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1. Introduction

1.1. Fundamental groups in positive characteristic.
1
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1.1.1. Let X• = (X,D) be a smooth pointed stable curve of type (gX , nX) over an
algebraically closed field k of characteristic p > 0, where X denotes the underlying curve,
DX denotes a finite set of marked points satisfying [K, Definition 1.1 (iv)], gX denotes
the genus of X, and nX denotes the cardinality #DX of DX .
By choosing a suitable base point of X \DX , we have the tame fundamental group ΠX•

of X•. Note that since all the tame coverings in positive characteristic can be lifted to
characteristic 0, ΠX• is topologically finitely generated. Moreover, A. Grothendieck ([G])

showed that the structure of maximal prime-to-p quotient Πp′

X• of ΠX• is isomorphic to
the pro-prime-to-p completion of the following group

⟨a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1⟩.

1.1.2. On the other hand, the structure of ΠX• is very mysterious. Some developments of
F. Pop-M. Säıdi ([PoSa]), M. Raynaud ([R2]), A. Tamagawa ([T1], [T2], [T3], [T4]), and
the author ([Y1], [Y3], [Y4]) showed evidence for very strong anabelian phenomena for
curves over algebraically closed fields of characteristic p > 0. In this situation, the Galois
group of the base field is trivial, and the étale (or tame) fundamental group coincides
with the geometric fundamental group, thus in a total absence of a Galois action of the
base field. This kind of anabelian phenomenon goes beyond Grothendieck’s anabelian
geometry, and shows that the tame fundamental group of a smooth pointed stable curve
over an algebraically closed field must encode“moduli” of the curve. This is the reason
that we do not have an explicit description of the tame fundamental group of any smooth
pointed stable curve in positive characteristic.

Furthermore, the theories developed in [T3] and [Y4] imply that the isomorphism class
of X• as a scheme can possibly be determined by not only the isomorphism class of ΠX• as
a profinite group but also the isomorphism class of the maximal pro-solvable quotient Πsol

X•

of ΠX• . Since the isomorphism class of Πsol
X• is determined by the set of finite quotients of

Πsol
X• ([FJ, Proposition 16.10.6]), we may ask the following question: Which finite solvable

groups can appear as quotients of Πsol
X•?

1.2. p-rank of coverings.

1.2.1. Let N ⊆ ΠX• be an arbitrary open normal subgroup and X•
N = (XN , DXN

) the
smooth pointed stable curve of type (gXN

, nXN
) over k corresponding to N . We have

an important invariant σXN
associated to X•

N (or N) which is called p-rank (see 2.2.2).
Roughly speaking, σXN

controls the finite quotients of ΠX• which are extensions of the
group ΠX•/N by p-groups. Moreover, if we can compute the p-rank σXN

when ΠX•/N
is abelian, together with the structure theorem of maximal prime-to-p quotients of tame
fundamental groups mentioned in 1.1.1, we can answer the above question for an arbitrary
solvable group step-by-step.

Suppose that ΠX•/N is abelian. If ΠX•/N is a p-group, then σXN
can be computed by

using the Deuring-Shafarevich formula ([C], [Su]). Moreover, by applying the Deuring-
Shafarevich formula, to compute σXN

, we may assume that ΠX•/N is a prime-to-p abelian
group. Furthermore, since a Galois tame covering of X• with Galois group ΠX•/N is a
tower of prime-to-p cyclic tame coverings, we obtain σXN

if we can compute p-rank for
prime-to-p cyclic tame coverings. Thus, in the remainder of the introduction, we suppose
that ΠX•/N ∼= Z/mZ is a prime-to-p cyclic group.
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1.2.2. The situation of σXN
is very complicated when ΠX•/N is not a p-group. In

fact, if X• is an arbitrary pointed stable curve over k, then σXN
cannot be explicitly

computed in general ([R1], [T3], [Y2]). On the other hand, when X• is generic (i.e.,
a curve corresponding to a geometric generic point of the moduli space MgX ,nX

), the
following interesting result was proved by S. Nakajima:

Theorem 1.1. ([N, Proposition 4]) Suppose that ΠX•/N is a prime-to-p cyclic group,
that nX = 0, and that X• is generic. Then we have σXN

= gXN
(i.e., X•

N is ordinary).

Nakajima’s result was generalized by B. Zhang to the case where ΠX•/N is an arbitrary
prime-to-p abelian group ([Z]). Moreover, recently, E. Ozman and R. Pries generalized
Nakajima’s result to the case where X• is curve corresponding to a geometric generic
point of the p-rank strata of the moduli space MgX ,nX

(see [OP] or 3.6.2 of the present
paper).

1.2.3. Suppose that nX ̸= 0. The computations of σXN
are much more difficult than the

case of nX = 0. Let D be the ramification divisor (see Definition 2.2) associated to the
Galois tame covering X•

N → X• over k with Galois group ΠX•/N ∼= Z/mZ. Firstly, we
note that there exists an upper bound B(σX , D,m) for σXN

depending on the p-rank σX

of X•, D, and m such that the following holds (e.g. [B, Section 3]):

0 ≤ σXN
≤ B(σX , D,m) ≤ gXN

.

Note that B(σX , D,m) is not equal to gXN
in general. This means that Nakajima’s result

mentioned above does not hold for tame coverings in general. Then we have the following
natural question: Can σXN

attain the upper bound B(σX , D,m)?
IfX• is generic, I. Bouw proved that σXN

= B(σX , D,m) ifm satisfies certain conditions
and p is sufficiently large ([B]). In general, the above question is still open. Moreover, by
applying the theory of theta divisors developed by Raynaud ([R1]) and Tamagawa ([T3]),
the above question is equivalent to the following open problem posed by Tamagawa ([T3,
Question 2.18]): Does the Raynaud-Tamagawa theta divisor (see 2.4.4) associated to D
exist when X• is generic?

1.3. Main result.

1.3.1. In the present paper, we study the problem mentioned in 1.2.3 without making any
assumptions about m and p. More precisely, we prove that the Raynaud-Tamagawa theta
divisor associated to certain D exists, and obtain the following necessary and sufficient
condition for the ordinariness of X•

N which generalizes Nakajima’s result to the case of
tamely ramified coverings.

Theorem 1.2. (Theorem 3.5) Suppose that ΠX•/N is a prime-to-p cyclic group, and that
X• is generic. Then we have that σXN

= B(σX , D,m) = gXN
(i.e., X•

N is ordinary) if
and only if D(j), j ∈ {1, . . . ,m−1}, is Frobenius stable (cf. Definition 2.3 and Definition
3.3 for the definitions of D(j) and Frobenius stable, respectively).

Remark 1.2.1. By applying the result of Ozman-Pries mentioned above, we also obtain
a slightly stronger version of Theorem 1.2 for certain m (see Corollary 3.6).

Remark 1.2.2. As an application (Proposition 4.2), we generalize a result of Pacheco-
Stevenson concerning inverse Galois problems for étale coverings of projective generic
curves to the case of tame coverings.
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1.3.2. Suppose that gX = 0. Let us explain some relationships between Theorem 1.2 and
the ordinary Newton polygon strata of the Torelli locus in PEL-type Shimura varieties. If
σXN

= B(σX , D,m) holds for every D, then the intersection of the open Torelli locus with
all µ-ordinary Newton polygon strata of certain PEL-Shimura varieties is non-empty (see
[LMPT, Section 4]). Note that if the Newton polygon of the p-divisible group associated
to an abelian variety is µ-ordinary, the abelian variety is not ordinary in general. On the
other hand, we call the Newton polygon of the p-divisible group associated to an abelian
variety is “classic” µ-ordinary if the abelian variety is ordinary. Then Theorem 1.2 gives
a criterion for determining whether or not the intersection of the open Torelli locus with
classic µ-ordinary Newton polygon strata of certain PEL-Shimura varieties is non-empty.

1.4. Structure of the present paper. The present paper is organized as follows. In
Section 2, we recall some definitions and properties of pointed stable curves, admissible
coverings, generalized Hasse-Witt invariants, and Raynaud-Tamagawa theta divisors. In
Section 3, we study the new-ordinariness of prime-to-p cyclic tame coverings of generic
curves by using the theory of Raynaud-Tamagawa theta divisors and prove our main
theorem. In Section 4, we give two applications of the main theorem.

1.5. Acknowledgements. The author would like to thank the referee very much for care-
fully reading to the former version of the present paper and for giving various comments on
it, which were very useful in improving the presentation of the present paper. This work
was supported by JSPS KAKENHI Grant Number 20K14283, and by the Research In-
stitute for Mathematical Sciences (RIMS), an International Joint Usage/Research Center
located in Kyoto University.

2. Preliminaries

2.1. Pointed stable curves and admissible fundamental groups. In this subsec-
tion, we recall some notation concerning admissible fundamental groups.

