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ABSTRACT. In the present paper, we study a new kind of anabelian phenomenon concerning the
smooth pointed stable curves in positive characteristic. It shows that the topology of moduli spaces
of curves can be understood from the viewpoint of anabelian geometry. We formulate some new
anabelian-geometric conjectures concerning tame fundamental groups of curves over algebraically
closed fields of characteristic p > 0 from the point of view of moduli spaces. The conjectures
are generalized versions of the weak Isom-version of the Grothendieck conjecture for curves over
algebraically closed fields of characteristic p > 0 which was formulated by Tamagawa. Moreover,
we prove that the conjectures hold for certain points lying in the moduli space of curves of genus
0.
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1. INTRODUCTION

1.1. The mystery of fundamental groups in positive characteristic.

1.1.1. Let k be an algebraically closed field of characteristic p > 0, and let (X, Dx) be a smooth
pointed stable curve of type (gx,nx) over k (i.e. 29x +nx — 2 > 0, see [K, Definition 1.1 (iv)]),

where X denotes the underlying curve, Dy denotes the (ordered) finite set of marked points, gy
1
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denotes the genus of X, and nx denotes the cardinality #(Dx) of Dx. We put Uy ©f x \ Dx.
By choosing a base point of Uy, we have the tame fundamental group 7§ (Ux) of Ux.

If p =0, it is well-known that the structure of 7j(Ux) is isomorphic to the profinite completion
of the topological fundamental group of a Riemann surface of type (gx,nx). Hence, almost no
geometric information about Uy can be carried out from 7} (Ux). By contrast, if p > 0, the
situation is quite different from that in characteristic 0. The tame fundamental group =} (Ux)
contains rich geometric information of (X, Dx), moreover, there exist anabelian phenomena for
curves over algebraically closed fields of characteristic p > 0.

1.1.2. Firstly, let us explain some general background about anabelian geometry. In the 1980s,
A. Grothendieck suggested a theory of arithmetic geometry called anabelian geometry ([G]). The
central question of the theory is as follows: Can we reconstruct the geometric information of a
variety group-theoretically from various versions of its algebraic fundamental group? The origi-
nal anabelian geometry suggested by Grothendieck focused on varieties over arithmetic fields, in
particular, the fields finitely generated over Q. In the case of curves in characteristic 0, anabelian
geometry has been deeply studied (e.g. [N], [T1]) and, in particular, the most important case
(i.e. the fields finitely generated over @, or more general, sub-p-adic fields) has been completely
established ([M]). Note that the actions of the Galois groups of the base fields on the geometric fun-
damental groups play a crucial role for recovering geometric information of curves over arithmetic
fields.

Next, we return to the case where k is an algebraically closed field of characteristic p > 0. In [T2],
A. Tamagawa discovered that there also exist anabelian phenomena for curves over algebraically
closed fields of characteristic p. This came rather surprisingly since it means that, in positive
characteristic, the geometry of curves can be only determined by their geometric fundamental
groups without Galois actions. Since the late 1990s, this kind of anabelian phenomenon has been
studied further by M. Raynaud ([R2]), F. Pop-M. Saidi ([PS]), Tamagawa ([T2], [T4], [T5]), and
the second author of the present paper ([Y1], [Y2], [Y4]). More precisely, they focused on the
so-called weak Isom-version of Grothendieck’s anabelian conjecture for curves over algebraically
closed fields of characteristic p > 0 (or the “weak Isom-version conjecture” for short) formulated
by Tamagawa ([T3, Conjecture 2.2]) which says that curves are isomorphic if and only if their
tame (or étale) fundamental groups are isomorphic. At present, this conjecture still wide-open.

1.2. Reconstructions of moduli spaces of curves via anabelian geometry. In the present
paper, we study a new kind of anabelian phenomenon concerning curves over algebraically closed
fields of characteristic p > 0 which shows that the topological structures of moduli spaces of curves
can be understood by their fundamental groups.

1.2.1. Let F, be the prime field of characteristic p > 0, and let Mgf,‘iz be the moduli stack
over Z parameterizing smooth n-pointed stable curves of type (g,n) (in the sense of [K]). We

put /\/lgrd def Mgrdz Xz F,. Note that the set of marked points of an n-smooth pointed stable

,n,Fp M,
curve admits a natural action of the n-symmetric group S,. Moreover, we denote by M, oy
(M 5 /Su] the quotient stack, and denote by My, g, the coarse moduli space of Mg, .
Let ¢ € My, r, be an arbitrary point, k(q) the residue field of ¢, k, an algebraically closed
field containing k(q), and V, o {q} the topological closure of {q} in M, r,. Write (Xj,, Dx,,)

for the smooth pointed stable curve of type (g,n) over k, determined by the natural morphism

Specky — Mgy r, and put Ux, o X, \ Dy, . In particular, we put (qu,Dqu) o (X4, Dx,)

and Uy, o Xy \ Dx, if k, is an algebraic closure of k(g). Since the isomorphism class of the tame

fundamental group mj(Ux, ) depends only on ¢, we shall write mj(¢) for the tame fundamental
group 7 (Ux, ).
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1.2.2.  We maintain the notation introduced above. The weak Isom-version conjecture of Tama-
gawa can be reformulated as follows:

Weak Isom-version Conjecture . Let q; € My, r,, i € {1,2}, be an arbitrary point of My, F, .
The set of continuous isomorphisms of profinite groups

Isomy,g (77 (q1), 71 (g2))
is non-empty if and only if V,, = V,, (namely, Ux,, = Ux,, as schemes).

The weak Isom-version conjecture means that moduli spaces of curves can be reconstructed “as
sets” from the isomorphism classes of the tame fundamental groups of curves. This conjecture
has been only confirmed by Tamagawa ([T4, Theorem 0.2]) in the case of genus 0, namely, the
following:

Suppose that g, is a closed point of M, r,. Then the weak Isom-version conjecture
holds.

Next, we pose a new conjecture as follows, which we call the weak Hom-version of the Grothendieck
conjecture for curves over algebraically closed fields of characteristic p > 0 (=weak Hom-version
conjecture), and which generalizes the weak Isom-version conjecture.

Weak Hom-version Conjecture . Let ¢; € My, 5, i € {1,2}, be an arbitrary point of My, F, .
The set of open continuous homomorphisms of profinite groups

Homyy (7 (q1), 71 (g2))
is non-empty if and only if V,, D V.

Roughly speaking, this means that a smooth pointed stable curve corresponding to a geometric
point over g can be deformed to a smooth pointed stable curve corresponding to a geometric
point over ¢; if and only if the set of open continuous homomorphisms of tame fundamental
groups Hom 2 (7} (q1), 7 (g2)) is not empty.

The weak Hom-version conjecture means that the sets of deformations of a smooth pointed stable
curve can be reconstructed group-theoretically from the sets of open continuous homomorphisms
of their tame fundamental groups. Therefore, it provides a new kind of anabelian phenomenon:

The moduli spaces of curves in positive characteristic can be understood not only
as sets but also “as topological spaces” from the sets of open continuous homomor-
phisms of tame fundamental groups of curves in positive characteristic.

1.3. Main result.

1.3.1.  The main result of the present paper confirms the weak Hom-version conjecture for curves
of genus 0 (see Theorem 4.4 (iv) for a more general statement):

Theorem 1.1. The Weak Hom-version Conjecture holds when q, is a closed point of Mo, .

Theorem 1.1 follows from the following “Hom-type” anabelian result (see Theorem 4.3 for a more
precise statement) which is a generalization of Tamagawa’s result (i.e. [T4, Theorem 0.2]):

Theorem 1.2. Let g1 € My, r, be a closed point and g € My, r, an arbitrary point. Then the
set of open continuous homomorphisms

Homgg(ﬂ'j(qﬁ, m1(q2))

is non-empty if and only if Ux, = Ux, as schemes.
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Remark. Note that Theorem 1.2 is essentially different from [T4, Theorem 0.2]. The reason is the
following: We do not know whether or not

Isompg (7} (1), 71 (g2))

is non-empty when Hom? (7} (q1), 7i(q2)) is non-empty.

On the other hand, to verify Theorem 1.2, we need to establish various anabelian reconstructions
from open continuous homomorphisms of tame fundamental groups which are much harder than
the case of isomorphisms in general. We explain in more detail about this point in the reminder

of the introduction.

1.3.2. Let us explain the main differences between the proofs of Tamagawa’s result (i.e. [T4,
Theorem 0.2]) and our result (i.e. Theorem 1.2), and new ingredients of our proof. First, we recall
the key points of the proof of Tamagawa’s result. Roughly speaking, Tamagawa’s proof consists
of two parts:

(1) He proved that the sets of inertia subgroups of marked points and the field structures
associated to inertia subgroups of marked points of smooth pointed stable curves can be
reconstructed group-theoretically from tame fundamental groups. This is the most difficult
part of Tamagawa’s proof.

(2) By using the inertia subgroups and their associated field structures, if g = 0, he proved
that the coordinates of marked points can be calculated group-theoretically.

The group-theoretical reconstructions in Tamagawa’s proofs (1) and (2) are isomorphic version
reconstructions. This means that the reconstructions should fix an isomorphism class of a tame
fundamental group. To explain this, let us show an example. Let Uy,, i € {1,2}, be a curve of type
(g9x,nx) over an algebraically closed field k of characteristic p > 0 introduced above, 7§(Uy,) the

tame fundamental group of Uy, ¢ : wt(Ux,) — 7} (Ux,) an open continuous homomorphism, Hy C

75 (Ux,) an open subgroup, and H; aef ¢ Y(H,). In Tamagawa’s proof, since ¢ is an isomorphism,

we have H; = H,. Then the group-theoretical reconstruction for types implies that the type
(9xy,sxy, ) and the type (gx,, ,nx,,) of the curves corresponding to H; and H, respectively,
are equal. This is a key point in the proof of Tamagawa’s group-theoretical reconstruction of
the inertia subgroups of marked points. On the other hand, his method cannot be applied to
the present paper. The reason is that we need to treat the case where ¢ is an arbitrary open
continuous homomorphism. Since Hj is not isomorphic to Hs in general (e.g. specialization
homomorphism), we do not know whether or not (gx, ,nxy ) = (9xu,,nxy,). This is one of
main difficulties of “Hom-type” problems appeared in anabelian geometry. Similar difficulties for
generalized Hasse-Witt invariants will appear if we try to reconstruct the field structure associated
to inertia subgroups of marked points.
To overcome the difficulties mentioned above, we have the following key observation:

The inequalities of Avr,(H;) (i.e. the p-averages of generalized Hasse-Witt invari-
ants (see 3.4.3)) induced by ¢ play roles of the comparability of (outer) Galois
representations in the theory of anabelian geometry of curves over algebraically
closed fields of characteristic p > 0.

In the present paper, our method for reconstructing inertia subgroups of marked points is com-
pletely different from Tamagawa’s reconstruction. We develop a new group-theoretical algorithm for
reconstructing the inertia subgroups of marked points whose input datum is a profinite group which
is isomorphic to 7§ (Uy,), i € {1,2}, and whose output data are inertia subgroups of marked points
(Theorem 3.14). Moreover, we prove that the group-theoretical algorithm and the reconstructions
for field structures are compatible witharbitrary surjection ¢ (Proposition 3.15). By using Theorem
3.14 and Proposition 3.15, we may prove that Tamagawa’s calculation of coordinates is compatible
with our reconstructions. This implies Theorem 1.2.

1.4. Some further developments.
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1.4.1. Moduli spaces of fundamental groups. Let us explain some further developments for the
anabelian phenomenon concerning the weak Hom-verson conjecture. In [Y6], the second author of
the present paper introduced a topological space 1l ,, (or more general, ﬁg,n) determined group-
theoretically by the tame fundamental groups of smooth pointed stable curves (or more general, the
geometric log étale fundamental groups of arbitrary pointed stable curves) of type (g,n) which he
call moduli spaces of fundamental groups of curves, whose underlying set is the sets of isomorphism
classes of fundamental groups, and whose topology is determined by the sets of finite quotients
of fundamental groups. Moreover, he posed the so-called homeomorphism conjecture, roughly
speaking, which says that (by quotiening a certain equivalence relation induced by Frobenius
actions) the moduli spaces of curves are homeomorphic to the moduli spaces of fundamental
groups.

In the present literature, the term “anabelian” is understood to mean that a geometric object
can be determined by its fundamental group. On the other hand, the homeomorphism conjec-
ture concerning moduli spaces of fundamental groups supplies a new point of view to understand
anabelian phenomena as follows:

The term “anabelian” means that not only a geometric object can be determined
by its fundamental groups, but also a certain moduli space of geometric objects can
be determined by the fundamental groups of geometric objects.

Under this point of view, the homeomorphism conjecture is reminiscent of a famous theorem in
the theory of classic Teichmiller spaces which state that the Teichmiiller spaces of complex hyper-
bolic curves are homeomorphic to the spaces of discrete and faithful representations of topological
fundamental groups of underlying surfaces into the group PSLs(R).

In fact, Theorem 1.1 implies that My 4r, is homeomorphic to Iy 4 as topological spaces (note that
Tamagawa’s result (i.e. [T4, Theorem 0.2]) only says that the natural map My, — Ilo4 is a bi-
jection as sets). Based on [Y1], [Y3], [Y4], [Y5], and the main results of the present paper, the main
results of [Y6] and [Y7] says that the homeomorphism conjecture holds for 1-dimensional moduli
spaces of pointed stable curves. Moreover, the weak Hom-version conjecture and the pointed collec-
tion conjecture (see Section 2.2 of the present paper) are main steps toward the homeomorphism
conjecture for higher dimensional moduli spaces of curves (see [Y8, Section 1.2.3]).

1.4.2. The sets of finite quotients of tame fundamental groups. We maintain the notation intro-
duced in 1.1.1. The techniques developed in §3 of the present paper have important applications
for understanding the set of finite quotients 7% (Ux ) of the tame fundamental groups i (Ux) of Ux.

