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1. INTRODUCTION

1.1. Fundamental groups in positive characteristic.
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1.1.1. Let X* = (X, D) be a smooth pointed stable curve of type (gx,nx) over an
algebraically closed field k of characteristic p > 0, where X denotes the underlying curve,
Dx denotes a finite set of marked points satisfying [K, Definition 1.1 (iv)], gx denotes
the genus of X, and ny denotes the cardinality #Dx of Dx.

By choosing a suitable base point of X \ Dx, we have the tame fundamental group IIx.
of X*. Note that since all the tame coverings in positive characteristic can be lifted to
characteristic 0, ITy. is topologically finitely generated. Moreover, A. Grothendieck ([G])
showed that the structure of maximal prime-to-p quotient H‘:’)’;. of IIxe is isomorphic to
the pro-prime-to-p completion of the following group

9x nx
<a’17'"7a’gx7bl7"'7ng7clu'"7CnX ‘ H[azabz]HC]:1>
i=1 j=1

1.1.2.  On the other hand, the structure of Il x. is very mysterious. Some developments of
F. Pop-M. Saidi ([PoSa}), M. Raynaud ([R2]), A. Tamagawa ([T1], [T2], [T3], [T4]), and
the author ([Y1], [Y3], [Y4]) showed evidence for very strong anabelian phenomena for
curves over algebraically closed fields of characteristic p > 0. In this situation, the Galois
group of the base field is trivial, and the étale (or tame) fundamental group coincides
with the geometric fundamental group, thus in a total absence of a Galois action of the
base field. This kind of anabelian phenomenon goes beyond Grothendieck’s anabelian
geometry, and shows that the tame fundamental group of a smooth pointed stable curve
over an algebraically closed field must encode “moduli” of the curve. This is the reason
that we do not have an explicit description of the tame fundamental group of any smooth
pointed stable curve in positive characteristic.

Furthermore, the theories developed in [T3] and [Y4] imply that the isomorphism class
of X* as a scheme can possibly be determined by not only the isomorphism class of Il x. as
a profinite group but also the isomorphism class of the maximal pro-solvable quotient I}
of ILye. Since the isomorphism class of II52 is determined by the set of finite quotients of
152, ([FJ, Proposition 16.10.6]), we may ask the following question: Which finite solvable
groups can appear as quotients of TI5% ?

1.2. p-rank of coverings.

1.2.1. Let N C Ily. be an arbitrary open normal subgroup and X% = (Xy, Dx, ) the
smooth pointed stable curve of type (gx,,nx,) over k corresponding to N. We have
an important invariant oy, associated to X3 (or N) which is called p-rank (see 2.2.2).
Roughly speaking, ox, controls the finite quotients of IIx. which are extensions of the
group Ilxe /N by p-groups. Moreover, if we can compute the p-rank oy, when IIy./N
is abelian, together with the structure theorem of maximal prime-to-p quotients of tame
fundamental groups mentioned in 1.1.1, we can answer the above question for an arbitrary
solvable group step-by-step.

Suppose that IIys/N is abelian. If IIx. /N is a p-group, then ox, can be computed by
using the Deuring-Shafarevich formula ([C], [Su]). Moreover, by applying the Deuring-
Shafarevich formula, to compute o, , we may assume that IIy. /N is a prime-to-p abelian
group. Furthermore, since a Galois tame covering of X*® with Galois group Ilx./N is a
tower of prime-to-p cyclic tame coverings, we obtain oy, if we can compute p-rank for
prime-to-p cyclic tame coverings. Thus, in the remainder of the introduction, we suppose
that I1xe /N = Z/mZ is a prime-to-p cyclic group.
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1.2.2.  The situation of ox, is very complicated when Ilys/N is not a p-group. In
fact, it X* is an arbitrary pointed stable curve over k, then oy, cannot be explicitly
computed in general ([R1], [T3], [Y2]). On the other hand, when X* is generic (i.e.,
a curve corresponding to a geometric generic point of the moduli space M, ., ), the
following interesting result was proved by S. Nakajima:

Theorem 1.1. ([N, Proposition 4]) Suppose that Ixe/N is a prime-to-p cyclic group,
that nx =0, and that X* is generic. Then we have ox, = gx, (i-e., X% is ordinary).

Nakajima’s result was generalized by B. Zhang to the case where ITxe /N is an arbitrary
prime-to-p abelian group ([Z]). Moreover, recently, E. Ozman and R. Pries generalized
Nakajima’s result to the case where X*® is curve corresponding to a geometric generic
point of the p-rank strata of the moduli space M (see [OP] or 3.6.2 of the present

paper).

gx,mx

1.2.3. Suppose that nx # 0. The computations of ox, are much more difficult than the
case of nxy = 0. Let D be the ramification divisor (see Definition 2.2) associated to the
Galois tame covering X3 — X*® over k with Galois group Ilx./N = Z/mZ. Firstly, we
note that there exists an upper bound B(ox, D, m) for ox, depending on the p-rank ox
of X* D, and m such that the following holds (e.g. [B, Section 3]):

Note that B(ox, D, m) is not equal to gx, in general. This means that Nakajima’s result
mentioned above does not hold for tame coverings in general. Then we have the following
natural question: Can ox, attain the upper bound B(ox, D, m)?

If X* is generic, I. Bouw proved that ox, = B(ox, D, m) if m satisfies certain conditions
and p is sufficiently large ([B]). In general, the above question is still open. Moreover, by
applying the theory of theta divisors developed by Raynaud ([R1]) and Tamagawa ([T3]),
the above question is equivalent to the following open problem posed by Tamagawa ([T3,
Question 2.18]): Does the Raynaud-Tamagawa theta divisor (see 2.4.4) associated to D
exist when X* is generic?

1.3. Main result.

1.3.1. In the present paper, we study the problem mentioned in 1.2.3 without making any
assumptions about m and p. More precisely, we prove that the Raynaud-Tamagawa theta
divisor associated to certain D exists, and obtain the following necessary and sufficient
condition for the ordinariness of X3 which generalizes Nakajima’s result to the case of
tamely ramified coverings.

Theorem 1.2. (Theorem 3.5) Suppose that Ilx« /N is a prime-to-p cyclic group, and that
X* is generic. Then we have that ox,, = B(ox,D,m) = gx, (i.e., XX is ordinary) if
and only if D(j), j € {1,...,m—1}, is Frobenius stable (cf. Definition 2.3 and Definition
3.3 for the definitions of D(j) and Frobenius stable, respectively).

Remark 1.2.1. By applying the result of Ozman-Pries mentioned above, we also obtain
a slightly stronger version of Theorem 1.2 for certain m (see Corollary 3.6).

Remark 1.2.2. As an application (Proposition 4.2), we generalize a result of Pacheco-
Stevenson concerning inverse Galois problems for étale coverings of projective generic
curves to the case of tame coverings.
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1.3.2.  Suppose that gx = 0. Let us explain some relationships between Theorem 1.2 and
the ordinary Newton polygon strata of the Torelli locus in PEL-type Shimura varieties. If
oxy = B(ox, D,m) holds for every D, then the intersection of the open Torelli locus with
all p-ordinary Newton polygon strata of certain PEL-Shimura varieties is non-empty (see
[LMPT, Section 4]). Note that if the Newton polygon of the p-divisible group associated
to an abelian variety is p-ordinary, the abelian variety is not ordinary in general. On the
other hand, we call the Newton polygon of the p-divisible group associated to an abelian
variety is “classic” p-ordinary if the abelian variety is ordinary. Then Theorem 1.2 gives
a criterion for determining whether or not the intersection of the open Torelli locus with
classic p-ordinary Newton polygon strata of certain PEL-Shimura varieties is non-empty.

1.4. Structure of the present paper. The present paper is organized as follows. In
Section 2, we recall some definitions and properties of pointed stable curves, admissible
coverings, generalized Hasse-Witt invariants, and Raynaud-Tamagawa theta divisors. In
Section 3, we study the new-ordinariness of prime-to-p cyclic tame coverings of generic
curves by using the theory of Raynaud-Tamagawa theta divisors and prove our main
theorem. In Section 4, we give two applications of the main theorem.

