TOPOLOGICAL AND GROUP-THEORETICAL SPECIALIZATIONS OF
FUNDAMENTAL GROUPS OF CURVES IN POSITIVE CHARACTERISTIC

YU YANG

ABSTRACT. In the present paper, we study some new anabelian phenomena of curves over alge-
braically closed fields of characteristic p > 0, and formulate two new conjectures concerning open
continuous homomorphisms of admissible fundamental groups that are motivated by the theory of
moduli spaces of fundamental groups. Moreover, we prove the conjectures hold for genus 0 under
certain assumptions.
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1. INTRODUCTION

1.1. Anabelian geometry. In the 1980s, A. Grothendieck suggested a theory of arithmetic geome-
try called anabelian geometry ([G]), roughly speaking, which focuses on the following question: Can
we reconstruct the geometric information of a variety group-theoretically from various versions of its
algebraic fundamental group? The varieties which can be completely determined by their fundamen-
tal groups are called “anabelian varieties” by Grothendieck, and to classify the anabelian varieties in
all dimensions over all fields is called “anabelian dream” of him. In the particular case of dimension
1, he conjectured that all smooth pointed stable curves, or hyperbolic curves (defined over certain
fields) are anabelian varieties.
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1.1.1. Let p be a prime number and #(—) the cardinality of (—). Let
X* = (X, Dy)

be a pointed stable curve of type (gx,nx) over a field k of characteristic char(k), where X denotes

the underlying curve which is a semi-stable curve over k, Dx denotes the (finite) set of marked points

satisfying [K, Definition 1.1 (iv)], gx denotes the genus of X, and nx of #(Dx). In the present

introduction, “curves” means pointed stable curves unless indicated otherwise.

1.1.2. Grothendieck’s anabelian philosophy. Suppose that X* is smooth over k. When k is an “arith-
metic” field (e.g. a number field, a p-adic field, a finite field, etc.), Grothendieck’s anabelian con-
jectures for curves (or the Grothendieck conjectures for short), roughly speaking, are based on the
following anabelian philosophy (see |G, p289 (6)] for a precise statement):

Hom-version: The sets of dominant morphisms of smooth pointed stable curves can
be determined group-theoretically from the sets of open continuous homomorphisms
of their algebraic fundamental groups.

In particular, we have the following two versions:

Isom-version: The sets of isomorphisms of smooth pointed stable curves can be
determined group-theoretically from the sets of isomorphisms of their algebraic fun-
damental groups.

Weak Isom-version: The isomorphism class of X*® can be determined group-theoretically
from the isomorphism class of its algebraic fundamental group.

Grothendieck’s anabelian philosophy tells us, over arithmetic fields, what geometric behavior of
curves should be anabelian.

1.1.3. Anabelian geometry of curves over arithemetic fields. Grothendieck’s anabelian conjectures
over arithmetic fields have been proven in many cases (e.g. see [P], [MNT], [T1] for surveys). All
the proofs of the Grothendieck conjectures for curves over arithmetic fields mentioned above require
the use of the non-trivial outer Galois representations induced by the fundamental exact sequences
of fundamental groups.

1.1.4. Beyond the arithmetical action. Next, we consider the case where X* is an arbitrary pointed
stable curve, and suppose that k is an algebraically closed field. Let w39 (X*®) be the admissible
fundamental group of X*® (see 2.2.2). Note that if X*® is smooth over k, then 7#4™(X*) is naturally
isomorphic to the tame fundamental group 7§(X*®). When char(k) = 0, since the isomorphism class
of m3dm(X*) depends only on the type (gx,nx), the anabelian geometry of curves does not exist
in this situation. On the other hand, if char(k) = p, the situation is quite different from that in
characteristic 0. The admissible fundamental group 724™(X*) is very mysterious and its structure is
no longer known. In the remainder of the introduction, we assume that k is an algebraically closed
field of characteristic p.

After M. Raynaud and D. Harbater proved Abhyankar’s conjecture, Harbater asked whether or
not the geometric information of a curve over k can be carried out from its geometric fundamental
groups ([Hal], [Ha2]). Since the late 1990s, based on the philosophy concerning “Weak Isom-version”
explained in 1.1.2, some results of Raynaud ([R]), F. Pop-M. Saidi ([PS]), A. Tamagawa ([T2], [T4],
[T5]), and the author of the present paper ([Y1], [Y2]) showed evidences for very strong anabelian
phenomena for curves over algebraically closed fields of characteristic p (see [T3] for more about
this conjectural world based on Grothendieck’s anabelian philosophy mentioned in 1.1.2). In this
situation, the arithmetic fundamental group coincides with the geometric fundamental group, thus
there is a total absence of a Galois action of the base field. This kind of anabelian phenomenon is
the reason why we do not have an explicit description of the geometric fundamental group of any
pointed stable curve in characteristic p.

The anabelian geometry of curves over algebraically closed fields of characteristic p is very difficult.
At present, in this situation, the Grothendieck conjecture was proved only in the case of weak Isom-
version under the assumption that curves are defined over Fp of type (0,nx), and that curves are
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defined over T, of type (1,1) if p # 2 ([S, Theorem 1.1], [T4, Theorem 0.2], [T6], [Y1, Theorem 1.2
and Theorem 1.3], [Y4, Theorem 3.8]).

Since Tamagawa discovered that there also exists the anabelian geometry for certain smooth
pointed stable curves over algebraically closed fields of characteristic p, 28 years have passed. How-
ever, the “Weak Isom-version” is still the only anabelian phenomenon that we know in this situation,
and we cannot even imagine what phenomena arose from curves and their fundamental groups should
be anabelian until the author of the present paper observed a new kind anabelian phenomenon ex-
plained below.

1.2. Motivation.

1.2.1. A new kind of anabelian phenomenon. When we try to formulate a “Hom-version” conjecture
for curves over algebraically closed fields of characteristic p based on Grothendieck’s anabelian phi-
losophy mentioned in 1.1.2 (i.e. an analogue of the conjecture posed in [G, p289 (6)]), we see that the
set of dominate morphisms between two pointed stable curves are possibly empty, and that the set
of open continuous homomorphisms of their admissible fundamental groups are not empty in general
(e.g. specialization homomorphisms of a non-isotrivial family of pointed stable curves). Then the
relation of two pointed stable curves cannot be determined by the set of open continuous homomor-
phisms of their admissible fundamental groups if we only consider anabelian geometry in the sense
of “Hom-version” mentioned in 1.1.2. In fact, the existence of specialization homomorphisms is the
reason that Tamagawa cannot formulate a “Hom-version” conjecture for tame fundamental groups
of smooth pointed stable curves in general (|T3, Remark 1.34]).

On the other hand, the author observed a new phenomenon that has never been seen before:
It is possible that the sets of deformations of a smooth pointed stable curve can be reconstructed
group-theoretically from open continuous homomorphisms of their admissible fundamental groups.
This observation implies a new kind of anabelian phenomenon that cannot be explained by using
Grothendieck’s original anabelian philosophy mentioned in 1.1.2: The topological structures of moduli
spaces of curves in positive characteristic are encoded in the sets of open continuous homomorphisms
of geometric fundamental groups of curves in positive characteristic.

This new kind of anabelian phenomenon can be precisely captured by using the so-called moduli
spaces of admissible fundamental groups and the homeomorphism congjecture introduced in [Y6], [Y7].
Let us briefly explain them in 1.2.2.

1.2.2. Moduli spaces of admissible fundamental groups and the homeomorphism conjecture. Let Mg,n,l
be the moduli stack over Z parameterizing pointed stable curves of type (g,n) and Mgm the coarse
moduli space of ﬂg,mz X7 Fp. In [Y6, Section 3.2], the author introduced a topological space ﬁg,n
in a group-theoretical way, whose underlying set consists of the isomorphism classes (as profinite
groups) of admissible fundamental groups of curves of type (g,n), and whose topology is determined
by the sets of finite quotients of admissible fundamental groups of curves of type (g,n). We shall
call ﬁgm the moduli space of admissible fundamental groups of type (g,n).

There exists a natural map (as sets) M,, — Il , defined by ¢ — [IL,], where II, denotes the
admissible fundamental group of the curve corresponding to a geometric point over ¢, and [II,]
denotes the isomorphism class of II,. By introducing the so-called Frobenius equivalence ~ ¢. on Mgﬁn
(see [Y4, Definition 3.4]), we have a continuous surjective map ([Y6, Theorem 3.6])

adm w5 def == =
ngll . mg,n = Mg,n/ ~fe™ Hg,’m [Q] = [Hq]a

where [g] denotes the equivalence class of ¢, and ﬁg,n is the quotient topological space whose topology
is induced by the Zariski topology of Mg,n- Moreover, we posed the so-called homeomorphism
conjecture ([Y6, Section 3.3]) which says that 72™ is a homeomorphism.

The homeomorphism conjecture generalizes all the conjectures appeared in the theory of admissible
(or tame) anabelian geometry of curves over algebraically closed fields of characteristic p, and means
that the moduli spaces of curves in positive characteristic can be reconstructed group-theoretically
as topological spaces from sets of open continuous homomorphisms of admissible fundamental groups
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of pointed stable curves in positive characteristic. Moreover, it sheds some new light on the theory
of the anabelian geometry of curves over algebraically closed fields of characteristic p based on the
following new anabelian philosophy:

The anabelian properties of pointed stable curves over algebraically closed fields of
characteristic p are equivalent to the topological properties of the topological space
I, .
The above philosophy supplies a point of view to see what anabelian phenomena that we can reason-
ably expect for pointed stable curves over algebraically closed fields of characteristic p.

1.2.3. Towards the homeomorphism conjecture for higher dimensional moduli spaces. The homeo-
morphism conjecture has been proved by the author in the case where dim(M%n) < 1 (e.g. see
[Y6, Theorem 6.7] for the case of g = 0). The main goal of the anabelian geometry of curves over
algebraically closed fields of characteristic p is to prove the homeomorphism conjecture for higher

dimensional moduli spaces. The author believes that it can be proved by the following steps:

e Step 1 (closed points): prove the homeomorphism conjecture for closed points of ﬁg,n-

e Step 2 (non-closed points corresponding to smooth curves): prove the homeomorphism con-

jecture for non-closed points of M, ,, def g/ ~feC ﬁg,n by using Step 1.

e Step 3 (from smooth to singular): prove the homeomorphism conjecture by using Step 2.
When g = 0, Step 1 has been completed by the author ([Y6, Theorem 6.7]). The Step 2 is equivalent
to the weak Hom-version conjecture and the pointed collection conjecture formulated in [HYZ, Section
2].

In the present paper, we treat Step 3 and give a precise formulation via the group-theoretical
specialization conjecture explained below. On the other hand, in the remainder of the introduction,
we also treat the case of mazimal pro-solvable quotients of admissible fundamental groups (or pro-
solvable admissible fundamental groups for short). Note that the pro-solvable version is stronger
than the original version in general since the pro-solvable admissible fundamental groups can be
reconstructed group-theoretically from admissible fundamental groups.

1.3. Various specializations via fundamental groups.

1.3.1. Let X?, i € {1,2}, be an arbitrary pointed stable curve of type (gx,nx) over k; of char-
acteristic p, I'ye the dual semi-graph of X7 (2.2.1), and Ilxs either the admissible fundamental
group of X? or the maximal pro-solvable quotient of admissible fundamental group of X?. We
put Homgg(ﬂ x¢,xs) the set of open continuous homomorphisms between Ilxs and Ilx,, and let
¢ € Homg(IIxs, Ixs) be an arbitrary open continuous homomorphism. Note that ¢ is a surjection
since the types of X7 and X3 are equal (see [Y6, Lemma 4.3]).

To complete Step 3 mentioned in 1.2.3 (i.e. to prove the homeomorphism conjecture for arbitrary
pointed stable curves by using the homeomorphism conjecture for smooth curves), we need to es-
tablish a precise group-theoretical correspondence via ¢ between various “pointed stable sub-curves’
(2.2.3,2.2.4, 2.2.5) of X7 and X3 (e.g. pointed stable curves associated to irreducible components of
X7 and X3). Namely, we need the following:

(i) Give a group-theoretical description of various pointed stable sub-curves of X? via
the closed subgroups of Ilys.

(ii) Establish a correspondence between the closed subgroups of Il ys and Ilys appeared
in (i) via ¢.

1.3.2. Combinatorial data, topological data, and geometric data. For (i) mentioned above, we intro-
duce the following sets

Com(I‘Xi-), Typ(X?), GeO(HX;)
which we call the combinatorial data associated to I'xs, the topological data associated to X7, and
the geometric data associated to Ilxs, respectively (see Section 2.3 and Definition 2.5 for precise
definitions). Roughly speaking, Com(I'xs) consists of various sub-semi-graphs of I'ys (see 2.1.2)
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which encodes the gluing data of various pointed stable sub-curves of X?, Typ(X}) consists of the
topological types of various pointed stable sub-curves of X?, and Geo(Ilxs) consists of the closed sub-
groups of I xs which are isomorphic to the admissible fundamental groups (or pro-solvable admissible
fundamental groups) of various pointed stable sub-curves of X?.

Some special cases of the above data have been studied by Tamagawa when X is smooth over k;
([T3], [T4]) and by the author when X? is an arbitrary pointed stable curve ([Y1], [Y2]). Moreover,
in [Y2], the author proved that the dual semi-graph of a pointed stable curve in positive characteristic
can be reconstructed group-theoretically from its pro-solvable admissible fundamental groups. As a
corollary, we have that Com(I'xs), Typ(X?) can be determined by Geo(Ilxs), and that Geo(IIxs) can
be reconstructed group-theoretically from Ilxs (see [Y2, Theorem 0.3] or Theorem 2.6 and Remark
2.6.1 of the present paper for explanations).

1.3.3. Specializations via fundamental groups. For (ii) mentioned in 1.3.1 (this is the main topic of
the present paper), we have the following conjectures (see 3.1.3 and Proposition 3.9 for more precise
formulations and some other equivalent formulations):

Topological Specialization Conjecture . Suppose that Hom %t (Ilxs, [lxs) is not empty. Then X3
is a degeneration (or reduction) of X3 as “topological spaces”.

Group-theoretical Specialization Conjecture . Let ¢ € Hom}(Ilxs, Ilxs) be an arbitrary open
continuous homomorphism. Then we have

¢(Geo(Ilxs)) C Geo(Ilxy).

Proposition 3.6 of the present paper says that the topological specialization conjecture can be deduced
from the group-theoretical specialization conjecture.

New anabelian phenomena. Let us explain the anabelian phenomena concerning the above conjec-
tures. Let q1,q2 € M, be arbitrary points such that gy is contained in V/(q;), where V(g;) denotes
the topological closure of ¢; in Mgm. Then there exist a complete discrete valuation ring R and a
morphism Spec R — Mg,n — Mg,n such that the image of the morphism is {qi,¢2}. Let 77 and 5 be
a geometric generic point and a geometric closed point over the generic point and the closed point
of Spec R, respectively. Write X® for the pointed stable curve over R determined by the morphism

Spec R — M, Xy for the generic fiber, X7 for the special fiber, X2 for X2 o Xy X, 7, and X7,

By the general theories of log geometry and admissible fundamental groups, we obtain a special-
ization surjective homomorphism of admissible fundamental groups (=an open continuous homomor-
phism of admissible fundamental groups arising from scheme theory, see [SGA1], [V])

PR (X ) — (X,
Since X7 is a reduction of X7, the deformation theory of admissible coverings of X'* implies that
spip™ (Geo(mi™(Xy,))) € Geo(ri™™ (X)),

where Geo (7™ (X?)), i € {1,2}, denotes the geometric data associated to 7™ (X? ). For instance,
let IT; € Geo(m39™ (X)) be a closed subgroup of 7§4™(X? ) associated to the pointed stable sub-curve

)?51 determined by an irreducible component X,, of Xz = X, (see 2.2.4 for )?;1) Then spii™(11;)
is a closed subgroup of W?dm(X(;z) associated to the pointed stable sub-curve determined by the
degeneration (or reduction) of X,, in Xz = X,,. This means that we have the following geometric

phenomena:

e The combinatorial data Com(I'x, ) and the topological data Typ(Xg,) can be controlled by
the combinatorial data Com(I'y, ) and the topological data Typ(Xg,) via the “deformation”
X* of X7, over R arising from scheme theory.
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e The geometric data Geo(r§4™(X¢,)) of X, can be controlled by the geometric data Geo(7™ (X2 ))
of X2 via an open continuous homomorphism spiim of admissible fundamental groups arising

from scheme theory.