Note that, if Ux is affine, the set 7% (Uy) of finite quotients of the étale fundamental groups
7€ (Ux) of Ux can be completely determined by its type (gx,nx) (i.e. Abhyankar’s conjecture
proved by Raynaud for affine lines and D. Harbater in general). However, the structure of 7¢*(Ux)
cannot be carried out from 7€ (Ux) since ¢ (Ux) is not topologically finitely generated when Uy
is affine.

By contrast, the isomorphism class of 7§(Ux) can be completely determined by 7% (Ux) since
73 (Ux) is topologically finitely generated, and one cannot to expect that there exists an explicit
description for the entire set 7% (Ux) since there exists anabelian phenomenon mentioned above
(i.e. % (Ux) depends on the isomorphism class of Ux ). On the other hand, for understanding more
precisely the relationship between the structures of tame fundamental groups and the anabelian
phenomena in positive characteristic world, it is naturally to ask the following interesting problem:

How does the scheme structure of Ux affect explicitly the set of finite quotients

™ E4<U X)7
In [Y9], by applying the techniques developed in §3 of the present paper and [Y5, Theorem 1.2],
we obtain the following interesting generalization of [T4, Theorem 0.2] (i.e. a “finite version” of
the weak Isom-version conjecture):

Let 1 € My, n, 5, and go € My, r, be arbitrary points and 7',(¢;) the set of finite
quotients of the tame fundamental group 7§(q;). Suppose that ¢ is a closed point of
Mo, r,- Then we can construct explicitly a finite group G depending on ¢; and go
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such that Uy, = Ux,, as schemes if and only if G € 7%4(¢:1) N 74(g2). In particular,
if 75 (q1) % 7i(ga), then we can construct explicitly a finite group G' depending on
¢1 and ¢o such that G € 7% (q1) and G & 7%(q2).

1.5. Structure of the present paper. The present paper is organized as follows. In Section
2, we formulate the the weak Hom-version conjecture and the pointed collection conjecture. In
Section 3, we give a group-theoretical algorithm for reconstructions of inertia subgroups associated
marked points, and prove that the group-theoretical algorithm is compatible with arbitrary open
surjective homomorphisms of tame fundamental groups. In Section 4, we prove our main results.

1.6. Acknowledgements. The main results of the present paper were obtained in the summer of
2017. The authors would like to thank the referee very much for understanding our research, for
carefully reading the manuscript, and for giving us comments which substantially helped improving
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during the author’s stay in Kyoto. The second author would like to thank Prof. Akio Tamagawa
for helpful comments. The second author was supported by JSPS Grant-in-Aid for Young Scientists
Grant Numbers 16J08847 and 20K14283, and by the Research Institute for Mathematical Sciences
(RIMS), an International Joint Usage/Research Center located in Kyoto University.

2. CONJECTURES

In this section, we formulate two new conjectures concerning anabelian geometry of curves over
algebraically closed fields of characteristic p > 0.

2.1. The weak Hom-version conjecture. In this subsection, we formulate the first conjecture
of the present paper which we call “the weak Hom-version conjecture”.

2.1.1. Let k be an algebraically closed field of characteristic p > 0, and let
(X7 DX)

be a smooth pointed stable curve of type (gx,nx) over k, where X denotes the (smooth) underlying

curve of genus gx and Dy denotes the (ordered) finite set of marked points with cardinality

ny & #(Dx) satisfying [K, Definition 1.1 (iv)] (i.e. 29x +nx —2 > 0). Note that Uy ©x \ Dx

is a hyperbolic curve over k.

Let (Y, Dy ) and (X, Dx) be smooth pointed stable curves over k, and let f : (Y, Dy) — (X, Dx)
be a morphism of smooth pointed stable curves over k. We shall say that f is étale (resp. tame,
Galois étale, Galois tame) if f is étale over X (resp. f is étale over Uy and is at most tamely
ramified over Dy, f is a Galois covering and is étale, f is a Galois covering and is tame).

By choosing a base point of x € Uy, we have the tame fundamental group 7}(Ux,x) of Ux
and the étale fundamental group (X, z) of X. Since we only focus on the isomorphism classes
of fundamental groups in the present paper, for simplicity of notation, we omit the base point
and denote by 7t(Ux) and m;(X) the tame fundamental group wt(Ux,z) of Ux and the étale
fundamental group m (X, z) of X, respectively. Note that there is a natural continuous surjective
homomorphism 7§ (Ux) — m1(X).

2.1.2. Let F, be an algebraic closure of F,,, and let MSTS,FP be the moduli stack over Z parameteriz-
ing smooth pointed stable curves of type (g, n) in the sense of [K, Definition 1.1]. The set of marked
points of a smooth pointed stable curve admits a natural action of the n-symmetric group S,,, we

put Mg,z o MG,/ Sn] the quotient stack. Moreover, we denote by MY o Mg nz Xz Fp,

U ;1

def def =
Mgnp, = Mgnz Xz Fy, and Mg, = Mg,z %z F,, and denote by M, M, , and M,,, the

g7n )
coarse moduli spaces of Mgfg, Mg nr,, and Mg, respectively.
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Let ¢ € M gof be an arbitrary point and k(q) the residue field of ¢, and k, an algebraically closed
field containing k(q). Write (X, Dqu) for the smooth pointed stable curve of type (g,n) over k,
determined by the natural morphism Speck, — Spec k(q) — M and U x,, for Xi, \ Dx, . In
particular, if k, is an algebraic closure of k(q), we shall write (X,, Dx,) for (Xj,, Dx,, ).

Since the isomorphism class of the tame fundamental group (U qu) depends only on ¢ (i.e.
the isomorphism class does not depend on the choices of k,), we shall write 7{(¢q) and 7%(q) for
71(Ux,,) and the set of finite quotients of 7} (Ux,, ), respectively. [IJ, Proposition 16.10.7] implies
that for any points g1, g € M, 7}(q1) = 7} (gz) as profinite groups if and only if ' (¢1) = 7Y% (¢2)
as sets.

On the other hand, Let ¢ € M ;‘Ef and ¢’ € My, r, be arbitrary points. We denote by V, C M;fr?
and Vyy € My, r, the topological closures of ¢ and ¢ in M;‘;‘f and My, r,, respectively.

2.1.3.  We have the following definition.

Definition 2.1. (i) Let ¢1,¢5 € M;r,?’d be closed points, where (—)<! denotes the set of closed points

of (=). Then ¢; ~ye ¢y if there exists m € Z such that v(cy) = v(c!™), where ™ denotes the
closed point corresponding to the curve obtained by mth Frobenius twist of the curve corresponding
to c;. Here “fe” means “Frobenius equivalence”.

(ii) Let q1,q2 € M;ff be arbitrary points. We denote by V,, Dy, V,, if, for each closed point
cy € Vq‘;l, there exists a closed point ¢; € V;fll such that ¢; ~jf. co. Moreover, we denote by
Vo =fe Voo if Vi, Dy Vi, and V, Cye Vi,. Moreover, we also denote by qi ~y. g2 if Vg, =fc Vi,.

We have the following proposition.

Proposition 2.2. Let w : M;ﬁf — Mgy, r, be the morphism induced by the natural morphism

MO — Mg, Leti € {1,2}, and let ¢; € MY and g © u(g) € Mgy ok, Then we have

Vin 2re Voo if and only of Vo 2 Vi, . In particular, we have Vg, =ye Vi, if and only of Vi = V.

Namely, we have Vy, =y, Vy, if and only if Ux, = Ux, as schemes.

Proof. Suppose that ¢;, i € {1,2}, is a closed point of M;ﬁf. If V,, Dfe Vi, we see immeidately
q1 ~ qa. Thus, we obtain Ux, = Ux,, as schemes. This means ¢; = gy. Conversely, if Vix 2 V|
then we have ¢; = ¢}. Thus, we obtain ¢; ~ ¢s.

Suppose that ¢;, i € {1,2}, is an aribtrary point of M, ;r,?. If Vi, Dy Vg, then the case of closed
points implies ch,ll ») qul. Since Vj; and Vg are irreducible, we obtain Vi 2 V. Conversely, if
Vg 2 Vg, we note that V,, is an irreducible component of (w)™"(Vy/). Then the case of closed

437 q;
points implies V, D¢ V. 0J

2.1.4. Denote by Hom2(—, —) the set of open continuous homomorphisms of profinite groups,
and by Isom,,(—, —) the set of isomorphisms of profinite groups. We have the following conjecture.

Weak Hom-version Conjecture . Let ¢; € My, (resp. ¢; € My, r,), i € {1,2}, be an arbitrary
point. Then we have

Hompy (71 (q1), 71 (g2))
is non-empty if and only if Vi, Dge Vg, (resp. Vg, 2 Vi, ).

The weak Hom-version conjecture means that the topological structures of the moduli spaces of
smooth pointed stable curves can be understood by the tame fundamental groups of curves. In
particular, the weak Hom-version conjecture implies the following conjecture which was essentially
formulated by Tamagawa ([T3]).

Weak Isom-version Conjecture . Let ¢; € My, (resp. q¢; € My, r,), i € {1,2}, be an arbitrary
point. Then we have

Isomyg (77 (1), 1 (g2))
is non-empty if and only if Vo, =y Vg, (resp. Vi, =Vy,).
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The weak Isom-version conjecture means that the set structures of the moduli spaces of smooth
pointed stable curves can be understood by the tame fundamental groups of curves.

2.2. The pointed collection conjecture. In this subsection, we formulate the second conjecture
of the present paper which we call “the pointed collection conjecture”.

2.2.1.  We maintain the notation introduced in 2.1.2.
2.2.2. Let ¢ be an arbitrary point of M;}‘;? and G € 7 (¢) an arbitrary finite group. We put
def T r
Us = {d € Mgy | G e my(d)}y € My
Then we have the following result.

Proposition 2.3. Let g be an arbitrary point of M and G € w%y(q) an arbitrary finite group.
Then the set Ug contains an open neighborhood of q in M;rf.

Proof. Proposition 2.3 was proved by K. Stevenson when n = 0 and ¢ is a closed point of M,
(cf. [Ste, Proposition 4.2]). Moreover, by similar arguments to the arguments given in the proof
of [Ste, Proposition 4.2], Proposition 2.3 also holds for n > 0. O

Definition 2.4. We denote by g, the generic point of M4 and let

g?”’

CCly(gen) = |J 7hl0)
quf,’ff}’Cl
be a subset of 7' (qgen). We shall say that C is a pointed collection if the following conditions are
satisfied:
(i) 0 < #((Ngec Ua) N M;,l;?’CI) < 00;
(it) Uer N (Ngee Ua) N M = 0 for each G € Y (ggen) such that G' & C.
On the other hand, for each closed point ¢t € M;};f’d, we may define a set associated to t as

follows:
def

C, = {G € 1% (qgen) | t € Ug}.
Note that, if ¢ € V' and ¢ is not a closed point, then a result of Tamagawa ([T5, Theorem 0.3])
implies that C; C 7% (¢) and C; # 7% (¢). Moreover, we denote by

Cy of {C is a pointed collection | C C 7 (q)}.

2.2.3. At present, no published results are known concerning the weak Hom-version conjecture
(or the weak Isom-version conjecture) for non-closed points. The main difficulty of proving the
weak Hom-version conjecture (or the weak Isom-version conjecture) for non-closed points of M, ;’f
is the following: For each q € M;’;f, we do not know how to reconstruct the tame fundamental
groups of closed points of V, group-theoretically from 7} (q).

Once the tame fundamental groups of the closed points of V, can be reconstructed group-
theoretically from 7}(¢), then the weak Hom-version conjecture for closed points of MY implies
that the set of closed points of V, can be reconstructed group-theoretically from 7j(g). Thus,
the weak Hom-version conjecture for non-closed points of M;ﬂ‘f can be deduced from the weak
Hom-version conjecture for closed points of M.

Let g € M, ;f,f. Since the isomorphism class of 7}(¢) as a profinite group can be determined by
the set 7%(q), the following conjecture tell us how to reconstruct group-theoretically the set of
finite quotients of a closed point of V; from 7% (q) (or 7} (q)).

Pointed Collection Conjecture . For each t € M;};?’d, the set C; associated to t is a pointed
collection. Moreover, let q € M;ﬂ?. Then the natural map

colleg : V' — %, [t] — C,,

is a bijection, where [t] denotes the image of t in ¥, o VA ~pe.
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Write ¢’ € My, for the image w(g). Then we have ¥ = V. This means that the pointed
collection conjecture holds if and only if the weak Hom-version conjecture holds.

3. RECONSTRUCTIONS OF MARKED POINTS

3.1. Anabelian reconstructions.
3.1.1. Settings. We maintain the notation introduced in 2.1.1.

3.1.2.  Let us recall the definitions concerning “anabelian reconstructions”.

Definition 3.1. Let F be a geometric object and Il a profinite group associated to the object
F. Suppose that we are given an invariant Invz depending on the isomorphism class of F (in a
certain category), and that we are given an additional structure Add# (e.g., a family of subgroups,
a family of quotient groups) on the profinite group Il depending functorially on F.

We shall say that Invz can be mono-anabelian reconstructed from Il if there exists a group-
theoretical algorithm whose input datum is II , and whose output datum is Invz. We shall say that
Addz can be mono-anabelian reconstructed from 1lx if there exists a group-theoretical algorithm
whose input datum is I[Ir, and whose output datum is Addz.

Let F;, i € {1,2}, be a geometric object and Ilz a profinite group associated to the geometric
object F;. Suppose that we are given an additional structure Addz, on the profinite group Iz,
depending functorially on F;. We shall say that a map (or a morphism) Addz, — Addgz, can
be mono-anabelian reconstructed from an open continuous homomorphism Il — IIz, if there

exists a group-theoretical algorithm whose input datum is II — Ilx,, and whose output datum
is 1Add]:1 — Add]:2.