1.5. Acknowledgements. The author would like to thank the referee very much for care-
fully reading to the former version of the present paper and for giving various comments on
it, which were very useful in improving the presentation of the present paper. This work
was supported by JSPS KAKENHI Grant Number 20K14283, and by the Research In-
stitute for Mathematical Sciences (RIMS), an International Joint Usage/Research Center
located in Kyoto University.

2. PRELIMINARIES

2.1. Pointed stable curves and admissible fundamental groups. In this subsec-
tion, we recall some notation concerning admissible fundamental groups.

2.1.1. Let X* = (X, Dx) be a pointed stable curve over an algebraically closed field k of
characteristic p > 0, where X denotes the underlying curve and Dy denotes a finite set
of marked points satisfying [K, Definition 1.1 (iv)]. Write gx for the genus of X and ny
for the cardinality #Dx of Dx. We shall call (gx,nx) the type of X*°.

Write I'xe for the dual semi-graph of X* which is defined as follows: (i) the set of
vertices v(I'xs) of I"xe is the set of irreducible components of X; (ii) the set of open edges
e°P(I'xs) of I'ye is the set of marked points Dx; (iii) the set of closed edges e?(I'xe) of

T'y. is the set of nodes of X. Moreover, we write 7y = dimg(H'(T'x.,Q)) for the Betti
number of the semi-graph I ye..

Example 2.1. We give an example to explain dual semi-graphs of pointed stable curves.
Let X* be a pointed stable curve over k whose irreducible components are X,,, and X,,,
[P

whose node is z.,, and whose marked point is z., € X,,. We use the notation “e” and
“0” to denote a node and a marked point, respectively. Then X* is as follows:
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X

We write v; and vy for the vertices of I'ys corresponding to X,, and X,,, respectively,
e; for the closed edge corresponding to z.,, and ey for the open edge corresponding to
[P

Z.,. Moreover, we use the notation “e” and “o with a line segment” to denote a vertex
and an open edge, respectively. Then the dual semi-graph I'y. of X* is as follows:

e v
T xe: Ul e I o2 o6

2.1.2. Let v € v(I'xe) and e € €°P(I'xs) U e(I'xs). We write X, for the irreducible
component of X corresponding to v, write z. for the node of X corresponding to e if
e € e?(I'yxe), and write z, for the marked point of X corresponding to e if e € e°P(I'x).
Moreover, write nor, : X, — X, for the normalization of X,. We define a smooth pointed
stable curve of type (g,,n,) over k to be

Xs = (X,, Dg, © nor, (X N X,) U (Dx N X,))),
where X8 denotes the singular locus of X. We shall call )?; the smooth pointed stable
curve associated to v.

2.1.3. Let Mg,n,Z be the moduli stack parameterizing pointed stable curves of type (g, n)

over Spec Z, Fp the algebraic closure of I, in &, ﬂgm def MWZ XZFP, and Mg,n the coarse

moduli space of M,,,. Then X* — Spec k determines a morphism cy : Speck — M, ny

and )?; — Speck, v € v(['x+), determines a morphism ¢, : Speck — M,, ,.,. Moreover,
we have a clutching morphism of moduli stacks ([K, Definition 3.8])

c: H Mgu,nv — MQX»”X
vev(T xe)

such that c o (HUEU(FX-) ¢y) = cx. We shall call X* a component-generic pointed stable
curve over k if the image of

H Cy : Speck — H ﬂgv,nv

vev(T ye) vev(Tye)

is a generic point in HUEU(FXo)Mgm"v‘ In particular, we shall call X*® generic if X* is
non-singular component-generic.



6 YU YANG

2.1.4. By choosing a smooth point z € X\ Dy, we obtain a fundamental group w34 (X*, z)
which is called the admissible fundamental group of X* (see [Y1, Definition 2.2] or [Y3,
Section 2.1] for the definitions of admissible coverings and admissible fundamental groups).
The admissible fundamental group of X* is naturally isomorphic to the tame fundamental
group of X*® when X* is smooth over k. For simplicity of notation, we omit the base point
and denote the admissible fundamental group by

[Txe.

The structure of the maximal prime-to-p quotient of IIxe is well-known, and is isomorphic
to the prime-to-p completion of the following group ([V, Théoréme 2.2 (c)])

9X nx
(a1, ... a05,b1,. . bgy,C1ye ot Cny | H[ai,bi] ch =1).
i=1 j=1

2.2. Hasse-Witt invariants and generalized Hasse-Witt invariants. In this sub-
section, we recall some notation concerning Hasse-Witt invariants and generalized Hasse-
Witt invariants. On the other hand, in the case of smooth pointed stable curves, the
generalized Hasse-Witt invariants of cyclic tame coverings were discussed in [B, Section
2] and [T'3, Section 3].

2.2.1. Settings. We maintain the notation introduced in 2.1.1. Let X* = (X, Dx) be a
pointed stable curve of type (gx,nx) over k and Ily. the admissible fundamental group
of X*.

2.2.2.  Let Z*® be a disjoint union of finitely many pointed stable curves over k. We define
the p-rank (or Hasse- Witt invariant) of Z* to be

o7 < dimg, (HL(Z,F,)).
We shall call Z* ordinary if g; = oz, where gz et dimy(H'(Z,0z)). Moreover, let
Z* — X* be a multi-admissible covering ([Y1, Definition 2.2]) over k. We shall call
Z* — X* new-ordinary if g; — gx = 07 — 0x, where ox denotes the p-rank of X*. Note
that if X* is ordinary, then Z®* — X* is new-ordinary if and only if Z* is ordinary.
On the other hand, the structure of Pic% /x ([BLR, §9.2 Example 8]) implies

ox = E O')N(U—i‘rx.

vev(I'xe)

Then X* is ordinary if and only if )Z';, v € v(I"xe), is ordinary. Moreover, let g* : Z* — X*
be a multi-admissible covering over k and gy : Z; — X, v € v(I'x+), the admissible

covering over k induced by ¢°®, where the underlying curve of Z$ is the normalization of
g1 (X,). Then ¢* is new-ordinary if and only if §° is new-ordinary for each v € v(I'xs).

2.2.3. Let m be an arbitrary positive natural number prime to p and p,,, C £* the group
of mth roots of unity. Fix a primitive mth root ¢, we may identify p,, with Z/mZ via the
homomorphism ¢* — i. Let o € Hom (I8, Z/mZ). We denote by X2 = (X,, Dx,) — X*
the Galois multi-admissible covering with Galois group Z/mZ corresponding to . Write
Fx_, for the absolute Frobenius morphism on X,. Then there exists a decomposition ([Se,
Section 9))

HY(X,,0x.) = H(Xa, Ox, )™ © H (X4, Ox, )™,
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where Fx, is a bijection on H'(X,, Ox,)* and is nilpotent on H'(X,, Ox, )™. Moreover,
we have H'(X,,Ox, )" = H'(X,, Ox,)™ e ®p, k, where H'(X,, Ox, )" denotes the
subspace of H'(X,, Ox, ) on which Fx_ acts trivially. Then Artin-Schreier theory implies

that we may identify

Ha déf Hét(Xaan) ®1Fp k

with the largest subspace of H'(X,,Ox,) on which F,_ is a bijection.
The finite dimensional k-linear space H, has the structure of a finitely generated k|, |-
module induced by the natural action of u,, on X,. Then we have the following canonical

decomposition
Ha: @ Ha,ia
1€Z/mZ

where ¢ € p,,, acts on H,; as the ("-multiplication.

2.2.4. We call
Yoi & dimy(Ho,), i € Z/mZ,
a generalized Hasse- Witt invariant (see [B], [N], [T3] for the case of étale or tame coverings

of smooth pointed stable curves) of the cyclic multi-admissible covering X3 — X°*. In
particular, we call

/ya,l
the first generalized Hasse-Witt invariant of the cyclic multi-admissible covering X5 —
X*. Note that the above decomposition implies that

dimg(H,) = Z Voui-
1€Z/mZ
In particular, if X, is connected, then dimy(H,) = ox,.