2.1.1. Let X• = (X,DX) be a pointed stable curve over an algebraically closed field k of
characteristic p > 0, where X denotes the underlying curve and DX denotes a finite set
of marked points satisfying [K, Definition 1.1 (iv)]. Write gX for the genus of X and nX

for the cardinality #DX of DX . We shall call (gX , nX) the type of X•.
Write ΓX• for the dual semi-graph of X• which is defined as follows: (i) the set of

vertices v(ΓX•) of ΓX• is the set of irreducible components of X; (ii) the set of open edges
eop(ΓX•) of ΓX• is the set of marked points DX ; (iii) the set of closed edges ecl(ΓX•) of

ΓX• is the set of nodes of X. Moreover, we write rX
def
= dimQ(H

1(ΓX• ,Q)) for the Betti
number of the semi-graph ΓX• .

Example 2.1. We give an example to explain dual semi-graphs of pointed stable curves.
Let X• be a pointed stable curve over k whose irreducible components are Xv1 and Xv2 ,
whose node is xe1 , and whose marked point is xe2 ∈ Xv2 . We use the notation “•” and
“◦” to denote a node and a marked point, respectively. Then X• is as follows:
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Xv2

Xv1
xe2

xe1
X•:

We write v1 and v2 for the vertices of ΓX• corresponding to Xv1 and Xv2 , respectively,
e1 for the closed edge corresponding to xe1 , and e2 for the open edge corresponding to
xe2 . Moreover, we use the notation “•” and “◦ with a line segment” to denote a vertex
and an open edge, respectively. Then the dual semi-graph ΓX• of X• is as follows:

v1
e1 v2 e2ΓX• :

2.1.2. Let v ∈ v(ΓX•) and e ∈ eop(ΓX•) ∪ ecl(ΓX•). We write Xv for the irreducible
component of X corresponding to v, write xe for the node of X corresponding to e if
e ∈ ecl(ΓX•), and write xe for the marked point of X corresponding to e if e ∈ eop(ΓX•).

Moreover, write norv : X̃v → Xv for the normalization of Xv. We define a smooth pointed
stable curve of type (gv, nv) over k to be

X̃•
v = (X̃v, DX̃v

def
= nor−1

v ((Xsing ∩Xv) ∪ (DX ∩Xv))),

where Xsing denotes the singular locus of X. We shall call X̃•
v the smooth pointed stable

curve associated to v.

2.1.3. LetMg,n,Z be the moduli stack parameterizing pointed stable curves of type (g, n)

over SpecZ, Fp the algebraic closure of Fp in k,Mg,n
def
= Mg,n,Z×ZFp, and M g,n the coarse

moduli space ofMg,n. Then X• → Spec k determines a morphism cX : Spec k →MgX ,nX

and X̃•
v → Spec k, v ∈ v(ΓX•), determines a morphism cv : Spec k →Mgv ,nv . Moreover,

we have a clutching morphism of moduli stacks ([K, Definition 3.8])

c :
∏

v∈v(ΓX• )

Mgv ,nv →MgX ,nX

such that c ◦ (
∏

v∈v(ΓX• ) cv) = cX . We shall call X• a component-generic pointed stable
curve over k if the image of ∏

v∈v(ΓX• )

cv : Spec k →
∏

v∈v(ΓX• )

Mgv ,nv

is a generic point in
∏

v∈v(ΓX• ) M gv ,nv . In particular, we shall call X• generic if X• is
non-singular component-generic.
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2.1.4. By choosing a smooth point x ∈ X\DX , we obtain a fundamental group πadm
1 (X•, x)

which is called the admissible fundamental group of X• (see [Y1, Definition 2.2] or [Y3,
Section 2.1] for the definitions of admissible coverings and admissible fundamental groups).
The admissible fundamental group of X• is naturally isomorphic to the tame fundamental
group of X• when X• is smooth over k. For simplicity of notation, we omit the base point
and denote the admissible fundamental group by

ΠX• .

The structure of the maximal prime-to-p quotient of ΠX• is well-known, and is isomorphic
to the prime-to-p completion of the following group ([V, Théorème 2.2 (c)])

⟨a1, . . . , agX , b1, . . . , bgX , c1, . . . , cnX
|

gX∏
i=1

[ai, bi]

nX∏
j=1

cj = 1⟩.

2.2. Hasse-Witt invariants and generalized Hasse-Witt invariants. In this sub-
section, we recall some notation concerning Hasse-Witt invariants and generalized Hasse-
Witt invariants. On the other hand, in the case of smooth pointed stable curves, the
generalized Hasse-Witt invariants of cyclic tame coverings were discussed in [B, Section
2] and [T3, Section 3].

2.2.1. Settings. We maintain the notation introduced in 2.1.1. Let X• = (X,DX) be a
pointed stable curve of type (gX , nX) over k and ΠX• the admissible fundamental group
of X•.

2.2.2. Let Z• be a disjoint union of finitely many pointed stable curves over k. We define
the p-rank (or Hasse-Witt invariant) of Z• to be

σZ
def
= dimFp(H

1
ét(Z,Fp)).

We shall call Z• ordinary if gZ = σZ , where gZ
def
= dimk(H

1(Z,OZ)). Moreover, let
Z• → X• be a multi-admissible covering ([Y1, Definition 2.2]) over k. We shall call
Z• → X• new-ordinary if gZ − gX = σZ − σX , where σX denotes the p-rank of X•. Note
that if X• is ordinary, then Z• → X• is new-ordinary if and only if Z• is ordinary.

On the other hand, the structure of Pic0X/k ([BLR, §9.2 Example 8]) implies

σX =
∑

v∈v(ΓX• )

σX̃v
+ rX .

ThenX• is ordinary if and only if X̃•
v , v ∈ v(ΓX•), is ordinary. Moreover, let g• : Z• → X•

be a multi-admissible covering over k and g̃•v : Z̃•
v → X̃•

v , v ∈ v(ΓX•), the admissible

covering over k induced by g•, where the underlying curve of Z̃•
v is the normalization of

g−1(Xv). Then g• is new-ordinary if and only if g̃•v is new-ordinary for each v ∈ v(ΓX•).

2.2.3. Let m be an arbitrary positive natural number prime to p and µm ⊆ k× the group
of mth roots of unity. Fix a primitive mth root ζ, we may identify µm with Z/mZ via the
homomorphism ζ i 7→ i. Let α ∈ Hom(Πab

X• ,Z/mZ). We denote by X•
α = (Xα, DXα)→ X•

the Galois multi-admissible covering with Galois group Z/mZ corresponding to α. Write
FXα for the absolute Frobenius morphism on Xα. Then there exists a decomposition ([Se,
Section 9])

H1(Xα,OXα) = H1(Xα,OXα)
st ⊕H1(Xα,OXα)

ni,
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where FXα is a bijection on H1(Xα,OXα)
st and is nilpotent on H1(Xα,OXα)

ni. Moreover,
we have H1(Xα,OXα)

st = H1(Xα,OXα)
FXα ⊗Fp k, where H1(Xα,OXα)

FXα denotes the
subspace of H1(Xα,OXα) on which FXα acts trivially. Then Artin-Schreier theory implies
that we may identify

Hα
def
= H1

ét(Xα,Fp)⊗Fp k

with the largest subspace of H1(Xα,OXα) on which FXα is a bijection.
The finite dimensional k-linear space Hα has the structure of a finitely generated k[µm]-

module induced by the natural action of µm on Xα. Then we have the following canonical
decomposition

Hα =
⊕

i∈Z/mZ

Hα,i,

where ζ ∈ µm acts on Hα,i as the ζ i-multiplication.

2.2.4. We call

γα,i
def
= dimk(Hα,i), i ∈ Z/mZ,

a generalized Hasse-Witt invariant (see [B], [N], [T3] for the case of étale or tame coverings
of smooth pointed stable curves) of the cyclic multi-admissible covering X•

α → X•. In
particular, we call

γα,1

the first generalized Hasse-Witt invariant of the cyclic multi-admissible covering X•
α →

X•. Note that the above decomposition implies that

dimk(Hα) =
∑

i∈Z/mZ

γα,i.

In particular, if Xα is connected, then dimk(Hα) = σXα .

2.2.5. We write Z[DX ] for the group of divisors whose supports are contained in DX .

Note that Z[DX ] is a free Z-module with basis DX . We put Z/mZ[DX ]
def
= Z[DX ]⊗Z/mZ

and define the following

c′m : Z/mZ[DX ]→ Z/mZ, D mod m 7→ deg(D) mod m.

Write (Z/mZ)∼ for the set {0, 1, . . . ,m − 1} and (Z/mZ)∼[DX ] for the subset of Z[DX ]
consisting of the elements whose coefficients are contained in (Z/mZ)∼. Then we have a

natural bijection ιm : (Z/mZ)∼[DX ]
∼→ Z/mZ[DX ].

We put

(Z/mZ)∼[DX ]
0 def
= ι−1

m (ker(c′m)).

Note that we have m|deg(D) for all D ∈ (Z/mZ)∼[DX ]
0. Moreover, we put

s(D)
def
=

deg(D)

m
∈ Z≥0.

