On the Existence, Geometry and *p*-Ranks of Vertical Fibers of Coverings of Curves

 $\mathbf{B}\mathbf{y}$

Yu Yang*

Abstract

Let R be a complete DVR with algebraically closed residue field of characteristic p > 0and X, Y stable curves over R with smooth generic fibers. Let $f: Y \to X$ be a morphism over R such that the morphism of generic fibers induced by f is a Galois étale covering. A closed point x of X is called a vertical point if $\dim f^{-1}(x) = 1$. In this case, $f^{-1}(x)$ is called the vertical fiber associated to x. We study the existence, the geometry, and the p-ranks of vertical fibers under certain assumptions.

§1. Preliminaries

Let R be a complete discrete valuation ring with algebraically closed residue field k, K the quotient field of R, and \overline{K} an algebraic closure of K. We use the notation S to denote the spectrum of R. Write $\eta, \overline{\eta}$, and s for the generic point, the geometric generic point, and the closed point of S corresponding to the natural morphisms Spec $K \to S$, Spec $\overline{K} \to S$, and Spec $k \to S$, respectively. Let X be a stable curve of genus g_X over S. Write $X_{\eta}, X_{\overline{\eta}}$ and X_s for the generic fiber, the geometric generic fiber and the special fiber, respectively. Moreover, we suppose that X_{η} is nonsingular.

§1.1. Admissible fundamental groups and specialization

Definition 1.1. Let $\phi : Z \to X_s$ be a morphism of stable curves over s. We shall call ϕ a **Galois admissible covering** over s (or Galois admissible covering for short)

© 201x Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Received April 20, 201x. Revised September 11, 201x.

²⁰¹⁰ Mathematics Subject Classification(s): Primary 14H30; Secondary 11G20. Key Words: stable curve, p-rank, vertical fiber, ordinary.

^{*}RIMS, Kyoto University, Kyoto 606-8502, Japan. e-mail: yuyang@kurims.kyoto-u.ac.jp

if the following conditions hold: (i) there exists a finite group $G \subseteq \operatorname{Aut}_k(Z)$ such that $Z/G = X_s$, and ϕ is equal to the quotient morphism $Z \to Z/G$; (ii) for each $z \in Z^{\operatorname{sm}}$, ϕ is étale at z, where $(-)^{\operatorname{sm}}$ denotes the smooth locus of (-); (iii) for any $z \in Z^{\operatorname{sing}}$, the image $\phi(z)$ is contained in $X_s^{\operatorname{sing}}$, where $(-)^{\operatorname{sing}}$ denotes the singular locus of (-); (iv) let $z \in Z^{\operatorname{sing}}$ and $D_z \subseteq G$ the decomposition group of z; the local morphism between two nodes (cf. (iii)) induced by ϕ may be described as follows:

$$\begin{split} \hat{\mathcal{O}}_{X_s,\phi(z)} &\cong k[[u,v]]/uv \to \hat{\mathcal{O}}_{Z,z} \cong k[[s,t]]/st \\ u &\mapsto s^n \\ v &\mapsto t^n, \end{split}$$

where $(n, \operatorname{char}(k)) = 1$ if $\operatorname{char}(k) = p > 0$; moreover, $\tau(s) = \zeta_{\#D_z} s$ and $\tau(t) = \zeta_{\#D_z}^{-1} t$ for each $\tau \in D_z$, where $\#D_z$ denotes the order of D_z , and $\zeta_{\#D_z}$ is a primitive $\#D_z$ -th root of unit. We shall call ϕ an **admissible covering** if there exists a morphism of stable curves $\phi' : Z' \to Z$ over s such that the composite morphism $\phi \circ \phi' : Z' \to X_s$ is a Galois admissible covering over s.

Let Y be the disjoint union of finitely many stable curves over s. We shall call a morphism $\psi : Y \to X_s$ over s **multi-admissible** if the restriction of ψ to each connected component of Y is an admissible covering.

We use the notation $\operatorname{Cov}^{\operatorname{adm}}(X_s)$ to denote the category which consists of (empty object and) all the multi-admissible coverings of X_s . It is well-known that $\operatorname{Cov}^{\operatorname{adm}}(X_s)$ is a Galois category. Thus, by choosing a base point $x \in X_s$, we obtain a fundamental group $\pi_1^{\operatorname{adm}}(X_s, x)$ which is called the **admissible fundamental group** of X_s . For simplicity, we omit the base point and denote the admissible fundamental group by $\pi_1^{\operatorname{adm}}(X_s)$.

Remark. Note that by the definition of admissible coverings, if $\operatorname{char}(k) = p > 0$, the maximal pro-*p* quotient of the admissible fundamental group $\pi_1^{\operatorname{adm}}(X_s)$ is isomorphic to the maximal pro-*p* quotient of the étale fundamental group $\pi_1(X_s)$.