On the other hand, the topological specialization conjecture and group-theoretical specialization
conjecture mean that there should exist the following anabelian phenomena:

e The combinatorial data Com(I'x, ) and the topological data Typ(Xg,) can be controlled by
the combinatorial data Com(I'x, ) and the topological data Typ(Xg ) via the “deformation”
Hom 2 (I1 xg o 1 X(;Z) explained in 1.2.1 which is arose from group theory.

e The geometry data Geo(m#%™ (X2 )) of X can be controlled by the geometry data Geo(m™ (X2 ))
of X7 via an arbitrary open continuous homomorphism ¢ of admissible fundamental groups
which is arose from group theory.

1.3.4. The topological specialization conjecture and group-theoretical specialization conjecture are
very difficult. They are highly non-trivial even in the simplest case where X?, i € {1,2}, is smooth
over k;, Hom?? (ITxs, Ilxs) = Isompg(Ilxs, Ilxs) (this condition is equivalent to Isompg(ILye, Ilxs) #
0), and ¢ € Isomy,(ITxs, Ixs) is an isomorphism, where Isomp, (ILys, ITxs) denotes the set of isomor-
phisms of admissible fundamental groups. In this special case, the above conjectures are proved by
Tamagawa which are the main results of [T4] (see [T4, Theorem 0.1 and Theorem 5.2]).

If we assume that Hompp(Ilxs, [Ixs) = Isomyg(Ilxe, Ixs), and that ¢ € Isomg,(ILys, Ilxs) is
an isomorphism, then the group-theoretical specialization conjecture is equivalent to the so-called
“combinatorial Grothendieck conjecture” which is the main conjecture in the theory of combinatorial
anabelian geometry developed by Y. Hoshi and S. Mochizuki (e.g. [HM1], [HM2], [M2]) in character-
istic 0, and by the author in characteristic p ([Y1], [Y2]). Thus, the group-theoretical specialization
conjecture can be regarded as the ultimate generalization of the combinatorial Grothendieck conjecture
i characteristic p.

On the other hand, the combinatorial Grothendieck conjecture is an “Isom-version” problem, and
the group-theoretical specialization conjecture is a “Hom-version” problem. Similar to other theory
in anabelian geometry, Hom-version problems are so much harder than the Isom-version problems.

1.3.5. Main results. Now, we give the main results of the present paper. For the topological special-
ization conjecture, we have the following result (see Theorem 4.9 for a more precise statement):

Theorem 1.1. The topological specialization conjecture holds when gx = 0.

The group-theoretical specialization conjecture are so much harder than the topological special-
ization conjecture since we need to treat all open subgroups of admissible fundamental groups. On
the other hand, we may ask the following question:

Problem 1.2. Does the topological specialization conjecture imply the group-theoretical specialization
conjecture?

By applying Theorem 1.1, we have the following result (see Theorem 5.7 for a more precise statement):

Theorem 1.3. Suppose that the topological specialization conjecture holds for arbitrary types. Then
the group-theoretical specialization conjecture holds when gx = 0.

1.4. Structure of the present paper. The present paper is organized as follows.

In Section 2, we recall some notation concerning semi-graphs, pointed stable curves, and admissible
fundamental groups. Moreover, we introduce combinatorial data, topological data, and geometric
data.

In Section 3, we introduce the topological and group-theoretical specialization homomorphisms
of admissible fundamental groups, and formulate the topological specialization conjecture and the
group-theoretical specialization conjecture. Moreover, we prove some properties concerning topolog-
ical and group-theoretical specialization homomorphisms.

In Section 4, we prove Theorem 1.1.

In Section 5, we prove Theorem 1.3.
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2. GEOMETRIC DATA ASSOCIATED TO POINTED STABLE CURVES

In this section, we recall some notation concerning pointed stable curves and their admissible
fundamental groups. Moreover, we introduce the so-called geometric data associated to admissible
fundamental groups of pointed stable curves.

2.1. Semi-graphs. In this subsection, we recall some notation concerning semi-graphs ([M1, Section

1]).

2.1.1. (a) Let
def
G = (0(G).e(G). (% 1 e(G) = v(G) U {v(G)})
be a semi-graph. Here, v(G), e(G), and (¢ denote the set of vertices of G, the set of edges of G, and
the set of coincidence maps of G, respectively. Note that {v(G)} is a set with exactly one element.

Let e € e(G) be an edge. Then e % {bL,52} is a set of cardinality 2 for each e € e(G). The set
e(G) consists of closed edges and open edges. If e is a closed edge, then the coincidence map (€ is a
map from e to the set of vertices to which e abuts. If e is an open edge, then the coincidence map (€
is a map from e to the set which consists of the unique vertex to which e abuts and the set {v(G)}
(i.e. either (%(bl) or (¢ (b?) is not contained in v(G)).

(b) We shall write e°?(G) C e(G) for the set of open edges of G and e?(G) C e(G) for the set of
closed edges of G. Note that we have

e(G) = eP(G) U e?(G).

Moreover, we denote by eP(G) C e?(G) the subset of closed edges such that #(¢%(e)) =1 (i.e. a
closed edge which abuts to a unique vertex of G), where “Ip” means “loop”. For each e € e(G), we
denote by v (e) C v(G) the set of vertices of G to which e abuts. For each v € v(G), we denote by
e%(v) C e(G) the set of edges of G to which v is abutted.

(c) We shall say G connected if G is connected as a topological space whose topology is induced

by the topology of R?, where R denotes the real number field. We denote by rg o dimg(H'(G,Q))
the Betti number of G, where Q denotes the rational number field. Moreover, we shall call G a tree
if r G — 0.

Let v € v(G). We shall say that G is 2-connected at v if G\ {v} is either empty or connected.
Moreover, we shall say that G is 2-connected if G is 2-connected at each v € v(G).

(d) We define an one-point compactification G* of G as follows: if e°P(G) = (), we put G®* = G;
otherwise, the set of vertices of G* is the disjoint union v(G°P") o v(G) U {vs}, the set of closed

edges of G is ¢ (GePY) of eP(G) U e(Q), the set of open edges of GP! is empty, and every edge
e € eP(G) C e (GPY) connects v,, with the vertex that is abutted by e.

Remark. The motivations of the above notation concerning semi-graphs are the dual semi-graphs of
pointed stable curves (see 2.2.1 below).

Example 2.1. Let us give an example of semi-graph to explain the above notation. We use the

(1P

notation “e” and “o with a line segment” to denote a vertex and an open edge, respectively.
Let G be a semi-graph as follows:
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G: €3 ‘ U2 o€4

Then we see v(G) = {vi, 12}, e(G) = {e1,eq,e3}, eP(G) = {es}, (C(e1) = {v1,v2}, (C(ez) =
{v1,v2}, (G(e3) = {v1}, and (%(es) = {v2, {v(G)}}. Moreover, we have e?(G) = {es}, v%(e;) =
{v1,v2}, v8(e2) = {v1, 12}, v8(e3) = {v1}, vC(es) = {va}, € (v1) = {e1,e2,e3}, and e (vy) =
{61,62,64}.

Moreover, G! is the following:

2.1.2. (a) Let G’ be a connected semi-graph. We shall say G’ a sub-semi-graph of G if either
G’ = {e} for some e € ¢(G) or the following conditions hold:
(i) v(G') # 0 and v(G') C v(G).
(ii) e(G’) C e (G) is the subset of closed edges such that vG(e) C v(G’).
(iii) eP(G') C (e*(G) U e®(G)) \ e (G’) is the subset of edges such that #(vG(e) N
v(G)) =1
Note that the definition of G’ implies that G’ can be completely determined by v(G') if v(G') # 0.
The condition (ii) implies that, if ¢ € €P(G) is a loop and v%(e) C v(G’'), then e € e (G'). If
G’ = {e} for some e € ¢(G), we will use e to denote G’. Moreover, there exists a natural injection
G’ — G, and G’ can be regarded as a topological subspace of G via this injection.
(b) Suppose that G’ is a sub-semi-graph of G such that v(G') # (). Let L C e(G') be a subset of
closed edges of G’ such that G’ \ L (i.e. removing L from G’) is connected. For any e o {bl, 0’} € L,

e Ve
: def

we put e’ = {bl,,b%}, i € {1,2}, and shall call ¢’ the i-edge associated to e. We shall say that G/,
is the semi-graph associated to G’ and L if the following conditions hold:
(i) v(G) = v(@).

(ii) eP(G]) © e®(G) U {e!, e Yeer, (Cr(e) = {CF' (b)), {v(GY)}} if e = {bL, 02} €

eP(G') and (&' (b!) € v(G), CCL(el) L (¢ (b)), {v(G))}} if ! is the 1-edge asso-
ciated to e € L, and (G%(e?) & {¢¥(2), {v(G/)}} if €2 is the 2-edge associated to
e€ L.
(iii) e?(G}) = e(G)\ L, and (%2 (e) = (¥ (e) if e € e?(G) \ L.
Then we have a natural map of semi-graphs
5(G’,L) : G/L — G’
which is defined as follows:
e 6 n)(v) = for v e v(G).

o 0 () =eforece(G)\ {e!, e*ecr.
e dc 1)(e') =e, i €{1,2}, for i-edge associated to e € L.

LYY,
Moreover, we put dg; : G’ M @ < @ the composition of maps of semi-graphs. Note that
5GIL|G/L\{617€2}66L is an injection.
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Remark. The motivations of the above notation concerning semi-graphs are the dual semi-graphs of
pointed stable sub-curves (see 2.2.3, 2.2.4, and 2.2.5 below).

Example 2.2. We give some examples of semi-graphs to explain the above notation. We use the

(13 7

notation “e” and “o” to denote a vertex and an open edge, respectively.

Let G be a semi-graph, G’ the sub-semi-graph of G such that v(G’) = {v;}, and L o {e1} C
e?(G’) a subset of edges of G’ and {el,e?} the set of 1-edge and 2-edge associated to e;. Then we
have the following:

€2

G: 61 V2 ey

€2

G’ €1 U1
€3
6% (&)

G : U1
€1 €3

2.2. Pointed stable curves and admissible fundamental groups. In this subsection, we recall
some notation concerning pointed stable curves and their admissible fundamental groups.

2.2.1. Let p be a prime number, and let
X* = (X, Dy)

be a pointed stable curve over an algebraically closed field k of characteristic p, where X denotes
the underlying curve and Dx denotes a finite set of marked points satisfying [K, Definition 1.1 (iv)].
Write gx for the genus of X and ny for the cardinality #(Dx) of Dx. We shall call (gx,nx) the
topological type (or type for short) of X*°.

Recall that the dual semi-graph

def .
Lxe = (v(Txe), e(Txe), ¢'%°)
of X* is a semi-graph associated to X* defined as follows:
(i) v(I'xs) is the set of irreducible components of X.
(ii) €°P(I'x) is the set of marked points Dyx.
(iii) e(Tx.) is the set of singular points (or nodes) X8 of X.
(iv) ¢'x*(e), e € e°P(I'xs), consists of the set {v(I'x+)} and the unique irreducible
component containing e.
(v) (tx*(e), e € e?(T'xe), consists of the irreducible components containing e.

Example 2.3. We give an example to explain dual semi-graphs of pointed stable curves. Let X* be
a pointed stable curve over k whose irreducible components are X,, and X,,, whose node is z.,, and
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[P

whose marked point is z., € X,,. We use the notation “e” and “o” to denote a node and a marked
point, respectively. Then X* is as follows:

X

We write v; and v, for the vertices of I'xe corresponding to X,, and X,,, respectively, e; for the
closed edge corresponding to x.,, and es for the open edge corresponding to z.,. Moreover, we use

the notation “e” and “o with a line segment” to denote a vertex and an open edge, respectively.
Then the dual semi-graph I'xs of X* is as follows:

e (%
FXO: Ne 1 '2 o0€2

2.2.2. By choosing a base point x € X \ X®™ of X* where X*™ denotes the smooth locus of X, we
have the admissible fundamental group (see [Y4, Section 2] or [Y5, Section 1.1 and Section 1.2] for
the definitions of admissible coverings and admissible fundamental groups)

W?dm(X.a ZL‘)

of X*. In the present paper, since we only focus on the isomorphism class of 724 (X*, r), we omit
the base point x and write 784™(X*®) for m24™(X*® z). Moreover, we put 729 (X*)*! the marimal
pro-solvable quotient of m23™(X*®). We shall write w¢*(X), 71°®(I'x+), 75*(X)*, and 7} (I'x.)*! for
the étale fundamental group of X, the profinite completion of the topological fundamental group
of I'ye, the maximal pro-solvable quotient of 7$'(X*®), and the maximal pro-solvable quotient of
TP (X'*), respectively.
From now on, we denote by
HX.

either ma4™(X®) or w2dm(X*)%! ynless indicated otherwise. If llxe = 729M(X*), we denote by
<. et (X)), I8 o %P (T xe).
If Mo = 78dm(X*)*! we denote by
Hc;. déf W?t(X)S(ﬂ, Hggl.a déf W;OP(FX‘)SOI-
Then we have the following natural surjections
Mxe — 5. — %%,

Let H C IIxe be an arbitrary open subgroup. We write X7, for the pointed stable curve of type
(9xy>nx,, ) over k corresponding to H and I'xe for the dual semi-graph of X7. Then we obtain an
admissible covering

i Xy—=X°
over k induced by the natural injection H < Ilxe., and obtain a natural morphism of dual semi-graphs

induced by f};, where “sg” means “semi-graph”. We shall say that f}, is étale if the underlying
morphism fy : Xy — X induced by f7; is étale.
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Moreover, if H is an open normal subgroup, then I'xe admits an action of IIy. /H induced by the
natural action of Ilx./H on X7j;. Note that the quotient of I' xs, by Ilxe /H coincides with I'xe, and
that H is isomorphic to the admissible fundamental group Ilys of X};. We also use the notation H é
and H™P to denote Héf—l.{ and Hg?g, respectively.

2.2.3.  We define pointed stable curves associated to various semi-graphs introduced in 2.1.2. Let
[' C I'ye be a sub-semi-graph (2.1.2 (a)). We write X for the semi-stable sub-curve of X (i.e. a
closed subscheme of X which is a semi-stable curve) whose irreducible components are the irreducible
components corresponding to the vertices of v(I"), and whose nodes are the nodes corresponding to
the edges of e?(T"). Moreover, write Dx,. for the set of closed points Xp N {Z, }eccor(r)ce(rys), Where
z. € X denotes the closed point corresponding to e € e(I'xs). We define a pointed stable curve of
type (gr,nr) over k to be

X = (X, Dx,).

Note that the dual semi-graph of X7 is naturally isomorphic to I'. We shall call X the pointed stable
curve of type (gr,nr) associated to I'. We denote by II xp the admissible fundamental group of X7.