2.2.5. We write Z[Dx] for the group of divisors whose supports are contained in Dy.

Note that Z[Dx] is a free Z-module with basis Dx. We put Z/mZ[Dx]| o Z|Dx|R7Z/mZ

and define the following
¢ Z/mZDx| — Z/mZ, D mod m — deg(D) mod m.
Write (Z/mZ)~ for the set {0,1,...,m — 1} and (Z/mZ)~[Dx] for the subset of Z[Dx]

consisting of the elements whose coefficients are contained in (Z/mZ)~. Then we have a
natural bijection ¢, : (Z/mZ)~[Dx] = Z/mZ[Dx].

We put
(Z/mZ)" (D] = 13} (ker(c},)).
Note that we have m|deg(D) for all D € (Z/mZ)~[Dx]°. Moreover, we put
of deg(D
S(D) d:f eg( ) < Z>0.
m >

Since every D € (Z/mZ)~[Dx|° can be regarded as a ramification divisor associated to
some cyclic admissible covering, the structure of the maximal prime-to-p quotient of I1x.
(2.1.4) implies the following:

0, if nx < 1,

Oés(D)S{nX—L if ny > 2.
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2.2.6. We put
& def . def . def .
X< lm Xy, Dg=  lim Dy, Ig.=  lim Iy
HClIIxe open HClIIxe open HCIIyxe open

We call X* = ()? , D) the universal admissible covering of X'* corresponding to IIx., and
I' . the dual semi-graph of X*. Note that Aut()/(\"/X') = Ilx., and that I';, admits a
natural action of IIx.. For every e € e®®(I'x.), write € € e°?(I', ) for an open edge over
e and z, for the marked point corresponding to e.

We denote by Iz C Ilxe the stabilizer of €. The definition of admissible coverings implies
that Iz is isomorphic to the Galois group Gal(K}_/K,,) = Z(1)?, where K,, denotes the
quotient field of Ox,,, K} denotes a maximal tamely ramified extension, and Z(l)p/
denotes the maximal prime-to-p quotient of Z(l) Suppose that z. is contained in X,,.
Then we have an injection

qbg : Ig — Hgg?.
which factors through Iz — H%’ induced by the composition of (outer) injective homo-

morphisms [z — I, < Iy, where I 5o denotes the admissible fundamental group of

the smooth pointed stable curve )?; associated to v (2.1.2). Since the image of ¢ de-
pends only on e, we may write I, for the image ¢z(Iz). Moreover, the structure of maximal
prime-to-p quotients of admissible fundamental groups of pointed stable curves (2.1.4) im-
plies that the following holds: There exists a generator [s.| of I, for each e € €¢°P(I'ys)

such that
Z [Se] =0
ece°P(Ixe)
in T13.. In the remainder of the present paper, we fiz a set of generators {[se]}eccor(rys)
of I, satisfying the above condition.

Definition 2.2. We maintain the notation introduced above.
(i) We put
D% > a(fsd)ze, o € Hom(I3h, Z/mZ).
eceop(I'ye)
Note that we have D, € (Z/mZ)~[Dx]°. On the other hand, for each D € (Z/mZ)~[Dx]°,

we denote by

Revid™(X*) I {0 € Hom(II$%, Z/mZ) | Dy = D}.

Moreover, we put

(1) Ve, D) déf Va,1-
(i) Let @ € Z[Dx] be an arbitrary effective divisor on X and m an arbitrary natural

number. We put
Q| der ord,(Q)
ERPA

x€Dx
which is an effective divisor on X. Here [(—)] denotes the maximum integer which is less
than or equal to (—).

2.3. Generalized Hasse-Witt invariants via line bundles. The generalized Hasse-
Witt invariants can be also described in terms of line bundles and divisors.



NEW-ORDINARINESS OF RAMIFIED COVERINGS OF CURVES 9

2.3.1. Settings. We maintain the settings introduced in 2.2.1. Moreover, we suppose
that X* is smooth over k.

2.3.2. Let m € N be an arbitrary natural number prime to p. We denote by Pic(X) the
Picard group of X. Consider the following complex of abelian groups:

Z[Dx] “3 Pic(X) & Z[Dx] 23 Pic(X),

where a,,(D) = ([Ox(—D)],mD), b,,(([£], D)) = [L®™ ® Ox(D)]. We denote by

Do < ker(by) /Im(an)

the homology group of the complex. Moreover, we have the following exact sequence

0 — Pic(X)[m] ™ Pxen % 2/mZ[Dx] % Z/mZ,
where Pic(X)[m] denotes the m-torsion subgroup of Pic(X), and
a,. ([£]) = ([£],0) mod Im(a,,), b,(([£], D)) mod Im(a,,)) = D mod m,

m

(D mod m) = deg(D) mod m.
We shall define
Do C ker(by,) C Pic(X) @ Z[Dx]
to be the inverse image of (Z/mZ)~[Dx|° C (Z/mZ)~[Dx] C Z[Dx| under the projection

ker(b,,) — Z[Dx]. It is easy to see that Px.,, and Px.,, are free Z/mZ-modules
with rank 2gx +nx — 1 if ny # 0 and with rank 2¢gx if nx = 0. Note that we have
@X',m :> Wxgm/lm(am) :> ch7m.

On the other hand, let o € Hom (I3, Z/mZ) and f2 : X2 — X° the Galois multi-
admissible covering over k with Galois group Z/mZ corresponding to a. Then we see

fa,*oXQg @ Ea,i»

1€EZ/mZ

where locally £, ; is the eigenspace of the natural action of ¢ with eigenvalue ¢*. Moreover,
we have the following natural isomorphism ([T3, Proposition 3.5]):

Hom(I13, Z/mZ) = :@Txo,m, a > ([La,1], Da)-

Then every element of @/X.,m induces a Galois multi-admissible covering of X*® over k
with Galois group Z/mZ.

2.3.3. Further assumption. In the remainder of the present paper, we may assume that

ndéfpt—l

for some positive natural number t € N unless indicated otherwise.
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2.3.4.  We introduce the following notation concerning an effective divisor D on X.

Definition 2.3. For u € {0,...,n}, write its p-adic expansion as

t—1
U = § urpr
r=0

with u, € {0,...,p—1}. Weidentify {0, ...,t—1} with Z/tZ naturally. Then {0,...,t—1}
admits an additional structure induced by the natural additional structure of Z/tZ. We
put

t—1
u® Zuﬂrpr, ie{0,...,t—1}.
r=0
Let D € (Z/nZ)~[Dx]° (2.2.5). We put
DD N (ord, (D), i € {0,1,...,t — 1},
z€Dx
which is an effective divisor on X. Moreover, for each j € {0,...,n — 1}, we put
\ def . JjD
D(j) = jD—n [—] :
n
Note that D(pt~") = D@ e {0,...,t —1}.
By the various definitions, we have the following lemma.

Lemma 2.4. We maintain the notation introduced above. Suppose n def pt — 1. Then we
have the following holds (see 2.2.4 for the definition of v, ;)

Voj = Vjal = V(ja, D))
In particular, by using Definition 2.2 (i)-(1), we have

Y(@,D) = VYa,1 = Yapt—i = Vpt—ia,l = V(pt—ia,D(pt=1)) = V(pt—ia,D®); 1€ {0, N 1}

2.3.5.  We explain that D(j), j € {0,...,n — 1}, naturally arises from a Galois multi-
admissible covering of X* with Galois group Z/nZ whose ramification divisor is D. Let

([£],D) € égxovn and « € Hom(I134,Z/nZ) the element such that ([£], D) = ([La.1], Do)

via the isomorphism Hom(I13%,Z/nZ) = Pxe, explained in 2.3.2. We fix an isomor-
phism L£®" =2 Oy (—D) C Ox and put

£G) (ifﬁ@j@OX([jTD}), jefl,. . n—1}.

Then we have £(7)*" = Ox(=D(j)) and ([£(5)], D(j)) = ([Lajl: Da())) = ([Layl, D(1)) €
Pxe n. Moreover, the action of j € Z/nZ on Px.,, is given by
(I£], D) = (I£()], D).

When j = p, the action of j is induced by the Frobenius action Fx_ . In particular, we
shall denote £(j) and D(j) by £ and D@, respectively, if j = p'~*, i € {0,...,t — 1}.
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2.3.6.  On the other hand, we have the following composition of morphisms of line bundles

LU L — 0 L% Ox(—D)® L s L.