3.1.3. Let K be the function field of X, and let K be the maximal Galois extension of K in a
fixed separable closure of K, unramified over Ux and at most tamely ramified over Dx. Then we
may identify 7} (Ux) with Gal(K /K). We define the universal tame covering of (X, D) associated
to 7t (Ux) to be
(X,D3),

where X denotes the normalization of X in K , and D¢ denotes the inverse image of Dx in X.
Then there is a natural action of 7}(Ux) on (X, D). For each € € D, we denote by I the inertia
subgroup of 7t (Uy) associated to € (i.e. the stabilizer of € in 7t(Ux)). Then we have Iz = Z(1)?,

where Z(1)? denotes the prime-to-p part of 2(1) The following result was proved by Tamagawa
([T4, Lemma 5.1 and Theorem 5.2]).

Proposition 3.2. (i) The type (gx,nx) can be mono-anabelian reconstructed from m(Uy).
(ii) Let € and € be two points of D distinct from each other. Then the intersection of Iz and
Iz is trivial in w8 (Ux). Moreover, the map

D)? — Sub(ﬂ(UX)), € — Ig,

is an injection, where Sub(—) denotes the set of closed subgroups of (—).

(111) Write Ine(w(Ux)) for the set of inertia subgroups in 7i(Ux), namely the image of the
map Dg — Sub(nj(Ux)). Then Ine(r}(Ux)) can be mono-anabelian reconstructed from mj(Ux).
In particular, the set of marked points Dx and 7 (X) can be mono-anabelian reconstructed from

T (Ux).

The main purposes of the remainder of present section are as follows: We will give a new mono-
anabelian reconstruction of Ine(7}(Ux)), and prove that the mono-anabelian reconstruction (i.e.
the group-theoretical algorithm) is compatible with any open continuous homomorphisms of tame
fundamental groups of smooth pointed stable curves with a fixed type.

3.2. The set of marked points.
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3.2.1. Settings. We maintain the notation introduced in 2.1.1. Moreover, we suppose that gx > 2
and nx > 0.

3.2.2.  In this subsection, we will prove that the set of marked points can be regarded as a quotient
set of a set of cohomological classes of a suitable covering of curves (i.e. Proposition 3.3). The
main idea is the following: By taking a suitable étale covering with a prime degree f : (Y, Dy) —
(X, Dx), for every marked point x € Dy, there exists a set of tame coverings with a prime
degree which is totally ramified over the inverse image f~!(z). Then z can be regarded as the set
cohomological classes corresponding to such coverings.

3.2.3. Let h: (W,Dw) — (X, Dx) be a connected Galois tame covering over k. We put

Ram;, < {e € Dx | h is ramified over e}.
Let (Y, Dy) be a smooth pointed stable curve over k. We shall say that
(f, d, f : (Y, Dy) — (X, Dx))

is an mp-triple associated to (X, D) if the following conditions hold: (i) £ and d are prime numbers
distinct from each other such that (¢,p) = (d,p) = 1 and £ = 1 (mod d); then all dth roots of unity
are contained in Fy; (ii) f is a Galois étale covering over k whose Galois group is isomorphic to pig,
where g C F) denotes the subgroup of dth roots of unity. Here, “mp” means “marked points”.

Then we have a natural injection HS (Y, F,) < Hj(Uy,F,) induced by the natural surjection
7t (Uy) — m(Y). Note that every non-zero element of H} (Uy,F,) induces a connected Galois
tame covering of (Y, Dy) of degree £. We obtain an exact sequence

0 — Hg(Y,Fe) = Hg (Uy,Fp) — Divy, (V) @ F, — 0
with a natural action of pg.
3.24. Let (Div} (V) ® Fy),, € Div}, (Y) ® Fy be the subset of elements on which jq acts via

the character pg — F, and My C H}, (Uy,F,) the subset of elements whose images are non-zero
elements of (Div}, (V) ® F,),,. For each a € M;, write g, : (Ya, Dy,) — (Y, Dy) for the tame

covering induced by «. We define € : My — 7Z, where €(«) o # Dy, . Denote by

Ha*

My % {a € My | #Ram,, = d} = {a € M | (o) = (dnyx — d) + d}.
Note that since (¢,p) = (d,p) = 1 and #(f'(z)) = ¢ for all x € Dy, the structure of maximal
pro-prime-to-p quotient of 7!(Uy) (i.e. it’s isomorphic to the pro-prime-to-p completion of the
topological fundamental group of a Riemann surface of type (gy,ny)) implies that My is not
empty.

For each a € My, since the image of « is contained in (Div}, (Y) ® F),,, we obtain that the
action of pg on Ram,, C Dy is transitive. Thus, there exists a unique marked point e, € Dx such
that f(y) = e, for each y € Ram,,_.

For each e € Dy, we put

My, oof {a € My | gq is ramified over f~'(e)}.

Then, for any marked points e, ¢’ € Dx distinct from each other, we have My, N My, = 0 and
the disjoint union

My = | | My..

e€Dx
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3.2.5. Next, we define a pre-equivalence relation ~ on My as follows: Let «,3 € My. Then
a~ Bif A+ pf € My for each \, pp € F) for which Ao + p5 € My . Then we have the following
proposition.

Proposition 3.3. The pre-equivalence relation ~ on My is an equivalence relation. Moreover,
the map

79X : My/ ~— DX, [Of] = €q,

is a bijection, where [a] denotes the image of a in My | ~.

Proof. Let 3,7 € My. If Ramy, = Ram,, , then, for each A, € F; for which A3 + uy # 0,
we have Ramg,, = Ramg, = Ram, . Thus we obtain that 8 ~ 7. On the other hand, if
B ~ 7, we have Ram,, = Ram,, . Otherwise, we have #Ram,, = 2d. This means that 3 ~
7 if and only if Ram,, = Ram,_. Then ~ is an equivalence relation on My

Let us prove that ¥y is a bijection. It is easy to see that ¥ x is an injection. On the other hand,
for each e € Dy, the structure of the maximal pro-¢ tame fundamental groups implies that we
may construct a connected tame Galois covering of h : (Z, Dz) — (Y, Dy) such that h is totally
tamely ramified over f~!(e) (i.e. the element of Hj (Uy,F,) induced by h is contained in My).
Then ¥x is a surjection. This completes the proof of Proposition 3.3. O

Remark 3.3.1. We claim that the set My/ ~ does not depend on the choices of mp-triples
associated to (X, Dx). Let

(e, d*, f*: (Y*, Dy+) = (X, Dx))
be an arbitrary mp-triple associated to (X, Dx). Hence we obtain a resulting set My«/ ~ and
a natural bijection 0% : My«/ ~— Dx. We will prove that there exists a natural bijection § :
My~ / ~= My / ~ such that 9% = Jx o 4.

First, suppose that £ # ¢* and d # d*. Then we may construct a natural bijection § : My~ / ~—
My / ~ as follows. Let @ € My and a* € My-. Write (Y,, Dy,) — (Y, Dy) and (Y, Dy..) —
(Y*, Dy+) for the Galois tame coverings induced by « and «*, respectively. We consider the
following fiber product in the category of smooth pointed stable curves

(Ya, DYa) X(X,Dx) (Ya* ) DYa* )

which is a smooth pointed stable curve over k. Thus, we obtain a connected tame covering
(Ya, Dy,) X(x,px) (Yar, Dy,.) = (X, Dx) of degree dd*¢¢*. Then it is easy to check that ¥ x([a]) =
V% ([o*]) if and only if the cardinality of the set of marked points of (Y, Dy,) X (x,px) (Yar, Dy,.)
is equal to dd*(¢0*(nx — 1) + 1). We put [q] o d([af]) if Ix([a]) = P ([o*]). Moreover, by the
construction above, we obtain that 9% = ¥x o0 d. In general case, we may choose an mp-triple

associated to (X, Dy) such that ¢** # ¢, 0** # (*, d*™* # d, and d** # d*. Hence we obtain a
resulting set My« / ~ and a natural bijection ¥% : My+/ ~— Dx. Then the proof given above
implies that there are natural bijections &; : My«/ ~— My/ ~ and 0y : My+/ ~— My-/ ~.
Thus, we may put

5 5 0650 Mye) ~=3 My / ~ .

Remark 3.3.2. Let H C 7%(Uy) be an arbitrary open normal subgroup and fy : (Xu, Dx, ) —
(X, Dx) the Galois tame covering over k induced by the natural inclusion H < 7} (Ux). Let

(67 d?f : (Y7 DY) — (Xa DX))

be an mp-triple associated to (X, Dx) such that (#(7}(Ux)/H),¢) = (#(n}(Ux)/H),d) = 1. Then
we obtain an mp-triple

(6,d,g: (Z,Dz) = (Y, Dy) X(x.0x) (X, Dx,,) = (X, Dx,,))
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associated to (Xy, Dx,, ) induced by (¢,d, f : (Y, Dy) — (X, Dx)), where (Y, Dy) X (x,p)(X#, Dx,,)
denotes the fiber product in the category of smooth pointed stable curves. The mp-triple associ-
ated to (Xp, Dx,,) induces a set M/ ~ which can be identified with the set of marked points Dy,
of (Xp, Dx,,) by applying Proposition 3.3. Moreover, for each ex € Dx and each ay., € My,,,
Qye, induces an element

az = Z AZex,,

exy €fg (ex)
over (Z,Dyz) via the natural morphism (Z,Dz) — (Y, Dy), where AZex, € Mzey . On the
other hand, for each €'y, € Dx, and each ¢y € Dx, we have that fy(e'y, ) = € if and only if
there exists an element Qyer, € My, such that the following conditions hold: (i) the element o/,
induced by ay,, via the natural morphism (Z, Dz) — (Y, Dy), can be represented by a linear

combination
r_ /
Oy = E AZex,

eXH ESXH

where Sx,, is a subset of Dx,, and az., € Mz, ; (ii) €', € Sxy-

Lemma 3.4. Let ({,d,f : (Y,Dy) — (X,Dx)) be an mp-triple associated to (X, Dx) and gy
the genus of Y. Then we have #(My,.) = (21 — (29v ¢ € Dx. Moreover, we have #(My) =
nx (2971 207,

Proof. Let e € Dx. Write D, C Dy for the set f~!(e). Then My . can be naturally regarded as a
subset of H (Y \ D,,F,) via the natural open immersion Y\ D, < Y. Write L, for the F,-vector
space generated by My, in Hj (Y \ D.,F¢). Then we have My, = L.\ H.(Y,F,). Write H, for
the quotient L./H} (Y,TF,;). We have an exact sequence as follows:

0— H;(Y,F,) = L,— H, — 0.

Since the action of ug on f~'(e) is transitive, we obtain dimg,(H.) = 1. On the other hand,
since dimg,(H} (Y,F;)) = 2gy, we obtain #(My,) = (291 — (29v Thus, we have #(My) =
nx (£29v+1 — (29v) This completes the proof of the lemma. O

3.3. Reconstructions of inertia subgroups.
3.3.1. Settings. We maintain the notation introduced in 2.1.1.

3.3.2. In this subsection, we will prove that the inertia subgroups of marked points can be mono-
anabelian reconstructed from 7} (Ux) (i.e. Proposition 3.7). The main idea is as follows: Let
H C 7§(Ux) be an arbitrary normal open subgroup and (X, Dx,,) — (X, Dx) the tame covering
corresponding to H. Firstly, by using some numerical conditions induced by the Riemann-Hurwitz
formula, the étale fundamental group 7 (X) can be mono-anabelian reconstructed from 7¥(Ux).
Then the results obtained in Section 3.2 implies that Dx can be mono-anabelian reconstructed
from 7} (Ux). Moreover, Dy, can be also mono-anabelian reconstructed from H. Secondly, since
the natural injection H < 7}(Ux) induces a map of sets of cohomological classes obtained in
Section 3.2, we obtain that the natural map Dx, — Dx can be mono-anabelian reconstructed
from H < 7%(Ux). Thus, by taking a cofinal system of open normal subgroups of 7} (Ux), we
obtain a new mono-anabelian reconstruction of Ine(w}(Ux)).

3.3.3. First, we have the following lemma.

Lemma 3.5. (i) The prime number p (i.e. the characteristic of k) can be mono-anabelian recon-
structed from mi(Ux).
(ii) The étale fundamental group w1 (X) can be mono-anabelian reconstructed from m(Ux).
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Proof. (i) Let B be the set of prime numbers, and let @) be an arbitrary open subgroup of 7§(Ux)
and 7¢ an integer such that

#{l e P | rq = dimg, (Q ®F))} = oc.

Then we see immediately that the characteristic of k is the unique prime number p such that there
exists an open subgroup T’ C 7} (Ux) and 77 # dimg, (T @ F,).

(i) Let H be an arbitrary open normal subgroup of 7} (Ux). We denote by (Xy, Dx,,) the smooth
pointed stable curve of type (gx,,nx, ) over k induced by H, and denote by fy : (Xu, Dx,) —
(X, Dx) the morphism of smooth pointed stable curves over k induced by the natural inclusion
H — 7} (Ux). We note that fy is étale if and only if gx,, — 1 = #(mi(Ux)/H)(gx — 1). We put

Et(7} (Ux)) o {H C 7!(Ux) is an open normal subgroup |

9xy — 1 =#(mUx)/H)(gx —1)}.
Moreover, Proposition 3.2 (i) implies that gy, and gx can be mono-anabelian reconstructed from

H and 7§(Ux), respectively. Then the set Et(7}(Ux)) can be mono-anabelian reconstructed from
7} (Ux). We obtain that

mX)=mUx)/ (| H
HeE(r}(Ux))

This completes the proof of the lemma. O

3.3.4. Suppose gx > 2. Let us define a group-theoretical object corresponding to an mp-triple
which was introduced in 3.2.3. We shall say that

(¢, d,y)

is an mp-triple associated to 7§ (Uy) if the following conditions hold: (i) £ and d are prime numbers
distinct from each other such that (¢,p) = (d,p) = 1 and £ = 1 (mod d); then all dth roots of
unity are contained in Fy; (ii) y € Hom(m(X), pg) such that y # 0, where g C F; denotes the
subgroup of dth roots of unity.