2.24. Let I' C I'xe be a sub-semi-graph and L C ed(F) such that T\ L‘is connected. Let I'j
be the semi-graph associated to I' and L (2.1.2 (b)), and Node,(Xr) C X7 the set of nodes of
Xr corresponding to L. We write nor, : Xp, — Xr for the normalization of Xt at Noder (Xr).
Moreover, we put Dy, of nor;*(Dx,. U Noder(Xt)). We define a pointed stable curve of type
(gFu nFL) to be
XI:L = (XFL7DFL)'

Note that the dual semi-graph of X7 is naturally isomorphic to I'y. We shall call X3~ the pointed
stable curve of type (gr,,nr,) associated to I'r. By the construction of X7 , we see

e, =7Tr — #(L)> grp, = gr — #(L)a nr, = nr + 2#(L)

We denote by HXEL the admissible fundamental group of Xp . Moreover, we have the following
natural outer injections (i.e. up to inner automorphism of IIxe)

HXI:L — HXl! — Il xe.

2.2.5. Let v € v(I'xs) and ', C I'xe the sub-semi-graph such that v(I',) = {v}. Let e?(T",) be the
set of loops of I', (2.1.1 (b)). Note that in this situation, we have e®(T',) = e/(T,). Write X, for the
irreducible component corresponding to v and nor, : )?U — X, for the normalization of X,. We put
Dg. def nor; 1 ((Dx N X,) U (X, N X*"€)). Then we have X, = X(r,) | and Dg =D

Moreover, we shall call

elP(1y, X<F’U)elp(l—wv) )

e def /& °
X, = (Xo, D)?v> - X(Fv)elpwv)

def

the smooth pointed stable curve of type (gv,nw) = (g(r,) associated to v. If X, is

1 » TUTw) )
eP(I'y) “VeP(Iw)
smooth over £, for simplicity, we use the notation X to denote X = X7 . We denote by I, the

admissible fundamental group of )Z'; Suppose that ', is contained in a sub-semi-graph I' C T'x..
Then we have the following natural outer injections

H;(; — HXE,U — HXE — IIxe.

Example 2.4. Suppose that the dual semi-graph I'y. is as follows:
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€9

Then we have

€2
'y, =Txe el U1
Typ
€3
2
€1 €9
F)?' =Ixe : U1
“1 (Fv1>€1p(rv1)
1 €3

€1

2.3. Geometric data. In this subsection, we introduce various subgroups of IIxe which can be
regarded as group-theoretical descriptions of pointed stable curves defined in 2.2.3, 2.2.4, and 2.2.5.

2.3.1. Settings. Let X* = (X, Dx) be a pointed stable curve of type (gx,nx) over an algebraically
closed field k of characteristic p > 0, I"ye the dual semi-graph of X*, and Ilx. either the admissible
fundamental group of X*® or the maximal pro-solvable quotient of the admissible fundamental group
of X*.

Write B8 for the set of prime numbers. Let II be a profinite group, and let 3 C R be either the set
B or a subset such that p € ¥. We denote by II* the maximal pro-X quotient of II*. In particular,
if ¥ =B (resp. P\ {p}), we use the notation II (resp. II”") to denote II¥ (resp. IIF\P}),

2.3.2. We put
X< lim Xy Dg=  lim Dy, [xe®  lim Iy
HQH)E(. open HgH?C. open Hgl‘[?(. open
We shall call R R
X*=(X,Dg)

the universal admissible covering associated to II%., and r xe+ the dual semi-graph of X* which is
a simply connected topological space. Note that we have that Aut(X®/X*®) = II%., and that ['x.
admits a natural action of I1%.. We denote by

'as on —» FX-
the natural surjection.

2.3.3. Let I' C I'xe be a sub-semi-graph (2.1.2 (a)) and L C e®(T') a subset of closed edges of T’
such that '\ L is connected. Then we have the semi-graph I'; associated to I' and L (2.1.2 (b)).

Let T C T'ys be a connected component of 7% (T) and T'\ L a connected component of 75 (T'\ L).

We denote by

I % {g e 5. | o(T') =T} C %,
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II;, € {oel%. |o(T\ L) =T\ L} C II%.
the stabilizer subgroups (or the decomposition subgroups) of Cand D \ L under the action of II%. on

r xe, respectively. Note that the conjugacy class of Ils (resp. HfL) does not depend on the choices

of T' (resp. F/\\L)
Let v € v(I'ye) and ¥ € 75" (v). We denote by Iz C [I%. the stabilizer subgroup of ¥ under the
action of I1%. on I'xs. We see

My =TI,
T =T, L=e?T,),and €D\ L.

2.3.4. By the theory of admissible fundamental groups, the following facts are well-known: Il is
isomorphic to HEE, and Il is isomorphic to HZE (this is the reason that we do not use the notation
L

HF\E to denote the stabilizer subgroup of I' \ L). In particular, II; is outer isomorphic to H?(. for all

v(I'ys). Note that we have the following natural injections

HfL — Hf — Hi.
if T\ L CT. Let e € e(I'xe) and € € 7' (e). Then Iz & IIz 5 Z(1)®\#} is isomorphic to an inertia
subgroup associated to the closed point of X corresponding to e.

Moreover, let v € v(I') and e € e(I',) such that € abuts to v, and that [, CT. Then we have the
following natural injections

I; — 1l; — Hfu — HfL — Hf — Hi..
Note that IT; = g if X, is non-singular.
2.3.5.  We denote by Ssg(I"ys) the set of sub-semi-graphs of I'x« and put

def .
Com(I'xe) = {(I', L) | '\ L is connected }reggg(rye),nCec! (1))

where “Ssg” means “sub-semi-graph”, and “Com” means “combinatorial”, and L is possibly an
empty set. Furthermore, we put

def
= {Iz}ressarye) C Geo(IT%.)

where “Geo” means “geometry”. In particular, we denote by

def

Ssg(IT%.) = {II§, }r.n)ecom(rye);

Ver(I1%.) “ {Ts}oeurs,) € Geo(ITx),
o def
Edg™(I1%.) = {L}eceorr ) € Ssg(llx),

c def
Edg”(IT%.) = {Ie}ece(r,) C Sse(Ilxe).
Note that Ssg(I1%.), Geo(IT}.), Ver(IT%.), Edg®(I1%.), and Edg®(IT%.) admit natural actions of
[1%. (i.e. the conjugacy actions). Moreover, we have the following natural bijections

Geo(IT%.) /I = Com(Txe),

Ssg(I1%.)/T1%. = Ssg(T'xs),

~

Ver(IT%. ) /TI%. = v(Tye),

~

Edg® (I1%.)/II%. = e°P(Tx ),

~

Edg(T1%.) /T%. = (T xe).
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2.3.6. We define combinatorial data, topological data, and geometric data associated to pointed
stable curves and their admissible fundamental groups, respectively, as follows:

Definition 2.5. (a) We shall call Com(I"ys) the combinatorial data associated to X,

oy def
Typ(X®) = {(gr.,nr.) }r.0)eCom(rye)

the topological data associated to X*, and Geo(II%.) the geometric data associated to IT%..
(b) Let (I', L) € Com(I'ys) be a combinatorial datum, I';, the semi-graph associated to I and L,

F/\\L C 7' (T'\ L) a connected component, and Il (C II%.) € Geo(IT3.) the stabilizer subgroup of
T\ L.

We shall call IIx a geometry-like subgroup of [1%. associated to 'z, (or the geometry-like subgroup
of I1%. associated to F/\\L) In particular, we have the following: If ' = ', and L = ¢'?(T,) for some
v € v(I'xe), we shall call Il € Ver(I1%.) a vertez-like subgroup of I1%. associated to v (or the vertex-
like subgroup of II%. associated to v). If I' = {e} for some e € e°®(I'xs) and L = (), we shall call
Iz € Edg®(I1%.) an open-edge-like subgroup of I1%. associated to e (or the open-edge-like subgroup
of IT%. associated to €). If I' = {e} for some e € e(I'x+) and L = ), we shall call I; € Edg®(IT%.) a
closed-edge-like subgroup of 11%. associated to e (or the closed-edge-like subgroup of I1%. associated
to e).

Remark 2.5.1. Let us explain the geometric motivation of Definition 2.5. One of main goals of
the theory of anabelian geometry is to prove that algebraic varieties can be completely determined
group-theoretically from various versions of their algebraic fundamental groups. Then for a given
algebraic variety, before we start to study the anabelian properties of the algebraic variety, we need to
find the corresponding group-theoretical descriptions of its geometry informations (i.e. descriptions
of its geometric informations by using closed subgroups of its algebraic fundamental group).

In the case of pointed stable curves, Definition 2.5 means that the conjugacy class

-1
{U HFLO—}JGH?(.
corresponds to the pointed stable curve of type (gr,,nr,) associated to I';, defined in 2.2.4.
For the geometric data, we have the following result.

Theorem 2.6. We maintain the notation introduced in Definition 2.5. Suppose ¥ = B. Then there
exists a group-theoretical algorithm whose input datum is llxe., and whose output data are Geo(Ilxe),

Com(I'xe), and Typ(X*®). In particular, II € Geo(llys) determines group-theoretically a unique
def

element (I'm, Ln) € Com(I'xe) and a unique element (g, nit) = (9(rn)z, "), ) € Typ(X®).
Remark 2.6.1. Suppose that X*® is smooth (in this situation, Geo(Ilxs) = {Ilx«} U Edg®"(Ilx.)).
Then Theorem 2.6 was proved by Tamagawa ([T4, Theorem 0.1 and Theorem 5.2]). Moreover, this
result is the most important (and the most difficult) step in his proof of the weak Isom-version of
the Grothendieck conjecture for (tame fundamental groups!) of smooth curves of genus 0 over an
algebraic closure of F,, ([T4, Theorem 0.2]).

Suppose that X*® is an arbitrary pointed stable curve. Theorem 2.6 was proved by the author of
the present paper ([Y1, Theorem 1.2], [Y2, Theorem 0.3]).

2.3.7.  We maintain the notation introduced above. Let (T'y, Lg), (I'y, Ly) € Com(T"xe). Then T'y, T,
can be regarded as topological subspaces of I'xs (2.1.2 (a)). Suppose that I, N T, is non-empty, and
that
I, NIy Ce(Txe).

def .
o C I%., II, = H(F/b)?b C II%. for the geometry-like subgroups

associated to some I', \ L, 'y \ Ly C T xe, respectively. We have the following lemma.

. def
Moreover, we write I, = II

Lemma 2.7. Suppose that 11, N1I, C H)E(. 15 not trivial. Then 11, V11, is a closed-edge-like subgroup
of I1%..
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Proof. 1f either I', or I'y is an edge of I"xe, then the lemma is trivial. Thus, we may assume that

v([',) and v(I'y) are not empty.

Let H C TI%. be an arbitrary open subgroup, H, def

the natural injections (see 2.2.2 for (—)%)

HnNIl,, and H, = “rn II,. Then we have

Hét,ab N Hét,ab Hét,ab SN Hét,ab
a ) b .

) ‘ st.ab - ..
Moreover, since I', N T, C e (Txs), HE P N H, ™ is trivial.

Let J C II, NI, be a non-trivial pro-cyclic subgroup (i.e. a subgroup generalized by one element)

and Jy © J A H. Then the i image of the natural homomorphism

JH N Hét ,ab

is trivial. By applying [HMl Lemma 1.6], J is contained in a unique closed-edge Asubgroup Iz, of
Hi. for some €; € ed(FX.) Write e; for the image of a] of the natural bural map 7x I'ye — I'xe. We
see immediately that Iz, C II, N II,, that €; connects I, \ L, with T, \ Ly, and that e; e ', N Ty C

¢ (Txe). Write E for the set of edges connecting I' \L with T, \ L,. Then [M2, Proposition 1.2

(i)] implies that IT, NI, coincides with the subgroup generated by {Iz}..z. Moreover, by applying
similar arguments to the arguments given in the proof of [HM1, Lemma 1.8], we obtain

M, NI, = I,

This completes the proof of the lemma. U

3. TOPOLOGICAL AND GROUP-THEORETICAL SPECIALIZATIONS

3.1. Specializations and conjectures.

3.1.1. Settings. Let ﬂgx ny.z be the moduli stack parameterizing pointed stable curves of type

(9x,nx) over SpecZ, F, an algebraic closure of the finite field F, of characteristic p > 0, M o

9x,nx
./\/l gxmx,Z X7 IFp, and M gx.my the coarse moduli space of /\/l For g € M we shall write
V(g) for the topological closure of g in My -
Let i € {1,2}, and let ¢ € M, ., be an arbitrary point of M, ,, and k; an algebraically
closed field containing the residue field k(g;) of ¢;. Then the natural morphism Spec k; — M

gx,nx
determines a pointed stable curve

gx,mx- gx,mx»

of type (gx,nx) over k;. We denote by ['xs the dual semi-graph of X?, rr . the Betti number of [xs,
and Ilxs either the admissible fundamental group of X or the maximal plro—solvable quotient of the
admissible fundamental group of X?. Let Com(I'xs), Typ(X?), and Geo(ILys) be the combinatorial
data associated to X? (Definition 2.5 (a)), the topological data associated to X? (Definition 2.5 (a)),
and the geometric data associated to Ilxs (Definition 2.5 (a)), respectively.

We denote by

I‘IOIIIOp (Hxi HXO)

the set of open continuous homomorphisms of profinite groups ILxs and ILys. Let ¢ € Homp% (Tlxs, ITxs)
be an arbitrary element. Then [Y6, Lemma 4.3] implies that ¢ is a surjection.
Let X be an arbitrary set of prime numbers such that p ¢ 3. We write prﬁx’ D Ixs — I1%.,

i € {1,2}, for the natural surjection. Note that the structures of maximal pro-pririle-to—p quotients
of admissible fundamental groups of pointed stable curves (e.g. see [Y6, 1.2.4]) imply that ¢ induces
an isomorphism ¢ Hil. = HEQ..
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3.1.2. We maintain the notation introduced in 3.1.1.

Definition 3.1. (a) We shall call that g, is a topological specialization of g if there exists a point
¢, € V(q1) such that the following conditions are satisfied:

(i) There exists an isomorphism of dual semi-graphs ¢ : Ly = ['xs, where I'y
denotes the dual semi-graph of a pointed stable curve corresponding to a geometric
point over Speck(qy) — Mgy ny (note that the isomorphism class of I'y, does not
depend on the choices of geometric points over Spec k(qy) — M,y ny ). In particular,
™ induces a bijection ¢ : Com(I'y) = Com(Txy).

(ii) Let (I'y, Ly) € Com(I'y) be an arbitrary element and (I'y, Ly) = o peem (T, LY)) €
Com( ) Then we have (g(F/)Lg’n(F')LQ = (g(p2)L2 n(FZ)Lz) (2.2.4).

We shall call an open continuous homomorphism ¢ € Hom"p(H xs,ILxs) a topological specialization
homomorphism if gs is a topological specialization of ¢ .

On the other hand, since ¢, is contained in V(¢ ), the corresponding degeneration implies that
there exists a natural map spi” - Com(I'xs) — Com(I'y,). We put

s g‘gi“X. Ll ypeom o P, + Com(I'xy) — Com(T'y) = Com(T'xy).
Note that the restriction map spPe’ys |eop(FX;) 1 eP(I'xs) — e°P(['xyg) is a bijection. The map SPX X3
will be used to define “strong topological specialization homomorphism” (see Definiton 4.1 below).
(b) Let IT; € Ver(Ilxs) be an arbitrary vertex-like subgroup of Il ys and IT;, € Ver(ILyy) an arbitrary

vertex-like subgroup of ITxs. We shall call an open continuous homomorphism ¢ € Homp% (Tl xs, ILxs)

a group-theoretical specialization homomorphism if the following conditions are satisfied:

) I, o ¢(I11) € Geo(Ilyg) (note that II, & Ver(Ilxs) in general).