The composite morphism induces a morphism ¢z, py : H' (X, £) — H'(X, £). We denote
by
def r
Y(ig),p) = dimyg ﬂ Im(9(12),0)))-
r>1
Write o € Hom(I18%,Z/nZ) for the element corresponding to ([£], D) and Fyx for the

absolute Frobenius morphism on X. Then we see that v,,;1 (2.2.4) is equal to the di-

mension over k of the largest subspace of H'(X, L) on which F% Y Fyo--ioFyisa

bijection. Then we obtain () p)y = Va,,1- Moreover, since D,, = D, we have

(def

Y(£1.0) = V(ae.D) (= Vag,1)-

We have the following lemma.

Lemma 2.5. We maintain the notation introduced above. Suppose that X°® is smooth
over k. Then we have

gx, Zf(['CLD) = ([OX]70)7
Y(ez,D) < dimk(Hl(Xv [')) = gx — 1a Z‘fS(D) = 07 [ ] [OX]a
gX“‘S(D)_lv ZfS(D)Zl,

where s(D) is the integer defined in 2.2.5.

Proof. The first inequality follows from the definition of generalized Hasse-Witt invariants.
On the other hand, the Riemann-Roch theorem implies that

dim,(H' (X, L)) = gx — 1 — deg(L) + dim(H°(X, L))

1
=gx — 1+ ﬁdeg(D) + dimg (H*(X, £)) = gx — 1 + s(D) + dim(H°(X, £)).
This completes the proof of the lemma. O

2.4. Raynaud-Tamagawa theta divisors. In this subsection, we recall the theory of
theta divisors which was introduced by Raynaud in the case of étale coverings ([R1]), and
which was generalized by Tamagawa in the case of tame coverings ([T3]).

2.4.1. Settings. We maintain the notation introduced in 2.3.1.

2.4.2.  Let F}, be the absolute Frobenius morphism on Spec k, Fy/;, the relative Frobenius

morphism X — X; = e x X k over k, and F} def Fpo---0F,. We put X; ey X g, Ft k,
and define a morphism
F)t(/k X = X

over k to be FX/k def Fx, koo Fx mo Fx.

Let ([£],D) € QZX-,”, and let £; be the pulling back of £ by the natural morphism
X; — X. Note that £ and £; are line bundles of degree —s(D) (2.2.5). We put

By € (Fip)+ (0x(D))/Ox.. € < By @ Ly,
Write rk(Ep) for the rank of £€p. Then we obtain
X(€p) = deg(det(€p)) — (9x — 1)rk(€p).
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Moreover, we have x(Ep) = 0 ([T3, Lemma 2.3 (ii)]).

2.4.3. Let Jx, be the Jacobian variety of X; and Ly, a universal line bundle on X; x Jx,.
Let pry, : Xy x Jx, — X; and Py, Xy x Jx, = Jx, be the natural projections. We
denote by F the coherent Ox,-module pr¥,(£p) ® Lx,, and by

Xr & dimy (HO(X, xx k(y), F © k(y))) — dim(H(X, x4 k(y), F @ k(y)))

for each y € Jx,, where k(y) denotes the residue field of y. Note that since pr Jx, 1s flat,
X7 is independent of y € Jx,. Write (—xx)" for max{0, —x#}. We denote by

Of, C Jx,
the closed subscheme of Jy, defined by the (—x )" th Fitting ideal Fitt_, .+ (R (pry, )«(F)).

The definition of Og,, is independent of the choice of £;. Moreover, we have codim(O¢,,) <
1.

2.4.4. In [R1], Raynaud investigated the following property of the vector bundle £p on
X.

Condition 2.6. We shall say that £p satisfies (%) if there exists a line bundle £} of degree
0 on X, such that

0 = min{dimy,(H°(X;,Ep ® L})), dimy (H (X3, Ep @ L))}
Moreover, [T3, Proposition 2.2 (i) (ii)] implies that [£'] & O¢, if and only if £p satisfies

(x) for L', where [£'] denotes the point of Jy, corresponding to £'. Namely, Og, is a
divisor of Jx, when &p satisfies (x). Then we have the following definition:

Definition 2.7. We shall call that the Raynaud-Tamagawa theta divisor ©g, C Jx,
associated to &p exists if £p satisfies ().

Remark 2.7.1. Suppose that &p satisfies (x) (i.e., Condition 2.6). [R1, Proposition
1.8.1] implies that ©g, is algebraically equivalent to rk(Ep)O, where © is the classical
theta divisor (i.e., the image of XJ* ™" in Jy,).

Lemma 2.8. We maintain the notation introduced above. Let |I] € Pic(X)[n] and Z; the
pulling back of I by the natural morphism X; — X. Suppose

Yice,p) = dimy,(H' (X, £ @ 7).
Then the Raynaud-Tamagawa theta divisor O, associated to Ep exists (i.e., [Ii] & Og,, ).
Proof. The definition of £p implies the following natural exact sequence
0= Ly = (Fx )« (Ox(D))®L, — Ep — 0.

Then the following natural sequence is exact

o HY(X,, Ep @ T) — H'(X,, L0 T) “5™ HY(X,, (Fi ) (Ox (D) @L @ T)

— HY X, EpRTL) — ...
Note that we have
HY (X, L, ®T) =2 H (X, L®T),
HY (X4, (F5 )« (Ox(D)@L @ ) = HY(X, Ox (D) @ (Fi )" (£ @ Tt))

~ HY(X,0x(D) ® (L@ T)®") ~ H' (X, L ® ).
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Moreover, it is easy to see that the homomorphism HY(X, L ® Z) — HY(X,L ® T)
induced by ¢,cz, coincides with ¢(zg7),p). Then Condition 2.6 implies that the Raynaud-
Tamagawa theta divisor O, associated to Ep exists if y(zez,p) = dimy(H (X, L ® T)).

O

2.4.5. The following fundamental theorem of theta divisors was proved by Raynaud and
Tamagawa.

Theorem 2.9. Suppose that s(D) € {0,1}. Then the Raynaud-Tamagawa theta divisor
associated to Ep exists (i.e., Ep satisfies (x)).

Remark 2.9.1. Theorem 2.9 was proved by Raynaud if s(D) = 0 ([R1, Théoreme 4.1.1]),
and by Tamagawa if s(D) < 1 ([T3, Theorem 2.5]). On the other hand, the Raynaud-
Tamagawa theta divisor ©¢, associated to €p does not exist in general ([T3, Example
2.19]).

Moreover, by applying Theorem 2.9, we have the following lemma (see [T3, Corollary
2.6, Lemma 2.12 (ii)]).

Lemma 2.10. (i) Let Q € Z[Dx]| be an effective divisor on X of degree s(Q)n such that

ord,(Q) < n for each x € Supp(Q), Lg a line bundle on X of degree —s(Q)), and Lg+ the

pulling back of Lo by the natural morphism X, — X. Let Sg o {z € X | ord,(Q) = n},

Q/défQ— an

z€8q

an effective divisor on X of degree s(Q")n, Lo a line bundle on X of degree —s(Q'), and
L ¢ the pulling back of Lo by the natural morphism X, — X. Suppose that the Raynaud-
Tamagawa theta divisor associated to Bb®£@,t exists. Then the Raynaud-Tamagawa theta
divisor associated to Bl @ L exists.

(ii) Let t;, i € {1,2}, be an arbitrary positive natural number and n; ©pt — 1. Let
Qi € Z[Dx]| be an effective divisor on X of degree deg(Q);) = s(Qi)ni, Lg, a line bundle on

X of degree —s(Q;), and Lg, 4+, the pulling back of Ly, by the natural morphism X;, — X.

Suppose that s def s(Q1) = s(Qq). Lett aof ti+ty, n of n1 + png,

Q < Q1+ p" Q2 € Z[Dx]

an effective divisor on X of degree deg(Q) = sn, Lo a line bundle on X of degree
—s, and Lg; the pulling back of Lg by the natural morphism Xy — X. Then the
Raynaud-Tamagawa theta divisor associated to Bg®£Q7t exists if and only if the Raynaud-

Tamagawa theta divisor associated to Bgi ® L, 1, exists for each i € {1,2}.

