3.5 (b)), respectively. Then we have

o(f @)= D #G/HI— Y #G/#T+1

#IeT(x) #J€J (x)

Proof. Let V, be a collection of vertical fibers associated to z (Definition 3.5 (a)). By
Proposition 3.8, Corollary 2.10, and Lemma 1.10, we have

n+1

o(fH(x)) = Z #G [#1y, — Z #G[#(Iy,_, Iv,) + 1,

where (Iy,_,,Iy,) denotes the subgroup of G generated by Iy, , and Iy,. The theorem
follows from Corollary 1.13 and Lemma 3.7. U

3.3.8. In the remainder of the present subsection, we suppose that G is a cyclic p-
group. We show that the formula of Theorem 3.9 coincides with the formula of Saidi ([S1,
Proposition 1]). Since G is an abelian group, Iy,, i = {0,...,n + 1}, does not depend on
the choice of V;. Then we may use the notation Ip, i € {0,...,n + 1}, to denote Iy;.

Lemma 3.10. We maintain the notation introduced above. If G is a cyclic p-group, then
there exists 0 < u < n -+ 1 such that

Ip, 21Ip 21Ip,2---21Ip, C---Clp,_, Clp, Clp,,.

Proof. 1f the lemma is not true, then there exist w, ¢ and v such that Ip, # Ip,, Ip, # Ip,
and Ip, C Ip,,, = -+ =1Ip, = --- = Ip_, D Ip,. Since G is a cyclic group, we may
assume Ip, O Ip,. Consider the quotient of % by Ip,, we obtain a natural morphism of
pointed semi-stable curves hy, : % /Ip, — 2" over S.
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We define B;, j = {0,...,n+ 1}, to be the union of the connected components of B
(3.3.1) which intersect with P; non-trivially. By contracting ([BLR, 6.7 Proposition 4])

Pw+17 .. '7Pt—17B’u}+17 .. '7Bt—17

(hw>_1(Pw+1)reda ey (hw)_l(Pt—1>red’ (hw)_1<Bw+1)redu ey (hw)_l(Bt—l)reda

respectively, we obtain a pointed semi-stable curve (2™%%)¢ and a fiber surface (% /Ip,)°
over S. Write

Cosst X — (275Y)°, cop, Y/ Ip, = (¥ /1p,)*

for the resulting contracting morphisms, respectively. The morphism h,, induces a mor-
phism of fiber surfaces hS : (% /Ip,)* — (Z*")¢. Then we have the following commuta-
tive diagram:

¢ /1p,

Y /1p, (% /Ip,)

th/ thJ(
%sst C%S“; (M@//'sst)c.

Write PS and Py for the images cgsst(P,) and cgsst(F;), respectively, and ¢, for the
closed point PS¢ N Pf. Since h is generically étale above PS and Py, [T2, Lemma 2.1
(iii)] implies that (hS)~(zS,)wea are nodes. Thus, (% /Ip,)¢ is a semi-stable curve over
S, and moreover, A is étale over z¢,. Then the inertia subgroups of the closed points
(hS) (2, )rea Of the special fiber (% /Ip, )¢ of (% /1p,)¢ are trivial.

On the other hand, since Ip, is a proper subgroup of Ip , we have that the inertia
subgroups of the irreducible components of ' ((J'—} .| Pj)rea is Ip, /Ip,. Thus, the inertia

j=w+1"J
subgroups of the closed points C@/[Pw(h;l(uz;i}_’_l Pi)rea) = (hS,) (28 )rea € (¥ /Ip,)S
are not trivial. This is a contradiction. Then we complete the proof of the lemma. 0

The above lemma implies the following corollary.

Corollary 3.11. We maintain the settings introduced in Theorem 3.9. Suppose that G
s a cyclic p-group, and that Ip, is equal to G. Then we have

o(fH(x)) = #G/# Lnin — #G/#Ip, .,

where Iy, denotes the group ﬂ?jol Ip .