(i

(ii) There exists IT} € Ver(IIxs) such that II; C ¢(II}).

(iii) Let (gm,,nm,) € Typ(X}?), i € {1,2}, be the topological datum associated to
X! determined group-theoretically by II; (Theorem 2.6). Then we have (gm,,nm,) =
(9H27 an)-

Remark 3.1.1. In the next subsection, we will prove that if ¢ is a group-theoretical specialization
homomorphism, then ¢ is a topological specialization homomorphism (see Proposition 3.6 below).

3.1.3. Motivated by the homeomorphism conjecture formulated in [Y6, Section 3.3], we formu-
late the following conjectures concerning topological and group-theoretical specialization homomor-
phisms:

Topological Specialization Conjecture . Let ¢ € Hom{}(Ilxs, Ilys) be an arbitrary open contin-
uous homomorphism. Then ¢ is a topological specmlzzatwn homomorphism (Definition 3.1 (a)). In
particular, gz is a topological specialization of q, if and only if Homgg(ﬂxlo, [xs) # 0.

Group-theoretical Specialization Conjecture . Let ¢ € Hom(}(Ilxs, Ilxs) be an arbitrary open
continuous homomorphism. Then ¢ is a group-theoretical specialization homomorphism (Definition
3.1 (b)).
Remark. We may formulate a more general version of the group-theoretical specialization conjecture
as follows:
(A general version of the group-theoretical specialization conjecture) We
maintain the notation introduced in 5.1.1. Let II; € Geo(Ilxs) and ITy € Geo(Ilxy)
be arbitrary geometry-like subgroups. Then the following statements hold:
(i) Ty & (I1,) € Geo(Tlys).
(ii) There exists I} € Geo(Ilxs) such that 1Ty C ¢(IT).
(111) Let (gu,,nm,) € Typ(X?), ¢ € {1,2}, be the topological datum associated to
X? determined group-theoretically by 1I; (Theorem 2.6). Then we have (gm,,nm,) =
(gl—lzv nH2)'
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In fact, we can prove that the group-theoretical specialization conjecture implies the general version
of the group-theoretical specialization conjecture. In the present paper, we do not discuss the general
version.

Remark. Theorem 2.6 says that the topological specialization conjecture and the group-theoretical
specialization conjecture hold for ¢ € Homg‘g)(H xs, xg) if ¢ is an isomorphism.

3.1.4.  For an arbitrary open continuous homomorphism ¢, by using two group-theoretical formulas
concerning generalized Hasse-Witt invariants (see [Y3, Theorem 1.3], [Y5, Theorem 1.2]), we have
the following result (see [Y6, Theorem 4.11] for (a) and [Y6, Theorem 5.30] for (b)):

Theorem 3.2. Let ¢ € Hom P (Ilxs,Ilxs) be an arbitrary open continuous homomorphism. Then
the following statements hold:
(a) The open continuous homomorphism ¢ induces group-theoretically a surjection

¢ : Edg*(Ilxs ) — Edg*(Ilx;)

between the sets of open-edge-like subgroups of lxs and Ilxs. Moreover, we obtain a bijection

~

¢Sg,0p . €0p(FX10) = Edg0p<HX1')/HX10 — GOp(FXE) = Engp(HXQO)/HXS

induced by ¢°I&°P,
(b) Suppose gx = 0, #(v(I'xs)) = #(v(Txy)), and #(e"(Txs)) = #(e!(I'xs)). Then ¢ is a

topological specialization homomorphism and a group-theoretical specialization homomorphism. In

particular, for any open subgroup Hy C lxg, ¢|m, : Hy o ¢~ (Hy) — Hy induces group-theoretically

an isomorphism of dual semi-graphs
sg . ~
¢|H1 . FXIO_Il — FXI-_I27

where I'xs , 1 € {1,2}, denotes the dual semi-graph of the pointed stable curve X}, corresponding to
H;. Z

Remark 3.2.1. Theorem 3.2 (b) also holds for pointed stable curves of an arbitrary type under
certain conditions, see [Y6, Theorem 5.26].

By applying Theorem 3.2, we have the following corollary.

Corollary 3.3. (a) Suppose that X?, i € {1,2}, is smooth over k;. Then the topological specialization
conjecture and the group-theoretical specialization conjecture hold.

(b) Suppose (gx,nx) = (0,4). Then the topological specialization conjecture and the group-
theoretical specialization conjecture hold.

Proof. (a) follows immediately from Theorem 3.2 (a) and the definitions of topological and group-
theoretical specialization homomorphisms. Let us prove (b).

Suppose that X7 is smooth over k. Then Theorem 3.2 (a) implies that ¢ is a topological special-
ization homomorphism and a group-theoretical specialization homomorphism.

Suppose that X7 is singular. Then [Y6, Lemma 6.3] implies that X3 is also singular. Moreover, the
assumption (gx,nx) = (0,4) implies #(v(T'xs)) = #(v(T'xg)) = 2 and #(e?(Txs)) = #(e?(T'xg)) =
1. Then (b) follows immediately from Theorem 3.2 (b). O

3.2. Topological and group-theoretical specialization homomorphisms. In this subsection,
we will prove that the group-theoretical specialization conjecture implies the topological specializa-
tion conjecture (see Proposition 3.6). Moreover, we prove that the definition of group-theoretical
specialization homomorphisms (i.e. Definition 3.1 (b)) can be simplified (see Proposition 3.9).

3.2.1. Settings. We maintain the notation introduced in 3.1.1.
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3.2.2. Let I'igy, T'yp, 7 € {1,2}, be sub-semi-graphs (2.1.2) of I'xs. Then I';,, I';; can be regarded

as topological subspaces of I'xs (2.1.2). Moreover, let II; , aef Iz € Geo(llxy), iy def Iz €
Geo(Ilxs) be the geometry-like subgroups associated to some fi,a, fi,b cT xs, respectively. We have
the following lemma.

Lemma 3.4. Suppose I'y , N T'1;, C eCl(FXI-), o111 4) = a4, and ¢(11y ) = Ia,. Moreover, suppose
that 11, , N11;, C Ixs is not trivial. Then 1y, N1y, C lxs is a closed-edge-like subgroup of Hxs.

Proof. Since II; , N 1I;, C Ixs is not trivial, we have that Iy, N Iy, € Ilys is non-trivial, and
that Lemma 2.7 implies that II; , N 1II;, C Ilxe is a closed-edge-like subgroup of II xs- Moreover,

pr’ﬁlxl. (I o N 1L ) = Hﬁ’:a N H’i’:b C Hgél. is a closed-edge-like subgroup of Hgél., where (—)? denotes

the maximal pro-prime-to-p quotient of (—) (see 2.3.1). Write ¢? : II% /1. = H’)’é for the isomorphism
induced by ¢.
Suppose that either II; , or 11,4 is a closed-edge-like subgroup of II xe. Without loss of generality,

we may assume that II;, is a closed-edge-like subgroup of IIxs. Then we have II;, = Z(l)p'.
Since Iy, = ¢(Il1,4) € Geo(Ilxys), the structures of maximal pro-prime-to-p quotients of admissible
fundamental groups of pointed stable curves (e.g. see [Y6, 1.2.4]) imply that Iy, is either a closed-
edge-like subgroup or an open-edge-like subgroup of Tlx;.

By applying Theorem 3.2, we obtain that ¢ induces a bijection
op (TP ™ op (177
Edg™ (%, ) — Edg™ (II%,).
If T, is an open-edge-like subgroup of Ilxs, then we have pr’r’[lx. (IIy,) = H’;:a € EngP(Hf;éQ.).
2
Moreover, we obtain pryj , (Ili.) = IIf, € Edg*(Il%,). This contradicts the fact that IIf, is a
1

closed-edge-like subgroup of IT% . Thus, Iy, = I, N1y, C Iy is a closed-edge-like subgroup of
Ixs.

Suppose that IT; 4, IT; ; are not closed-edge-like subgroups of IIxs. To verify the lemma, by applying
Lemma 2.7, it’s sufficient to prove that I's , NI’y C ed(FXQ-). If I'y , Ny is empty, then Iy, N1y,
is trivial. Then we may assume that I'y, N I'y; is not empty. By using similar arguments to the
arguments given in the third paragraph, we see that I'y, N 'y N eP(I'xg) is empty. On the other
hand, since

(¢ o prly (I A TT) = & (T, NTT,) = 112, NI, = Z(1)7,

the structures of maximal pro-prime-to-p quotients of admissible fundamental groups of pointed
stable curves imply that 'y, N T'yp Nv(I'xg) is empty. Thus, we have I'y, N Ty C eCl(FXQ-). We
complete the proof of the lemma. O

3.2.3.  We have the following lemma.
Lemma 3.5. Suppose that the condition given in Definition 5.1 (b)-(i) holds. Then ¢ : Ilxs — Ixg

induces group-theoretically a map (neither an injection nor a surjection in general)
¢°'& : Edg®(Ixs) — Edg® (Ilys)
between the sets of closed-edge-like subgroups of Uxs and lxy. Moreover, we obtain an injection
¢t QCI(FXI') = Edgd(nxf)/ﬂx; — GCI(Fxg) = EdgCI(ng)/HXg
induced by @&,

Proof. Let e, € ed(fxl-) be a closed edge, e; € ed(l“Xl-) the image of €; of the natural map 7y, :
r xe = I'xs, and I, € Edgd(H x¢) the closed-edge-like subgroup of IIxs associated to e;.
Suppose e; & eP(Ixs) (see 2.1.1 (b) for e®(I'xs)). Then the singular point of X; corresponding to

e is contained in two different irreducible components of X;. Since the condition given in Definition
3.1 (b)-(i) holds, Lemma 3.4 implies ¢(Iz,) € Edg® (ILxy).
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Suppose e; € elp(FX;). Let ¢ be a prime number distinct from p,

Hy = ker(ILyy — I3 ® Fy),

H, = 67\ (H,) = ker(ILys — 3% @ Fy),

O, aef ¢|m, : Hy — Hy the open continuous homomorphism induced by ¢, X7, i € {1,2}, the

pointed stable curve corresponding to H;, and I'xs ~the dual semi-graph of X7, . We see immediately
that e'(I'ys ) is empty. We put

Iz, = I, 0 H, € Edg™(H,) = Edg”(ILxs) N Hy.

Note that Iz, is the normalizer of Iz, in Ilxy, and that the index [[g, : [g, ] is £. The lemma of the

en
case of e; € e®(I'xs) proved above implies Iy, o ¢ (ley,) € Edg®(H,). We put

I,
the normalizer of Iz, in IIxs. Then we have I, € Edgd(HXg) and [z, : Ig, ] < ¢. On the other
hand, since [, i € {1,2}, is the normalizer of ¢, in Ilxs, we obtain ¢(Ilz,) C Ig,. Moreover, since
: Iz, | = €. This means ¢([lz) = I,.

@ Hé(l. = Hé(z. is an isomorphism, we see [Ig, : [g, | = [Ig, : Iay,

€H, €2
Thus, ¢ induces group-theoretically a map
¢°t&! : Edg® (Ilxs) — Edg™ (Txs)
between the sets of closed-edge-like subgroups of ITys and Ilx;.
Next, we prove the “moreover” part of the lemma. Let
Sg,C c def c c def c
¢l e (Txy) = Edg® (L) /Ty — e (Txg) = Edg®(Ilx)/Txg

be the map induced by ¢*% and e, ; € ed(f‘Xlo), j € {a,b}, a closed edge such that ¢*(e;,) =
¢ ery). Let €1, € ed(fxl-), J € {a,b}, be a closed edge over e;; and Iz ; the closed-edge-like
subgroup of ITxs associated to €y ;. Then prﬁxI (la,;) € EdgCI(Hg(l.) and pr%x; (¢(Iz,,)) € EdgCl(Hg(s),
J € {a, b}, are closed-edge-like subgroups of Hg;l. and Hg;s, respectively. Since ¢*8(e;,) = ¢*8(e1y),
the conjugacy classes prﬁxs (¢(lz,,)) and p'r’ﬁ/xs (¢(I,,)) in Hgég are equal. On the other hand, since
o lel. = Hé’é. is an isomorphism, we obtain that the conjugacy classes prﬁxf (Ie,,) and pr’l-’llxI (Ie,,)

in H’;;l. are equal. This means e;, = e;,. We complete the proof of the lemma. 0

3.2.4. Suppose that the condition given in Definition 3.1 (b)-(i) holds. Let v; € v(I'xs) be an

arbitrary vertex of I'xs, U1 € v(f xs) a vertex of T xs over vy, and Ilg, the vertex-like subgroup of ITxs
associated to 1. Then there exists a unique pair (I'[v1], L{v;]) € Com(I'xy) (see 2.3.5 for Com(I'xy))

such that ¢(Il5 ) =11 o (see 2.3.3 for I, —— ), where I'(vq) o I'[v1] L] denotes the

T(v1) F[ml] Plv1]p oy
semi-graph associated to I'[v] and L[v;] (2.1.2 (b)). Note that (I'[v1], L[v1]) depends only on the
choice of vy (or the conjugacy class of I3, ). We have the following proposition.

Proposition 3.6. Let ¢ € Homgg(HXf, ILxs) be an arbitrary open continuous homomorphism. Sup-
pose that ¢ is a group-theoretical specialization homomorphism (Definition 3.1 (b)). Then ¢ is a
topological specialization homomorphism (Definition 3.1 (a)). In particular, the group-theoretical
specialization conjecture implies the topological specialization conjecture.

Proof. Let v,w € v(I'xs) be arbitrary vertices of I'xs distinct from each other when #(v(I'xs)) > 2
and I',, 'y, € I'xe the sub-semi-graphs associated to v,w (see 2.2.5), respectively. We put L, aof

e(T,) and L, o e'?(I',). Moreover, we put

FU déf (F'U)Lv7 Fw déf (Fw)Lw
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the semi-graphs associated to I', and L,, '), and L,,, respectively.

Firstly, to verify that ¢ is a topological specialization homomorphism, we need to prove that the
dual semi-graph I'xs of X3 is isomorphic to the dual semi-graph of a reduction of X7 (i.e. we prove
that the condition given in Definition 3.1 (a)-(i) holds). This means that we need to check the
following conditions (see Theorem 3.2 (a) for ¢*8°P, Lemma 3.5 for ¢*8! and 2.1.2 (b) for dre, drw,

5r(u), 5F(w) ):

(i) &P (eP(Ixp) M ore(eP(I))) = e (L'xg) N dr) (€ (T(v)).
(ii) ¢*=(Ly) C e (T'[v]).

(i) ¢*&<(dre(eP(I")) N dpw (e (T™))) = drr) (€%P(L(v))) N drgu) (e (T'(w))).

(iv) #(e™ (Txs) N ope (e (I))) = 74 (e (Fx-) N Orw) (e (I'(v))))-

(v) #(Lo) = (6 (L))

(vi) #(0re (e (1)) M dpw (e (I'))) = #(Or(w) (e (I'(v))) N Orw) (€ ((w)))).

The conditions (i), (iv) say that the degeneration (as a topological space) of the marked points of X7
contained in X, (2.2.5) are the marked points of X3 contained in Xy, (2.2.3). The conditions (ii),
(v) say that the degeneration (as a topological space) of the singular points of X7 corresponding to
L, are singular points of X3 contained in Xrp). The conditions (iii), (vi) says that the degeneration
(as a topological space) of the gluing of {XU}UEU(FXI) (2.2.5) along the singular points of X} that
gives rise to X7 is the gluing of {XE(U)}U@,(FX;) (2.2.4) along the singular points corresponding to
{qbsg’d(ed(l“xl-))}UEU(FXI) of X3 that gives rise to X3.