Since every D ∈ (Z/mZ)∼[DX ]
0 can be regarded as a ramification divisor associated to

some cyclic admissible covering, the structure of the maximal prime-to-p quotient of ΠX•

(2.1.4) implies the following:

0 ≤ s(D) ≤
{

0, if nX ≤ 1,
nX − 1, if nX ≥ 2.
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2.2.6. We put

X̂
def
= lim←−

H⊆ΠX• open

XH , DX̂

def
= lim←−

H⊆ΠX• open

DXH
, ΓX̂•

def
= lim←−

H⊆ΠX• open

ΓX•
H
.

We call X̂• = (X̂,DX̂) the universal admissible covering of X• corresponding to ΠX• , and

ΓX̂• the dual semi-graph of X̂•. Note that Aut(X̂•/X•) = ΠX• , and that ΓX̂• admits a
natural action of ΠX• . For every e ∈ eop(ΓX•), write ê ∈ eop(ΓX̂•) for an open edge over
e and xe for the marked point corresponding to e.
We denote by Iê ⊆ ΠX• the stabilizer of ê. The definition of admissible coverings implies

that Iê is isomorphic to the Galois group Gal(Kt
xe
/Kxe)

∼= Ẑ(1)p′ , where Kxe denotes the

quotient field of OX,xe , K
t
xe

denotes a maximal tamely ramified extension, and Ẑ(1)p′

denotes the maximal prime-to-p quotient of Ẑ(1). Suppose that xe is contained in Xv.
Then we have an injection

ϕê : Iê ↪→ Πab
X•

which factors through Iê ↪→ Πab
X̃•

v
induced by the composition of (outer) injective homo-

morphisms Iê ↪→ ΠX̃•
v
↪→ ΠX• , where ΠX̃•

v
denotes the admissible fundamental group of

the smooth pointed stable curve X̃•
v associated to v (2.1.2). Since the image of ϕê de-

pends only on e, we may write Ie for the image ϕê(Iê). Moreover, the structure of maximal
prime-to-p quotients of admissible fundamental groups of pointed stable curves (2.1.4) im-
plies that the following holds: There exists a generator [se] of Ie for each e ∈ eop(ΓX•)
such that ∑

e∈eop(ΓX• )

[se] = 0

in Πab
X• . In the remainder of the present paper, we fix a set of generators {[se]}e∈eop(ΓX• )

of Ie satisfying the above condition.

Definition 2.2. We maintain the notation introduced above.
(i) We put

Dα
def
=

∑
e∈eop(ΓX• )

α([se])xe, α ∈ Hom(Πab
X• ,Z/mZ).

Note that we haveDα ∈ (Z/mZ)∼[DX ]
0. On the other hand, for eachD ∈ (Z/mZ)∼[DX ]

0,
we denote by

RevadmD (X•)
def
= {α ∈ Hom(Πab

X• ,Z/mZ) | Dα = D}.
Moreover, we put

(1) γ(α,D)
def
= γα,1.

(ii) Let Q ∈ Z[DX ] be an arbitrary effective divisor on X and m an arbitrary natural
number. We put [

Q

m

]
def
=

∑
x∈DX

[
ordx(Q)

m

]
x,

which is an effective divisor on X. Here [(−)] denotes the maximum integer which is less
than or equal to (−).

2.3. Generalized Hasse-Witt invariants via line bundles. The generalized Hasse-
Witt invariants can be also described in terms of line bundles and divisors.
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2.3.1. Settings. We maintain the settings introduced in 2.2.1. Moreover, we suppose
that X• is smooth over k.

2.3.2. Let m ∈ N be an arbitrary natural number prime to p. We denote by Pic(X) the
Picard group of X. Consider the following complex of abelian groups:

Z[DX ]
am→ Pic(X)⊕ Z[DX ]

bm→ Pic(X),

where am(D) = ([OX(−D)],mD), bm(([L], D)) = [L⊗m ⊗OX(D)]. We denote by

PX•,m
def
= ker(bm)/Im(am)

the homology group of the complex. Moreover, we have the following exact sequence

0→ Pic(X)[m]
a′m→PX•,m

b′m→ Z/mZ[DX ]
c′m→ Z/mZ,

where Pic(X)[m] denotes the m-torsion subgroup of Pic(X), and

a′m([L]) = ([L], 0) mod Im(am), b′m(([L], D)) mod Im(am)) = D mod m,

c′m(D mod m) = deg(D) mod m.

We shall define

P̃X•,m ⊆ ker(bm) ⊆ Pic(X)⊕ Z[DX ]

to be the inverse image of (Z/mZ)∼[DX ]
0 ⊆ (Z/mZ)∼[DX ] ⊆ Z[DX ] under the projection

ker(bm) → Z[DX ]. It is easy to see that PX•,m and P̃X•,m are free Z/mZ-modules
with rank 2gX + nX − 1 if nX ̸= 0 and with rank 2gX if nX = 0. Note that we have

P̃X•,m
∼→ P̃X•,m/Im(am)

∼→PX•,m.
On the other hand, let α ∈ Hom(Πab

X• ,Z/mZ) and f •
α : X•

α → X• the Galois multi-
admissible covering over k with Galois group Z/mZ corresponding to α. Then we see

fα,∗OXα
∼=

⊕
i∈Z/mZ

Lα,i,

where locally Lα,i is the eigenspace of the natural action of i with eigenvalue ζ i. Moreover,
we have the following natural isomorphism ([T3, Proposition 3.5]):

Hom(Πab
X• ,Z/mZ) ∼→ P̃X•,m, α 7→ ([Lα,1], Dα).

Then every element of P̃X•,m induces a Galois multi-admissible covering of X• over k
with Galois group Z/mZ.

2.3.3. Further assumption. In the remainder of the present paper, we may assume that

n
def
= pt − 1

for some positive natural number t ∈ N unless indicated otherwise.
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2.3.4. We introduce the following notation concerning an effective divisor D on X.

Definition 2.3. For u ∈ {0, . . . , n}, write its p-adic expansion as

u =
t−1∑
r=0

urp
r

with ur ∈ {0, . . . , p−1}. We identify {0, . . . , t−1} with Z/tZ naturally. Then {0, . . . , t−1}
admits an additional structure induced by the natural additional structure of Z/tZ. We
put

u(i) def
=

t−1∑
r=0

ui+rp
r, i ∈ {0, . . . , t− 1}.

Let D ∈ (Z/nZ)∼[DX ]
0 (2.2.5). We put

D(i) def
=

∑
x∈DX

(ordx(D))(i)x, i ∈ {0, 1, . . . , t− 1},

which is an effective divisor on X. Moreover, for each j ∈ {0, . . . , n− 1}, we put

D(j)
def
= jD − n

[
jD

n

]
.

Note that D(pt−i) = D(i), i ∈ {0, . . . , t− 1}.

By the various definitions, we have the following lemma.

Lemma 2.4. We maintain the notation introduced above. Suppose n
def
= pt − 1. Then we

have the following holds (see 2.2.4 for the definition of γα,j)

γα,j = γjα,1 = γ(jα,D(j)).

In particular, by using Definition 2.2 (i)-(1), we have

γ(α,D) = γα,1 = γα,pt−i = γpt−iα,1 = γ(pt−iα,D(pt−i)) = γ(pt−iα,D(i)), i ∈ {0, . . . , t− 1}.

2.3.5. We explain that D(j), j ∈ {0, . . . , n − 1}, naturally arises from a Galois multi-
admissible covering of X• with Galois group Z/nZ whose ramification divisor is D. Let

([L], D) ∈ P̃X•,n and α ∈ Hom(Πab
X• ,Z/nZ) the element such that ([L], D) = ([Lα,1], Dα)

via the isomorphism Hom(Πab
X• ,Z/nZ) ∼→ P̃X•,n explained in 2.3.2. We fix an isomor-

phism L⊗n ∼= OX(−D) ⊆ OX and put

L(j) def
= L⊗j ⊗OX(

[
jD

n

]
), j ∈ {1, . . . , n− 1}.

Then we have L(j)⊗n ∼= OX(−D(j)) and ([L(j)], D(j)) = ([Lα,j], Dα(j)) = ([Lα,j], D(j)) ∈
P̃X•,n. Moreover, the action of j ∈ Z/nZ on P̃X•,n is given by

([L], D) 7→ ([L(j)], D(j)).

When j = p, the action of j is induced by the Frobenius action FXα . In particular, we
shall denote L(j) and D(j) by L(i) and D(i), respectively, if j = pt−i, i ∈ {0, . . . , t− 1}.
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2.3.6. On the other hand, we have the following composition of morphisms of line bundles

L pt→ L⊗pt = L⊗n ⊗ L ∼→ OX(−D)⊗ L ↪→ L.
The composite morphism induces a morphism ϕ([L],D) : H

1(X,L)→ H1(X,L). We denote
by

γ([L],D)
def
= dimk(

∩
r≥1

Im(ϕr
([L],D))).

Write αL ∈ Hom(Πab
X• ,Z/nZ) for the element corresponding to ([L], D) and FX for the

absolute Frobenius morphism on X. Then we see that γαL,1 (2.2.4) is equal to the di-

mension over k of the largest subspace of H1(X,L) on which F t
X

def
= FX ◦ · · · ◦ FX is a

bijection. Then we obtain γ([L],D) = γαL,1. Moreover, since DαL = D, we have

γ([L],D) = γ(αL,D) (
def
= γαL,1).