Remark. Let $\overline{\mathcal{M}}_{g,r}$ be the moduli stack of pointed stable curves of type (g,r)over Spec \mathbb{Z} and $\mathcal{M}_{g,r}$ the open substack of $\overline{\mathcal{M}}_{g,r}$ parametrizing pointed smooth curves. Write $\overline{\mathcal{M}}_{g,r}^{\log}$ for the log stack obtained by equipping $\overline{\mathcal{M}}_{g,r}$ with the natural log structure associated to the divisor with normal crossings $\overline{\mathcal{M}}_{g,r} \setminus \mathcal{M}_{g,r} \subset \overline{\mathcal{M}}_{g,r}$ relative to Spec \mathbb{Z} . We use the notation $\overline{\mathcal{M}}_g$ (resp. $\overline{\mathcal{M}}_g^{\log}$) to denote the stack $\overline{\mathcal{M}}_{g,0}$ (resp. the log stack $\overline{\mathcal{M}}_{g,0}^{\log}$).

Let $s^{\log} \to \overline{\mathcal{M}}_{g_X}^{\log}$ be a morphism from an fs log point s^{\log} (i.e., an fs log scheme whose underlying scheme is s) whose underlying morphism $s \to \overline{\mathcal{M}}_{g_X}$ is determined by $X_s \to s$. Thus, we obtain a stable log curve $X_s^{\log} := s^{\log} \times_{\overline{\mathcal{M}}_{g_X}} \overline{\mathcal{M}}_{g_X,1}^{\log}$ whose ON THE EXISTENCE, GEOMETRY AND p-RANKS OF VERTICAL FIBERS OF COVERINGS OF CURVES 3

underlying scheme is X_s . Then the admissible fundamental group of X_s is isomorphic to the geometric log étale fundamental group of X_s^{\log} .

For more details on admissible coverings, log admissible coverings and the fundamental groups for (pointed) stable curves, see [3], [12].

By applying the theory of deformation of stable log curves, we obtain a **specialization morphism** from the geometric étale fundamental group of the generic fiber to the admissible fundamental group of the special fiber:

$$Sp: \pi_1(X_{\overline{\eta}}) \to \pi_1^{\mathrm{adm}}(X_s).$$

Sp is always a surjection, but Sp is not an injection in general. Moreover, we have the following theorem.

Theorem 1.2. (i) ([1, Exposé X Corollaire 3.9], [11, Théorème 2.2]) If char(K) = char(k) = 0, then Sp is an isomorphism.

(ii) If char(K) = 0 and char(k) = p > 0, then Sp is not an isomorphism (cf. the following Remark).

(iii) If char(K) = char(k) = p > 0, then we have the following results:

(a) ([4, Theorem A and Theorem B], [7, Proposition 2.2.5], [9, Theorem 0.1]) if $k = \overline{\mathbb{F}}_p$, X_s is smooth over s and X is not a trivial family over S, then Sp is not an isomorphism;

(b) ([10, Corollary 3.11]) if X_s is singular, then Sp is not an isomorphism.

Remark. By the first remark under Definition 1.1, if $\operatorname{char}(k) = p > 0$, we have that the maximal pro-*p* quotient $\pi_1^p(X_s)$ of $\pi_1(X_s)$ is isomorphic to the maximal pro-*p* quotient $\pi_1^{p-\operatorname{adm}}(X_s)$ of $\pi_1^{\operatorname{adm}}(X_s)$. Then Theorem 1.2 (ii) follows from the following fact (cf. the third remark of Definition 1.3):

$$\dim_{\mathbb{F}_p}(\mathrm{H}^1_{\mathrm{\acute{e}t}}(X_{\overline{\eta}}, \mathbb{F}_p)) = 2g_X > g_X \ge \dim_{\mathbb{F}_p}(\mathrm{H}^1_{\mathrm{\acute{e}t}}(X_s, \mathbb{F}_p)).$$

§1.2. Some definitions

In this subsection, we give some definitions. From now on, we assume that char(k) = p > 0.

Definition 1.3. Write $\pi_1^p(X_s)$ for the maximal pro-*p* quotient of the étale fundamental group $\pi_1(X_s)$ of X_s . It is well-known that $\pi_1^p(X_s)$ is a finitely generated free pro-*p* group. We define the *p***-rank** $\sigma(X_s)$ of X_s as follows:

$$\sigma(X_s) := \operatorname{rank}(\pi_1^p(X_s)) = \dim_{\mathbb{F}_p}(\operatorname{H}^1_{\operatorname{\acute{e}t}}(X_s, \mathbb{F}_p)).$$

Remark. For a semi-stable curve Z over k, we may also define the p-rank $\sigma(Z)$ of Z as follows:

$$\sigma(Z) := \operatorname{rank}(\pi_1^p(Z)) = \dim_{\mathbb{F}_p}(\operatorname{H}^1_{\operatorname{\acute{e}t}}(Z, \mathbb{F}_p)).$$

Remark. If X_s is smooth, then the *p*-rank $\sigma(X_s)$ is equal to the dimension of the *p*-torsion points of the Jacobian J_{X_s} of X_s as an \mathbb{F}_p -vector space.