We maintain the notation introduced at the beginning of 3.2.4. Let e € e°?(I'?) and Iz C II xp the
open edge-like subgroup associated to an edge € € 7y, (e) such that Iz € Il (or € abuts to ¥). Then
by applying Theorem 3.2 (a) for ¢|p, : lI; — HF(E)? we see that ¢([z) is an open edge-like subgroup
of HI‘/(;)

Suppose drv(e) € e®(I'xs) N dpe(e?(I')). Then the condition (i) follows immediately from the
“moreover” part of Theorem 3.2 (a) and the commutative diagram

Iz —— ¢(I)

l !

Sl
H@ —_— HF/(;)

l l

¢
Hyy —— lxg,

where the vertical arrows are natural injections.

Suppose drw(e) € L,. We see that there exists an element o € IIxs such that Il # o l;0 and
Iz € Tl;No lgo. Then the condition (ii) follows immediately from the “moreover” part of Theorem
3.2 (a) and the commutative diagram

Is — o(Iz)

! |

;N o o — O N gb(a)’lHF/@gb(a)

! !

Ix, — ITys,

where the vertical arrows are natural injections.
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Suppose drv(€e) € dpve(eP(I")) N dpw (eP(T)) C e?(Ixs). We have Iz € II; N Il for some @ €

Ty, (w). Then the condition (iii) follows immediately from Lemma 3.5 and the commutative diagram

I, — o(1z)

l l

I;NIl; —— HF(v) QH@

l l

Mys —2— Ty,
where the vertical arrows are natural injections.

On the other hand, the conditions (iv), (v), (vi) follow immediately from the “moreover” parts of
Theorem 3.2 (a) and Lemma 3.5 (i.e. the injectivity of ¢*°P and ¢*&).

Next, to verify ¢ is a topological specialization homomorphism, we need to prove that the condition
given in Definition 3.1 (a)-(ii) holds. Since ¢ is a group-theoretical specialization homomorphism,
Definition 3.1 (a)-(ii) follows immediately from Definition 3.1 (b)-(iii). This completes the proof of
the proposition. O

3.2.5. In the remainder of this subsection, we prove that the condition given in Definition 3.1 (b)-(i)
implies the conditions given in Definition 3.1 (b)-(ii), (b)-(iii).

Lemma 3.7. The condition given in Definition 3.1 (b)-(i) implies the condition given in Definition

3.1 (b)-(ii).

Proof. Let i € {1,2}. Suppose that every irreducible component of X? is smooth over k;, that F;?f
is 2-connected (see 2.1.1 (c) (d)), and that g,, > 1 for all v; € v(I'xs) (see 2.2.5 for g,,). We put

Mx-e def Hg;f.ab, M;f.p def H;’?’p % Since Im(Ily, — M x¢) does not depend on the choice v; € (T x¢)
over v; € v(I'xs), we put M,, H%_ 2D € v(['xs). Then we have a surjection

Mz — My?
induced by the natural surjection Ilxs — Ht;(’i? (see 2.2.2) whose kernel is equal to

Mver def Im @ Mvi _ M)q)

lev(FXic)
Moreover, [Y3, Corollary 3.5] implies that the natural homomorphism
le N ]\4V€Er7 U’L e 'U(FX;)

is an injection.
On the other hand, we put Mp(,,) o

we put

1

2> (ab Note that Mr(,,) depends only on I'(v;). Moreover,

cur def cur-to ef cur
M Em( @ Mrwy — Myg), MG = My /M3

vlev(FX;)

By applying similar arguments to the arguments given in the proof of [Y3, Proposition 3.4}, we obtain
that the natural homomorphism

Ml"(vl) — ;;or, U1 € ’U(FXIO),
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is an injection. Since Definition 3.1 (b)-(i) holds, the isomorphism ¢?" : Hg;l. = H";é. induces the
following commutative diagram

ver top
M, —— MY —— My; — M)

N

cur-top

Mr@,) —— Mf(‘;.r — Mx; —— ng ,
where all of the vertical homomorphisms are isomorphisms. Note that since we assume g,, > 1 for all
v2 € v(I'xy), either My, © Mr(,) (in My ) for some vy € v(I'x;) holds or M,, is not contained in Mgy
(in Mxg). Then to verify the lemma, it’s sufficient to prove that the image M,, < Mxg — M;;.r'mp
is trivial for all vy € v(I'xy). Moreover, it is equivalent to prove that for all v, € v(I'yy), the image
My, @ Fp = Mxs @ Fy — M;‘;.r'mp ® IFy is trivial for a prime number ¢ € B\ {p}.
We put

Nx; def {a € Hom(Myy, Z/UZ) | a(MKy) =0, a(M,,) =0 for any vy € v(I'xs)}.

Note that a(M,,) = 0 for any vy € v(I'xy) does not imply a(M§y) = 0 since I'(vy) is not a tree
(2.1.1 (c)) in general. Moreover, the definition of Nxs implies that o € Nyg factors through not only
M @ Fy but also My? @ Fy.

We calculate dimp,(Nxg). Let vi,v] € v(I'xs). By applying the left-hand side of the above
commutative diagram, we have v; = v if and only if I'(vy) = I'(v}). In particular, we obtain
#([xs)) = #({F(vl)}vlev(pr)). Moreover, by applying Lemma 3.4 and Lemma 3.5, we have that

['(vy) and I'(v}) are connected with a closed edge ey of I'ys if and only if v; and v} are connected
with a closed edge e; of I'xs such that ¢ (e1) = e5. We put

BEulx)\ | o),
vicv(l'xe)

def (1

2 = Txg) \ (5 (Txe)) U el T(w))

vi€v(T X;)
Then by the Euler-Poincaré formula for semi-graphs, we obtain
diIIlFZ (M)C(L;.r_mp (24 ]Fg) Z d.iIIlIE‘Z (NX2-)

= #(@* (e (Txp))) + #(E2) = #({T (1) boyeoryy) — #(V2) + 1
> #(¢* (e (Txp))) — #{T (1) }oreuryg)) + 1
= #(e(Txz)) — #(v(Txp)) + 1 = dimg, (MY @ F,).
On the other hand, the right-hand side of the above commutative diagram implies
dimg, (MY @ F) = dimg, (M5 ™" @ Fy).

This means M;Z.r'mp ® Fy = Homy, (Nxg, F¢). Thus, M,, ® Fy — Mxs @ Fy — M)Cér'mp ® T, is trivial
for all v, € v(I'xg). We complete the proof of the lemma if TPy, i € {1,2}, is 2-connected, g,, > 1
for any v; € v(I'xe), and every irreducible component of X is non-singular.

Next, we prove the lemma in the general case. By [Y6, Lemma 5.4], there exist a prime number

¢’ >> 0 distinct from p and a characteristic subgroup Hy C Ilys such that the following conditions

hold:
e The irreducible components of X3 are smooth over k;.
o Ilxs/H, = Ilx;/H, is a finite ¢'-group, where H; et ¢~ (Ho).
o Write I'xe , 7 € {1,2}, for the dual semi-graph of the pointed stable curve corresponding to

H;. Then Fg?;{. is 2-connected.
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[} g'uHZ. Z 1, 1 E {1,2}, for all VH; - U(FX;I)

Let 115, be an arbitrary vertex-like subgroup of II X3 and Hy, def IT;, N Hy. Then Hy, is a vertex-like

subgroup of H,. By applying the lemma for Hy, Hg, and ¢|y, : Hy — Hy proved above, we obtain
that Hg, is contained in Tlz— N N Hy for some vy € v(I'xs). Moreover, we have that v, is a vertex of

—

['(vy). Note that Il is the stabilizer of . Then Il is contained in the stabilizer of 1@ (since
(07 Mg—0) N1~ oy 0 € Ixg \H@, is either trivial or a closed-edge-like subgroup of Ilxs). Thus,

I'(v1)
we obtain II5, C IIg— o
Lemma 3.8. The condition given in Definition 3.1 (b)-(i) implies the condition given in Definition
3.1 (b)-(iii).
Proof. Let v; € v(I'xs) and (I'[v1], L[v1]) € Com(I'xs) the pair determined by v; introduced at the

beginning of 3.2.4. Let ¢* : e?(I'xs) < e(I'xs) be the map obtained in Lemma 3.5. We have the
following claim:

Claim: ¢ (e!?(vy)) = L[vy] (see 2.1.1 (b) for eP(vy)).
We prove the claim. Let e; € e?(T'ys) (resp. ey € ¢?(I'xy)) and € € wy (e1) C
ed(fxl-) (resp. €y € 75_(;(62) C ed(fxg)) a closed edge over e; (resp. e2). Then
the claim follows immediately from the following: e; € e'®(v;) (resp. ey € L[vi]) if
and only if Iz, = Il N 1lg for some Iy, Ilzy C Ixe (resp. [z = 11

for some 11— II——

This completes the proof of the lemma. O

— H/—\//
['(v1) [(v1)
» C Ixg) such that the conjugacy classes of Iy, Ilgr in Ix,

L(v1) " "T(v1)
are equal (resp. the conjugacy classes of I1_— e ),H e )u in HX- are equal), where
01,0 € my(v) C U(FX;) (resp F[vl]\L[ ] [Ul]\L[Ul] are connected compo-
nents of wy, (Plv1] \ L[w1]) € FXQo).

We put

By {es € e(Txs) | 2 € T(v1,) NT(v1y)

for some vy 4,v15 € v(I'xs) such that vy, # vip} C eCI(I‘Xs),

where I'(vy,,) NT'(v1) denotes the intersection as topological subspaces of I'xs (2.1.2 (a)). Note that
the above claim implies

Y #L)) +#(Es) = #(*( (Txp)) = #(e(Txp))-

v1 GU(FX{)

Let II;,, v; € U(FX;), be an arbitrary vertex-like subgroup of II xe and [z an open-edge-like
subgroup (resp. a closed-edge-like subgroup) of Il xs such that Iz, C Ilg,. Then Theorem 3.2 (a) (resp.
Lemma 3.5) implies that ¢(/I3,) is an open-edge-like subgroup (resp. a closed-edge-like subgroup) of
11 X3 contained in a geometry-like subgroup H -~ of II X3 Moreover, we have n,, < np(,) for all

v1 € v(I'xs). On the other hand, since nx = nXl nx,, we have
D = nx 24 Txy)) =nx, + Y 2#(L[o]) +2#(E2) = > nrg).
vicv(lxe) vicv(l'xe) vi€v(lxe)

This implies n,, = nr(,) for all v; € v(I'ys). Then to verify the lemma, it’s sufficient to prove
Ju, = gr(w) for all v; € v(Txs).
We put I5, C II;, the normal closed subgroup generated by (see 2.1.1 (b) for ' X1 (vy))

(I, | & € mxt(er), e € € ¥ (un)}.

Then since n,, = nr(,), the surjection Il — H/(T induced by ¢ implies

1 1 ’
gur = 5 - ranksy (I /1)) > 5 - rankgy (6(I05,)/9(10,))") = green:
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By the Euler-Poincaré formula for semi-graphs, we obtain

gXl = Z gv1 + TFXI - Z gm + #(ed(FXl.)) - #(U(FXI.)) + 1.

vi€v(l'xe) vi€v(l'xe)

On the other hand, by Lemma 3.7 and the Euler-Poincaré formula for semi-graphs, we have

=), gt Y, #(L]) + #(E) — #{T (W) euryy) + 1

vlev(l"X;) v1€v(FXf)

= D gr) + AN (Txy) — #(0(Txy)) +1

viev(xe)

- Z gr() + TFX;'

vi€v(l'xe)
Since gx = gx, = gx,, we obtain

Yo Gu= D, g

'u1€'u(1"X;) Ulev(f‘xf)
This implies g,, = gr(,) for all v; € v(I'xs). We complete the proof of the lemma. U
Thus, Lemma 3.7 and Lemma 3.8 implies the following:

Proposition 3.9. Let ¢ € Homgg(HXl-, IIxs) be an arbitrary open continuous homomorphism. Sup-
pose ¢(Il1) € Geo(Ilyy) for all 11, € Ver(Ilxs). Then ¢ is a group-theoretical specialization homo-
morphism.

4. TOPOLOGICAL SPECIALIZATION CONJECTURE FOR CURVES OF gx =0

In this section, we will prove the topological specialization conjecture for pointed stable curves of
genus 0 (see Theorem 4.9 for a precise statement).

4.0.1. Settings. We maintain the notation introduced in 3.1.1. Suppose that gx = 0, and that
IIye, i € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental group of X7.
Moreover, we fix the following notation.

Let E; C eOP(FXi-) be a subset of open edges of I'xs such that #(E;) <nx—3and ¢**°P(E)) = E»,
where ¢*°P is the bijection of the sets of open edges induced by ¢ (see Theorem 3.2 (a)). We put

B (B € (D) (see 2.2 for ) and

Ip, C lxe.
the closed normal subgroup generated by {/g, }; .5 . Moreover, Theorem 3.2 (a) implies ¢(I,) = Ig,.
On the other hand, we write Dy, C Dy, for the subset of marked points corresponding to E;.

Since gy = 0 and #(Dg,) < nx — 3, by contracting certain (—1)-curves and (—2)-curves, the pointed
semi-stable curve (X;, Dy, \ Dg,) over k; determines a pointed stable curve

X3, = (Xg, Dxy,)
of type (0,#(Dx, \ Dg,)) over k;. Note that we have a natural (contracting) morphism
I, X — X3
We shall denote by fg, : X — Xg, the morphism of underlying curves induced by fz. . Write I X3,
for the dual semi-graph of Xz . Then ff induces a map f;;% :Ixs = T xp, of dual semi-graphs.

We denote by
IT Xt
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the maximal pro-solvable quotient of the admissible fundamental group of X3.. Then we have a
natural isomorphism Ixs /I, S0 xs - Moreover, ¢ induces an open continuous homomorphism

¢ xy — Tlxp
which fits into the following commutative diagram:

¢
HXI‘ —_— HX20

l !

HXI/[El %‘HX]-LH ﬂ) I_IX;E2 gHXQO/[E2

If E; = {e;} for some e; € eP(I'xs), we also use the notation X2, lxe, I'xs, f2, f5%, and ¢ to

denote X3, Tlxs , I'xs , f., [&, and ¢, respectively.

4.0.2. We introduce a strong version of topological specialization homomorphisms as follows:

Definition 4.1. Let ¢*®° : ¢®(I'xs) = e®®(I'xs) be the bijection induced by ¢ (Theorem 3.2
(a)). We shall call ¢ a strong topological specialization homomorphism if the following conditions are
satisfied:

e ¢ is a topological specialization homomorphism (Definition 3.1 (a)).
o PP = Pty e (I'ys) for some sp¢ylys : Com(I'xy) — Com(I'xy) (see Definition 3.1 (a) for

COIm
SPxs X3 ).

The following corollary follows immediately from Corollary 3.3 (b):

Corollary 4.2. Suppose (gx,nx) = (0,4). Then ¢ is a strong topological specialization homomor-
phism.

4.0.3. Further settings. We maintain the notation introduced in 4.0.1. Suppose nx > 5. Let ¢; €

e®(I'xs), i € {1,2}, be an open edge such that ¢**°P(e;) = ey. Write x; o ze; € Dy, for the marked
point of X? corresponding to e;. The assumption nx > 5 implies that X? is a pointed stable curve
of type (0,nx — 1) over k;. Note that one of the following conditions hold:

o #(v(I'xs)) = #(v(l'xe ).
o #(v(Dxe)) = #(u(Txs)) + 1.
On the other hand, let W?, i € {1,2}, be an arbitrary pointed stable curve over k; of type

)

(0, nw), e the maximal pro-solvable quotient of the admissible fundamental group of W, and

¢w : s — Il an arbitrary open continuous homomorphism. Moreover, we assume the following
conditions hold:

e ¢y is a strong topological specialization homomorphism if ny < nx — 1.
4.0.4. Firstly, we have the following lemma:

Lemma 4.3. We maintain the settings introduced in 4.0.3. Moreover, we suppose that #(v(I'xs)) =
#(v(lxe ) + 1 holds. Then we have #(v(I'xy)) = #(v(I'xs ) + 1.