3. NEW-ORDINARINESS OF CYCLIC ADMISSIBLE COVERINGS OF GENERIC CURVES

In this section, we prove our main theorem of the present paper (see Theorem 3.5),
namely, a sufficient and necessary condition for ordinariness of prime-to-p cyclic admissible
coverings of generic curves.

3.1. Idea. In this subsection, we briefly explain the idea of our proof of Theorem 3.5.

3.1.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X* is
generic (2.1.3). Moreover, for simplicity, we assume n = p* — 1.
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3.1.2. Let D € (Z/nZ)~[Dx]° (2.2.5) be an effective divisor on X, a € Revy™(X*)\ {0}
(Definition 2.2 (i)), and f* : Y* — X* the Galois multi-admissible covering over k with
Galois group Z/nZ induced by «.

We observe that if Y* is ordinary, then D must satisfy a certain condition which we
call Frobenius stable (see Definition 3.3). The goal of this section is to prove its converse,
namely, if D is Frobenius stable then Y* is ordinary. By 2.3 and 2.4, in other words, we
need to prove that the Raynaud-Tamagawa theta divisor associated to Ep(;) (2.4.2) exists
for every D(j) (Definition 2.3), j € {1,...,n — 1}, when D is Frobenius stable.

3.1.3. Special case (Section 3.3). Suppose that gy = 0. Firstly, we assume n = p — 1.
If nx = 3, then the result has been essentially obtained by Bouw. If nxy > 3, since X*
is generic, we consider a suitable degeneration (i.e., (DEG-A) defined in 3.3.2) X? of X*
such that the smooth pointed stable curves associated to vertices (2.1.2) of the dual semi-
graph X? are of type (0,3). Then our goal follows from specialization maps of admissible
fundamental groups. Second, we assume that n = p! — 1 for an arbitrary ¢t € N. We
observe that D(j) can be constructed by certain effective divisors whose degree is equal
to s(D(j))(p — 1) when D is Frobenius stable. Then by Lemma 2.10, we may prove that
the Raynaud-Tamagawa theta divisor associated to Ep(;) exists.

3.1.4. General case (Section 3.5). Suppose that gx > 0. In order to reduce the general
case to the special case (i.e., gx = 0), we consider a suitable degeneration (i.e., (DEG-
B) defined in 3.5.2) X? of X* such that the smooth pointed stable curves associated to
vertices of the dual semi-graph X? are either of type (0,nx) or of type (gx,1). Then
by applying specialization maps of admissible fundamental groups and Nakajima’s result
concerning ordinariness of cyclic étale coverings of generic curves, we may prove that the
Raynaud-Tamagawa theta divisor associated to Ep(;y exists.

3.1.5. In the cases mentioned above, since we compute generalized Hasse-Witt invariants
of prime-to-p cyclic admissible coverings of singular pointed stable curves, we need to
compute not only the generalized Hasse-Witt invariants arising from tame coverings of
irreducible components but also arising from coverings of dual semi-graphs.

3.2. Degeneration settings. Let R be a discrete valuation ring with algebraically closed
residue field kg, K the quotient field of R, and K r an algebraic closure of Kg. Suppose
that £ C Kg. Let

° def
X®=(X,Dy = {e1,...,ny})
be a pointed stable curve of type (gx,nx) over R, where e;, 1 € {1,...,nx}, is a R-

point of X. We shall write X2 = (X, Dx, = {ents - -repny})y X2 = (X, Day &

{er1,-- - eqny}), X = (X, Dx, et {€s1,...,esny}) for the generic fiber X* xr Ky of
X*, the geometric generic fiber X'* xp K of X®*, and the special fiber X'* x kr of X'®,
respectively. Write HA%- and Ily. for the admissible fundamental groups of A2 and A7,

respectively. Then we have a surjective specialization map ([V, Théoreme 2.2 (b)])

SPR - HXW. —» HXS'-

Moreover, we shall suppose that the geometric generic fiber A of X*® is K p-isomorphic
to X*® x; K . Then without loss of generality, we may identify ez, 1 €{1,...,nx}, with
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x; X, K via this isomorphism. Note that since the admissible fundamental groups do
not depend on the base fields, II xe is naturally isomorphic to IIxe.

3.3. Basic case. In this subsection, we treat the case where gx =0 and n =p — 1.

3.3.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X*® is a
generic curve (2.1.3) over k of type (0,nx). Moreover, we assume n 1

3.3.2.  We maintain the notation introduced in 3.2. We shall say that X* admits a
(DEG-A) if the following conditions hold, where “(DEG)” means “degeneration”: (i)
nx > 4. (ii) X? is a component-generic pointed stable curve (2.1.3) over kg. (iii) The
underlying curve X, of X? is a chain of projective lines {P, = P]{:R}u:17.__7nx_2 over kg
such that Dy, NPy = {es1, €52}, Da, NPy —o = {€snx—1,€sny t» and Dy, NP, = {esut1},
ué&{l,nx —2}.

3.3.3.  We have the following lemma.

Lemma 3.1. Let gx =0, n =p—1, D € (Z/nZ)~[Dx]°, and a € Reviy™(X*) \ {0}.
Then the Raynaud-Tamagawa theta divisor Og, (2.4.3) associated to Ep exists. Moreover,
we have (see 2.3.2 for Pxe,)

Yooy = dimg(HY(X, £)), ([£], D) € Pxe .

Proof. Let f*:Y* = (Y,Dy) — X* be the Galois multi-admissible covering over k with
Galois group Z/nZ induced by «. Suppose that nxy = 3. Then [B, Corollary 6.8] and
Lemma 2.5 imply 7(q,py = dimg(H*(X, £)) = s(D) — 1 for every ([L],D) € Pxs,. Then
Lemma 2.8 (i.e., Z = Ox) implies that [Ox] & O¢, (i.e., Og, = 0).

Suppose that ny > 4. Since X* is a generic curve, X* admits a (DEG-A) (3.3.2).
Furthermore, we write Q5 (resp. @) for the effective divisor on A5 (resp. &) induced by
D and o5 € Rev%dﬁm(Xﬁ' ) for the element induced by a. Then we have Y(a,p) = V(ay@n)-

Since Xj is a chain, for each v € {1,...,nx — 3}, we may write y, and z,,1 for the
inverse image of P,N P, of the natural closed immersion P, — X, and the inverse image
of P, N P, of the natural closed immersion P,; — X, respectively. We define

° def
P’ = (P1,Dp, = {es1,€s52,Y1}),

def
T:X_Q = (anf27DPnX_2 = {anf% es,nxflves,nx})a

° def
Pu = (PU?DPu = {Zw es,u+1»yu})» U ¢ {Lnx - 2},
to be smooth pointed stable curves of types (0, 3) over kg, respectively. Let

e o Kp: Ve =V Dy) CY* 5, Kp— A2

be the Galois multi-admissible covering over Kp with Galois group Z/nZ induced by
f*, and Hy% CII xs the admissible fundamental group of an arbitrary connected compo-
nent of J2. By the specialization theorem of maximal prime-to-p quotients of admissible

fundamental groups (cf. [V, Théoreme 2.2 (c)]), we have sp’l’é : Hi. = Hg;., where (—)”'
n S

denotes the maximal prime-to-p quotient of (—). Then we obtain a normal open subgroup

HS’;; def spfl’;(ﬂf’)’;%) - H’:YIS.. Write IIye C Ily.s for the inverse image of H’;S. of the natural

surjection Ilye —» H’)’;s.. Then Ilys and f3 determine a Galois multi-admissible covering
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f2:Y2 = (Vs, Dy,) — X2 over ki with Galois group Z/nZ. Write a, € Rev%im()(;) for
an element induced by f?.