We have the following lemma.

Lemma 2.5. We maintain the notation introduced above. Suppose that X• is smooth
over k. Then we have

γ(αL,D) ≤ dimk(H
1(X,L)) =

 gX , if ([L], D) = ([OX ], 0),
gX − 1, if s(D) = 0, [L] ̸= [OX ],
gX + s(D)− 1, if s(D) ≥ 1,

where s(D) is the integer defined in 2.2.5.

Proof. The first inequality follows from the definition of generalized Hasse-Witt invariants.
On the other hand, the Riemann-Roch theorem implies that

dimk(H
1(X,L)) = gX − 1− deg(L) + dimk(H

0(X,L))

= gX − 1 +
1

n
deg(D) + dimk(H

0(X,L)) = gX − 1 + s(D) + dimk(H
0(X,L)).

This completes the proof of the lemma. □
2.4. Raynaud-Tamagawa theta divisors. In this subsection, we recall the theory of
theta divisors which was introduced by Raynaud in the case of étale coverings ([R1]), and
which was generalized by Tamagawa in the case of tame coverings ([T3]).

2.4.1. Settings. We maintain the notation introduced in 2.3.1.

2.4.2. Let Fk be the absolute Frobenius morphism on Spec k, FX/k the relative Frobenius

morphism X → X1
def
= X ×k,Fk

k over k, and F t
k

def
= Fk ◦ · · · ◦Fk. We put Xt

def
= X ×k,F t

k
k,

and define a morphism
F t
X/k : X → Xt

over k to be F t
X/k

def
= FXt−1/k ◦ · · · ◦ FX1/k ◦ FX/k.

Let ([L], D) ∈ P̃X•,n, and let Lt be the pulling back of L by the natural morphism
Xt → X. Note that L and Lt are line bundles of degree −s(D) (2.2.5). We put

Bt
D

def
= (F t

X/k)∗
(
OX(D)

)
/OXt , ED

def
= Bt

D ⊗ Lt.

Write rk(ED) for the rank of ED. Then we obtain

χ(ED) = deg(det(ED))− (gX − 1)rk(ED).
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Moreover, we have χ(ED) = 0 ([T3, Lemma 2.3 (ii)]).

2.4.3. Let JXt be the Jacobian variety of Xt and LXt a universal line bundle on Xt×JXt .
Let prXt

: Xt × JXt → Xt and prJXt
: Xt × JXt → JXt be the natural projections. We

denote by F the coherent OXt-module pr∗Xt
(ED)⊗ LXt , and by

χF
def
= dimk(H

0(Xt ×k k(y),F ⊗ k(y)))− dimk(H
1(Xt ×k k(y),F ⊗ k(y)))

for each y ∈ JXt , where k(y) denotes the residue field of y. Note that since prJXt
is flat,

χF is independent of y ∈ JXt . Write (−χF)
+ for max{0,−χF}. We denote by

ΘED ⊆ JXt

the closed subscheme of JXt defined by the (−χF)
+th Fitting ideal Fitt(−χF )+

(
R1(prJXt

)∗(F)
)
.

The definition of ΘED is independent of the choice of Lt. Moreover, we have codim(ΘED) ≤
1.

2.4.4. In [R1], Raynaud investigated the following property of the vector bundle ED on
X.

Condition 2.6. We shall say that ED satisfies (⋆) if there exists a line bundle L′
t of degree

0 on Xt such that

0 = min{dimk(H
0(Xt, ED ⊗ L′

t)), dimk(H
1(Xt, ED ⊗ L′

t))}.

Moreover, [T3, Proposition 2.2 (i) (ii)] implies that [L′] ̸∈ ΘED if and only if ED satisfies
(⋆) for L′, where [L′] denotes the point of JXt corresponding to L′. Namely, ΘED is a
divisor of JXt when ED satisfies (⋆). Then we have the following definition:

Definition 2.7. We shall call that the Raynaud-Tamagawa theta divisor ΘED ⊆ JXt

associated to ED exists if ED satisfies (⋆).

Remark 2.7.1. Suppose that ED satisfies (⋆) (i.e., Condition 2.6). [R1, Proposition
1.8.1] implies that ΘED is algebraically equivalent to rk(ED)Θ, where Θ is the classical
theta divisor (i.e., the image of XgX−1

t in JXt).

Lemma 2.8. We maintain the notation introduced above. Let [I] ∈ Pic(X)[n] and It the
pulling back of I by the natural morphism Xt → X. Suppose

γ([L⊗I],D) = dimk(H
1(X,L ⊗ I)).

Then the Raynaud-Tamagawa theta divisor ΘED associated to ED exists (i.e., [It] ̸∈ ΘED).

Proof. The definition of ED implies the following natural exact sequence

0→ Lt → (F t
X/k)∗

(
OX(D)

)
⊗Lt → ED → 0.

Then the following natural sequence is exact

. . .→ H0(Xt, ED ⊗ It)→ H1(Xt,Lt ⊗ It)
ϕLt⊗It→ H1(Xt, (F

t
X/k)∗

(
OX(D)

)
⊗Lt ⊗ It)

→ H1(Xt, ED ⊗ It)→ . . . .

Note that we have
H1(Xt,Lt ⊗ It) ∼= H1(X,L ⊗ I),

H1(Xt, (F
t
X/k)∗

(
OX(D)

)
⊗Lt ⊗ It) ∼= H1(X,OX(D)⊗ (F t

X/k)
∗(Lt ⊗ It))

∼= H1(X,OX(D)⊗ (L ⊗ I)⊗pt) ∼= H1(X,L ⊗ I).
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Moreover, it is easy to see that the homomorphism H1(X,L ⊗ I) → H1(X,L ⊗ I)
induced by ϕLt⊗It coincides with ϕ([L⊗I],D). Then Condition 2.6 implies that the Raynaud-
Tamagawa theta divisor ΘED associated to ED exists if γ([L⊗I],D) = dimk(H

1(X,L ⊗ I)).
□

2.4.5. The following fundamental theorem of theta divisors was proved by Raynaud and
Tamagawa.

Theorem 2.9. Suppose that s(D) ∈ {0, 1}. Then the Raynaud-Tamagawa theta divisor
associated to ED exists (i.e., ED satisfies (⋆)).

Remark 2.9.1. Theorem 2.9 was proved by Raynaud if s(D) = 0 ([R1, Théorème 4.1.1]),
and by Tamagawa if s(D) ≤ 1 ([T3, Theorem 2.5]). On the other hand, the Raynaud-
Tamagawa theta divisor ΘED associated to ED does not exist in general ([T3, Example
2.19]).

Moreover, by applying Theorem 2.9, we have the following lemma (see [T3, Corollary
2.6, Lemma 2.12 (ii)]).

Lemma 2.10. (i) Let Q ∈ Z[DX ] be an effective divisor on X of degree s(Q)n such that
ordx(Q) ≤ n for each x ∈ Supp(Q), LQ a line bundle on X of degree −s(Q), and LQ,t the

pulling back of LQ by the natural morphism Xt → X. Let SQ
def
= {x ∈ X | ordx(Q) = n},

Q′ def
= Q−

∑
x∈SQ

nx.

an effective divisor on X of degree s(Q′)n, LQ′ a line bundle on X of degree −s(Q′), and
LQ′,t the pulling back of LQ′ by the natural morphism Xt → X. Suppose that the Raynaud-
Tamagawa theta divisor associated to Bt

Q⊗LQ,t exists. Then the Raynaud-Tamagawa theta
divisor associated to Bt

Q′ ⊗ LQ′,t exists.

(ii) Let ti, i ∈ {1, 2}, be an arbitrary positive natural number and ni
def
= pti − 1. Let

Qi ∈ Z[DX ] be an effective divisor on X of degree deg(Qi) = s(Qi)ni, LQi
a line bundle on

X of degree −s(Qi), and LQi,ti the pulling back of LQi
by the natural morphism Xti → X.

Suppose that s
def
= s(Q1) = s(Q2). Let t

def
= t1 + t2, n

def
= n1 + pt1n2,

Q
def
= Q1 + pt1Q2 ∈ Z[DX ]

an effective divisor on X of degree deg(Q) = sn, LQ a line bundle on X of degree
−s, and LQ,t the pulling back of LQ by the natural morphism Xt → X. Then the
Raynaud-Tamagawa theta divisor associated to Bt

Q⊗LQ,t exists if and only if the Raynaud-

Tamagawa theta divisor associated to Bti
Qi
⊗ LQi,ti exists for each i ∈ {1, 2}.

3. New-ordinariness of cyclic admissible coverings of generic curves

In this section, we prove our main theorem of the present paper (see Theorem 3.5),
namely, a sufficient and necessary condition for ordinariness of prime-to-p cyclic admissible
coverings of generic curves.