Proof. Suppose #(v(I'xg)) = #(v(I'xe )). We will construct a contradiction. Since we suppose
#(v('xy)) = #(v(I'xe ) + 1, there exists an irreducible component X1 of X; such that one of the
following situations holds:

(i) X110 N Dx, = {z1} and #(X1, N X7™) = 2.

(i) X101 N Dx, = {z1,a1} and #(X11 N X7"®) = 1, where a; # ;.
On the other hand, let X5 be the irreducible component of X5 such that xo € X5, N Dx,. Since we
assume #(v(I'xg)) = #(v(I'xg,)), we have

#(Xo1 N X5") + #(Xo1 N Dx,) > 4.
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Case (i). We assume that (i) holds. Then we see immediately that there exist marked points
Sa,bg,co € Dy, \ {za} of X3 distinct from each other satisfying the following condition:

e For m € {s9,by, o}, put C,, as follows:
() If m is contained in X,;, then C), = Xs;. Otherwise, let C,, be the connected
component of Xy \ Xy containing m.
(%) Let my,mg € {s2,b2,c2} be elements distinct from each other. Then C,,, # C,,, if
le 7& Xg,l and sz 7& X271.

Let e, €p,, €c, € €®P(I'xs) be the open edges corresponding to sg, by, ca, respectively. We put ey, &

(65°P) " (e5,) € eP(Txs), ey = (¢5°P) " (ep,) € €®(Txs), and e, = (6%5P) " (e,,) € eP(T'xs).

We put E; & eop (Cxe) \{ei; €s;, €p;, €c, ;- By the above constructions, we see immediately that Xp,
is singular with two irreducible components, and that Xpg, is non-singular. On the other hand, by
applying [Y6, Lemma 6.3] for ¢p : II xy, = llxp , we obtain that Xp, is singular. This contradicts

our construction of X3, . Then we obtain the lemma under the assumption of (i).

Case (ii). We assume that (ii) holds. Let e,, € e°’(I'xs) be the open edge corresponding to a,

€a, aof ¢*®P(eq,) € eP(I'xg), and ay € Dy, the marked point corresponding to e,,. Moreover, we
see immediately that there exist marked points by, ¢y € Dx, \ {x2, as} of X3 distinct from each other
satisfying the following condition:

e For m € {ag, by, c2}, put C,, as follows:
(¥) If m is contained in Xs;, then C,, = Xs;. Otherwise, let C,, be the connected
component of X5 \ Xy containing m.
(xx) Let my, mg € {ag, by, ca} be elements distinct from each other. Then C,,, # C,,, if
le 7é Xg’l and Cm2 7£ X2,1.

We put ey, & (%5°P)"(ey,) € eP(T'xs), €, L (geeor)l(e,,) € e®®(T'xs). Note that since # (X1 N

Xsg) = 1, the marked points by, ¢; corresponding to ey, , ., respectively, are contained in X; \ X7 ;.

We put E; o eP(Cxe) \{€i; €q;, €;, €, }- By the above constructions, we see immediately that Xp,
is singular with two irreducible components, and that Xz, is non-singular. On the other hand, by
applying [Y6, Lemma 6.3] for ¢p : 11 xp, IT xp,» We obtain that Xpg, is singular. This contradicts
our construction of X3 . Then we obtain the lemma under the assumption of (ii). This completes
the proof of the lemma. O

4.0.5.  We maintain the settings introduced in 4.0.3. Let v; € v(I'xs), 7 € {1,2}, be the vertex of
['xe such that the corresponding irreducible component X, contains z; (see 4.0.3 for ;). Note that
fe,(Xy,) is either a marked point or a node of X? if #(v(I'xs)) = #(v(I'xs )) + 1 (see 4.0.1 for f,
and X? ), and that f,(X,,) is an irreducible component of X? if #(U(FXZ_-))ZZ #(v(Cxe)).

We define X, to be an irreducible component of X, as follows: Z

e The irreducible component of X, containing f (X,,) if #(v(I'xs)) = #(v(T'xs )) + 1 and

f€i<XUi) € DXei'
e The irreducible component f.,(X,,) of X, if #(v(I'xs)) = #(v([xe )).

Moreover, if #(v(Ixs)) = #(v(I'xs ) + 1 and fe,(X,,) € X3¢, we define X,; and X2 to be the
irreducible components of X,, as follows:

e The irreducible components of X, such that f (X,,) € X\,1 N X2 .

1

We shall write v.,,v,,v2, € v(I'xs ) for the vertices of I'ys corresponding to X,, , Xy, Xy2 , re-

€
X¢, for the smooth pointed stable curves over k; associated to v,,, vt , v?
2

e;? ve;?
K2

.
1
Ve,

spectively, and X |
respectively (2.2.5).
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Note that the type of X? is (0,nx — 1). The assumption of 4.0.3 concerning W says that
¢e : 1Ix , — Ilx , is a strong topological specialization homomorphism. Then there exists a map
1 2

SPXe xs : Com(I'xe ) = Com(I'x, )

such that spcom, xe, |eon( ("xe) = Q°P.

Let (I, , lp(F e1) = Q)) (Por, e (Tyr ) = 0), (T2, €P(Lz) = 0) € Com(FX. ) be combinatorial
data associated to X2, (see 2.2.5for I',, , T'y1 , I'y2 ). Then we put (I, k= pﬁ?fﬂ xe, ((Ty,,,0)), (T3, 0)
spie xe, ((Doz, 0), (12,0) & spie xa ((Duz ,0)) € Com(T'xy ). Moreover, we shall denote by

XEQ (XF27DXF ) F% = (XFéaDXF%)a I.‘g - (XF%’DXrg)

the pointed stable curves over ky associated to 'y, T's, T'3, respectively (2.2.3). Then we have the
following lemmas.

Lemma 4.4. We maintain the settings introduced in 4.0.3 and the notation introduced at the be-
ginning of 4.0.5. Moreover, we suppose that #(v(I'xs)) = #(U(erol)> and ##(v(I'xg)) = #(U(FX;Q))

hold. Then X,,, is an irreducible component of Xr,.

Proof. Suppose #(v(I'xs)) = 1 (i.e. X7 is non-singular). Then the lemma is trivial. To verify the
lemma, we suppose #(v(I'xs)) > 2 (i.e. X7 is singular). Moreover, suppose that X, is not an

irreducible component of Xr,. We will construct a contradiction.
Since #(v(I'xy)) = #(v(I'xs ), one of the following holds:

(1) #(Xy, N X578) =1 (ie. #(mo(X2\ X,,)) = 1). Then in this situation, we have
#(XU2 N DX2) > 3.
(2) #(Xy, N X57™8) > 2 (ie. #(mo(Xs \ Xy,)) > 2). Then in this situation, we have

#(mo( X2\ Xo,)) + #(Dx, N Xo,) > 4.

Thus, there exists a connected component Cy € (X5 \ Xy,) such that Xp, is contained in the
topological closure f,(Cs) of f.,(Cy) in X,,. Let as € Dx, N Cy be a marked point of X3.

On the other hand, let by,co € Dx, \ ((Dx, N C2) U {x2}) be marked points distinct from each
other such that the following conditions are satisfied:

o If #(my(X2\ Xu,)) =1, then by, o are contained in X,, N Dy,.

o If #(my(X2 \ X,,)) = 2 (this implies #(Dx, N X,,) > 2), then we have that by € Dx, N X,,,
and that ¢y is a marked point contained in the connected component of 7o(Xs \ X,,) distinct
from Cs.

o If #(mo(X2 \ X,)) > 3, then by, co are contained in two different connected components of
mo(X2 \ X,,) distinct from Cs.

We denote by eq,, €s,, €., € €P(I'xs) the open edges of I'ys corresponding to ay, by, s, respectively.
Moreover, we put

def def def | soon\—
€ay = (¢sgop) l(eaz)’ €p, = = (¢Sg0p) 1(6172)7 €c; = (¢5g,0p) 1(662) € eop(FXf)'

We write a1,b1,c1 € Dy, for the marked points of X7 corresponding to e, , €, , €., , respectively.

We put E; & eP(Lxe) \ {€, €a;, €5;, €c, ;- Note that X3 is a pointed stable curve of type (0,4)
over k;. Then we obtain an open continuous homomorphism ¢p : Ixs — IIxs . Moreover, the

1 2

above constructions implies that X3, is smooth over ky. On the other hand, since we assume that
e : lyxs — llx, is a strong topological specialization homomorphism (4.0.3), this implies that X7,
is singular, that the irreducible components containing fg, (z1) and fg, (a1), respectively, are equal,

and that the irreducible components containing fg, (b1) and fg, (c1), respectively, are equal. This
contradicts [Y6, Lemma 6.3]. Then we complete the proof of the lemma. O

def
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Lemma 4.5. We maintain the settings introduced in 4.0.3 and the notation introduced at the begin-
ning of 4.0.5. Moreover, we suppose that #(’U(FXI-)) = #(U(FXe-l)), that #(U(FXQ-)) = #(U(FXS-Q))-}-L
and that fe,(X.,) is a marked point of X?,. Then X,,, is an irreducible component of Xr,.

Proof. Suppose #(v(I'xs)) = 1 (i.e. X7 is non-singular). Then the lemma is trivial. To verify the
lemma, we suppose #(v(I'xs)) > 2 (i.e. X7 is singular). Moreover, suppose that X, is not an
irreducible component of Xr,. We will construct a contradiction.

def

Since fe,(X,,) is a marked point of X? , we have #(Dx, N X,,) = 2. Then we have Dy, N X,, =
{72,a2}. Moreover, we see that there exists a connected component Ce, € mo(Xe, \ X,,,) such that
Xr, is contained in C,. Let by € Dx, \{x2,as} be a marked point of X3 such that f.,(bs) is contained
in C,,.

Ori2 the other hand, let co € Dx, \ {x2,as,b2} be a marked point of X3 such that the following
conditions are satisfied:

o If #(mo(Xe, \ Xo,)) = 1 (this implies #(Dx,, N X,,,) > 2), then f,(cz) is contained in
Dx,, N X,,,. Note that we have {f,(a2), fe,(c2)} € Dx., N Xy, .

o If #(mo(Xe, \ Xu,,)) = 2, then f,(c2) is contained in a connected component of X, \ X,,,
which is distinct from C.,.

We denote by eq,, €,, €, € €*P(I'xs) the open edges of I'xs corresponding to ag, by, ca, respectively.
Moreover, we put

def _ def _ def —
o (65 M), e (65) ), o 2 (657) e € P(xy)

Write aq, b1, 1 € Dy, for the marked points of X7 corresponding to e,,, es,, €., , respectively.

We put FE; et eP(Cxe) \ {€i, €a;s €p;5 € }- Then we obtain an open continuous homomorphism
OF : HX)-E1 — HX;JQ. The above constructions implies that X3, is a singular pointed stable curve
of type (0,4) over ky. Moreover, we see that Xpg, has two irreducible components, that the irre-
ducible components containing fg,(x2) and fg,(as), respectively, are equal, and that the irreducible
components containing fg,(b) and fg,(cs), respectively, are equal.

On the other hand, since ¢, : I1 X, = II Xe, is a strong topological specialization homomorphism
(4.0.3), we see that X3, is singular. Moreover, the above constructions imply that the irreducible
components containing fg, (1) and fg, (b1), respectively, are equal, and that the irreducible compo-
nents containing fg, (a1) and fg, (¢1), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of Xg, containing fg, (z2)
and fg,(b2), respectively, are equal. This contradicts our construction of X7, . We complete the proof
of the lemma. ]

Lemma 4.6. We maintain the settings introduced in 4.0.3 and the notation introduced at the begin-
ning of 4.0.5. Moreover, we suppose that #(v(I'xy)) = #(v(I'xe ), that #(v(I'xg)) = #(v(I'xs ) +1,
and that feo,(X.,) is a node of Xe,. Then fo,(X,,) is contained in Xr,.

Proof. Suppose #(v(I'xs)) = 1 (i.e. X7 is non-singular). Then the lemma is trivial. To verify the
lemma, we suppose #(v(I'xs)) > 2 (i.e. X7 is singular). Moreover, suppose that f.,(X,,) is a node
which is not contained in Xr,. We will construct a contradiction.

Since f.,(X,,) is a node of X.,, we have #(mo(Xe, \ fey(Xu,))) = 2. Then there exists a connected
component C,, € mo(Xe, \ fe,(Xy,)) such that X, is contained in C,,. Moreover, since f.,(X,,) is
not contained in Xp,, there exists a unique connected component Z € (X, \ (Xy, U f1(XT,)))
such that f,,(Z) C C,,, and that Z N X,, # 0.

Let ay € (Dx, \ {z2}) N Z, by € (Dx, \ {z2}) N (f1(Ce,) \ Z), and ¢y € (Dy, \ {z2}) a marked
point which is not contained in f_'(Ce,). We denote by eq,, ey, €., € €’(I'xs) the open edges of I'xs
corresponding to as, by, co, respectively. Moreover, we put

Car = (F5P) M ews), en = (657) (en,), eer = (657) 7 (e0y) € P (Txy).

Write aq, 01,1 € Dy, for the marked points corresponding to e,,, €y, , €., , respectively.
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We put E£; & eP(Cxe) \ {€i; €a;s €5;5 €} Then we obtain an open continuous homomorphism
OF : HX;’;I — HXTE2‘ The above constructions implies that X3, is a singular pointed stable curve
of type (0,4) over ky. Moreover, we see that Xp, has two irreducible components, that the irre-
ducible components containing fg,(z2) and fg,(c2), respectively, are equal, and that the irreducible
components containing fz,(az) and fg,(bs), respectively, are equal.

On the other hand, since ¢, : 11 X, = II Xe, is a strong topological specialization homomorphism
(4.0.3), we see that X3, is singular. Moreover, the above constructions implies that the irreducible
components containing fg, (z1) and fg, (b1), respectively, are equal, and that the irreducible compo-
nents containing fg, (a1) and fg,(c1), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of X g, containing fg, (z2)
and fg,(b2), respectively, are equal. This contradicts our construction of X7, . We complete the proof
of the lemma. 0

Lemma 4.7. We maintain the settings introduced in 4.0.3 and the notation introduced at the begin-
ning of 4.0.5. Moreover, we suppose that #(v(L'xy)) = #(v(I'xe ) +1 holds, and that f,(z1) € Dx,,
is a marked point of X? . Then the following statements hold: (i) f.,(x2) € Dx,, is a marked point
of X2,. (ii) X, is an irreducible component of Xr,.

Proof. (i) Suppose that fe,(z2) is not a marked point of X2 . We will construct a contradiction. Note
that Lemma 4.3 implies that f.,(x2) is a node of X,,.

Since fe, (71) € Dx,, is a marked point of X2 , there exists a unique marked point a; € Dx, \ {71}
such that a; is contained in X,,. We write e,, € e®(I'xs) for the open edge corresponding to

a1, €a, def PP (e, ), and ay € Dy, for the marked point of X3 corresponding to e,,. Then we see
immediately that as is contained in a connected component Cy € my( X3\ X,,). Moreover, we note that
#(Dx,NCy) > 2. Then we take by € (Dx, NC5)\ {az}. On the other hand, let co € Dx, \ {x2, az, b2}
be a marked point of X3 such that ¢, is contained in a connected component of X5 \ X, distinct
from Cy. We denote by e,, €., € e°P(T xg) the open edges of I'xs corresponding to by, ¢z, respectively.