3.3.5.  Moreover, by applying Lemma 3.5, there is a triple (¢,d,y) associated to m%(Ux) which
can be mono-anabelian reconstructed from 7t(Uy). Let f : (Y,Dy) — (X, Dx) be a Galois
étale covering induced by y. Then we see immediately that (¢,d,f : (Y,Dy) — (X, Dx)) is
an mp-triple associated to (X, Dx) defined in 3.2.3. We denote by 7!(Uy) the kernel of the

composition of the surjections 7 (Ux) — m1(X) 5 pq. Since HZL(Y,F,;) = Hom(m(Y),F,) and
H} (Uy,F,) = Hom(r} (Uy),F,), Lemma 3.5 implies immediately that the following exact sequence

0— H(Y,F,) — Hi(Uy,F)) — Div%y(Y) @F, =0

can be mono-anabelian reconstructed from 7} (Uy ). Thus, Proposition 3.2 (i) implies that the set
My / ~ defined in 3.2.5 can be mono-anabelian reconstructed from 7} (Uy). Note that, by Remark
3.3.1, the set My / ~ does not depend on the choices of mp-triples. Then we put

def
P
DY = My/ ~,

where (—)& means “group-theoretical”. By Proposition 3.3, we may identify D% with the set of
marked points Dy of (X, Dx) via the bijection Jx : D = Dx defined in Proposition 3.3.

Proposition 3.6. Let H C 7{(Ux) be an arbitrary open normal subgroup and
fr: (Xm, Dx,) — (X, Dx)

the morphism of smooth pointed stable curves over k induced by the natural inclusion H < 7§ (Ux).
Suppose gx > 2. Then the sets DY and D%fH can be mono-anabelian reconstructed from 7i(Ux)
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and H, respectively. Moreover, the inclusion H — 7y(Ux) induces a map Yyt (wy) : DX, — DX
such that the following commutative diagram holds:

Ix
gp H
DXH — DXH

VH,wgwxd Wle

p® X, Dy,
where ¢, denotes the map of the sets of marked points induced by fg.

Proof. We only need to prove the “moreover” part of Proposition 3.6. We maintain the notation
introduced in Remark 3.3.2. Note that, for each ex € Dx and each ex, € Dx,,, the sets My,
and Mz, ~can be mono-anabelian reconstructed from mi(Ux) and H, respectively. Then the
“moreover” part follows from Remark 3.3.2. [

Remark 3.6.1. We maintain the notation introduced in Proposition 3.6. Let 71 (X ) be the étale
fundamental group of Xy. Then we have a natural surjection H — m1(Xpg). Note that m(Xp)
admits an action of 7§ (Ux)/H induced by the outer action of 7t (Ux)/H on H induced by the
exact sequence
1= H—=7(Ux) = m(Ux)/H — 1.

Moreover, the action of 7{(Ux)/H on m(Xp) induces an action of 7j(Ux)/H on DY’ . On the
other hand, it is easy to check that the action of 7{(Ux)/H on DY coincides with the natural
action of i (Ux)/H on Dy, when we identify D with Dy.

3.3.6.  We have the following result.

Proposition 3.7. Write Ine(nt(Ux)) for the set of inertia subgroups in 7§ (Ux). Then Ine(w}(Ux))
can be mono-anabelian reconstructed from 7§ (Ux).

Proof. Let Cx & {H,}iez., be aset of open normal subgroups of 7} (Ux ) such that Hm, i (Ux)/H; &

75 (Ux) (i-e. a cofinal system of open normal subgroups).

Let € € Dg. For each i € Zg, we write (X, DXHi) for the smooth pointed stable curve of
type (gxy,, nxy, ) induced by H; and ex,, € Dx,, for the image of e. Then we obtain a sequence
of marked poin’gs 1 Z

lgx : "'l—>€XH2 |—>€XH1

induced by Cx. Note that the sequence Ig X admits a natural action of 7}(Ux). We may identify
the inertia subgroup Iz associated to e with the stabilizer of Igc X,

Moreover, since Proposition 3.2 (i) implies that (gx, ,nx, ) can be mono-anabelian recon-
structed from H;, by choosing a suitable set of open normal su]logroups Cx, we may assume that
9xy, = 2. lf ny, =0, Proposition 3.7 is trivial. Then we may assume that nx, > 0.

On the other hand, Proposition 3.6 implies that, for each H;, i € Z-q, the set D%fH can be

i

mono-anabelian reconstructed from H;. For each ex,, € Dx,, , we denote by

def ,_
gp def 41
Xu, = ﬁXHi(eXHZ-)'
Then the sequence of marked points Igc X induces a sequence
Cx . . .. gp gp
A X, 77 CXp,

e8p

By applying the “moreover” part of Proposition 3.6, we see that Ze%f can be mono-anabelian
reconstructed from Cx. Then Remark 3.6.1 implies that the stabilizer of Zggif is equal to the
stabilizer of Ig X This completes the proof of the proposition. OJ

3.4. Reconstructions of inertia subgroups via surjections.



TOPOLOGY OF MODULI SPACES AND ANABELIAN GEOMETRY 15

3.4.1. Settings. Let (X, Dx,), i € {1,2}, be a smooth pointed stable curve of type (gx,nx)

over an algebraically closed field k; of characteristic p > 0, Uy, X, \ Dx,, i (Ux,) the tame
fundamental group of Uy, and m; (X;) the étale fundamental group of X;. Then Lemma 3.5 implies
that m1(X;) can be mono-anabelian reconstructed from 7t(Uy,). Moreover, in this subsection, we
suppose that nx > 0, and that ¢ : 7§(Ux,) — 7} (Ux,) is an arbitrary open continuous surjective
homomorphism of profinite groups.

Note that, since (X;, Dx,), i € {1,2}, is a smooth pointed stable curve of type (gx,nx), ¢
induces a natural surjection ¢ : wt(Ux, ¥’ — 7t(Ux,)?, where (—)?" denotes the maximal prime-
to-p quotient of (—). Since 7t(Ux,)?, i € {1,2}, is topologically finitely generated, and 7t(Ux, )’
is isomorphic to 7t(Uy,)?" as abstract profinite groups, we obtain that ¢ : 7t(Ux,)? = 7t (Ux, )"
is an isomorphism ([FJ, Proposition 16.10.6]).

3.4.2. In this subsection, we will prove that the mono-anabelian reconstructions obtained in
Proposition 3.7 are compatible with any open continuous homomorphisms (i.e. Theorem 3.14).

We explain the main idea. Let Hy C 7i(Uy,) be an arbitrary open normal subgroup and

H ¢~ (Hy) C 7i(Ux,). We write (Xp,, Dx,, ), i € {1,2}, for the smooth pointed smooth

curve of type (gXHi,nXHi) over k; induced by H;. To prove the compatibility, we need to prove
that, for any prime number £ # p, the weight-monodromy filtration of H3®®F, induces the weight-
monodromy filtration of H#> @ F, via the natural surjection ¢|g, : H; — H,. Note that the weight
1 part of H*® @ F, corresponds to 7 (X, ) @ Fy, and the weight 2 part of H?* ® F, corresponds
to the image of the subgroup of H; generated by the inertia subgroups of the marked points of
Dx,, . The key observation is as follows:

The inequality of the limit of p-averages (see Proposition 3.8 (i) below)
Avr,(Hy) > Avr,(H,)

of Hy and Hj induced by the surjection ¢|g, : H; — Hs plays a role of the compa-
rability of “Galois actions” in the theory of the anabelian geometry of curves over
algebraically closed fields of characteristic p > 0.

3.4.3. Firstly, we have the following proposition.

Proposition 3.8. (i) Let (X, Dx) be a pointed stable curve of type (gx,nx) over an algebraically

closed field k of characteristic p > 0, Ux ©x \ Dx, and 7i(Ux) the tame fundamental group

of Ux. Let r € N be a natural number, and let K,-_, be the kernel of the natural surjection
mt(Ux) — 7 (Ux)®® @ Z/(p" — 1)Z, where (—)* denotes the abelianization of (—). Then we have

AVrp<7TE(UX)) = TILHC}O #(Wi(UX)ab ®Z/(p’/‘ _ ]_)Z) - gx, Zf nx > 1.

(ii) We maintain the setting introduced in 3.4.1. Let Hy C 7i(Ux,) be an open normal subgroup

such that ([15(Ux,) : Hs],p) = 1 and H; o &Y Hy). Write gg,, 1 € {1,2}, for the genus of the

smooth pointed stable curve over k; corresponding to H; C wi(Ux,). Then we have gy, > gu,-

Proof. (i) is the Tamagawa’s result concerning the limit of p-averages of 7!(Ux) ([T4, Theorem
0.5]). Let us prove (ii). The surjection ¢ induces a surjection ¢ : 7§ (Ux, ¥ — 7t(Uy,)?’, where
(—)?" denotes the maximal prime-to-p quotient of (—). Moreover, since 7t (Ux,)”, i € {1,2},
is topologically finitely generated, and 7t (Ux,)? is isomorphic to 7t(Ux,)” as abstract profinite
groups (since the types of (X1, Dx,) and (Xs, Dx,) are equal to (gx,nx)), we obtain that ¢ is
an isomorphism (cf. [FJ, Proposition 16.10.6]).

On the other hand, since [7}(Ux,) : H1] = [7}(Ux,) : Hs] and ([7}(Ux,) : Ha],p) = 1, we obtain

that the natural homomorphism ¢];} : Hf/ —» Hﬁ’/ induced by ¢g o &g, : Hi — H is also an

isomorphism. This implies
#HP QL) (p" — 1)Z) = #(H" @ Z/(p" — 1)Z)
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for all r € N. Let Ky, ,r-1, i € {1,2}, be the kernel of the natural surjection H; - H** @ Z/(p" —
1)Z. Then the surjection ¢y implies
o dimp (K% . ®F dimp (K2 . ®F
Avr,(H,) = 4 Jim ]Fb< Aipr—1 ») > Av I'p(H2> f lim ]Fb( H2p" 1 »)
e #(HP @ Z/(pr = 1)Z) — roco #(HE? @ 2/ (pr = 1)Z)
Thus, (ii) follows from (i). O

3.4.4.  We have the following lemmas.

Lemma 3.9. Let £ be a prime number distinct from p. Then the isomorphism (¢P )~ : 74 (Ux, )P =
7 (Ux,)? induces an isomorphism

wg( : Hélt(Xl,]Fg) = HOHI(Tﬁ(Xl),Fg) :> HOHI(’]Tl(XQ),Fg) = Hét(X%Fg).

Proof. Let f1 : (Y1,Dy,) — (X1, Dx,) be an étale covering of degree ¢ over k;. Write fy :
(Y, Dy,) — (X3, Dx,) for the connected Galois tame covering of degree ¢ over ko induced by
#*'. Then we will prove that f, is also an étale covering over k.

Write gy, and gy, for the genus of Y7 and Y5, respectively. Since f; is an étale covering of degree
¢, the Riemann-Hurwitz formula implies gy, = €(gX1 — 1) + 1. On the other hand, the Riemann-
Hurw1tz formula implies gy, = (gx, — 1) + 1 + (€ — 1)#(Ramy,). By applying Proposition 3.8
(ii), the surjection ¢ implies gy, > gy,. This means #(Ramy,) = 0. So f is an étale covering over
ky. Then the morphism (¢”)~! induces an injection

Y - Hom(mi (X,), Fy) = Hom(m (Xs),Fy).
Furthermore, since dimg, (Hom(m; (X,),Fy)) = dimg, (Hom(m; (X5),Fy)) = 2gx, we obtain that %
is a bijection. This completes the proof of the lemma. O
Lemma 3.10. Suppose gx > 2. Then the surjection ¢ : wt(Ux,) — 7 (Ux,) induces a bijection
pe : DY = DY,
and the bijection pg can be mono-anabelian reconstructed from ¢.

Proof. Let (¢,d,ys) be an mp-triple associated to 7} (U, ) (see 3. 3 4) Then Lemma 3.9 implies that
¢ induces an mp-triple (¢, d, y;) associated to 7§ (Uy, ), where yl = (@DX) Yyo) € Hom(my (X1), pta)-
Let f; : (Yi, Dy;) — (X;, Dx,), i € {1,2}, be the étale covering of degree d over k; induced by ;.
Then the mp-triple (¢, d,y;) associated to 7§ (Uy,) determines an mp-triple
associated to (X;, Dy,) over k;. Note that the types of (Y1, Dyl) and (Ya, Dy,) are equal.
Write 7} (Uy,), @ € {1,2}, for the kernel of 7} (Uy,) = m(X;) % pa- By replacing (X, Dx,) by

(Y;, Dy,), Lemma 3.9 implies that (|, )_1 induces a commutative diagram as follows:

t(U

0 —— Hét(}/i,Fg) — Hét(Uyl,Fg) — DiV%Yl(Yl)(XJFg — 0

o | | |
0 —— H(Ye,Fr) —— H}(Uy,,F) — Divp, (Y2) @ Fr —— 0,

where all the vertical arrows are isomorphisms. We note that Hj (Y;,F,), H(Uy,,Fy), and
Div), (Y;) ® Fy, i,€ {1,2}, are naturally isomorphic to Hom(m(Y;),F,), Hom(n}(Uy,),Fy), and
Hom(;ri(in),IFg)/Hom(m(Y;),IFg), respectively. Then Lemma 3.5 implies that the commutative
diagram above can be mono-anabelian reconstructed from ¢, ) 75 (Uy,) = 75 (Uy,).