3.1. Idea. In this subsection, we briefly explain the idea of our proof of Theorem 3.5.

3.1.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X• is
generic (2.1.3). Moreover, for simplicity, we assume n = pt − 1.
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3.1.2. Let D ∈ (Z/nZ)∼[DX ]
0 (2.2.5) be an effective divisor on X, α ∈ RevadmD (X•)\{0}

(Definition 2.2 (i)), and f • : Y • → X• the Galois multi-admissible covering over k with
Galois group Z/nZ induced by α.

We observe that if Y • is ordinary, then D must satisfy a certain condition which we
call Frobenius stable (see Definition 3.3). The goal of this section is to prove its converse,
namely, if D is Frobenius stable then Y • is ordinary. By 2.3 and 2.4, in other words, we
need to prove that the Raynaud-Tamagawa theta divisor associated to ED(j) (2.4.2) exists
for every D(j) (Definition 2.3), j ∈ {1, . . . , n− 1}, when D is Frobenius stable.

3.1.3. Special case (Section 3.3). Suppose that gX = 0. Firstly, we assume n = p − 1.
If nX = 3, then the result has been essentially obtained by Bouw. If nX > 3, since X•

is generic, we consider a suitable degeneration (i.e., (DEG-A) defined in 3.3.2) X •
s of X•

such that the smooth pointed stable curves associated to vertices (2.1.2) of the dual semi-
graph X •

s are of type (0, 3). Then our goal follows from specialization maps of admissible
fundamental groups. Second, we assume that n = pt − 1 for an arbitrary t ∈ N. We
observe that D(j) can be constructed by certain effective divisors whose degree is equal
to s(D(j))(p− 1) when D is Frobenius stable. Then by Lemma 2.10, we may prove that
the Raynaud-Tamagawa theta divisor associated to ED(j) exists.

3.1.4. General case (Section 3.5). Suppose that gX ≥ 0. In order to reduce the general
case to the special case (i.e., gX = 0), we consider a suitable degeneration (i.e., (DEG-
B) defined in 3.5.2) X •

s of X• such that the smooth pointed stable curves associated to
vertices of the dual semi-graph X •

s are either of type (0, nX) or of type (gX , 1). Then
by applying specialization maps of admissible fundamental groups and Nakajima’s result
concerning ordinariness of cyclic étale coverings of generic curves, we may prove that the
Raynaud-Tamagawa theta divisor associated to ED(j) exists.

3.1.5. In the cases mentioned above, since we compute generalized Hasse-Witt invariants
of prime-to-p cyclic admissible coverings of singular pointed stable curves, we need to
compute not only the generalized Hasse-Witt invariants arising from tame coverings of
irreducible components but also arising from coverings of dual semi-graphs.

3.2. Degeneration settings. Let R be a discrete valuation ring with algebraically closed
residue field kR, KR the quotient field of R, and KR an algebraic closure of KR. Suppose
that k ⊆ KR. Let

X • = (X , DX
def
= {e1, . . . , enX

})
be a pointed stable curve of type (gX , nX) over R, where ei, i ∈ {1, . . . , nX}, is a R-

point of X . We shall write X •
η = (Xη, DXη

def
= {eη,1, . . . , eη,nX

}), X •
η = (Xη, DXη

def
=

{eη,1, . . . , eη,nX
}), X •

s = (Xs, DXs

def
= {es,1, . . . , es,nX

}) for the generic fiber X • ×R KR of
X •, the geometric generic fiber X • ×R KR of X •, and the special fiber X • ×R kR of X •,
respectively. Write ΠX •

η
and ΠX •

s
for the admissible fundamental groups of X •

η and X •
s ,

respectively. Then we have a surjective specialization map ([V, Théorème 2.2 (b)])

spR : ΠX •
η
↠ ΠX •

s
.

Moreover, we shall suppose that the geometric generic fiber X •
η of X • is KR-isomorphic

to X•×k KR. Then without loss of generality, we may identify eη,i, i ∈ {1, . . . , nX}, with
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xi ×k KR via this isomorphism. Note that since the admissible fundamental groups do
not depend on the base fields, ΠX •

η
is naturally isomorphic to ΠX• .

3.3. Basic case. In this subsection, we treat the case where gX = 0 and n = p− 1.

3.3.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X• is a

generic curve (2.1.3) over k of type (0, nX). Moreover, we assume n
def
= p− 1.

3.3.2. We maintain the notation introduced in 3.2. We shall say that X• admits a
(DEG-A) if the following conditions hold, where “(DEG)” means “degeneration”: (i)
nX ≥ 4. (ii) X •

s is a component-generic pointed stable curve (2.1.3) over kR. (iii) The
underlying curve Xs of X •

s is a chain of projective lines {Pu
∼= P1

kR
}u=1,...,nX−2 over kR

such that DXs ∩P1 = {es,1, es,2}, DXs ∩PnX−2 = {es,nX−1, es,nX
}, and DXs ∩Pu = {es,u+1},

u ̸∈ {1, nX − 2}.

3.3.3. We have the following lemma.

Lemma 3.1. Let gX = 0, n = p − 1, D ∈ (Z/nZ)∼[DX ]
0, and α ∈ RevadmD (X•) \ {0}.

Then the Raynaud-Tamagawa theta divisor ΘED (2.4.3) associated to ED exists. Moreover,

we have (see 2.3.2 for P̃X•,n)

γ([L],D) = dimk(H
1(X,L)), ([L], D) ∈ P̃X•,n.

Proof. Let f • : Y • = (Y,DY ) → X• be the Galois multi-admissible covering over k with
Galois group Z/nZ induced by α. Suppose that nX = 3. Then [B, Corollary 6.8] and

Lemma 2.5 imply γ(α,D) = dimk(H
1(X,L)) = s(D)− 1 for every ([L], D) ∈ P̃X•,n. Then

Lemma 2.8 (i.e., I ∼= OX) implies that [OX ] ̸∈ ΘED (i.e., ΘED = ∅).
Suppose that nX ≥ 4. Since X• is a generic curve, X• admits a (DEG-A) (3.3.2).

Furthermore, we write Qη (resp. Qs) for the effective divisor on Xη (resp. Xs) induced by
D and αη ∈ RevadmQη

(X •
η ) for the element induced by α. Then we have γ(α,D) = γ(αη ,Qη).

Since Xs is a chain, for each u ∈ {1, . . . , nX − 3}, we may write yu and zu+1 for the
inverse image of Pu∩Pu+1 of the natural closed immersion Pv ↪→ Xs and the inverse image
of Pu ∩ Pu+1 of the natural closed immersion Pu+1 ↪→ Xs, respectively. We define

P •
1 = (P1, DP1

def
= {es,1, es,2, y1}),

P •
nX−2 = (PnX−2, DPnX−2

def
= {znX−2, es,nX−1, es,nX

}),

P •
u = (Pu, DPu

def
= {zu, es,u+1, yu}), u ̸∈ {1, nX − 2},

to be smooth pointed stable curves of types (0, 3) over kR, respectively. Let

f •
η

def
= f • ×k KR : Y•

η = (Yη, DYη
)
def
= Y • ×k KR → X •

η

be the Galois multi-admissible covering over KR with Galois group Z/nZ induced by
f •, and ΠY•

η
⊆ ΠX •

η
the admissible fundamental group of an arbitrary connected compo-

nent of Y•
η . By the specialization theorem of maximal prime-to-p quotients of admissible

fundamental groups (cf. [V, Théorème 2.2 (c)]), we have spp
′

R : Πp′

X •
η

∼→ Πp′

X •
s
, where (−)p′

denotes the maximal prime-to-p quotient of (−). Then we obtain a normal open subgroup

Πp′

Y•
s

def
= spp

′

R(Π
p′

Y•
η
) ⊆ Πp′

X •
s
. Write ΠY•

s
⊆ ΠX •

s
for the inverse image of Πp′

Y•
s
of the natural

surjection ΠX •
s
↠ Πp′

X •
s
. Then ΠY•

s
and f •

η determine a Galois multi-admissible covering
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f •
s : Y•

s = (Ys, DYs) → X •
s over kR with Galois group Z/nZ. Write αs ∈ RevadmQs

(X •
s ) for

an element induced by f •
s .

Let Yu
def
= f−1

s (Pu), u ∈ {1, . . . , nX − 2}. We put

Y •
u

def
= (Yu, DYu

def
= f−1

s (DPu)), u ∈ {1, . . . , nX − 2}.

Then f •
s induces a Galois multi-admissible covering f •

u : Y •
u → P •

u , u ∈ {1, . . . , nX − 2},
over kR with Galois group Z/nZ. Write ([Lu], Qu) ∈ P̃P •

u ,n for the element induced by
f •
u for every u ∈ {1, . . . , nX − 2}. Note that we have Supp(Qu) ⊆ DPu . Moreover, the
kR[µn]-module H1

ét(Yu,Fp)⊗ kR admits the following canonical decomposition

H1
ét(Yu,Fp)⊗ kR =

⊕
j∈Z/nZ

MYu(j),

where ζ ∈ µn acts on MYu(j) as the ζj-multiplication. Then the case of nX = 3 of the
lemma implies γ([Lu],Qu) = dimkR(MYu(1)) = dimkR(H

1(Pu,Lu)).
Write ΓY•

s
for the dual semi-graph of Y•

s . The natural k[µn]-submodule H1(ΓY•
s
,Fp)⊗

k ⊆ H1
ét(Ys,Fp)⊗ k admits the following canonical decomposition

H1(ΓY•
s
,Fp)⊗ k =

⊕
j∈Z/nZ

MΓY•
s
(j),

where ζ ∈ µn acts on MΓY•
s
(j) as the ζj-multiplication. Then we see

γ(αs,Qs) =

nX−2∑
u=1

γ([Lu],Qu) + dimk(MΓY•
s
(1)) = s(Dαs)− 1.