Let Y, & Y P, ue{l,...,nx —2}. We put

ef
= [7UDp)), we{l,... nx — 2},
Then f? induces a Galois multi-admissible covering f2 : Y,* — P2, v € {1,...,nx — 2},

over kr with Galois group Z/nZ. Write ([L,], Qu) € Pps, for the element induced by
f2 for every u € {1,...,nx —2}. Note that we have Supp(Q.,) C Dp,. Moreover, the
kr[pn])-module H} (Y,,F,) ® kr admits the following canonical decomposition

Hélt<Yu7Fp) ® kR = @ MYu (.7)7

JELZ/NZ

Ye < (Y, Dy,

where ¢ € p, acts on My, (j) as the ¢/-multiplication. Then the case of ny = 3 of the
lemma implies y(iz,1.0.) = dimy, (My, (1)) = dimy, (H'(P,, L))

Write I'ye for the dual semi-graph of Y?. The natural k[u,]-submodule H'(I'ys,F,) ®
k C Hi(Ys,F,) ® k admits the following canonical decomposition

Hl(ry;an) & k= @ Ml“ys- (j)a
JEZ/nZ
where ¢ € p, acts on Mr,,(j) as the ¢/-multiplication. Then we see

nx—2

Vo) = D (e @u) + dimg(Mr (1) = s(Da,) — 1.

u=1

On the other hand, the kg[u,]-modules H}, (V5 F,) ® kg and Hg (Vs,F,) ® kr admit
the following canonical decompositions

Hélt(yﬁ7Fp>®kR: @ Myﬁ(j)v Hélt(ystp)(X)kR: @ Mys(j)a

JEL/NZL JEL/NZ.

respectively, where ¢ € ju,, acts on My, (j) and My, (j) as the ¢(/-multiplication. Moreover,
we have an injection as kg[u,]-modules HZ, (Y5, F,) ® kgr — H} (Y7, F,) ® kg induced by
the surjective specialization map Hy% —» Ilye. Thus, we have

S(Das) —1= Vos,Qs) = diHlkR<Mys(l>) < Vem.Q7) — diHlkR(Myﬁ(l)) < S<Daﬁ) — 1.
Since 5(D) = 5(Dy,) = s(Da,), we obtain
Yoy = 8(D) — 1 = dimy,(H'(X, £)).

Then Lemma 2.8 implies that [Ox] € O¢, (i.e., Og, = 0). We complete the proof of the
lemma. 0

3.4. Frobenius stable effective divisors. We introduce Frobenius stable effective di-
Vvisors.

3.4.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X*® is a

generic curve (2.1.3) over k of type (gx,nx). Moreover, we assume n & pt—1.
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3.4.2. Let D € (Z/nZ)~[Dx]° (2.2.5) be an effective divisor on X of degree s(D)n (2.2.5)

and z € Dx. For each i € {0,...,t — 1}, we put 4P ¢ ord,(D®) (see Definition 2.3 for

D), and write
t—1
d9 =Y "dDp
r=0

for the p-adic expansion. In particular, if 7 = 0, we write D, d,, and d,, for DO, déo),
and dg?,),, respectively. Then we have the following lemma.

Lemma 3.2. Let n & pt — 1. The following statements are equivalent:

(1)
s(D)n = deg(D) = deg(DW)
holds for each i € {0,1,...,t—1}.

(i)
Z dey = s(D)(p—1)
x€Dx
holds for each r € {0,...,t —1}.
(iii)

S df) = s(D)(p - 1)

z€Dx

holds for each i € {0,...,t — 1} and each r € {0,...,t —1}.

Proof. We see that (ii) = (iii) and (iii) = (i) follows immediately from the definition of
DW. Let us prove (i) = (ii).
Let r € {0,...,t —1}. We have

& —d,, 1 t_1 1
_— = _dg) ‘I’ p—daz,r - _d;(vr) + Ed:rm“
p p

d;(UT—H) _ dx,rpt_l +
p p p

Note that (i) implies that
s(D)n = Z dr+h — Z dm.
.’IIGDX .’EGDX

Then we have

s(D)n = Z dg’q_'-l) :]19 Z d;(pT) +g Z dm,r

€Dy z€Dx z€Dx

This means that

Z dm,r = 8<D)<p - 1)

ze€Dx

We complete the proof of the lemma. 0
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3.4.3.  We introduce the following condition concerning effective divisors on X.

Definition 3.3. Let m be a natural number prime to p, t € N the order of p in the finite
group (Z/mZ)*, and n Lpt— 1. Let Q € (Z/mZ)~[Dx]° be an effective divisor on X

and m’ & n/m. We shall call Q Frobenius stable if Q) L mQ e (Z/nZ)~|Dx]° satisfies

one of the statements mentioned in Lemma 3.2.

Remark 3.3.1. Let Y* — X* be a Galois tame covering over k whose Galois group is
Z/mZ, and whose ramification divisor is Q). If @) is Frobenius stable, then the eigenspaces
in each Frobenius orbit of H*(Y, Oy) have the same dimension (see the “moreover” part
of Proposition 3.4). See Proposition 4.1 (ii), (iii) for some examples of Frobenius stable
divisors.

3.5. General case. In this subsection, we generalize Lemma 3.1 to arbitrary pointed
stable curves.

3.5.1. Settings. We maintain the notation introduced in 2.2.1 and suppose that X* is a
generic curve (2.1.3) over k of type (gx,nx). Moreover, we assume n aef pt — 1 for some

positive natural number ¢ € N.

3.5.2.  We maintain the notation introduced in 3.2. We shall say that X* admits o (DEG-
B) if the following conditions hold: (i) nx > 2. (ii) A? is a component-generic pointed
stable curve (2.1.3) over kg. (iii) The underlying curve X, of X? is a chain consisting of
a projective line P = IP’}CR over kg and a smooth projective curve C over kg of genus gx.
(iv) Dy, C P. '

3.5.3.  We have the following proposition.
Proposition 3.4. Let D € (Z/nZ)~[Dx]° and o € Rev™(X*)\ {0}. Suppose that D is

Frobenius stable. Then the Raynaud-Tamagawa theta divisor Og,, associated to Ep exists.
Moreover, for every ([L], D) € Pxe ., we have

Viey,py = dimy,(H'(X, £)) = dimg (H' (X, £9)) = yz@p.p0y, @ € {0,...,t =1},
Proof. Since D is Frobenius stable, we have
dim, (H'(X, £)) = dimg (H* (X, £Y)) = gx + s(D) — 1
for each i € {0,...,t — 1}. Then to verify the proposition, it is sufficient to prove that
Veopwy = dimg(H' (X, £D)) holds for each i € {0,...,¢ — 1}. Furthermore, we sece
immediately that it is sufficient to prove
Vie).py = dimy(H' (X, £)).
Suppose that gx = 0. We maintain the notation introduced in Lemma 3.2. We put
D, ef Z derx, m€40,...,t —1},
z€Dx

which is an effective divisor on X. Since D is Frobenius stable, we have deg(D,) =
s(D)(p — 1) for each r € {0,...,t — 1}. Moreover, we have

t—1
D=) Dy
r=0



NEW-ORDINARINESS OF RAMIFIED COVERINGS OF CURVES 19

Since deg(D,) = s(D)(p — 1), by applying Lemma 3.1 (i.e., by replacing D, n, by D,.,
deg(D,)/s(D), respectively), the Raynaud-Tamagawa theta divisor O¢,, , r € {0,...,t —
1}, exists. Furthermore, by using Lemma 2.10 repeatedly (e.g. by replacing @, @)1, and
Q2 by D, Dy, and Dy + pDy + -+ + p" ' D,, respectively), we obtain that the Raynaud-
Tamagawa theta divisor O¢,, exists.

Suppose that gx > 1 and nx < 1. Then D = 0 and every cyclic admissible covering of
X* is étale. The proposition follows immediately from [N, Proposition 4].

Suppose that gx > 1 and nx > 2. Since X°® is generic, we see that X* admits a
(DEG-B) (3.5.2). Let f*:Y* = (Y,Dy) — X* be the Galois multi-admissible covering
over k with Galois group Z/nZ induced by a. Furthermore, we write Q5 (resp. @) for
the effective divisor on A5 (resp. &) induced by D and a5 € Revadm()(ﬁ' ) for the element
induced by a. Then we have Y(e,D) = V(omQr)-

We define

P (P, Dp ¥ Dy U(CNPY),
def

C*=(C,Dc=CnNP)
to be smooth pointed stable curves over k of types (0,nx + 1) and (gx, 1), respectively.
Let

fr L f ok K Vo= (Vy Dy) €Y 5, K — &y

be the Galois multi-admissible covering over K p with Galois group Z/nZ induced by f*,
and Hy% CII xe the admissible fundamental group of an arbitrary connected component
of V3. By the specialization theorem of maximal prime-to-p quotients of admissible fun-

damental groups (cf. [V, Théoreme 2.2 (c)]), we have sp%/ : Hi. - Hgé.. Then we obtain
n S
a normal open subgroup Hg,,. o spp (11 ’33;:) C Hp .. Write IIy. C Iys for the inverse
n

image of Hp . of the natural surjection Ilys — I, xs- Then Iye and J5 determine a Galois
multi- adm1581ble covering

fe Vs = s, Dy,) = &
over kg with Galois group Z/nZ. Write o,y € Reviy™ (X?) for an element induced by f?.