Write My, € My, for the subsets of Hj (Uy,,F;) defined in 3.2.4. Since the actions of pq on
the exact sequences are compatible with the isomorphisms appearing in the commutative diagram
above, we have ¢§}€(M§;1) = My,. Next, we prove Y (My,) = My,

Let a; € My, and g, : (Ya,, Dy, ) — (Y1, Dy;) the Galois tame covering of degree ¢ over k;
induced by a;. Write ga, : (Yay, Dy,,) — (Y2, Dy,) for the Galois tame covering of degree ¢ over
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ko induced by s def w;;@(al). Write gy,, and gy,, for the genus of Y,, and Y,,, respectively.
Then Proposition 3.8 (ii) and the Riemann-Hurwitz formula imply that gy, — gv,, = 5(d —
#(Ramy, ))(¢ —1) > 0. This means d — #(Ram,, ) > 0. Since ay € My, we have d | #(Ramy, ).
Thus, either #(Ramy, ) =0 or #(Ram,, ) = d holds.

If #(Ramg, ) = 0, then g,, is an étale covering over ky. Then Lemma 3.9 implies that g,, is
an étale covering over ky. This provides a contradiction to the fact that ay € My,. Then we have
#(Ramy, ) = d. This means ay € My,. Thus, we obtain YU (My,) C My,. On the other hand,
Lemma 3.4 implies #(My,) = #(My,). We have wg}e : My, = My,. Then Proposition 3.3 implies
that w;f induces a bijection

pe : DY = DY
Moreover, since My, and My, can be mono-anabelian reconstructed from 7} (Uy,), the bijection pg
can be mono-anabelian reconstructed from ¢. This completes the proof of the lemma. OJ

3.4.5. Let Hy C 7}(Ux,) be an arbitrary open normal subgroup and H; o ¢~ 1(Hy). We write

(X#,» Dxy, ), @ € {1,2}, for the smooth pointed stable curve of type (gx,, ,nx, ) over k; induced
by H; and fu, : (Xp,, Dx, ) — (Xi, Dx,) for the Galois tame coverings over k; induced by the
inclusion H; — 7§(Uy,). Moreover, Proposition 3.6 implies that the inclusion H; — 7§(Uy,)
induces a map Y, 7t (uy,) : D%in — D% which fits into the following commutative diagram:

gp UXm;

7Hiv”§(Uxi)l Vi, J

Ox,
D% 5 Dy,

where 7y, denotes the map of the sets of marked points induced by fp,. We may identity
7t (Ux,)/H, with 7$(Uy,)/Hs via the isomorphism 7t(Ux,)/H, — 7t(Ux,)/H> induced by ¢,

and denote by G & i (Ux,)/Hy = 7t(Ux,)/H,. Then we have the following lemma.

Lemma 3.11. Suppose that gx > 2, and that (gXHl,nXHI) = (gXH27nXH2)' Then the commutative
diagram of profinite groups

o Om g,
» l |
¢

ﬂ{ (UXI ) B ﬂ{ (UX2)
induces a commutative diagram

Polm,

gp gp

l)XH1 l)XH2
(2) ’yHlv’Tﬁ(le)J 'sz,“i(UXQ)J
gp Pé gp

DY DY,

Moreover, the commutative diagram (2) can be mono-anabelian reconstructed from (1).

Proof. Proposition 3.6 and Lemma 3.10 imply the diagram

Poly
gp 1 gp
Z)XH1 DXH2
'yHl«“{(le)l F}/HQ""%(UXQ)l
P

gp gp
DYy, —— Dx,
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can be mono-anabelian reconstructed from the commutative diagram of profinite groups

¢
H1 ﬂ) HQ

l l

T (Ux,) —2— m(Ux,).

To verify Lemma 3.11, it is sufficient to check that the diagram is commutative.

def def def
gp gp gp  def gp gp gp def gp gp  gp dof
Let eX, € DX, €xy, = Polm(€xy) € DX, €x, = Tmmwa)(ex,) € Dx,, €, =
def _
gp [EP gpx def 1 epy o pep
(VHME(UXZ) ° P¢>\H1)(€XH1) € Ux,, and €x, = Py (BXQ) € Ux,- Let us prove
& _ 8P
€x, = €x; -
def _ def _ .
gp def 1 gp.* gp  def 1 gp gp
We put 5%, = 7H1,7r§(UX1)<€X1 ) and SXu, — /sz,ﬂi(UXQ)(e)Q)’ respectively. Note that ey, €
gp e o8P 8P : gp gp
Sxy,- To verify ek = ex”, it is sufficient to prove that ey € Sk . Moreover, for each

i € {1,2}, we put
def gp def gp * def gp,* def gp def gp
€x; = ﬁXi(GXi)’ CXpy, = ﬁXHi(eX¢)7 €x, = ﬁX1<€X1 )a Sx, = SXiv SXHi = SXHi'

Then to verify the lemma, we only need to prove that ex, € Jx, (Sx,,)-

Let (¢,d,y2) be an mp-triple associated to 7j(Ux,). Then Lemma 3.9 implies that ¢ induces

an mp-triple (¢,d,y;) associated to 7§ (Ux,), where y; &of (Y4)"(ys) € Hom(my(X1), pa). Let

fi: (Yi, Dy,) = (X;, Dy,), i € {1,2}, be the tame covering of degree d over k; induced by y;. Then
the mp-triple (¢, d,y;) associated to 7t(Uy,) induces an mp-triple
(gu da fz : (Y;u DYz) — (X“ DXz))

associated to (X;, Dy,) over k;. Note that since f; and fy are étale, the types of (Y1, Dy,) and
(Ya, Dy,) are equal. On the other hand, we have an mp-triple

(67 d, ga (ZQ; DZz) = (}/27 DY2) X (X2,Dx,) (XH27DXH2> - (XszDXHQ))
associated to (Xp,, Dx,,) induced by the natural inclusion Hy < 7j(Ux,) and the mp-triple
(¢,d, fo: (Y2, Dy,) — (Xa, Dx,)). By Lemma 3.9 again, we obtain an mp-triple

(¢,d, g1 : (Z1,D2) € (Y1, Dy;) X (x1,0x,) (Ximy, Dy ) = (Xizy. D)

associated to (Xu,, Dx,, ) induced by ¢|p, and the triple ({,d, gs : (Z2, Dz,) = (Xu,, Dxy,))-

Let ap € My, ey, The final paragraph of the proof of Lemma 3.10 implies that we have a
bijection My, = | |, Dy, My, e = My, = .. Dy, My, . induced by ¢. Then s induces an element
o) € MYl,e}l~ Write (Yy,, Dy, ) and (Ya,, Dy,,) for the smooth pointed stable curves over k; and
ko induced by oy and aw, respectively. Consider the connected Galois tame covering

(YOéz?DYaz) X (X2,Dx,) (XH27‘DXH2) - (Z27D22)

of degree £ over ko, and write 3, for an element of M7 corresponding to this connected Galois
tame covering. Then we have
62 - Z tcg ﬁcw

CQESXH2
where t., € (Z/lZ)* and B, € My, .,. On the other hand, by the proof concerning w;’z(M{}l) = My,

in the fourth paragraph of the proof of Lemma 3.10, £y induces an element

def
51 — Z tcz /Bp;‘lHl (02) + tEXHQ ﬂp(;llHl (€XH2)

C2€SXH2 \{EXI.[2 }
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_ *
= Z tc2ﬂp¢_’|1Hl (c2) + teXHQ ﬁeXHl S le.
c2€Sxy, \{eXHQ}

Then we have that the coefficient tex,, of BEXH is not equal to 0. Thus, the composition
2 1

(YanDYal) X (X1,Dx,) (XH17DXH1) - (Zl7DZ1) g (XH17DXH1)

is tamely ramified over ex, . This means that ex, is contained in Sy, . We complete the proof
of the lemma. 0

Remark 3.11.1. Remark 3.6.1 implies that D% , i € {1,2}, admits a natural action of G.
Moreover, the commutative diagram

g
gp 1 gp
l))(H1 DXH2
’yHlvﬂtl(le)l ’szﬁfﬁ(nyl
gp P gp
DX1 DX2

is compatible with the actions of G.

3.4.6.  Next, we prove that the condition (gx, ,nx,, ) = (9xu,, nx,,) mentioned in Lemma 3.11
can be omitted. Firstly, we treat the case of abelian groups.

Lemma 3.12. We maintain the notation introduced in 3.4.5. Suppose that gx > 2, and that G is
an abelian group. Then we have (gx, ,nxy,, ) = (9xu,, "Xy, )-

Proof. We write m for #G and put K, & ker(mt(Uy,) — 4 (Ux,)* ® Z/mZ). Then we see imme-
diately that K5 is contained in Hs. Let K; o ¢ Y (Ky) C Hy. Write (X[, DXKi) for the smooth
pointed stable curves of type (gx,. ,nx,. ) over k; induced by K; and fx, : (Xk,, Dx, ) = (Xi, Dx,)
for the tame covering over k; induced by the inclusion K; — 7t(Uy,). We identify 7¢(Uy, )/ K; with
7§ (Ux,)/ K via the isomorphism induced by ¢, and denote by A of i (Ux,) /K1 = 1t(Uy,)/Ka.

Since each p-Galois tame covering is étale (i.e., Galois tame coverings whose Galois group is
a p-group), we have that g Xk, = Xk, follows from the Riemann-Hurwitz formula, and that
nx., = #(A)nx = nx,,. Then we obtain (gx,, ,nxy, ) = (9xx,, Nx, ). Thus, Lemma 3.11 implies
that the commutative diagram

4|
K, —4% K,

l l

T (Ux,) —— wi(Ux,)

of profinite groups induces a commutative diagram

p
DEP ?lry
XKy

7K1,w§<UX1>J VKQ,ﬁ(UXQ)l

gp

gp Pe gp
DX1 —_— DXQ.

Moreover, Remark 3.11.1 implies that the commutative diagram above admits a natural action
of A. Then, for each ¢ € D5 | the inertia subgroup Il in A associated to €5~ (i.e. the
K Kq X K

stabilizer of e%?Kl under the action of A) is equal to the inertia subgroup Tep in A associated to
K2

e p e ) e DS . On the other hand, write F for the kernel of the natural morphism
XK2 ¢|K1 XKI XK2

A — G induced by the inclusion K; — H;, i € {1,2}. Since (Xp,, Dx,, ) = (Xk,, Dx, )/ F, the
set of ramification indices of the Galois tame covering (Xg,, Dx,. ) — (Xu;; Dx, ) with Galois
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K

group F are equal to {#(F NI )}ese cpwe . Then by the Riemann-Hurwitz formula, we have
i K K;
(94, "xy,) = (9x4,, Nxy, ). This completes the proof of the lemma. O

Next, we treat the general case.

Lemma 3.13. We maintain the notation introduced in 3.4.5. Suppose that gx > 2 and nx > 2.
Then there exists an open normal subgroup Py C mi(Ux,) which is contained in Hy such that the
following holds:

Write (Xp,, DXPi), i € {1,2}, for the smooth pointed stable curve of type (gxpi,nxpi)
over k; induced by P;, where Py = ¢~ (Py). We have (9xp, ,nxp ) = (9xp,,10xp,)-

Proof. First, suppose that GG is a simple finite group. By applying Lemma 3.12, we may assume
that G is non-abelian. Moreover, we claim that we may assume that nx is a positive even number.
Let us prove this claim. Suppose p # 2. Let Ry C 7}(Ux,) be an open subgroup such that

#(m}(Ux,)/R2) = 2, and that Ry 2 ker(n!(Ux,) — m1(X32)) (i.e. the cyclic Galois tame covering

corresponding to Ry is étale). Let Ry o ¢ 1 (Ry) C mi(Ux,). Then we have that #(7t(Ux,)/R1) =

2, and that Lemma 3.9 implies R; 2 ker(wi(Ux,) — m(X1)). By replacing H; and =} (Uy,),
i € {1,2}, by H; N R; and R;, respectively, we may assume that nx is a positive even number.
Suppose that p = 2. Let ¢ be a prime number such that (¢,2) = (¢{,#G) = 1. By [R1, Théoreme
4.3.1], there exists an open subgroup R5 C 7t(Ux,) such that #(n$(Ux,)/R5) = ¢, that Ry D
ker(m} (Uy,) = m(X3)), and that

dimg, (Ry™ @ F,) > 0,

Let R} © ¢1(Ry) C 7t(Ux,). Then we have that #(!(Us,)/R;) = ¢, that dimg, (R} ®F,) > 0,

and that Lemma 3.9 implies R} D ker(n!(Uy,) — m1(X1)). Thus, we may take an open subgroup
R}, C Rj such that
7t (Ux,) /Ry = LJ2Z x TJ1Z,

and that R) DO ker(n}(Ux,) — m(X32)). We put R o ~}(R,). Then the construction of R

implies 7} (Ux,)/R] = Z/27 x Z/VZ and R] O ker(m}(Ux,) — m(X1)). By replacing H; and
m(Ux,), i € {1,2}, by H; N R, and R}, respectively, we may assume that nyx is a positive even
number. This completes the proof of the claim.