On the other hand, the kR[µn]-modules H1
ét(Yη,Fp) ⊗ kR and H1

ét(Ys,Fp) ⊗ kR admit
the following canonical decompositions

H1
ét(Yη,Fp)⊗ kR =

⊕
j∈Z/nZ

MYη
(j), H1

ét(Ys,Fp)⊗ kR =
⊕

j∈Z/nZ

MYs(j),

respectively, where ζ ∈ µn acts on MYη
(j) and MYs(j) as the ζ

j-multiplication. Moreover,
we have an injection as kR[µn]-modules H1

ét(Ys,Fp)⊗ kR ↪→ H1
ét(Yη,Fp)⊗ kR induced by

the surjective specialization map ΠY•
η
↠ ΠY•

s
. Thus, we have

s(Dαs)− 1 = γ(αs,Qs) = dimkR(MYs(1)) ≤ γ(αη ,Qη) = dimkR(MYη
(1)) ≤ s(Dαη

)− 1.

Since s(D) = s(Dαη
) = s(Dαs), we obtain

γ([L],D) = s(D)− 1 = dimk(H
1(X,L)).

Then Lemma 2.8 implies that [OX ] ̸∈ ΘED (i.e., ΘED = ∅). We complete the proof of the
lemma. □

3.4. Frobenius stable effective divisors. We introduce Frobenius stable effective di-
visors.

3.4.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X• is a

generic curve (2.1.3) over k of type (gX , nX). Moreover, we assume n
def
= pt − 1.
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3.4.2. Let D ∈ (Z/nZ)∼[DX ]
0 (2.2.5) be an effective divisor on X of degree s(D)n (2.2.5)

and x ∈ DX . For each i ∈ {0, . . . , t− 1}, we put d
(i)
x

def
= ordx(D

(i)) (see Definition 2.3 for
D(i)), and write

d(i)x =
t−1∑
r=0

d(i)x,rp
r

for the p-adic expansion. In particular, if i = 0, we write D, dx, and dx,r for D(0), d
(0)
x ,

and d
(0)
x,r, respectively. Then we have the following lemma.

Lemma 3.2. Let n
def
= pt − 1. The following statements are equivalent:

(i)

s(D)n = deg(D) = deg(D(i))

holds for each i ∈ {0, 1, . . . , t− 1}.
(ii) ∑

x∈DX

dx,r = s(D)(p− 1)

holds for each r ∈ {0, . . . , t− 1}.
(iii) ∑

x∈DX

d(i)x,r = s(D)(p− 1)

holds for each i ∈ {0, . . . , t− 1} and each r ∈ {0, . . . , t− 1}.

Proof. We see that (ii) ⇒ (iii) and (iii) ⇒ (i) follows immediately from the definition of
D(i). Let us prove (i) ⇒ (ii).

Let r ∈ {0, . . . , t− 1}. We have

d(r+1)
x = dx,rp

t−1 +
d
(r)
x − dx,r

p
=

1

p
d(r)x +

pt − 1

p
dx,r =

1

p
d(r)x +

n

p
dx,r.

Note that (i) implies that

s(D)n =
∑
x∈DX

d(r+1)
x =

∑
x∈DX

d(r)x .

Then we have

s(D)n =
∑
x∈DX

d(r+1)
x =

1

p

∑
x∈DX

d(r)x +
n

p

∑
x∈DX

dx,r

=
1

p
s(D)n+

n

p

∑
x∈DX

dx,r.

This means that ∑
x∈DX

dx,r = s(D)(p− 1).

We complete the proof of the lemma. □
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3.4.3. We introduce the following condition concerning effective divisors on X.

Definition 3.3. Let m be a natural number prime to p, t ∈ N the order of p in the finite

group (Z/mZ)×, and n
def
= pt − 1. Let Q ∈ (Z/mZ)∼[DX ]

0 be an effective divisor on X

and m′ def
= n/m. We shall call Q Frobenius stable if Q′ def

= m′Q ∈ (Z/nZ)∼[DX ]
0 satisfies

one of the statements mentioned in Lemma 3.2.

Remark 3.3.1. Let Y • → X• be a Galois tame covering over k whose Galois group is
Z/mZ, and whose ramification divisor is Q. If Q is Frobenius stable, then the eigenspaces
in each Frobenius orbit of H1(Y,OY ) have the same dimension (see the “moreover” part
of Proposition 3.4). See Proposition 4.1 (ii), (iii) for some examples of Frobenius stable
divisors.

3.5. General case. In this subsection, we generalize Lemma 3.1 to arbitrary pointed
stable curves.

3.5.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X• is a

generic curve (2.1.3) over k of type (gX , nX). Moreover, we assume n
def
= pt − 1 for some

positive natural number t ∈ N.

3.5.2. We maintain the notation introduced in 3.2. We shall say that X• admits a (DEG-
B) if the following conditions hold: (i) nX ≥ 2. (ii) X •

s is a component-generic pointed
stable curve (2.1.3) over kR. (iii) The underlying curve Xs of X •

s is a chain consisting of
a projective line P ∼= P1

kR
over kR and a smooth projective curve C over kR of genus gX .

(iv) DXs ⊆ P .

3.5.3. We have the following proposition.

Proposition 3.4. Let D ∈ (Z/nZ)∼[DX ]
0 and α ∈ RevadmD (X•) \ {0}. Suppose that D is

Frobenius stable. Then the Raynaud-Tamagawa theta divisor ΘED associated to ED exists.

Moreover, for every ([L], D) ∈ P̃X•,n, we have

γ([L],D) = dimk(H
1(X,L)) = dimk(H

1(X,L(i))) = γ([L(i)],D(i)), i ∈ {0, . . . , t− 1}.

Proof. Since D is Frobenius stable, we have

dimk(H
1(X,L)) = dimk(H

1(X,L(i))) = gX + s(D)− 1

for each i ∈ {0, . . . , t − 1}. Then to verify the proposition, it is sufficient to prove that
γ([L(i)],D(i)) = dimk(H

1(X,L(i))) holds for each i ∈ {0, . . . , t − 1}. Furthermore, we see
immediately that it is sufficient to prove

γ([L],D) = dimk(H
1(X,L)).

Suppose that gX = 0. We maintain the notation introduced in Lemma 3.2. We put

Dr
def
=

∑
x∈DX

dx,rx, r ∈ {0, . . . , t− 1},

which is an effective divisor on X. Since D is Frobenius stable, we have deg(Dr) =
s(D)(p− 1) for each r ∈ {0, . . . , t− 1}. Moreover, we have

D =
t−1∑
r=0

Drp
r.
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Since deg(Dr) = s(D)(p − 1), by applying Lemma 3.1 (i.e., by replacing D, n, by Dr,
deg(Dr)/s(D), respectively), the Raynaud-Tamagawa theta divisor ΘEDr

, r ∈ {0, . . . , t−
1}, exists. Furthermore, by using Lemma 2.10 repeatedly (e.g. by replacing Q, Q1, and
Q2 by D, D0, and D1 + pD1 + · · · + pr−1Dr, respectively), we obtain that the Raynaud-
Tamagawa theta divisor ΘED exists.

Suppose that gX ≥ 1 and nX ≤ 1. Then D = 0 and every cyclic admissible covering of
X• is étale. The proposition follows immediately from [N, Proposition 4].
Suppose that gX ≥ 1 and nX ≥ 2. Since X• is generic, we see that X• admits a

(DEG-B) (3.5.2). Let f • : Y • = (Y,DY ) → X• be the Galois multi-admissible covering
over k with Galois group Z/nZ induced by α. Furthermore, we write Qη (resp. Qs) for
the effective divisor on Xη (resp. Xs) induced by D and αη ∈ RevadmQη

(X •
η ) for the element

induced by α. Then we have γ(α,D) = γ(αη ,Qη).
We define

P • def
= (P,DP

def
= DXs ∪ (C ∩ P )),

C• = (C,DC
def
= C ∩ P )

to be smooth pointed stable curves over k of types (0, nX + 1) and (gX , 1), respectively.
Let

f •
η

def
= f • ×k KR : Y•

η = (Yη, DYη
)
def
= Y • ×k KR → X •

η

be the Galois multi-admissible covering over KR with Galois group Z/nZ induced by f •,
and ΠY•

η
⊆ ΠX •

η
the admissible fundamental group of an arbitrary connected component

of Y•
η . By the specialization theorem of maximal prime-to-p quotients of admissible fun-

damental groups (cf. [V, Théorème 2.2 (c)]), we have spp
′

R : Πp′

X •
η

∼→ Πp′

X •
s
. Then we obtain

a normal open subgroup Πp′

Y•
s

def
= spp

′

R(Π
p′

Y•
η
) ⊆ Πp′

X •
s
. Write ΠY•

s
⊆ ΠX •

s
for the inverse

image of Πp′

Y•
s
of the natural surjection ΠX •

s
↠ Πp′

X •
s
. Then ΠY•

s
and f •

η determine a Galois
multi-admissible covering

f •
s : Y•

s = (Ys, DYs)→ X •
s

over kR with Galois group Z/nZ. Write αs ∈ RevadmQs
(X •

s ) for an element induced by f •
s .