Proof. The corollary follows immediately from Theorem 3.9 and Lemma 3.10. U

Remark 3.11.1. The formula in Corollary 3.11 had been obtained by Saidi ([S1, Propo-
sition 1]). On the other hand, Corollary 3.11 implies immediately that

o(f (@) S #G —1
when G is a cyclic p-group, which is the main theorem of [S1] (i.e. [S1, Theorem 1]).

4. BOUNDS OF Pp-RANK OF VERTICAL FIBERS

In this section, we gives an affirmative answer to an open problem posed by Saidi
concerning bounds of p-rank of vertical fibers posed by Saidi if G is an arbitrary finite
abelian p-group. The main result of the present section is Theorem 4.3.
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4.0.1. The following was asked by Saidi ([S1, Question]):

Let G be a finite p-group, and let f : % — 2 be a G-semi-stable covering
(i.e. Dx =0, see Definition 1.5) over S and = € 2 a vertical point (Defi-
nition 1.8) associated to f. Suppose that f~1(x) is connected. Whether or
not o(f~!(x)) can be bounded by a constant which depends only on #G?

The above problem was solved by Saidi when G is a cyclic p-group (Remark 3.11.1).

4.0.2. Settings. We maintain the settings introduced in 1.3.1 and assume that 2 is a

stable curve over S (i.e. Dx = (). Moreover, when z is a node of Z*>" let V, be a

collection of vertical fibers (Definition 3.5) and Zy, = {1y, € G}izqo,..n41y the set of

inertia subgroups of V; (Definition 3.5). Furthermore, in the remainder of the present
section, we assume that G' is a finite abelian p-group.

4.0.3. Since G is abelian, Iy, {i € {0,...,n + 1}, does not depend on the choice of V;.
We use the notation Ip, to denote Iy, for ¢ € {0,...,n + 1}. Then we have the following
proposition.

Proposition 4.1. Let I' and I" be minimal elements of T, (Definition 3.5 (b)) distinct
from each other. Then neither I' C 1" nor I' O I" holds.

Proof. Without loss of generality, we may assume that I’ = Ip, and I” = Ip, such that
0<a<b<n+1,Ip, #1Ip,,,,and Ip,_, # Ip,. Note that by the definition of minimal
elements (Definition 3.5 (b)), Ip,,, (vesp. Ip, ,) contains Ip, (resp. Ip,).

If I’ C 1", we consider the quotient curve % /1”. Then we obtain morphisms of semi-
stable curves & : % — # /1" and & : @ /1" — 2 such that & o & = h. Note that
h(V,) = P, and h(V},) = P, respectively. By contracting U?;i—&-l P; and fgl(Uf;iH P)rea
([BLR, 6.7 Proposition 4]), respectively, we obtain contracting morphisms ¢y : 25" —
(2N and ¢y 2 D /1" — (Z/1")°, respectively. Moreover, & induces a morphism
& (X /1")° — (27 such that the following diagram commutes:

@/[” Co /1 (Zy/[//)c

5zl Egl
%‘sst C%S“; (%sst)c.

Note that (£™)¢ is a semi-stable curve over S.

Since I' = Ip, C I" = Ip,, & is étale at the generic points of cy /v 0o &(V,) and
co 1 0& (V). Thus, by applying the Zariski-Nagata purity theorem and [T2, Lemma 2.1
(iii)], we obtain that &5 is étale at cy /v 0 &(V,) Newym 0 &(Vy) (ie. the inertia group
of each point of ¢z o & (Vo) Neg 0 &(Vy) is trivial). On the other hand, since Ip, ,
contains Ip,, the inertia group of each point of ca 0 & (V,) New w0 & (Vy) is Ip, , /1",
Then we obtain Ip, | = I”. This is a contradiction. Then I” does not contain I’.