Let #G dof p'm/ such that (m’,p) = 1. Since nx is a positive even number, we may choose a
Galois tame covering

fa2 1 (Y2, Dy,) — (X2, Dx,)

over ko with Galois group Z/m'Z such that f5 is totally ramified over every marked point of Dy, .
Write (gy,, ny,) for the type of (Ya, Dy,), Q2 C 78 (Ux,) for the open normal subgroup induced by

Ja, Q1 « o H(Q2) C T (Ux,),

fi: (Y1, Dy;) — (X4, Dx,)
for the Galois tame covering over k; with Galois group Z/m'Z induced by the natural inclusion
Q1 — w(Ux,), and (gy,, ny, ) for the type of (Y7, Dy,). Then Lemma 3.12 implies that (gy,,ny,) =
(9vy, ny,) and f; is also totally ramified over every marked point of Dy, .
We consider the Galois tame covering

(Zi7DZi) = (XHi7DXHi> X (Xi,Dx;) (Y;? DYz) - (Xi7DXi)> IS {17 2}7
over k; with Galois group G X Z/m'Z which is the composition of (Z;, Dz) — (Y;, Dy,) and
(Yi, Dy,) — (Xi, Dx,). Note that since G is a non-abelian simple finite group, (Z;, Dz,) is con-
nected. Moreover, by Abhyankar’s lemma, we obtain that (Z;, Dz,) — (Y;, Dy,) is an étale covering
over k;. Since (gy,, ny;) = (9vys My,) and (Z;, Dz,) — (Y, Dy;) is unramified, the Riemann-Hurwitz
formula implies (gz,,nz,) = (92,,12,)-

Next, let us prove the lemma in the case where G is an arbitrary finite group. Let G; C G5 C

- C G, G be a sequence of subgroups of G such that G;/G;_1 is a simple group for all
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i € {2,...n}. In order to verify the lemma, we see that it is sufficient to prove the lemma when

n = 2. Let N; be the kernel of the natural homomorphism 7§(Ux,) - G — G7 and N; o dH(Ny).

Then by replacing G by GG and by applying the lemma for the simple group G, we obtain an open
normal subgroup M, C 7j(Ux,) which is contained in Ny such that (gx,, ;nx,, ) = (9xu, > "X, )

where M, & ¢~ Y(My), and (90, 7xy, ), @ € {1, 2}, denotes the type of the smooth pointed stable

curve corresponding to M;.

If M; C H;, i € {1,2}, then we may put P dof M;. If H;, i € {1,2}, does not contain M;, we
put O; et M; N H;. Then we have M;/O; = G/G;. Note that G/G; is a simple group. Then the
lemma follows from the lemma when we replace (X;, Dx,) and G by (X, Dx,, ) and the simple
group G /Gy, respectively. This completes the proof of the lemma. O

3.4.7. Now, we prove the main result of the present section.

Theorem 3.14. Let ()N(i,D;(i), i € {1,2}, be the universal tame covering of (X;, Dx,) defined
in 3.1.3. Let ¢ : wt(Ux,) — 73 (Ux,) be an arbitrary open continuous surjective homomorphism.
Then the group-theoretical algorithm of the mono-anabelian reconstruction concerning Ine(wj(U,))
obtained in Proposition 3.7 is compatible with the surjection ¢ : 7} (Ux,) — 7 (Ux,). Namely, the
following holds: Let e; € Dg, and I, € Ine(r{(Ux,)) the inertia subgroup associated to €. Then
there exists an inertia subgroup Iz, € Ine(w;(Ux,)) associated to a point €, € D such that

¢([El) = le,

and that the restriction homomorphism gb|jg1 : Iz, — I3, is an tsomorphism.

Proof. If nx = 0, then the theorem is trivial. We suppose nx > 0. Let m >> 0 be an integer
number such that (m,p) = 1. We put K; & ker(nt(Uy,) — mt(Ux,)™ ® Z/mZ), i € {1,2}.
Write (X, Dg;) for the smooth pointed stable curve of type (gx,. ,nx,,) over k; induced by K;.
Moreover, the condition m >> 0 implies Ixk, = Xk, > 2, Nxg, = Nx, > 2.

By applying Lemma 3.13, we may choose a set of open subgroups Cl, = {H;}iez-, of m{(Ux,)
such that the following conditions hold: (a) Hy; = Kb; (b) 1&1], i (Ux,)/Haj = 7 (Ux,) (ie. Cx,

is a cofinal system); (c¢) write {H; ; o ¢~ (Hs ;) }jez., for the set of open subgroups of 7} (U, )

induced by ¢, and, for each j € Z~, write (XHZ.J.,DXH”), i € {1,2}, for the smooth pointed stable
curve of type (gXH”_ : nXHij) over k; induced by H; j; then we have (gx,, X, 7_) = (9xu, X, 7_).
For each j € Z~(, we write e Xu,, € DXH2]_ for the image of €. Then we obtain a sequence of

marked points

Cx,
A A A T

€2

Proposition 3.6 implies that, for each Hy ;, j € Z, the set D?H can be mono-anabelian recon-
2,5
structed from Hs ;. For each €xy, € DXH2 _, we denote by
3J »J

gp  def 41
e =9 e )
XHQ,]' XHQ’]-( XHQJ-)

Then the sequence of marked points Ig * induces a sequence

Cx . gp gpP
I,égi,‘ s P T
Then Remark 3.6.1 implies that the inertia subgroup associated to €, is equal to the stabilizer of
T5x.
)

By Lemma 3.11 and Lemma 3.13, I;i)(? induces a sequence as follows:
2

def _ def _

gp 1 gp gp gp 1 gp gp
s e lef et eDP® e ) 8 € D%
‘KH1,2 ¢|H1,2< H2,2> Hy o Hin ¢|H1,1( H2,1) Hyp
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with an action of Iz,. Then Proposition 3.7 implies that we have a sequence

dﬁf gp dﬁf gp
NN eXHLQ = 19XH172 (eXHLQ) € DXHLQ — 6XH1,1 = 19XH1,1 (BXHM) € DXHL1

with an action of I,
Let Kier(y) be the subfield of K induced by the closed subgroup ker(¢) of 7}(Ux,), X1 ker(s)

the normalization of X in Kje(e), and D)~(1 §
sequence 7

“ the inverse image of Dx, in Xj yer(g). Then the

"'f—)GXHIQ P—>€XH11.

determines a point € yer(¢) € Dfﬁ )" We choose a point of e; € Dfﬁ such that the image of ¢;

in D)?l,kerw) is €1 ker(g). Then we have ¢([z,) = Iz,. Moreover, since Iz, and Iz, are isomorphic to

2(1)1”/, the restriction homomorphism ¢| r;, is an isomorphism. This completes the proof of the
theorem. ]

3.5. Reconstructions of additive structures via surjections.
3.5.1. Settings. We maintain the settings introduced in 3.4.1.

3.5.2. Let e be an arbitrary point of D)~(2. By applying Theorem 3.14, there exists a point
€1 € Dg, such that ¢l : Iz, = [, is an isomorphism. Write F,:, i € {1,2}, for the algebraic
closure of IF,, in k;. We put

def

ng = (]Ei Rz (Q/Z)f,) U {*a‘}a (NS {172}7

where {xz,} is an one-point set, and (Q/Z)" " denotes the prime-to-p part of Q/Z which can be
canonically identified with U(p m)=1 tm (k;). Moreover, let ag, be a generator of Iz,. Then we have
a natural bijection

I @7 (Q/Z) 5 7.9y (Q/Z), az, @1 1® 1.
Thus, we obtain the following bijections
I; @2 (Q/Z)) 520z (QZ) 5 | pmlk) ST,
(pym)=1

This means that Fz, can be identified with Fv,i as sets, hence, admits a structure of field, whose
multiplicative group is I5, ®z (Q/Z)? ,, and whose zero element is *z,.

3.5.3.  The main goal of the present subsection is to prove that ¢| N = Iz, induces an

isomorphism Fz, = Fz, as fields. The main idea is as following: First, we reduce the problem to
the case where nx = 3 by applying Theorem 3.14. Second, the field structure of Fg, (i.e. the set of
isomorphisms of Fz, and Fp,i as fields) can be translated to a certain problem concerning generalized
Hasse-Witt invariants (e.g. 7, (M,,) in the proof of Proposition 3.15). Then by applying Theorem
3.14 again, we obtained the result by comparing =, , (M,,) with v,,(M,,).

3.5.4.  'We have the following proposition.

Proposition 3.15. The field structure of Fz,, i € {1,2}, can be mono-anabelian reconstructed
from 7t (Ux,). Moreover, the isomorphism gb|1gl . Iz, = Iz, induces an isomorphism

9¢7g17g2 : ]Fgl — Fg2

as fields.
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Proof. First, we claim that we may assume nxy = 3. If gx = 0, then nx > 3. Suppose that
gx > 1. Theorem 3.14 implies that ¢ : 7t(Uy,) — 7%(Uy,) induces an open continuous surjection
% m (X)) = m(Xy). Let Hy C m(X3) be an open normal subgroup such that #(m (Xs)/Hj) > 3
and Hj o (¢*)"1(H}). Write H; C wi(Ux,), i € {1,2}, for the inverse image of H] of the
natural surjection 7i(Ux,) — m1(X;), and (Xp,, Dx,, ) for the smooth pointed stable curve of type
(gXHi,nXHi) over k; induced by H;. Note that gx, = gx,, > 2 and nx, = nx,, > 3. By
replacing (X;, Dy,) by (Xu,, Dx,, ), we may assume gy > 2 and nx > 3. The surjection ¢ induces
a bijection '
19)_(1 P X,
Dx, 5 D2 5 D%® 5 Dy,

def def def —1 def
! !
Let D, = {ei1,e12,e13} C Dx, and D, = {e21 = Ux, 0 pg oV (e11), €22 = Ux, 0 py 0

Ui (e12), €23 o Ux, 0ps00xi(e13)} C Dx,. Then (X;, DY), i € {1,2}, is a smooth pointed stable
curve of type (gx,3) over k;. Write I;, i € {1,2}, for the closed subgroup of 7}(Uy,) generated
by the inertia subgroups associated to the elements of D5 whose images in Dy, are contained in
Dx, \ D%,. Then we have an isomorphism

m(Xi\ Dx,) & m(Ux,)/ 1, i € {1,2}.
Moreover, Theorem 3.14 implies that ¢ induces an open continuous surjective homomorphism

¢/ : 7T11:(X1 \ ‘Df)(l) - 7T11:(X2 \ DfXQ)

Thus, by replacing (X;, Dx,), 71 (Ux,), and ¢ by (X;, D), 7{(X; \ DY,), and ¢', respectively, we
may assume nxy = 3.

Let r € N. We denote by F,rz,, ¢ € {1,2}, the unique subfield of Fz, whose cardinality is equal
to p". On the other hand, we fix any finite field F,- of cardinality p” and an algebraic closure
IF, of F,. By Proposition 3.7, we have F), - = I5,/(p" — 1) can be mono-anabelian reconstructed
from 7}(Ux,). Then reconstructing the field structure of F,.z is equivalent to reconstructing
Homgeas(Fypr 5, Fpr) as a subset of Homgroup(F;T@,IF}). Note that, in order to reconstruct the
field structure of F,, it is sufficient to reconstruct the subset Homgeias(Fpr 2, Fpr) for r in a cofinal
subset of N with respect to division.

Let x; € Homgroups(m}(Ux,)* ® Z/(p" — 1)Z,F,:). Write H,, for the kernel of 7}(Ux,) —
™ (Ux,)™ @ Z/(p" — 1)Z = Fy., M,, for H?» @ F,, and (Xm,,, Dx,, ) for the smooth pointed
stable curve over k; induced by H,,. We define

M, [xi] dof {a € M,, ®x, F, | 0(a) = xi(0)a for all 0 € 7} (Ux,)** @ Z/(p" — 1)Z}

and 7, (M,y,) o dimg (My;[xi]) (i-e. a generalized Hasse-Witt invariant (see [Y5, Section 2.2])).

Then [T4, Remark 3.7] implies 7,,(M,,) < gx + 1. Moreover, we define two maps
Res; , : Homgoups () (U Xi)ab ®RZ/(p"—1)Z, IF;) — Homygoups(F, IF;,«),

pr.e)
Lir t HoMgroups (75 (Ux, )™ @ Z/(p" — 1)Z,Fyy) = Lo, Xi = Y (M),
where the map Res; , is the restriction with respect to the natural inclusion F; o < 7} (Ux,)*” ®
Z/(p" — 1)L
Let mg be the product of all prime numbers < p—2if p # 2,3 and mg=11if p = 2,3. Let o be

the order of p in the multiplicative group (Z/moZ)*. Then [T4, Claim 5.4] implies the following
result holds:

there exists a constant C(gx) which only depends on gy such that, for each r >
log,(C(gx) + 1) divisible by o, we have

Homgelas (Fyr 7, Fpr) = Hom3dh (B~ F) \ Res;, (I, ({gx +1})), i € {1,2},

groups pr.e;’

where Homg,q, . (—, —) denotes the set of surjections whose elements are contained

in Homgoups(—, —)-
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Let ko € Homgroups (7} (Ux,)?® ® Z/(p” — 1)Z,F,y.). Then ¢ induces a character
k1 € Homgeoups (71 (Ux, )™ @ Z/(p" — 1)Z,F};).

Moreover, the surjection @[y, induces a surjection My, (k1] — M, [ko]. Suppose that ko €
I3 ({gx +1}). The surjection M, [k1] — My,[rs] implies 7., (M,,) = gx + 1. This means
k1 € I't,({gx + 1}). On the other hand, the isomorphism O, Iz = I, induces an injection

Resy (M, ({gx +1})) < Resy (D ({gx +13)).-
Since #(Homgeias(Fpr 2, Fpr)) = #(Homgeas(Fpr 2, Fpr)), we obtain that ¢| I;, induces a bijection
Homgeias(Fpr 2y, Fpr) — Homgeras(Fpr 2, Fpr ). Thus, ¢ I, induces a bijection

Homgeas(Fz,, Fp) = Homges(Fz,, Fy).

If we choose R, = Fe,, then the image of idg, via the bijection above induces an isomorphism

Osz, 2 : Fz, — Fg, as fields. This completes the proof of the proposition. OJ

4. MAIN THEOREMS

4.1. The first main theorem. In this subsection, we apply the results obtained in previous
sections to prove that the scheme-theoretical structures of curves of type (0,n) over [, can be
controlled group-theoretically via open continuous homomorphism (Theorem 4.3).