The structures of the maximal prime-to-p quotients of admissible fundamental groups
(2.1.4) imply that f, is étale over C. Then we obtain that f, is étale over C'N P. Thus,

f, is étale over De. Let Yp & fH(P). We put Y3 o (Yp, Dy, o fY(Dp)). Then f2
induces a Galois multi-admissible covering fp : Y3 — P* over kg with Galois group Z/nZ.

Write ([Lp], @p) € ﬁp-m for the element induced by fp. Note that since f, is étale over
C N P, we have Supp(Qp) C Dp. Moreover, the kg[u,]-module H (Yp,F,) ® kr admits
the following canonical decomposition

H(Yp,Fy) @ kn= €D My, (),
JEZ/NZ
where ¢ € p,, acts on My, (j) as the ¢(/-multiplication. Then Lemma 3.1 implies that

Y(Lp)Qp) = dlmkR(MYP<1)) = dlmkR( (Pv ‘CP)) = S(Das) -1

def

We put Z = f71(C), and denote by my(Z) the set of connected components of Z.
def

Then f? induces a Galois étale covering (not necessarily connected) f&: Z® = (Z, Dz =
Y D¢)) — C* over ki with Galois group Z/nZ. Moreover, f& induces an element
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ac € Reva®™(C*). Suppose that #m(Z) # n. Then we have a¢ # 0. The kg[u,]-module
HL(Z,F,) ® kgr admits the following canonical decomposition

H(Z,F,) @kp= ) Mz(j),
JEZ/NZ

where ¢ € p, acts on Myz(j) as the ¢‘-multiplication. By applying [N, Proposition 4],
we obtain Y. 0) = dimy, (Mz(1)) = gx — 1. Suppose that #my(Z) = n. Then we have
ac = 0. Since C is ordinary, we obtain y(,..0) = gx-

Write T'ys for the dual semi-graph of V2. The natural k[u,]-submodule H'(I'ye, F,) ®
k C Hi(Ys,F,) ® k admits the following canonical decomposition

H'(Tys, Fp)@k= @ M, (),
JEL/NL

where ¢ € i, acts on M, (7) as the ¢/-multiplication. Then we have (e.g. [Y3, Lemma
3.2]) ‘

dimy,(Mr,, (1)) = { ?: ﬁ ﬂggg ;Z,

Thus, we have Y(a,,0,) = V(@e.0) + V(crl,@p) T dimk(Mrys. (1)) = gx +8(Da,) — 1.
On the other hand, the kg[u,]-modules HZ (V5. F,) ® kg and HY, (Y5, Fp) @ kg admit
the following canonical decompositions

Hélt(yﬁ7 FP) ® kR = @ Myﬁ(j)a

JEZ/nZ
H (Ve Fy) @ kr = €D My, (),

respectively, where ¢ € p,, acts on My, (j) and My, (j) as the ¢/-multiplication. Moreover,
we have an injection as kg[u,]-modules Hf, (Vs,F,) ® kr — H} (V5 F,) ® kg induced by
the surjective specialization map Iys — Ily.. Thus, we have
gX+8(Das)_1 = fy(asz) = dlmkR<Mys(]‘)) S P)/(aﬁvQﬁ) = din]'kR (Myﬁ(]‘)) S gX—i_S(Daﬁ)_]‘
Since s(D) = s(Da,) = s(Da,), we obtain

Y(£],D) = 9x + S(D) —1= dimk(Hl(X, ,C))
This completes the proof of the proposition. O

3.6. Main result.

3.6.1. Now, we are going to prove the main result of the present paper.

Theorem 3.5. Let X* be a generic pointed stable curve (2.1.3) over an algebraically
closed field k of characteristic p > 0. Let m € N be an arbitrary positive natural number
prime top, f*:Y*® — X* an arbitrary Galois multi-admissible covering over k with Galois
group Z/mZ, and D € (Z/mZ)~[Dx|° (2.2.5) the ramification divisor associated to f*.
Then f* is new-ordinary (2.2.2) if and only if D(j), j € {1,...,m — 1}, is Frobenius
stable (Definition 3.3).
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Proof. Let t € N be the order of p in the finite group (Z/mZ)* and n aef pt — 1. We put

m' < n/m and write D’ for the effective divisor m'D € (Z/nZ)~[Dx]" when we identify
Z/mZ with the unique subgroup of Z/nZ of order m. We see immediately that, to verify
the proposition, it is sufficient to prove the theorem when D = D’. This means that we
may assume m = n.

Since we have the following canonical isomorphism

n—1
.0y = Ox & @ L)),
j=1
we obtain that
n—1
gy = gx + Z diny (H'(X, L(5))).
j=1
On the other hand, we have
n—1
oy =0x + Z YLD G))
=1

and Y(z(.00)) < dimg(H' (X, L(7))) for each j € {1,...,n—1}. Then f* is new-ordinary
if and only if

n—1 n—1
Z YLH)LDG)) = Z dimy, (H' (X, L(5))).
j=1 j=1

Suppose that D(j), j € {1,...,n — 1}, is Frobenius stable. Then Proposition 3.4
implies that f* is new-ordinary. Conversely, suppose that f*® is new-ordinary. Let j €
{1,...,n—=1}and i € {0,...,t—1}. Then we have v ;y.p0 () = dimp(H (X, LO(5))).
Moreover, we have

Yiew o0 gy < dimg(H(X, £7(4)))
holds for every ¢ € {0,...,t — 1}. This implies that

gx +s(DV (7)) =1 = dimy (H'(X, L)) = dimy,(H' (X, £9(7))) = gx + (DY) (j)) — 1

holds for every i" € {0,...,t — 1}. This means that the statement of Lemma 3.2 (i)
holds. Then D(j), j € {1,...,n — 1}, is Frobenius stable. We complete the proof of the
theorem. 0

3.6.2. Let 0 <o < gx be an integer, M, ,,,z the moduli stack parameterizing pointed

stable curves of type (gx,nx) over Z, My ny o My myz Xz k, and M, . the locally

R gx,n
closed reduced substack of M, ., whose points represent pointed stable curves with
p-rank o. Suppose that X* is a pointed stable curve corresponding to a geometric point
over a generic point of M; vy B Ozman and R. Pries proved the following interesting

result ([OP, Theorem 1.1 (1)]) which is a generalized version of [N, Proposition 4]:
Let £ # p be a prime number and nx = 0. Suppose that gx > 2, and
that 0 < 0 < gx with 0 # 0 if gx = 2. Then every Galois admissible
covering of X* (i.e., Galois étale covering of X ) with Galois group Z/VZ
18 new-ordinary.
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Note that this result gives a new result concerning torsion points of Raynaud-Tamagawa
theta divisors ([OP, Theorem 1.1 (2)]). The proof of the above result depends on a deep
result of J. Achter and Pries concerning monodromy of the p-rank strata of moduli spaces
of curves ([AP]). One may ask whether or not Ozman-Pries’ result hold for arbitrary
prime-to-p cyclic coverings (or abelian coverings in general).

On the other hand, by applying Ozman-Pries’ result mentioned above and similar
arguments to the arguments given in the proofs of Proposition 3.4 and Theorem 3.5, we
obtain the following generalized version of Theorem 3.5 if m = ¢:

Corollary 3.6. We maintain the notation introduced above. Let X*® be a pointed stable
curve corresponding to a geometric point over a generic point of ng,nx such that 0 <
o < gx with o #0 if gx = 2. Let ¢ be an arbitrary prime number prime to p, f*:Y* —
X*® an arbitrary Galois multi-admissible covering over k with Galois group Z/UZ, and
D € (Z/VZ)~[Dx]° the ramification divisor associated to f*. Then f* is new-ordinary if

and only if D(j), 7 € {1,...,0— 1}, is Frobenius stable.