Moreover, we put

e E (6%7) M ew), o © (6%7) M er) € P (Dxy).

Write by, c¢; € Dy, for the marked points corresponding to e, and e.,, respectively.

We put E; dof e?(l Xi.) \ {€i,€q;, €, €c; }- Then we obtain an open continuous homomorphism
o : HXEI — HXJ';Q' The above constructions imply that X7, is a singular pointed stable curve
of type (0,4) over ky. Moreover, we see that Xpg, has two irreducible components, that the irre-
ducible components containing fg,(z2) and fg,(c2), respectively, are equal, and that the irreducible
components containing fg,(a2) and fg,(bs), respectively, are equal.

On the other hand, since ¢, : I1 xs, = II Xe, is a strong topological specialization homomorphism
(4.0.3), we see that X3, is singular, that the irreducible components containing fg, (z1) and fg, (a1),
respectively, are equal, and that the irreducible components containing fg, (b1) and fg, (c1), respec-
tively, are equal. By applying Corollary 3.3 (b), we obtain that the irreducible components of X,
containing fg,(z2) and fg,(az), respectively, are equal. This contradicts our construction of Xp, .
We complete the proof of (i).

(ii) Suppose that X, is not an irreducible component of Xr,. We will construct a contradiction.
Since fe,(z1) (resp. fe,(22)) is a marked point, there exist a unique marked point a; € Dy, \ {1}
(resp. by € Dx, \ {z2}) such that a; is contained in X,, (resp. b is contained in X,,).

We denote by e,, € e®(I'xs), e, € e®(I'xs) the open edges of I'ys and I'xs corresponding to
a1, by, respectively. Moreover, we put

Car = 0% (ea,) € €P(Txg), e = (5%) 7 (en,) € €P(Txy).

Write ay € Dy, and by € Dy, for the marked points corresponding to e,, and e, , respectively. Note
that since we assume that X, is not an irreducible component of Xr,, we have a; # by and ay # bs.
Furthermore, we have that b; ¢ X,,, and that there exists a connected component Cy of X; \ X,
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such that by is contained in C;. We take ¢; € (Dx, N Cy) \ {b1} a marked point of X} and write

e, € €P(I'xs) for the open edge of I'xs corresponding to ¢;. We put e, & ¢*&°P (e, ) and write
¢y € Dy, for the marked point corresponding to e,.

We put E; & eP(Lxe) \ {€i, €a;, 5,5 €} Then we obtain an open continuous homomorphism

o 11 xp II xp, - Moreover, the above constructions imply that X3, is a singular pointed stable

curve of type (0,4) over kg such that Xp, has two irreducible components, that the irreducible com-
ponents containing fg,(x2) and fg, (b2), respectively, are equal, and that the irreducible components
containing fg,(az) and fg,(cy), respectively, are equal.

On the other hand, the above constructions imply that X3, is a singular pointed stable curve of
type (0,4) over k; such that the irreducible components containing fg, (z1) and fg, (a1), respectively
are equal, and that the irreducible components containing fg, (by) and fg, (1), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that the irreducible components of Xg, containing fg, (z2)
and fg,(az) are equal. This contradicts our construction of X3, . We complete the proof of (ii). [

Lemma 4.8. We maintain the settings introduced in 4.0.3 and the notation introduced at the be-
ginning of 4.0.5. Moreover, we suppose that #(v(I'xy)) = #(v(I'xs ) + 1 holds, and that fe,(z1)
is a node of X.,. Then the following statements hold: (i) fe,(x2) is a node of Xe,. (ii) fe,(x2) is
contained in Xry N Xrpg.

Proof. (i) Suppose that f.,(x2) is not a node of X,,. We will construct a contradiction. Note that
Lemma 4.3 implies that f,(x2) is a marked point of X2 . Then there exists a unique marked point
azy € Dx, \ {z2} such that ay is contained in X,,. We write e, € ¢®®(I'xs) for the open edge

corresponding to as, €4, o (¢%8°P)~L(e,,), and a; € Dy, for the marked point of X} corresponding
to eq,. Then a; is contained in a connected component C} € mo(X; \ X,,). Moreover, we note that
#(Dx, NCy) > 2. We take by € (Dx, NCy) \ {a1}. On the other hand, since #(mo(X; \ Xy,)) = 2,
there exists a marked point ¢; € Dy, \ {z1,a1,b;} such that ¢; is contained in the unique connected
component of X; \ X,, distinct from C;. We denote by ey, e, € e®(I'xs) the open edges of I'xs
corresponding to by, ¢1, respectively. Moreover, we put

€by déf gbsg,op(ebl)’ €ey déf (bsg’op(ea) S eop<FX2')'

Write by, co € Dy, for the marked points corresponding to e, and e.,, respectively.

We put E; & eP(Lxe) \ {€i, €a;, €5;5 €, }. Then we obtain an open continuous homomorphism
op : 11 xp II Xp, - The above constructions imply that X3, is a singular pointed stable curve of
type (0,4) over ky such that the irreducible components containing fg,(z2) and fg,(as2), respectively,
are equal, and that the irreducible components containing fz,(bs) and fg,(cs), respectively, are equal.

On the other hand, the above constructions imply that X3, is a singular pointed stable curve over
k1 such that the irreducible components containing fg, (z1) and fg, (c1), respectively, are equal, and
that the irreducible components containing fg, (a;) and fg, (b1), respectively, are equal. By applying
Corollary 3.3 (b), we obtain that the irreducible components of Xg, containing fg,(z2) and fg,(cs),
respectively, are equal. This contradicts our construction of X7, . We complete the proof of (i).

(ii) Suppose that the node f.,(x2) is not contained in XriNXrz. We will construct a contradiction.
Since fe,(w2) is a node and is not contained in Xy N Xpg, either X, N fZ1(Xpy) = 0 or X, N
fe 1(XF§) = () holds. Without loss of generality, we may assume X,, N fegl(ng) = (). Then we have
#(mo(X2 \ (Xu, U £, (X13))) > 2. Moreover, let

Cy,C3 € mo(Xo \ (X U [, (Xr3)))

be connected components such that CI N X,, # 0, CIN fegl(XF%) =0, and CI N fegl(ng) = (), and
that f3!(Xty) C C3.

Let ag € Dx, NCy, by € Dx, N C%, and ¢y € Dx, \ (C3 UC% U {z2}) be marked points of X3.
Note that ag, by, ¢ are distinct from xo. We denote by e, , €p,, €, € €°P(I° Xg) the open edges of I’ X3



TOPOLOGICAL AND GROUP-THEORETICAL SPECIALIZATIONS 31

corresponding to as, by, co, respectively. Moreover, we put

def SE.0DY — def SE.0DY — def SE.0D\ — o
€a; = (¢ & p) 1(602)7 €p, = (¢ & p) 1<6b2)7 €ey = (¢ & p) 1(662) ce p<FX1°)'

Write aq, b1, ¢ € Dy, for the marked points corresponding to e,,, €y, , €., , respectively.

We put E; & eP(Lxe) \ {€i, €a;, €5;5 €} Then we obtain an open continuous homomorphism
op : 11 xp II Xp, - The above constructions imply that X3, is a singular pointed stable curve of
type (0,4) over ky such that the irreducible components containing fg,(z2) and fg,(as2), respectively,
are equal, and that the irreducible components containing fg,(bs) and fg,(cs), respectively, are equal.

On the other hand, since ¢, : I1 X, = II xe, s a strong topological specialization homomorphism
(4.0.3), X3, is a singular pointed stable curve over ki of type (0,4) such that one of the following
cases holds:

e The irreducible components containing fg, (z1) and fg, (¢1), respectively, are equal, and that
the irreducible components containing fg, (a1) and fg, (b;), respectively, are equal.

e The irreducible components containing fg, (1) and fg, (b1), respectively, are equal, and that
the irreducible components containing fg, (a1) and fg, (¢1), respectively, are equal.

By applying Corollary 3.3 (b), we obtain that one of the following cases holds:

e The irreducible components of X, containing fg,(x2) and fg,(cs), respectively, are equal.
e The irreducible components of X, containing fg,(x2) and fg,(by), respectively, are equal.

This contradicts our construction of X7, . We complete the proof of (ii). O

4.0.6. The main result of the present section is the following:

Theorem 4.9. We maintain the notation introduced in 5.1.1. Suppose that gx = 0, and that Ilys,
i € {1,2}, is either the admissible fundamental group of X! or the mazimal pro-solvable quotient
of the admissible fundamental group of X?. Let ¢ : llxs — llxs be an arbitrary open continuous
homomorphism. Then ¢ is a strong topological specialization homomorphism. In particular, the
topological specialization conjecture holds.

Proof. Since the maximal pro-solvable quotient of the admissible fundamental groups can be recon-
structed group-theoretically from the admissible fundamental groups, to verify the theorem, we may
assume that Ilxs is the maximal pro-solvable quotient of the admissible fundamental group of X?.

Suppose that nxy = 3. Then X?, i € {1,2}, is a smooth pointed stable curve over k;. The
theorem follows immediately from Corollary 3.3 (a). Suppose that ny = 4. Then the theorem
follows immediately from Corollary 3.3 (b).

Next, suppose that the theorem holds for 3 < nxy < n — 1. We will prove the theorem holds for
nx = n. We maintain the settings introduced in 4.0.3 and the notation introduced at the beginning
of 4.0.5. Since the theorem holds for nxy < n — 1, to verify the theorem holds for nx = n (i.e. the
underlying topological space of X, is a degeneration of the underlying topological space of X7), it’s
sufficient to prove that the following statements hold:

(i) If #(v(I'xs)) = #(v(I'xe ) and #(v(I'xy)) = #(v(I'xe ), then X, is an irreducible compo-
nent of Xr,.

(ii) If #(v(I'xy)) = #(v(Txz ), #(v(I'xg)) = #(v(T'xe))) + 1, and f,(X,,) is a marked point of
X¢,, then X, - is an irreducible component of Xr,.

(iii) If #(v(I'xy)) = #(v(T'xe ), #(v(Txg)) = #(v(T'xe))) +1, and fe,(X,,) is a node of X,, then

fes(Xy,) is contained in Xr,.

(iv) If #(v(I'xy)) = #(v(I'xg ) + 1 and fe, (z1) € Dx,, is a marked point of X7, then fe,(z2) €

Dy, is a marked point of X?,, and X, is an irreducible component of Xr,.
(v) If #(v(I'xy)) = #(v(T'xg ) + 1 and fe, (21) is a node of Xe,, then fe,(z2) is a node of X,,
and fe,(z2) is contained in Xpy N Xps.

Suppose #(v(I'xy)) = #(v(I'xg ). Since X, is a degeneration of X, (as topological spaces), X»
is a degeneration of X if f.,(z3) is contained in X1, which is equivalent to (i), (ii), (iii) listed above.
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Suppose #(v(I'xy)) = #(v(I'xs ) + 1. If fo,(z1) € Dx,, is a marked point of X (ie. f, :
X7 — X, is a blow-up along a smooth closed point of X,,), since X, is a degeneration of X, (as
topological spaces), X3 is a degeneration of X if f., : Xy — X, is a blow-up along a smooth closed
point of X,, contained in X, which is equivalent to (iv).

Suppose #(v(I'xy)) = #(v(I'xe ) + 1. If fe,(21) is a singular point of X2 (ie. fe, : X1 — X, is
a blow-up along a singular point of X, ), since X,, is a degeneration of X, (as topological spaces),
X is a degeneration of X if f., : Xo — X, is a blow-up along a singular point of X, contained in
X1 N Xz which is equivalent to (v).

The statements (i), (ii), (iii), (iv), (v) follow from Lemma 4.4, Lemma 4.5, Lemma 4.6, Lemma
4.7, and Lemma 4.8, respectively. We complete the proof of the theorem. O

5. GROUP-THEORETICAL SPECIALIZATION CONJECTURE FOR gx = 0 UNDER ASSUMPTIONS

In this section, we will prove that the group-theoretical specialization conjecture holds for gx = 0
if we assume that the topological specialization conjecture holds for arbitrary types (see Theorem
5.7).

5.1. Boundary data.

5.1.1. Let W* be a pointed stable curve of type (0,n) over an algebraically closed field k of char-
acteristic p > 0 and D'y the dual semi-graph of W*. Note that since I'yye is a tree, we have
Ssg(l'we) = Com(I'ye) (2.3.5).

Definition 5.1. Let B € Com(I'y+) be a combinatorial datum associated to W*. We shall call
B a boundary combinatorial datum (or, a boundary sub-semi-graph (2.1.2)) of Ty if the following
conditions are satisfied:

e v(B) # 0.
e ['y. \ B is connected or empty (note that we have Ssg(I'ye) = Com(I'y)).
Let W3 be the pointed stable curve associated to B (2.2.4). We see that B is a boundary combina-
torial datum if and only if W \ Wg is connected or empty.
If v(Tywe) \ v(B) # 0, there exists a unique boundary combinatorial datum B¢ € Com(I'yys) such
that v(B°) = v(T'w.) \ v(B) (i.e. B is the sub-semi-graph determined by v(I'y.) \ v(B)), where “c”
means “complement”.

[

Example 5.2. Let us give an example to explain the above notation. We use the notation “e” and
“o with a line segment” to denote a vertex and an open edge, respectively. Let 'y« be a semi-graph
as follows:

€1 £4 €6
FW' . v €3 IUQ €5 V3
€9 €7

Let B be a sub-semi-graph as follows:

€1
B: V1 €3

€9

Then B is boundary, and B¢ is the following:
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On the other hand, we also give an example of sub-semi-graphs which is not a boundary sub-semi-
graph.

€4

B €3 €5
V2

The following lemma will be used in the next subsection.

Lemma 5.3. Let B € Ssg(I'we) be a boundary sub-semi-graph and w € v(B°) the vertex such that
w and B are connected with a closed edge of I'ywe. Write Wg, W for the pointed stable curves over
k associated to B, w, respectively. Then there ezist a pointed stable curve Z°* of type (gz,nz) over
k and an abelian Galois admissible covering f* : Z* — W* with Galois group Z/{Z for some prime
number € £ p such that the following conditions are satisfied:

® g7 =0.

o Write f% : I'ye — D'y for the natural map of dual semi-graphs induced by f®. Let u €

(f%8) Y (w) and T € Ssg(T'zs) a connected component of (f¢)~*(B). We denote by

Zys 2t
the pointed stable curves of types (0,n,), (0,nr) over k associated to u, ', respectively. Then
we have
nr << Ny,.

This means that for any positive natural number m, n, — nr > m for a suitable choice of L.

Proof. Since W* is a pointed stable curve of genus 0, we have
#(Wa 0 Dyy) + #(W,, N W) > 3.

Note that W,, N Wy # 0 implies that #(W,, N W) > 1. Now, we construct two marked points
x1,x9 € Dy of W* as follows.

Suppose #(W,, N Dy) > 2. We take x1, 29 € W, N Dy marked points of W* distinct from each
other.

Suppose #(W,,NDy) = 1. Then we have #(mo(W \ W,,)) > 2. Moreover, there exists a connected
component C' € mo(W \ W,,) such that C N Wy = 0. We take x; the marked point contained in
W N Dy and take z9 a marked point contained in C.

Suppose #(W,, N Dy) = 0. Then we have #(mo(W \ W,,)) > 3. Moreover, there exist two
connected components C,Cy € mo(W \ W,,) distinct from each other such that C; N Wg = () and
Cy N Wy = (. We take z1, x5 marked points contained in C, Cy, respectively.