4.1.1. Settings. We fix some notation. Let (X, Dx,), i € {1,2}, be a smooth pointed stable curve

of type (gx, nx) over an algebraically closed field k; of characteristic p > 0, Uy, o X,\IZ x;, T (Ux,)

the tame fundamental group of Ux,, m1(X;) the étale fundamental group of X;, and (X;, Dg ) the
universal tame covering of (X;, Dy,) associated to 7} (Uy,) (3.1.3). Let k*, i € {1,2}, be the
minimal algebraically closed subfield of k; over which Uy, can be defined. Thus, by considering the
function field of Xj, we obtain a smooth pointed stable curve (X;*, Dxm) (i.e. a minimal model of

(Xy, Dx,) (cf. [T3, Definition 1.30 and Lemma 1.31])) such that Uy, = Uxm Xym k; as k;-schemes,

where Uxm o X"\ Dxm. Note that mj(Uxm) is naturally isomorphic to 7j(Ux,). We shall denote
by Fp,i the algebraic closure of IF,, in k;. Moreover, we put

] aor [0, if k= F,,

4.1.2. Firstly, we have the following lemma.

Lemma 4.1. Let ¢ : w8 (Ux,) — 7 (Ux,) be an arbitrary open continuous homomorphism. Then
¢ 1s a surjection.

Proof. We denote by IIg the image of ¢ which is an open subgroup of 7j(Uy,). Let (X4, Dx,) be
the smooth pointed stable curve of type (gx,,nx,) over ky induced by Il and f4 : (X4, Dx,) —
(X2, Dx,) the tame covering of smooth pointed stable curves over ko induced by the inclusion
I, — 7(Ux,). Since f4 is a tame covering, we have that nx, > nx. On the other hand, if
gx = 0, we have g4 > 0. If gx > 0, the Riemann-Hurwitz formula implies gx, > [m}(Ux,) :
IIy](9x —1)+1 > gx. Then we have gy > gx and nx, > nx. Note that 7{(Ux,) — Il; — 7}(Ux,)
implies
29x +nx —12>2g9x, +nx, — 12> 29x +nx — 1.

Then we obtain that 2gx +nx —1 = 2gx, +nx, —1. Moreover, Proposition 3.8 (ii) and the natural
surjection 7} (Ux, ) — Il induced by ¢ imply that gy > gx,- Then we obtain that gx = gx,. Thus,
we have (gx,nx) = (9x,,nx,). This means that the tame covering f, : (X4, Dx,) — (X2, Dx,) is
totally ramified over every marked point of Dy, .

Let us prove [7}(Ux,) : IIs] = 1. Suppose [7}(Ux,) : II5] # 1. Since f, is totally ramified, the
Riemann-Hurwitz formula implies gx, > gx if nx # 0 and gx # 0. This is a contradiction. If
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nx = 0, the Riemann-Hurwitz formula implies gx = 1 if gx # 0. This contradicts the assumption
where (X;, Dy,) is a pointed stable curve. Then we obtain gx = gx, = 0. Moreover, by applying
the Riemann-Hurwitz formula again, since ny = nx 5r WE obtain nxy = nx o = 2. This contradicts
the assumption where (X;, Dy,) is pointed stable curve. Then we have [7}(Uy,) : II] = 1. This
means that ¢ is a surjection. O

4.1.3. Further settings. In the remainder of this subsection, we suppose (gx,nx) = (0,n). We
fix two marked points e; o,e109 € Dy, distinct from each other. Moreover, we choose any field
K} = ki, and choose any isomorphism ¢; : X; 5 P,f:,l as schemes such that ¢;(e1 ) = 0o and
¢1(e19) = 0. Then the set of kj-rational points X (k1) \ {e1.0} is equipped with a structure of
F,-module via the bijection ;. Note that since any kj-isomorphism of IP’l,l fixing co and 0 is a
scalar multiplication, the F,-module structure of X; (k1) \ {€1,00} does not depend on the choices of
k| and ¢; but depends only on the choices of e o, and e; o. Then we shall say that X; (k1) \ {e1.00}
is equipped with a structure of F,-module with respect to e1 o and e; p.

By applying Theorem 3.14, in the next lemma, we will prove that Tamagawa’s group-theoretical
criterion (i.e. [T2, Lemma 3.3]) for linear conditions is compatible with arbitrary open continuous
surjective homomorphism.

Lemma 4.2. Let ¢ : 7i(Ux,) — 7(Ux,) be an open continuous surjective homomorphism. By
Lemma 3.10, ¢ induces a bijection py : DY = DS . We may identify DY, i € {1,2}, with Dy,
via the bijection Jx; : D%g = Dx,. Write ea and eaq for psle1so) and pylery), respectively. Let

E b61 €1 = €10

e1€Dx, \{e1,00,€1,0}

be a linear condition with respect to e and ey on (Xy,Dx,), where b, € F, for each e; €
Dx, \ {e1.0:€10}. Then the linear condition

Z be,py(e1) = pylero) = e20

e1€Dx, \{e1,00,€1,0}

with respect to €9 and eag on (Xa, Dx,) also holds.

Proof. Let €3, € Dg, be a point over ey . The set Fz, o Iz ®2z (Q/Z))u {*&,.. } admits
a structure of field, and Proposition 3.15 implies that the field structure can be mono-anabelian

reconstructed from 7§(Uy,). Theorem 3.14 implies that there exists a point € o, € D %, OVer €10
such that ¢(Iz, ) = €3,00. By Proposition 3.15 again, the set Fg, o (Iz, .. ®z (Q/Z)) U {xeo
admits a structure of field which can be mono-anabelian reconstructed from 7} (Uy, ), and ¢ induces
an isomorphism Oyz, 2, . : Fz . = Fz,  as fields.

For each e; € Dx,, we take b, € Z>( such that b, = b., (mod p) and

/
DS
61€DX1\{€1,00761,0}
Let » > 1 such that p" — 2 > Zelepx \{e1.00,€1,0} be,-
1 ,00,61,

the image of the natural morphism Iz, < wt(Uyx,) — 7t (Ux,)*". Moreover, since the image of
Iz, a1 does not depend on the choices of €1, we may write I., for Iz, .. The structure of maximal
prime-to-p quotient of 7} (Ux, ) implies that 7f(Ux,)* is generated by {I, }e,eny, , and that there
exists a generator a.,, 1 € Dx,, of I, such that [] , = 1. We define

For each e; € Dy, over ey, write I, a1 for

e1€Dx, e

I, . = Z)(p" = 1)Z, e, — 1,

Iel,o — Z/(pr - 1)27 ael,o = ( Z b/el) - 17

e1€Dx, \{e1,00,€1,0}
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and
I, = Z)(p" = 1Z, ac, — =V, , e1 € Dx, \ {€1.00,€10}-

€1’

Then the homomorphisms of inertia subgroups defined above induces a surjection ¢d; : 7§ (Ux,) —
t(Ux,)® — Z/(p" — 1)Z. Note that ker(d;) does not depend on the choices of the generators

{a‘el }61€DX1 :

Let I3, def ¢(Iz), e1 € Dg,, and I, es € Dx,, the image of the natural homomorphism

Iz, — mt(Ux,) — 7t (Ux,)®. Since (p,p” — 1) = 1, by Theorem 3.14, §; and the isomorphism

/

o Tt (Ux, )P = mt(Ux,)? imply the following homomorphisms of inertia subgroups:
Iy . = Z)(p" = 1)Z, Gy — 1,
leyo = Z/(p" = 1)L, aey = ( Z b/el) -1,
e1€Dx, \{e1,00,€1,0}
and

[62 — Z/(pr — 1)Z, Aey 7 _b/el? €y € l)X2 \ {62700,6270},

where a.,, ea € Dx,, denotes the element induced by a.,, 1 € Dx,, via ¢. Then the homo-
morphisms of inertia subgroups defined above induces a sujection & : 7t(Uyx,) — 7t (Ux,)®® —»
Z/(p" —1)Z.

We put Hs, < ker(s;), My, < H* @ F,, i € {1,2}. Note that we have Hs, = ¢~'(Hy,). Write
(X H;,» D XH5,) for the smooth pointed stable curve over k; induced by Hy,. The F,-vector space Mj,
admits a natural action of I3, via conjugation which coincides with the action via the following
character ’

R F

€i,00

9;
—mUx,) »Z/(p" =1L =1I,

XIz

7,00’

/(p"—1) = Iﬁ‘ém, ie{1,2}.

We put Ms,[xr, ] = {a € My, ®r, Fz, . | 0(a) = xr.,_s(0)aforall o € I5 _}, where o(a), 0 €
I, , is the induced action of the conjugacy action of I’giyoo on Hy,. In fact, dimp, (M, [xr. )
is the first generalized Hasse-Witt invariant associated to the tame covering of U )z:ocorrespo;ﬁing
to Hs, C mi(Ux,) (see [Y5, Section 2.2]). Since the action of Iz, o, on M;, is semi-simple, we obtain
a surjection Ms, [Xf‘e“l,oovr] — Ms, [X[gloom] induced by qu|H51 and 0y & .- On the other hand, the
third and the final paragraphs of the proof of [T2, Lemma 3.3] imply that the linear condition

E be1 €1 =2¢€1p0
e1€Dx, \{e1,00,€1,0}

with respect to e o and e on (X, Dy,) holds if and only if Mj, [XI€1 oo,r] = 0. Thus, we obtain
Ms,[xr,, _»] =0. Then the third and the final paragraphs of the proof of [T2, Lemma 3.3] imply
that the linear condition

> be,pg(e1) = €20

e1€Dx, \{e1,00,€1,0}

with respect to ez~ and ez on (Xs, Dx,) holds. This completes the proof of the lemma. O

Remark 4.2.1. Note that, if X; =P}, then the linear condition is as follows:

Z belel =0

el GDXI \{O0,0}

with respect to co and 0.
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4.1.4. Now, we prove the first main theorem of the present paper.

Theorem 4.3. We maintain the notation and settings introduced above. Then we have the fol-
lowing:
(i) d(x, px), © € {1,2}, can be mono-anabelian reconstructed from my(Ux,).

(i1) Suppose k* = Fp’l. Then the set of open continuous homomorphisms
Homgg(ﬂ(UXl)ﬂT;(UXz))

is non-empty if and only if Uxm = Uxp as schemes. In particular, if this is the case, we have
kp~TF,, and
Homglg)(ﬂi(UXJ? W%(UXQ)) = Isompg(’]r%(U)ﬁ)a W%(U)Q))'

Proof. Firstly, let us prove the (ii). The “if” part of (ii) is trivial. We treat the “only if” part of (ii).
Suppose that Hom» (7} (Ux, ), 7} (Ux,)) is a non-empty set, and let ¢ € Hom 2 (7} (Ux, ), 7 (Ux,)).
Then Lemma 4.1 implies that ¢ is a surjection.

We identify DY, i € {1,2}, with Dx, via the bijection Vx, : D§ = Dx,. Since ¢ is a surjection,

Lemma 3.10 implies that ¢ induces a bijection ps : Dx, — Dx,. We put ea o pele1o) and

€200 def pe(€1,00). Let a0 € D;Q be a point over ez o. Theorem 3.14 implies that there exists a point

- def ' .
€10 € Dg, over e such that ¢(Iz,,) = [5,,. Then F,, = (Iz, @2 (Q/Z)7) U {*z,,}, i € {1,2},
admits a structure of field. Moreover, Proposition 3.15 implies that the field structure can be
mono-anabelian reconstructed from 7} (Ux,), and that ¢ induces a field isomorphism 04z, 2, :
]Fgl,o = ng,o'

Proposition 3.2 (i) implies that n can be mono-anabelian reconstructed from 7} (Uy,), i € {1,2}.

If n = 3, (i) is trivial, so we may assume n > 4. Moreover, since ki* = F,,, without loss of
generality, we may assume that ky =F,; =F that X; = ]P% o and that
Db,

€1,09
Dx, ={e100 =00,€10=0,e11 =1,€12,...,€1n-2}.

Here, €1,...,e1n_2 € Fp1 \ {€10, €11} are distinct from each other.
Step 1: In this step, we will construct a linear condition on a certain tame covering of (X1, Dy, ).

We see that there exists a natural number r prime to p such that F,((.) contains rth roots of

© [FP(CT) : ]Fp]‘

€1,2;---,€1n—2, Where ¢, denotes a fixed primitive rth root of unity in F,;. Let s
1r. =
For each ey, € {€1,...,€1n-2}, we fix an rth root 61’/1: in F,;. Then we have

s—1
ei,/q: = Zbl,wg’, ue{2,...,n—2}
v=0

where by ,, € F, for each v € {2,...,n — 2} and each v € {0,...,s — 1}.

Let X; \ {e1.00} = SpecFp 1 [21], fu, : (Xuy, Dxy, ) = (X1, Dx,) the Galois tame covering over
Fm with Galois group Z/rZ determined by the equation y] = 1, and H; the open normal subgroup
of } (Ux, ) induced by the tame covering fy,. Then fg, is totally ramified over {e; o, = 00,e19 =0}
and is étale over Dy, \ {oc0,0}. Note that Xp, = IP’%p .» and that the points of Dy, over {€1.00, €10}

def

def
are {em, 00 = 00,€em,0 = 0}. We put

def 1 def
CHyu = elfgerHl, we{2,...,n—2} ey, = ( € Dxy, veE{0,...,5s -1}

Thus, we obtain a linear condition

s—1

§ : v
CHiu = bl,uveth

v=0

with respect to ey, oo and em, o on (X, Dx,, ) for each uw € {2,...,n —2}.
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Step 2: In this step, we will prove that the linear condition on a certain tame covering of
(X1, Dx, ) constructed in Step 1 induces a linear condition on a certain tame covering of (Xs, Dy,)
via the surjection ¢.