Similar arguments to the arguments given in the proof above imply that I’ does not
contain I”. We complete the proof of the proposition. O

4.0.4. Let N be a finite p-group and H a subgroup of N. Write Sub(—) for the set of
the subgroups of (—). We put

#1(H) Y max{#S | S C Sub(N), H € S, for any H', H" € S such that H' # H",

neither H' C H” nor H' O H" holds}.
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Moreover, we put

M(N) «© max{#I<N/)}N’€Sub(N)-

For any 1 < d < #N, write Sy(N) for the set of the subgroups of N with order d. Let A
be an elementary abelian p-group (i.e. pA = 0) such that #A = #N. We put

def

BH#N) % 4Sub(A).
Note that B(#N) depends only on #N.

4.0.5. We need a lemma of finite groups.

Lemma 4.2. Let N be a finite p-group, A an elementary abelian p-group with order # N,
and 1 < d < #N an integer number. Then we have #Sq(N) < #S4(A). In particular,
we have M(N) < B(#N).

Proof. Since N is a p-group, N has a non-trivial central subgroup. Fix a central subgroup
Z of order p in N. Write S7(N) (resp. SQZ(N)) for the set of subgroups of N of order
d which contain Z (resp. do not contain Z). If H is a subgroup of N/Z, let SC(ZZ’H)(N)
be the set of L € SG\ZZ(N) whose projection on N/Z is H. Let Sy[N/Z] be the set of
H € S4(N/Z) for which S (N) # 0.

Let H € S4(N/Z]. Then we obtain #5777 (N) < #H'(H,Z) = #Hom(H*? Z),
where (—)*"? denotes (—)/((—=)?[(=), (=)]). Moreover, let H' be a subgroup of A of order
d and Z' = Z/pZ a subgroup of A of order p. Then we have

#Hom(H™™P Z) < #Hom((H')™™*, Z").
If d =1, the lemma is trivial. Then we may assume that p divides d. We have

#S4(N) = #SZ(N) + #8)7(N) = #S4/,(N/Z) + #S,7 (N)

= #Su,(NJZ)+ > #STT(N)

HES,[N/Z)

< #Sup(N/Z)+ Y #(Hom(H™P, Z))
HES4[N/Z]
< #Su/p(N/Z) + #8a(N/ Z)#(Hom((H')™", Z'))
By induction, we have #S4/,(N/Z) < #S4/p(A/Z") and #S4(N/Z) < #S4(A/Z"). More-

over, we have

#Sa(A) = #S(A)Z) + Y #S7(4)

H'eS4[A/Z)
= #Sup(A/Z)+ Y #(Hom((H')™", Z))

H'eS4[A/Z']

= #Sa/p(A/Z") + #Sa(A/Z")#(Hom((H')™", Z")).
Thus, we obtain
#Sa(N) < #Sa(A).
This completes the proof of the lemma. O
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4.0.6. 'We have the following result.

Theorem 4.3. We maintain the settings introduced in 1.53.1. Let G be a finite p-group,
and let f: % — Z be a G-semi-stable covering (i.e. Dx = 0, see Definition 1.5) over
S and v € %, a vertical point (Definition 1.8) associated to f. Suppose that f~!(x)
is connected, and that G is an abelian p-group. Then we have (see Definition 4.0.4 for
M(G), B#G))
o(f (@) < M(G)HG — 1 < B(#G)H#G — 1.

In particular, if G is an abelian p-group, then the p-rank o(f~'(x)) can be bounded by a
constant B(#G) which depends only on #G.

Proof. If z is a smooth point of the special fiber Z; of 27, then o(f~*(z)) = 0 (Theorem
1.9). Thus, we may assume that x is a singular point of 2.

If Z(z) = 0 (Definition 3.5 (b)), then Theorem 3.9 implies that o(f~*(z)) = 0. If
Z(z) # 0, by applying Theorem 3.9 and Proposition 4.1, we obtain

o(f @)= D #GHI- Y #G/#I+1
Ie#IeI(x) #JeT(x)
< HTHG —1 < M(G)#G — 1 < B(#G)#G — 1.
U
Remark 4.3.1. If G is a cyclic p-group, then by the definition of M (G), we have M (G) =

1. Thus, if G is a cyclic p-group, we have o(f~(x)) < #G — 1. This is the main theorem
of [S1, Theorem 1].
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