Let ¢ >> 0 be a prime number prime to p, and let f*®: Z®* — W* be a Galois admissible covering
with Galois group Z/¢Z such that f* is totally ramified over x, x5 and is étale over Dy \ {1, x2}.
Then we see immediately that f* is the desired Galois admissible covering. This completes the proof
of the lemma. O

5.2. Main result.
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5.2.1. Settings. We maintain the notation introduced in 3.1.1. Moreover, we assume that the
following holds:

e gx =0.
o Ilx., i € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental group of
X?.

L ¢ € Homgg(HXI,HXg).
def

o Let Hl € GQO(HXli) and H2 = ¢(H1) g HX20 If H2 € GGO(H_){Q'), then ¢‘H1 : Hl — HQ is

a topological specialization homomorphism for all open subgroups Hy C Iy, where H; aef

(6]a,) " (Hz) € 1.

5.2.2. We maintain the notation introduced in 5.2.1. Let I'y € Ssg(FXl-) be a boundary sub-semi-
graph. Note that, in this situation, this means that X; \ X, is connected or empty, where X, C X;
denotes the semi-stable curve corresponding I'y (2.2.3).

By applying Theorem 4.9, we obtain that ¢ : IIys — Ilx, is a strong topological specialization
homomorphism. Namely, ¢%°P = SPXr X eor(Ixs) holds for some SPXexs - Com(I'xs) — Com(I'ys)
(Definition 4.1). We put

(T2, 0) = spiyy (01, 0)).
Then Theorem 4.9 implies that I'; C I'xs is a boundary sub-semi-graph. On the other hand, write
Er, C e?(I'xs) for the set of open edges of I'xs on which I'; is abutted, Er, C e®®(I'xs) for the set
of open edges of I'yy on which I'y is abutted. Note that we have

qbsg,op(EFl) - EF2'
Let fz C T xs, @ € {1,2}, be a connected component of W}j(Pi), and I C Tlxs the geometry-like

subgroup associated to T, (2.3.3). Moreover, we put
BEdg (Ip,) © {I € Iy, | & € 7y (e), & € Er,} € Edg™(Ilx; ).
Then we have the following lemma:

Lemma 5.4. We maintain the notation introduced above. Then g is generated by {L, | I; €

Proof. This lemma follows immediately from the facts that gx is equal to 0, and that I'; is a boundary
sub-semi-graph. 0

5.2.3. We maintain the setting and notation introduced in 5.2.1 and 5.2.2. Before we start to
prove the group-theoretical specialization conjecture under the settings 5.2.1, we will prove firstly
the following:

(%) : There exists a connected component I'y € T'ys of wy! (I'y) such that o(Ilg,) = I, .
By Lemma 5.4, (%) is equivalent to the following statement:

(%%) : Let I3, , € Edg(]’jpF1 (I, ), j € {a,b}. Theorem 3.2 (a) implies ¢(/¢, ;) = Iz, ; for

some ey ; € e°P(I'xs). Suppose that I, ; € I, . (or equivalently, e, ; € I'y ;) for some

connected component fgd of . (I'2). Then we have Iy, =1lf,,.

Let Hy C Ilys be an arbitrary open subgroup and H def ¢~ (Hy) C Ixs. Write X7, , i € {1,2},
for the pointed stable curve of type (gu, ng) over k; corresponding to H; (note that Theorem 3.2 (a)
implies that the types of X}, and X}, areequal), f3; : X3 — X7 the admissible covering determined
by the natural injection H; < Ilys, T’ Xy, for the dual semi-graph of X% , and fls_ﬁ : T Xy = [xs
the natural map of dual semi-graphs induced by ff;. We maintain the notation introduced in ().
Moreover, for j € {a, b}, we denote by

em g Umys €my gy Uy
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the images of € ;, fl, €., fzj under the natural maps of semi-graphs fxf — PXI.-I and fX2- — FX;{ ,
1 2
respectively. Note that we have

e aremp € €P(Lm), ema € €PTma); €mp € €Ty

3 [
Moreover, we shall write XFHl,XFH“

,Xl!H“ for the pointed stable curves of types (gry ,nry, ),

(9T t1yr My 0)s (GTpy s Ty, ), corresponding to Uay, T'mya, T'myp, respectively. In particular, if

H, is an open normal subgroup of Ilxs, we have (gr,, ,.7ry,.) = (gry,,»7ry,,). Then we put

def .
(ngQ,an2) = (ngM, anw) = (ngQ’b, anqu) when H, is an open normal subgroup of Ilxs. We see

that, to verify (), it’s sufficient to prove the following statement:
(%) : T'ya = Ty p for arbitrary open subgroup Hy C Ilx,.
In 5.2.4 below, we will prove the statement (x) under the settings 5.2.1 (see Proposition 5.6 below).
If o(Ixe) \ v(I;) # 0, write I'{ for the unique boundary sub-semi-graph of I'xs such that v(I') =
v(Lxs) \ v(I';). Moreover, we denote by Xp. the pointed stable curve of type (0, nre) over k;. On the
other hand, since 'y, is a tree, there exists a unique vertex

ws € v(T%) € v(T'xs)

such that wse and I'y are connected with a closed edge of " xs. We denote by X, the smooth pointed
stable curve of type (0,mn,,) over ky corresponding to ws.

By applying Lemma 5.3, there exists an open normal subgroup P C Ilx, such that II X2'/ P =
Z/U'Z for some (' # p, and that the Galois admissible covering fp, : X3 — X3 corresponding

to the natural injection P — llxs satisfies the conditions listed in the conclusion of Lemma 5.3.

Let P, & ¢~ (P,), and let X be the pointed stable curve of type (gp,,np,) over ki. Theorem

3.2 (a) implies that (gp,,np,) = (gp,,np,) and gp, = gp, = 0, where (gp,,np,) denotes the type of
X3,. Moreover, we note that ¢|p, : P, — P, is a strong topological specialization homomorphism
(Definition 4.1 and Theorem 4.9). To verify (x), it’s sufficient to prove the following:

'y, .o = 'y, for arbitrary open subgroup Hy C P.
Then by replacing X?, Ilxs, 7 € {1,2}, and ¢ by Xp,, P;, and ¢|p,, in the remainder of this subsection,
we may assume

Moy >> ’I’LF2(: npl).

5.2.4. We maintain the settings and the notation introduced in 5.2.1 and 5.2.3.

Lemma 5.5. Let Hy C Ilxs be an open normal subgroup of lxs and Hy def gb_l(Hg) C lxg. Let

wg, € (f) Hws) C U(Fx;l2) be a vertex over wy and X3, the smooth (since gx = 0) pointed stable
curve of type (ngz,an2) associated to wpy,. Suppose Gu,, >> gry,, for all wy,. Then we have
FHg,a - FHg,b-

Proof. To verify the lemma, we suppose 'y, o # I'm, 5. We will construct a contradiction.

Let ¢ be the minimal odd prime number distinct from p (i.e. ¢ is equal to either 3 or 5). Let
()1 € H; be an open normal subgroup of H; such that the following conditions are satisfied (the
existence of (), follows immediately from the structure of maximal prime-to-p quotients of admissible
fundamental groups):

L4 HI/QI = Z/ZZ
e Write X¢, for the pointed stable curve over ki corresponding to 1 and

hi: X5, — X,
for the Galois admissible covering determined by @); < H; satisfying the following conditions:

(i) #mo((hy*(Xg, \ Xy ) = l#mo( Xy, \ Xy, ) (ie. by is a trivial covering over
XH1 \XFHl)'
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(ii) Ay is étale over Dx,, \{ZTey, ,, Tey, , } and is totally ramified over z.,, , j € {a,b},
where z., . denotes the marked pomt corresponding to ey, ;. Note that in this
situation, h (XFH ) is connected.

We put Q) & ¢(Q1) C Hxs. Moreover, we denote by X¢, the pointed stable curve over ks corre-

sponding to )2 and
hy: X, — X,
the Galois admissible covering determined by Qs — Hy. We see Hy/Qo = Z/VZ.
Write T'x,, , @ € {1,2}, for the dual semi-graph of X¢ . Write I'g, C T xg, for the sub-semi-graph
such that the underlying curve of the corresponding pointed stable curve Xle is equal to hy (Xt " ).
By the construction of h{ and the choice of ¢, we have

1
gFQ1 = E(ngl — 1) -+ 5(6 — 1) +1 << ng2,

where gr,, denotes the genus of Xle

On the other hand, since we assume that ¢|y, : Hy — H, is a topological specialization homomor-
phism (i.e. the settings 5.2.1), there is a map of combinatorial data (i.e. the map of dual semi-graphs
induced by a degeneration or reduction)

SPGoy 0 Com(FXél) — Com(FXéZ)).

We put (I'g,, D) o 5P 0,((Tq,,0)). Then we have the following claim.

Claim: hy’(Lg,) € I'x;,  contains Uy and Ty, p, where hy* : Txg  — Uy - denotes
the map of dual semi-graphs induced by hy. In particular, hi¥(Lg,) contains wy, for
some wy, € (fr1,) " (w2) v(T'xy, ).

Let us prove the claim. Since I’ Xg, can be regarded as the dual semi-graph of a
reduction of X¢ and sp3,, is induced by the reduction map, the action of Z/(Z
on I’ bey (determined by the action of Z/lZ on X§, induced by the Galois admissible
covermg h%) induces uniquely an action of Z/¢Z on T Xe, -

Note that we do not know whether or not the action of ZJ0Z on T Xe, defined above
coincides with the action Z/¢Z on I’ ey induced by the Galois adm1881ble covering h$.

In the remainder of the proof of the Clalm we only consider the action of Z/¢Z on
r xs, induced by the action of Z/¢Z on I" xs, defined above.

Let G € Iy, be an arbitrary sub-semi- graph such that v(G) Nv(Ig,) = 0. By the
construction of X ®, we see that the decomposition subgroup of G under the action of
ZJVZ is trivial, and the the decomposition subgroup of I'g, under the action of Z/(Z
is Z/{Z. Then we have the decomposition subgroup of spg"y,(G) under the action
of Z/lZ is trivial, and the decomposition subgroup of I'g, = spé’;?%(FQl) under the
action of Z/{Z is Z/VZ. Since the decomposition group of eq, ;, j € {a,b}, under the
action of Z/lZ is Z/VZ, where eg, ; is defined in 5.2.3 by replacing Hy by @2, we see
that eq, ;, j € {a,b}, is contained in e°(I'g,). Thus, h¥(Tg,) C I'x;, contains I'p, ;,
J € {a, b}, since hy’(eq, ;) = €m,; € L'y, 4.

On the other hand, since h3¥(I'g,) is connected and I'p,, is distinct from I'g,
then h3¥(I'g,) contains wy, for some wy, € (fi7) ' (wz) C U(FX;IQ). We complete the
proof of the claim.

We return to prove the lemma. By the claim, we obtain
grg, = 9rg, = Guwu,

where gr,, ~denotes the genus of the pointed stable curve XfQ2 corresponding to I'g,. We obtain a
contradiction. This completes the proof of the lemma. 0



TOPOLOGICAL AND GROUP-THEORETICAL SPECIALIZATIONS 37

Proposition 5.6. The statement (x) mentioned in 5.2.3 holds. In particular, the statement ()
mentioned in 5.2.3 holds.

Proof. Suppose that (x) does not hold. Then there exists an open subgroup @, C Ilx, such that

FQQ,G % FQbe'
Thus, for any open subgroup P, C @3, we have I'p, , # I'p, ;. Let us construct a contradiction.
Let £ >> #(Ilxs /Q1) = #(Ilx3 /Q2) be a prime number prime to p and K5 C IIxs an open normal
subgroup such that the following conditions are satisfied (the existence of K, follows immediately
from the structure of maximal prime-to-p quotients of admissible fundamental groups):

o HXQ'/KQ = Z/EZ
e Write ff, : X%, — X3 for the Galois admissible covering over ks corresponding to Ky < Ilx;.
Then ff, is totally ramified over

(sz N DXQ) U ((Xw2 N X;ing) \ (XF2 N X;ing))

and is étale over (Xr, N X5")U(Xr,NDy,). Note that in this situation, f§, induces a trivial
covering over Xp. .

We put Ky = ¢~ '(K,). Write f : X5, — X7 for the Galois admissible covering over k; correspond-
ing to K — IIxs. Since ¢ is a strong topological specialization homomorphism (Theorem 4.9), we
see that

(gFK1 ) nFKl) = (gFKQ,av nFKQ,a) = (gFKQ,bv nFKz,b>'

On the other hand, since we assume n,,, >> nr,, we obtain that

Juwre, >> Ikya = ITryp — 9Tk, WK = (f;{gg)_l(wQ) - U(FX;Q)'

We put Hy & KoNQ, and Hy & ¢~ (H,). Write f3, : X3, — X7, i € {1,2}, for the Galois admis-

sible covering over k; corresponding to H; < Ilxs. The choice of £ >> #(Ilxs/Q1) = #(Illxs/Q2)
and the fact gu,, >> gry, , = gr,, = gr, imply

Gwry == Ihya = IThyss Jwm, == 9Tp, -
Note that we do not know whether or not gr,, , = gry,, = gr,,, holds in general. Thus, by Lemma
5.5, we obtain
Urya = Thype
This contradicts the fact 'y, , # ['m,p since Hy is contained in ()3. We complete the proof of the
proposition. ]

5.2.5. The main theorem of the present section is the following:

Theorem 5.7. We maintain the notation introduced in 3.1.1. Moreover, we assume that the follow-
ing holds:
o gx =0.
o llxs, i € {1,2}, is the maximal pro-solvable quotient of the admissible fundamental group of
X!
L ¢ € HOmgg(HXf7HX2°>'
o Let 1) € Geo(llxs) and I, et ¢(Iy) C lxg. If Iy € Geo(llxy), then @lp, : Hy — Hy is a
topological specialization homomorphism (Definition 3.1 (a)) for all open subgroups Hy C Ils,
where H; & (@|m,) H(Hz) CII4.

Proof. Suppose #(v(I'xs)) = 1. Then the theorem is trivial. To verify the theorem, we assume
#((lxy)) = 2.

Let vy € v(I'xs) be an arbitrary vertex of I'ys, U1 € 7'(')_(}(2)1) C fX;, and Il € Ver(ILys) the
vertex-like subgroup associated to v;. To verify the theorem, by Proposition 3.9, it’s sufficient to
prove ¢(Ilg,) € Geo(Ilxy).
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Since I'xs is a tree, there exists a boundary (proper) sub-semi-graph I'y € Ssg(I'xs) (Definition
5.1) such that the following conditions are satisfied:
e vy € v(I'y) and Iy, € Ssg(T'1) C Ssg(I'xs) is a boundary sub-semi-graph of I'y (see 2.3.3 for
Ty,)-
e Write I'{ € Ssg(I'xs) for the unique boundary sub-semi-graph such that v(I'f) = v(I'xs) \
v(I'1). Then vy and I'{ are connected with a closed edge of I'xs.

Let fl be the connected component of W;(i(rﬁ C le- containing v; and IS Geo(Ilxs) the
geometry-like subgroup associated to fl.

Since I'; is a boundary sub-semi-graph, Proposition 5.6 implies that there exist a sub-semi-graph
Iy € Ssg(I'xg) and a connected component I'y € 7y, (') such that Iz, = ¢(Ilz ) € Geo(Ilxy ), where
I, is the geometry-like subgroup associated to fg.

Moreover, since I',, € Ssg(I'1) is a boundary sub-semi-graph of I';, by applying Proposition 5.6
for ¢, : I, — Ilg, (our assumptions say that ¢|m, : Hi — Hy is a topological specialization

1

homomorphism for all open subgroups Ho C Il,, where H, < (¢]m,)"H(Hy) C IIy), we obtain

¢(Il5,) € Geo(Ils ) € Geo(Ilxg). This completes the proof of the theorem. O
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