The structures of the maximal prime-to-p quotients of admissible fundamental groups
(2.1.4) imply that fs is étale over C. Then we obtain that fs is étale over C ∩ P . Thus,

fs is étale over DC . Let YP
def
= f−1

s (P ). We put Y •
P

def
= (YP , DYP

def
= f−1

s (DP )). Then f •
s

induces a Galois multi-admissible covering f •
P : Y •

P → P • over kR with Galois group Z/nZ.
Write ([LP ], QP ) ∈ P̃P •,n for the element induced by f •

P . Note that since fs is étale over
C ∩ P , we have Supp(QP ) ⊆ DP . Moreover, the kR[µn]-module H1

ét(YP ,Fp)⊗ kR admits
the following canonical decomposition

H1
ét(YP ,Fp)⊗ kR =

⊕
j∈Z/nZ

MYP
(j),

where ζ ∈ µn acts on MYP
(j) as the ζj-multiplication. Then Lemma 3.1 implies that

γ([LP ],QP ) = dimkR(MYP
(1)) = dimkR(H

1(P,LP )) = s(Dαs)− 1.

We put Z
def
= f−1

s (C), and denote by π0(Z) the set of connected components of Z.

Then f •
s induces a Galois étale covering (not necessarily connected) f •

C : Z• = (Z,DZ
def
=

f−1
s (DC)) → C• over kR with Galois group Z/nZ. Moreover, f •

C induces an element
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αC ∈ Revadm0 (C•). Suppose that #π0(Z) ̸= n. Then we have αC ̸= 0. The kR[µn]-module
H1

ét(Z,Fp)⊗ kR admits the following canonical decomposition

H1
ét(Z,Fp)⊗ kR =

⊕
j∈Z/nZ

MZ(j),

where ζ ∈ µn acts on MZ(j) as the ζj-multiplication. By applying [N, Proposition 4],
we obtain γ(αC ,0) = dimkR(MZ(1)) = gX − 1. Suppose that #π0(Z) = n. Then we have
αC = 0. Since C is ordinary, we obtain γ(αC ,0) = gX .
Write ΓY•

s
for the dual semi-graph of Y•

s . The natural k[µn]-submodule H1(ΓY•
s
,Fp)⊗

k ⊆ H1
ét(Ys,Fp)⊗ k admits the following canonical decomposition

H1(ΓY•
s
,Fp)⊗ k =

⊕
j∈Z/nZ

MΓY•
s
(j),

where ζ ∈ µn acts on MΓY•
s
(j) as the ζj-multiplication. Then we have (e.g. [Y3, Lemma

3.2])

dimk(MΓY•
s
(1)) =

{
0, if #π0(Z) = n,
1, if #π0(Z) ̸= n.

Thus, we have γ(αs,Qs) = γ(αC ,0) + γ([LP ],QP ) + dimk(MΓY•
s
(1)) = gX + s(Dαs)− 1.

On the other hand, the kR[µn]-modules H1
ét(Yη,Fp) ⊗ kR and H1

ét(Ys,Fp) ⊗ kR admit
the following canonical decompositions

H1
ét(Yη,Fp)⊗ kR =

⊕
j∈Z/nZ

MYη
(j),

H1
ét(Ys,Fp)⊗ kR =

⊕
j∈Z/nZ

MYs(j),

respectively, where ζ ∈ µn acts on MYη
(j) and MYs(j) as the ζ

j-multiplication. Moreover,
we have an injection as kR[µn]-modules H1

ét(Ys,Fp)⊗ kR ↪→ H1
ét(Yη,Fp)⊗ kR induced by

the surjective specialization map ΠY•
η
↠ ΠY•

s
. Thus, we have

gX+s(Dαs)−1 = γ(αs,Qs) = dimkR(MYs(1)) ≤ γ(αη ,Qη) = dimkR(MYη
(1)) ≤ gX+s(Dαη

)−1.

Since s(D) = s(Dαη
) = s(Dαs), we obtain

γ([L],D) = gX + s(D)− 1 = dimk(H
1(X,L)).

This completes the proof of the proposition. □

3.6. Main result.

3.6.1. Now, we are going to prove the main result of the present paper.

Theorem 3.5. Let X• be a generic pointed stable curve (2.1.3) over an algebraically
closed field k of characteristic p > 0. Let m ∈ N be an arbitrary positive natural number
prime to p, f • : Y • → X• an arbitrary Galois multi-admissible covering over k with Galois
group Z/mZ, and D ∈ (Z/mZ)∼[DX ]

0 (2.2.5) the ramification divisor associated to f •.
Then f • is new-ordinary (2.2.2) if and only if D(j), j ∈ {1, . . . ,m − 1}, is Frobenius
stable (Definition 3.3).
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Proof. Let t ∈ N be the order of p in the finite group (Z/mZ)× and n
def
= pt − 1. We put

m′ def
= n/m and write D′ for the effective divisor m′D ∈ (Z/nZ)∼[DX ]

0 when we identify
Z/mZ with the unique subgroup of Z/nZ of order m. We see immediately that, to verify
the proposition, it is sufficient to prove the theorem when D = D′. This means that we
may assume m = n.

Since we have the following canonical isomorphism

f∗OY
∼= OX ⊕

n−1⊕
j=1

L(j),

we obtain that

gY = gX +
n−1∑
j=1

dimk(H
1(X,L(j))).

On the other hand, we have

σY = σX +
n−1∑
j=1

γ([L(j)],D(j))

and γ([L(j)],D(j)) ≤ dimk(H
1(X,L(j))) for each j ∈ {1, . . . , n−1}. Then f • is new-ordinary

if and only if
n−1∑
j=1

γ([L(j)],D(j)) =
n−1∑
j=1

dimk(H
1(X,L(j))).

Suppose that D(j), j ∈ {1, . . . , n − 1}, is Frobenius stable. Then Proposition 3.4
implies that f • is new-ordinary. Conversely, suppose that f • is new-ordinary. Let j ∈
{1, . . . , n−1} and i ∈ {0, . . . , t−1}. Then we have γ([L(i)(j)],D(i)(j)) = dimk(H

1(X,L(i)(j))).
Moreover, we have

γ([L(i)(j)],D(i)(j)) ≤ dimk(H
1(X,L(i′)(j)))

holds for every i′ ∈ {0, . . . , t− 1}. This implies that

gX + s(D(i)(j))−1 = dimk(H
1(X,L(i)(j))) = dimk(H

1(X,L(i′)(j))) = gX + s(D(i′)(j))−1

holds for every i′ ∈ {0, . . . , t − 1}. This means that the statement of Lemma 3.2 (i)
holds. Then D(j), j ∈ {1, . . . , n− 1}, is Frobenius stable. We complete the proof of the
theorem. □

3.6.2. Let 0 ≤ σ ≤ gX be an integer,MgX ,nX ,Z the moduli stack parameterizing pointed

stable curves of type (gX , nX) over Z,MgX ,nX

def
= MgX ,nX ,Z×Z k, andM

σ

gX ,nX
the locally

closed reduced substack of MgX ,nX
whose points represent pointed stable curves with

p-rank σ. Suppose that X• is a pointed stable curve corresponding to a geometric point
over a generic point ofMσ

gX ,nX
. E. Ozman and R. Pries proved the following interesting

result ([OP, Theorem 1.1 (1)]) which is a generalized version of [N, Proposition 4]:

Let ℓ ̸= p be a prime number and nX = 0. Suppose that gX ≥ 2, and
that 0 ≤ σ ≤ gX with σ ̸= 0 if gX = 2. Then every Galois admissible
covering of X• (i.e., Galois étale covering of X) with Galois group Z/ℓZ
is new-ordinary.
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Note that this result gives a new result concerning torsion points of Raynaud-Tamagawa
theta divisors ([OP, Theorem 1.1 (2)]). The proof of the above result depends on a deep
result of J. Achter and Pries concerning monodromy of the p-rank strata of moduli spaces
of curves ([AP]). One may ask whether or not Ozman-Pries’ result hold for arbitrary
prime-to-p cyclic coverings (or abelian coverings in general).

On the other hand, by applying Ozman-Pries’ result mentioned above and similar
arguments to the arguments given in the proofs of Proposition 3.4 and Theorem 3.5, we
obtain the following generalized version of Theorem 3.5 if m = ℓ:

Corollary 3.6. We maintain the notation introduced above. Let X• be a pointed stable
curve corresponding to a geometric point over a generic point of Mσ

gX ,nX
such that 0 ≤

σ ≤ gX with σ ̸= 0 if gX = 2. Let ℓ be an arbitrary prime number prime to p, f • : Y • →
X• an arbitrary Galois multi-admissible covering over k with Galois group Z/ℓZ, and
D ∈ (Z/ℓZ)∼[DX ]

0 the ramification divisor associated to f •. Then f • is new-ordinary if
and only if D(j), j ∈ {1, . . . , ℓ− 1}, is Frobenius stable.