4. APPLICATIONS

In this section, we give some applications of Theorem 3.5.

4.1. Application 1. By applying Theorem 3.5, one may construct new-ordinary ramified
coverings easily for generic curves. For instance, we have the following proposition.

Proposition 4.1. Let X* be a pointed stable curve of type (gx,nx) over an algebraically
closed field k of characteristic p > 0. Suppose that X*® is generic (2.1.3). Then the
following statements hold.

(i) Let m € N be an arbitrary positive natural number prime to p. Suppose that nx < 1
(note that since we assume that X*® is pointed stable, we have gx > 1). Then there ezists
a new-ordinary Galois admissible covering

Yt X

with Galois group Z/mZ such that f is étale.
(i) Let m € N be an arbitrary positive natural number prime to p. Suppose that nx > 2

is an even number, and we put d def nx/2. Let Dy o {x1,29,...,T2q-1, %24} be a generic
set of 2d points of X and
d
D déf Z(arx%‘fl + br$2r)
r=1
an effective divisor on X such that 1 < a,,b, < m — 1 and a, + b, = m for each

r € {1,...,d}. Note that we have D € (Z/mZ)~[Dx|® (2.2.5). Let ([£],D) € Pxem
(2.3.2) and f*:Y*® — X* the Galois multi-admissible covering with Galois group Z/mZ
induced by ([L], D). Then f* is new-ordinary. In particular, there exists a new-ordinary
Galois admissible covering whose Galois group is Z/mZ, and whose branch locus of f is
equal to Dx.

(i1i) Let t be an arbitrary positive natural number and n aof pt — 1. Suppose that p > 5,

and that nx > 3 is an odd number. We put ny = 2d+ 1 and ¢ & n/(p—1). Let
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Dx def {Z1,..., 241, T2a, Taay1} be a generic set of 2d + 1 points of X and
d—1
def « def
Q = cxoq—1 + cxaq + c(p — 3)x2a41, QF = Z($2r—1 + (n—1)xy,)
r=1

effective divisors on X. We put
def 0

DY Q+Q € (z/nz)~[Dx]".

Let (L], D) € Pxepn and f*:Y* — X* the Galois multi-admissible covering with Galois
group Z/mZ induced by ([L], D). Then f* is new-ordinary. In particular, there exists a
new-ordinary Galois multi-admissible covering whose Galois group is Z/nZ, and whose
branch locus of f is equal to Dx.

Proof. (i) follows immediately from [N, Proposition 4]. Let us prove (ii). In order to verify
(ii), we only need to prove that the restriction of f* on an arbitrary connected component
of Y* is new-ordinary. Let ¢’ € N be the order of p in (Z/mZ)*. We put

d
D/ déf m,D = Z(m'arxgr_l + m/brl’gr) S (Z/TLIZ)N[DX]O
r=1

when we identify Z/mZ with the unique subgroup of Z/n'Z of order m, where n'’ oy p'—1

and m’ & n’/m. Note that we have n’ = m/a, + m'b, for each r € {1,...,d}. Moreover,

we see immediately
deg(D'(j)?) =dn', i €{0,...,t' =1}, j€{1,...,n —1}.
This means that D'(j), j € {1,...,n'}, is Frobenius stable.

Since L® = Ox(—D)®™ = Ox(—D'), we have ([£], D) € Pxe . Let ¢*: Z* — X*
be the Galois multi-admissible covering over k with Galois group Z/n'Z corresponding
to ([£], D'). Then Theorem 3.5 implies that ¢°* is new-ordinary. Let W* be an arbitrary
connected component of Z* and

g.lwo W — X*
the Galois admissible covering over k with Galois group Z/mZ induced by ¢*. Then ¢° |y e
is new-ordinary. This completes the proof of (ii).

Next, let us prove (iii). Let j € {1,...,n—1}. We put «; e (p—1)[j/(p—1)] and

def . .

Bi = j(p—3)=Li(p—3)/(p—1)]. Note that (p—1)|(2a;+0;) and 20;+5; € {p—1,2(p—1)},
Then we have

JQ = cjraa1 + ¢jTag + cj(p — 3)T2a41
= c(ja2a-110T2a+B%2a1) + (] / (p—1)]w20-1+0[j /(p—1)]w2a+n[j (p—3) /(p—1)]w2441)-
Thus, we have

QYY) = COTag—1 + COTag + €5 Taq41-

Then we obtain

deg(Q()™) = (2a; + B;)e = (205 + By)n/(p— 1), i € {0,... .t — 1}.
Thus, we see immediately that Q(j), j € {1,...,n — 1}, is Frobenius stable (Definition
3.3).
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On the other hand, we see immediately that

deg(Q*(j)) D) =dn, i€ {0,...,t =1}, j€{1,...,n—1}.
This means that Q*(7), j € {1,...,n — 1}, is Frobenius stable. Thus, we have that D(j),
j €{1,...,n—1}, is Frobenius stable. Let ([£], D) € Pxe,, and f*:Y* — X* the Galois
multi-admissible covering over k with Galois group Z/nZ corresponding to ([£], D). Then
Theorem 3.5 implies that Y* is ordinary. This completes the proof of (iii). O

Remark 4.1.1. The referee kindly pointed out to me that Proposition 4.1 (ii), (iii) can
also be deduced from [LMPT, Corollary 4.8 and Corollary 4.9], respectively.

4.2. Application 2. Next, we consider an inverse Galois problem for X*. Let m be an
déf pt - 17
and m’ & n /m. Let G be a finite group which is an extension of a group H L/ /mZ by

a p-group P. Then the Schur-Zassenhaus theorem implies that G is a semi-direct product
of the form

arbitrary positive natural number prime to p, t € N the order of p in (Z/mZ)*, n

def

PxH.
Write ®(P) = PP[P, P] for the Frattini subgroup of P and P o P/®(P). We put
— def

G = G/®(P). Then we obtain an F,-linear representation
p: H — Aut(P).

Let Z(H) be the set of irreducible characters of H with values in & and (,, a primitive
mth root and x;, j € Z/mZ, the irreducible character such that x;(1) = ¢J,. Then we
see Z(H) = {x;}jezymz- Let py, : H — GL(P,,) be an irreducible k-representation of H
of character x; of degree 1. The canonical decomposition of P ®r, k as a k[H]-module is
given by
Pep k= P PV,
JEZ/MZ

where m, , is the multiplicity of the character in the representation p. Then we have the
following result.

Proposition 4.2. Let X* be a pointed stable curve of type (gx,nx) over an algebraically
closed field k of characteristic p > 0. Suppose that X*® is generic. Let m be a positive
natural number prime to p and D € (Z/mZ)~[Dx|°. Moreover, let ([L], D) € Pxe,, and
o € Hom (113, Z/mZ) the element induced by ([L], D). We put

¢ lye — I3 % H Y 7/mZ.
Suppose that D(j), j € {1,...,m — 1}, is Frobenius stable (Definition 3.3). Then an
embedding problem (¢ : U xe — H,G — H) has a solution if and only if

Xi= gx +s(D(y) -1, ifje{l,...,m—1}.

Proof. Note that the dimensions of irreducible k-representations of prime-to-p cyclic groups
are 1. Then “only if” part of the proposition follows from [B, Proposition 2.4]. On the
other hand, the “if part” of the proposition follows immediately from Theorem 3.5 and
[B, Proposition 2.4 and Proposition 2.5]. O



25

Remark 4.2.1. When nx = 0, A. Pacheco and K. Stevenson obtained a necessary and
sufficient for the existence of a solution of an embedding problem (IIxe — G',G" — H')
when G’ is a finite group which is an extension of an abelian group H’ with a prime-to-p
order by a p-group P’ ([PaSt, Theorem 7.4]). Proposition 4.2 generalizes their result to
the case of prime-to-p cyclic tamely ramified coverings.

[OP]
[PaSt]

[PoSa]
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