Write Hy for ¢(Hy). Since (r,p) = 1, we have the following commutative diagram of profinite
groups:

H, Sl m, i,
@

Wi(le) — 7rJi(Usz)

| l

Z|r7l —— ZJrZ.
We denote by fu, : (Xm,, Dx,,) — (X2, Dx,) the Galois tame covering over F,, with Galois
group Z/rZ induced by H,. Note that Lemma 3.12 implies that (Xp,, Dx,, ) and (Xu,, Dxy,)

are equal types. Moreover, Lemma 3.11 implies that the following commutative diagram can be
mono-anabelian reconstructed from the commutative diagram of profinite groups above:

Po|
Dx,, — Dx,,
DX1 L} DX2~
We put
def def
€2.00 = Po(€1.00), €24 = polern), uwe{0,...,n—2},
def def def
6]'-Ig,oo é p¢|H1 (eHl,OO)7 eHQ,O é p¢|H1 (eHl,O)a eHg,u é p¢|H1 (eHl,u>a (VRS {2a R 2}7
and
def

€1 = Polm, (ef, 1), v€1{0,..., 8 —1}.

Remark 3.11.1 implies that fpy, is totally ramified over {es oo, €20} and is étale over Xo \
{€2.00,€20}. Then we may assume that X, = IP’}CQ, and that ey = 00,€99 = 0,e21 = 1. We
regard eg,, u € {2,...,n—2}, as an element of ks \ {e2, e21}. Moreover, we have ey, -, = oo and
€Hy,0 = 0.

We put & & 0621.0,2.0(Cr) which is an 7th root of unity in Fg,,. Since (.(ef, ) = e}ifg}l, we
obtain &(ef;,,) = ejt, v € {0,...,s — 2}. By applying Lemma 4.2 for ¢|p, : Hy — H,, the
following linear condition

s—1
€Hyu = Z b1,uu§?(€9{2,1)
v=0

with respect to eu, o and e, o on (Xp,, Dx,, ) holds for each u € {2,...,n —2}. Since (ep,.)" =
eau, U €4{2,...,n — 2}, we obtain

s—1
€24 = (Z bl,uvgg(eglg,l)Y'
v=0

Moreover, if we put ey, | = 1, then we obtain that

s—1
€204 = (Z bl,uvg»))r
v=0

for each u € {2,...,n —2}. Since 0z, 2,(¢) = &, we have

1
Ux, = UX;H = P@m \ {61,00 =o00,e10=0,e11=1,€e19,... 761,n—2}
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~ ol
— Pr, N\ {e2o = 00,20 =021 = 1,055 020(€12), - 052 02,0 (€1n-2)}
1
= ]P)ﬁp,Q \ {62700 = 00, 6270 = O, 62’1 = 1, 6272, Ce 762,n72}
and
1
]P)Em \{e200 =00,€00=0,€21 =1,€29,...,€202} XFpa ko = Ux,.

This means U xm = U X as schemes. In particular, we have k' = FP,Q.

Finally, we prove that Hom (7} (Ux,), 7} (Ux,)) = Isomye (7} (Ux, ), 71 (Ux,)). The “2” part is
trivial. We only need to prove the “C” part. We may assume Homp: (7} (Ux, ), 71 (Ux,)) # 0.
Let ¢/ € Hom®(7}(Ux, ), 7{(Ux,)). Then 7{(Ux,) is isomorphic to 7}(Ux,) as abstract profinite
groups. By Lemma 4.1, ¢’ is a surjection. Then [FJ, Proposition 16.10.6] implies that ¢’ is an
isomorphism. Thus, we obtain ¢’ € Isomyegps(75 (Ux, ), 78 (Ux,)). This completes the proof of (ii).

Next, let us prove (i). Without loss of generality, we only treat the case where i = 1. Moreover,
def

let (X,DX> = (XlaDX1)>
Dx ={ex =00,e0 =0,e1 = 1,€9,...,€, 2},

k< &y, and F, o Fz,. Let (r,Q) be a pair such that the following conditions hold: (i) (r,p) = 1;

(ii) @ is an open normal subgroup of 7§(Ux) such that 7} (Ux)/Q = Z/rZ, and that the Galois
tame covering fq : (Xq, Dx,) — (X, Dx) over k induced by @ is totally ramified over {e.,eo}
and is étale over Dx \ {eoo, €0}

By applying Theorem 3.14, we see immediately that the set of pairs defined above can be mono-

anabelian reconstructed from 7¥(Ux).

def

We fix a primitive rth root of unity (. in EJ and put s, = [[F,(¢,) : F,]. Moreover, we put

def

def v def
€Q.o0 = 00, €Qo = 0, g

= C: € DXQ7 v e {O,...Sr—l},
and let eq. € Dx,, u € {2,...,n}, such that fg(eq.u) = e,. Denote by

Sr—1
Low = {equ— Y buneh | buw € F,} {0}, ue {2,...,n— 2},

v=0
By applying similar arguments to the arguments given in the proof of (ii) above, we have that
dix,pyx) = 0 if and only if there exists a pair (r,Q) defined above such that Ly, # 0 for each
u € {2,...,n —2}. Then the third and the final paragraphs of the proof of [T2, Lemma 3.3]
implies that L., u € {2,...,n—2}, can be mono-anabelian reconstructed from Q. Thus, d(x p)
can be mono-anabelian reconstructed from 7} (Ux). This completes the proof of the theorem. [

Remark 4.3.1. Note that Theorem 4.3 also holds if we replace 7} (Uy,), i € {1,2}, by its maximal
pro-solvable quotient 7§(Uy,)*!. Then we obtain the following solvable version of Theorem 4.3
which is slightly stronger than the original theorem:

We maintain the notation introduced above. Then d(x, py,), 1 € {1,2}, can be mono-

anabelian reconstructed from wt(Ux,)*®. Moreover, suppose that ki = F,,. Then

the set of open continuous homomorphisms

Homp? (n1 (Ux, )*, 71 (Ux, ™)
is non-empty if and only if Uxm = Uxyp as schemes. In particular, if this is the

case, we have ki* = TF,, and
Homgg(ﬂ'lj(UXJSOl? WE(UX2)SOI) = Isompg(ﬂ—i(UXl)SOl? W}(UX2)SOI)'

4.2. The second main theorem. In this subsection, by using Theorem 4.3, we prove a result
concerning pointed collection conjecture and the weak Hom-version conjecture (Theorem 4.4).

4.2.1. Settings. We maintain the notation introduced in 2.1.2.
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4.22. Letqe ng;g‘ be an arbitrary point, k(q) an algebraic closure of k(q), and

Ux, NPl \{a1 lyay =0,a3 = 00,a4,...,0,}

as k(q)-schemes. We shall say that ¢ is a coordinated point if either ¢ = @uen or the following
conditions are satisfied:

(i) dim(V,) = dim(Mgh!) — 1.
(ii) There exists i € {4,...,n} such that a; € F,.

Let w>:4 : M(?f,f — Mg" be the morphism induced by the morphism Mord Mord obtained by

forgetting the marked pomts except the first, the second, the third, and the ith marked points. If
q is a coordinated point and ¢ # Ggen, then we have that ¢” r def w7\1 4(q) is a closed point of M(C]’,ﬁld, and
that (w n’4)_1(q ) =V, since (w,’ 1) (¢") is an irreducible closed subset of dimension dim (M) —1
containing V.

Let t be a closed point of Mé’;‘f. Then there exists a set of coordinated points P, o {Ga, .- qen}

such that
{th= [ Va,-

qt,;€EP
4.2.3. Now, we prove the second main result of the present paper.

Theorem 4.4. (i) For each closed point t € Mgf’d, the set C; associated to t is a pointed collection
Definition 2.4). Moreover, for each pointed collection C € G, there exists a closed point s €
q
M such that C = C,.
(it) Let ¢ € Mgy be an arbitrary point. Then the the natural map colle, : V& — €, [t] — Ci,
18 an injection.
i) Let ¢ € M be an arbitrary point. Suppose that there exists a set of coordinated points P
q 0,n yp pp p q

such that
V.=V

uel,

'gen ?

Then the pointed collection conjecture holds for q. In particular, the pointed collection conjecture
holds for each closed point of M(‘)’f;f.
(iv) Let q; € M, i € {1,2}, be an arbitrary point. Suppose that there exists a set of coordinated

0,n
N Ve

points P, such that
u€ Py,

Then the weak Hom-version conjecture holds. In particular, the weak Hom-version conjecture holds
when q is a closed point.

Proof. Let us prove (i). We put F; o {t' € Mgrvf}’d | t ~p t'}. Let t” be an arbitrary point
of ﬂGEWt ) Ug- Then, for each G € y(?), Hom® (7} (¢"), G) is non-empty, where Hom?(—, —)
denotes the subset of Homp"(—, —) whose elements are surjections. Since 7j(t”) is topologi-

cally finitely generated, we obtain that the set Homsum(ﬁ (t"),G) is finite. Then the set of open
continuous homomorphisms

lim Hom®™ (7} (t"), G) = Hom% (7} ("), 71 (t))

Ger' (t)
is non-empty. Thus, Theorem 4.3 implies ¢’ € F;. This means
() Ue)n M =F,
Gen', (t)

Since Uy, can be defined over a finite field, F} is a finite set. Then C; is a pointed collection.
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Let C € €., be a pointed collection and s a closed point of (. Ug. By replacing ¢ by s, and
by applying similar arguments to the arguments given in the proof above, we obtain C = C;.

(ii) follows immediately from Theorem 4.3. Let us prove (iii). If n = 4, then Mg} is a one
dimension scheme. For each ¢ € M(‘j)jﬁld, the pointed collection conjecture follows immediately from
Theorem 4.3. Then we may assume n > 5. To verify (iii), (ii) implies that we only need to prove
that colle, is a surjection.

Suppose that ¢ is a closed point of M(‘ir,f. Let C € €, be an arbitrary pointed collection contained
in €,. By applying (i), there exists a closed point s € M&rnd’d such that the pointed collection Cs
associated to s is equal to C. Since C € G, there exists a surjection 7{(¢) — 7} (s). Then Theorem
4.3 implies 7t (q) = 7i(s). Thus, we have ma(q) = C; = C (or equivalently, 6, = {7%(¢)}). In
particular, colle, is a surjection if ¢ is a closed point of M(‘)’,rf.

Suppose that ¢ is a non-closed point. This means dim(V;) > 1. If ¢ = ggen, (iil) follows from (i)
and (ii). Let us treat the case where ¢ # ggen. First, suppose that ¢ is a coordinated point, and
that

Ux, %P]i(—q)\{l,(),oo,azl,...,an}.

Without loss of generality, we may assume a,, € Fp.

For each pointed collection C C %, by applying (i), there exists a closed point ¢; € M;ff’d
such that C;, = C. Then we have an open continuous surjective homomorphism 7¥(q) — 7t (7).
Let WXZ : M(?f,f — Mg be the morphism induced by the morphism Mord — Mord obtained by
forgetting the marked pomts except the first, the second, the third, and the nth marked points. We
put ¢/ & )" "4(t1) and ¢" L0\ (g). Note that ¢/ and ¢” are closed points of Mo 4. Write (X, Dx,),
(X4, Dth), (Xgr, Dx ), and (Xt/{ DXt’l’) for the smooth pointed stable curves corresponding to
q, t1, ¢" and t7, respectively.

We denote by I, C 7}(Ux,) = m}(¢) the normal closed subgroup generated by Iz € Ine(7}(Ux,)),
e € Dx,\Dx,,, where € € Dg_is an element over e (see 3.1.3 for Dg ), and I;, C 7{(Ux,, ) = m(t1)
the normal closed subgroup generated by Iz € Ine(7{(Ux, )), e € Dx, \ DXt’l" Note that we have

mt(q)/1, = mi(¢") and 7i(t1)/ L, = mi(t]). Moreover, Theorem 3.14 implies that the image of
I, under the surjection wj(q) — 7}(t1) is I;;. Then the surjection 7j(q) — j(t1) induces an
open continuous surjective homomorphism 7¥(¢”) — wt(¢]). Thus, by Theorem 4.3, we obtain that
q" ~. t]. Then without loss of generality, we may assume ¢” = t{ and

UXt1 = ]P)%p \ {17()’ OO,b4, s 7bn_17a”}

over F,, where b; € F, for each i € {4,...,n — 1}. Furthermore, we see t; € (w \") ) =

(whﬁl)_l(q” ) = V. Thus, t; is a closed point of V. Then the pointed collection conjecture holds
for ¢ when ¢ is a coordinated point.

Next, we prove the general case. If V, = Cu = 6.

u€ Py

wep, Vu, then v = MNuer, Vel and N
Moreover, since we have a bijection colle, : ¥, = €, for each u € P,, we have that
colleg : ¥, = ﬂ v ﬂ €. = C,
u€ Py ue Py

is a bijection. This completes the proof of (iii).

Let us prove (iv). We only need to prove the “only if” part of the weak Hom-version conjecture.
Suppose that V,, is not essentially contained in V,,. This implies that there exists a closed point
t, € V< such that F, NV, = 0, where Fy, © {th € M | t5 ~, th}. By (iii), we have Cy, & €,
Thus, by Lemma 4.1, we obtain that

Homgg(ﬂ (1), 75 (t2)) = 0.

This provides a contradiction to the assumption that Hom p(7(q1),7i(q2)) is non-empty. We
complete the proof of (iv). O
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Remark 4.4.1. Let ¢ € M,,, be an arbitrary point. Stevenson posed a question as follows (see
[Ste, Question 4.3] for the case of n = 0): Does mGwaA(q) Ug contain any closed points of M, ,,7 By

[T5, Theorem 0.3], ﬂGew% @ Ug contains a closed point of My, if and only if ¢ is a closed point of

M

g Furthermore, when g = 0 and ¢ is a closed point, the proof of Theorem 4.4 (i) implies that

( () Us)NMg, = F,

Ger' (q)

where F, = {¢ € Mg, | g~y q'}.

n
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