4. Applications

In this section, we give some applications of Theorem 3.5.

4.1. Application 1. By applying Theorem 3.5, one may construct new-ordinary ramified
coverings easily for generic curves. For instance, we have the following proposition.

Proposition 4.1. Let X• be a pointed stable curve of type (gX , nX) over an algebraically
closed field k of characteristic p > 0. Suppose that X• is generic (2.1.3). Then the
following statements hold.

(i) Let m ∈ N be an arbitrary positive natural number prime to p. Suppose that nX ≤ 1
(note that since we assume that X• is pointed stable, we have gX ≥ 1). Then there exists
a new-ordinary Galois admissible covering

f • : Y • → X•

with Galois group Z/mZ such that f is étale.
(ii) Let m ∈ N be an arbitrary positive natural number prime to p. Suppose that nX ≥ 2

is an even number, and we put d
def
= nX/2. Let DX

def
= {x1, x2, . . . , x2d−1, x2d} be a generic

set of 2d points of X and

D
def
=

d∑
r=1

(arx2r−1 + brx2r)

an effective divisor on X such that 1 ≤ ar, br ≤ m − 1 and ar + br = m for each

r ∈ {1, . . . , d}. Note that we have D ∈ (Z/mZ)∼[DX ]
0 (2.2.5). Let ([L], D) ∈ P̃X•,m

(2.3.2) and f • : Y • → X• the Galois multi-admissible covering with Galois group Z/mZ
induced by ([L], D). Then f • is new-ordinary. In particular, there exists a new-ordinary
Galois admissible covering whose Galois group is Z/mZ, and whose branch locus of f is
equal to DX .

(iii) Let t be an arbitrary positive natural number and n
def
= pt − 1. Suppose that p ≥ 5,

and that nX ≥ 3 is an odd number. We put nX = 2d + 1 and c
def
= n/(p − 1). Let
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DX
def
= {x1, . . . , x2d−1, x2d, x2d+1} be a generic set of 2d+ 1 points of X and

Q
def
= cx2d−1 + cx2d + c(p− 3)x2d+1, Q∗ def

=
d−1∑
r=1

(x2r−1 + (n− 1)x2r)

effective divisors on X. We put

D
def
= Q+Q∗ ∈ (Z/nZ)∼[DX ]

0.

Let ([L], D) ∈ P̃X•,n and f • : Y • → X• the Galois multi-admissible covering with Galois
group Z/mZ induced by ([L], D). Then f • is new-ordinary. In particular, there exists a
new-ordinary Galois multi-admissible covering whose Galois group is Z/nZ, and whose
branch locus of f is equal to DX .

Proof. (i) follows immediately from [N, Proposition 4]. Let us prove (ii). In order to verify
(ii), we only need to prove that the restriction of f • on an arbitrary connected component
of Y • is new-ordinary. Let t′ ∈ N be the order of p in (Z/mZ)×. We put

D′ def
= m′D =

d∑
r=1

(m′arx2r−1 +m′brx2r) ∈ (Z/n′Z)∼[DX ]
0

when we identify Z/mZ with the unique subgroup of Z/n′Z of order m, where n′ def
= pt

′−1

and m′ def
= n′/m. Note that we have n′ = m′ar +m′br for each r ∈ {1, . . . , d}. Moreover,

we see immediately

deg(D′(j)(i)) = dn′, i ∈ {0, . . . , t′ − 1}, j ∈ {1, . . . , n′ − 1}.
This means that D′(j), j ∈ {1, . . . , n′}, is Frobenius stable.

Since L⊗n′ ∼= OX(−D)⊗m′ ∼= OX(−D′), we have ([L], D′) ∈ P̃X•,n′ . Let g• : Z• → X•

be the Galois multi-admissible covering over k with Galois group Z/n′Z corresponding
to ([L], D′). Then Theorem 3.5 implies that g• is new-ordinary. Let W • be an arbitrary
connected component of Z• and

g•|W • : W • → X•

the Galois admissible covering over k with Galois group Z/mZ induced by g•. Then g•|W •

is new-ordinary. This completes the proof of (ii).

Next, let us prove (iii). Let j ∈ {1, . . . , n− 1}. We put αj
def
= j − (p− 1)[j/(p− 1)] and

βj
def
= j(p−3)−[j(p−3)/(p−1)]. Note that (p−1)|(2αj+βj) and 2αj+βj ∈ {p−1, 2(p−1)}.

Then we have

jQ = cjx2d−1 + cjx2d + cj(p− 3)x2d+1

= c(αjx2d−1+αjx2d+βjx2d+1)+(n[j/(p−1)]x2d−1+n[j/(p−1)]x2d+n[j(p−3)/(p−1)]x2d+1).

Thus, we have

Q(j) = cαjx2d−1 + cαjx2d + cβjx2d+1.

Then we obtain

deg(Q(j)(i)) = (2αj + βj)c = (2αj + βj)n/(p− 1), i ∈ {0, . . . , t− 1}.
Thus, we see immediately that Q(j), j ∈ {1, . . . , n − 1}, is Frobenius stable (Definition
3.3).
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On the other hand, we see immediately that

deg(Q∗(j)(i)) = dn, i ∈ {0, . . . , t− 1}, j ∈ {1, . . . , n− 1}.

This means that Q∗(j), j ∈ {1, . . . , n− 1}, is Frobenius stable. Thus, we have that D(j),

j ∈ {1, . . . , n−1}, is Frobenius stable. Let ([L], D) ∈ P̃X•,n and f • : Y • → X• the Galois
multi-admissible covering over k with Galois group Z/nZ corresponding to ([L], D). Then
Theorem 3.5 implies that Y • is ordinary. This completes the proof of (iii). □
Remark 4.1.1. The referee kindly pointed out to me that Proposition 4.1 (ii), (iii) can
also be deduced from [LMPT, Corollary 4.8 and Corollary 4.9], respectively.

4.2. Application 2. Next, we consider an inverse Galois problem for X•. Let m be an

arbitrary positive natural number prime to p, t ∈ N the order of p in (Z/mZ)×, n def
= pt−1,

and m′ def
= n/m. Let G be a finite group which is an extension of a group H

def
= Z/mZ by

a p-group P . Then the Schur-Zassenhaus theorem implies that G is a semi-direct product
of the form

P ⋊H.

Write Φ(P )
def
= P p[P, P ] for the Frattini subgroup of P and P

def
= P/Φ(P ). We put

G
def
= G/Φ(P ). Then we obtain an Fp-linear representation

ρ : H → Aut(P ).

Let Z(H) be the set of irreducible characters of H with values in k and ζm a primitive
mth root and χj, j ∈ Z/mZ, the irreducible character such that χj(1) = ζjm. Then we
see Z(H) = {χj}j∈Z/mZ. Let ρχj

: H → GL(P χj
) be an irreducible k-representation of H

of character χj of degree 1. The canonical decomposition of P ⊗Fp k as a k[H]-module is
given by

P ⊗Fp k =
⊕

j∈Z/mZ

P
mχj
χj

,

where mχj
is the multiplicity of the character in the representation ρ. Then we have the

following result.

Proposition 4.2. Let X• be a pointed stable curve of type (gX , nX) over an algebraically
closed field k of characteristic p > 0. Suppose that X• is generic. Let m be a positive

natural number prime to p and D ∈ (Z/mZ)∼[DX ]
0. Moreover, let ([L], D) ∈ P̃X•,m and

α ∈ Hom(Πab
X• ,Z/mZ) the element induced by ([L], D). We put

ϕ : ΠX• ↠ Πab
X•

α→ H
def
= Z/mZ.

Suppose that D(j), j ∈ {1, . . . ,m − 1}, is Frobenius stable (Definition 3.3). Then an
embedding problem (ϕ : ΠX• → H,G ↠ H) has a solution if and only if

mχj
≤

{
gX , if j = 0,
gX + s(D(j))− 1, if j ∈ {1, . . . ,m− 1}.

Proof. Note that the dimensions of irreducible k-representations of prime-to-p cyclic groups
are 1. Then “only if” part of the proposition follows from [B, Proposition 2.4]. On the
other hand, the “if part” of the proposition follows immediately from Theorem 3.5 and
[B, Proposition 2.4 and Proposition 2.5]. □
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Remark 4.2.1. When nX = 0, A. Pacheco and K. Stevenson obtained a necessary and
sufficient for the existence of a solution of an embedding problem (ΠX• → G′, G′ ↠ H ′)
when G′ is a finite group which is an extension of an abelian group H ′ with a prime-to-p
order by a p-group P ′ ([PaSt, Theorem 7.4]). Proposition 4.2 generalizes their result to
the case of prime-to-p cyclic tamely ramified coverings.
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