Suppose that X_s is a singular curve. Write Γ_{X_s} for the dual graph of X_s and $v(\Gamma_{X_s})$ for the set of vertices of Γ_{X_s} . For $v \in v(\Gamma_{X_s})$, write X_v for the irreducible component of X_s corresponding to v and $\widetilde{X_v}$ for the normalization of X_v . Then the *p*-rank $\sigma(X_s)$ of X_s is equal to

$$\sum_{v \in v(\Gamma_{X_s})} \sigma(\widetilde{X_v}) + \operatorname{rank}(\mathrm{H}^1(\Gamma_{X_s}, \mathbb{Z})),$$

where rank($\mathrm{H}^{1}(\Gamma_{X_{s}},\mathbb{Z})$) denotes the rank of $\mathrm{H}^{1}(\Gamma_{X_{s}},\mathbb{Z})$ as a finitely generated free \mathbb{Z} -module.

Remark. Note that we have $\sigma(X_s) \leq g_X$.

v

Definition 1.4. We shall call X_s ordinary if $\sigma(X_s) = g_X$.

Definition 1.5. Let $f: Y \to X$ be a morphism of stable curves over S and G a finite group. We shall call f a **stable covering** (resp. *G***-stable covering**) if the morphism of generic fibers f_{η} is an étale covering (resp. a Galois étale covering with Galois group G).

Remark. Let $f_{\eta}: Y_{\eta} \to X_{\eta}$ be a morphism of smooth, geometrically connected projective curves over Spec K and G a finite group. Suppose that f_{η} is a G-étale covering. Then by applying the stable reduction theorem for curves, after possibly replacing S by a finite extension of S, we can extend f_{η} to a G-stable covering over S (cf. [2, Theorem 0.2]).

Definition 1.6. Let $f: Y \to X$ be a stable covering. Suppose that the morphism of special fibers $f_s: Y_s \to X_s$ is not finite. A closed point $x \in X$ is called a **vertical point** associated to f, or for simplicity, a vertical point when there is no fear of confusion, if dim $(f^{-1}(x)) = 1$. The inverse image $f^{-1}(x)$ is called the **vertical fiber** associated to x.

§ 2. Questions and results

Let G be a finite group and $f: Y \to X$ a G-stable covering. By Theorem 1.2, Sp is not an isomorphism in general. It is natural to pose the following question:

ON THE EXISTENCE, GEOMETRY AND p-RANKS OF VERTICAL FIBERS OF COVERINGS OF CURVES 5

Question 2.1. Is f_s always a finite morphism? When Y_s an ordinary curve? How to compute the p-ranks of vertical fibers?

Remark. The motivations of Question 2.1 are as follows:

(1) to understand the reduction of an étale covering of X_{η} ;

(2) to understand the structure of the admissible fundamental groups of stable curves over an algebraically closed field of positive characteristic.

§2.1. Existence of vertical fibers

Since Sp is not an isomorphism in general by Theorem 1.2, the morphism of special fibers induced by a stable covering is not an admissible covering in general. In this subsection, we consider whether or not there exists a non-finite stable covering of X(i.e., the existence of vertical fibers). Moreover, we consider a sufficient condition for a given G-stable covering over S to restrict an admissible covering of the special fibers.

First, we define the following set which consists of the vertical points:

 $X^{\text{ver}} := \{x \in X_s \mid x \text{ is a vertical point associated to a stable covering of } X\}.$

Theorem 2.2. If char(K) = 0, we have the following results:

(i) ([10, Theorem 0.2]) if $k = \overline{\mathbb{F}}_p$, then $X^{\text{ver}} = X^{\text{cl}}$, where X^{cl} denotes the set of closed points of X.

(ii) ([13, Theorem 2.5]) the closure of X^{ver} in X_s is equal to X_s and X_s^{sing} is contained in X^{ver} , where X_s^{sing} denotes the singular locus of X_s .

Theorem 2.3. If char(K) = p > 0 and X_s is irreducible, we have the following results:

(i) ([13, Theorem 2.7]) if $k = \overline{\mathbb{F}}_p$, X_s is smooth over s and X is not a trivial family over S, then $X^{\text{ver}} \neq \emptyset$.

(ii) ([13, Theorem 2.8]) if X_s is singular, then $X^{\text{ver}} \neq \emptyset$.

(iii) ([14, Theorem 1.3]) for any finite group G, a G-stable covering $f: Y \to X$ is finite if and only if f_s is an admissible covering.

§ 2.2. *p*-ranks of vertical fibers

In this subsection, we study the p-ranks of vertical fibers of stable coverings. The following theorem was proved by M. Raynaud (cf. [5, Théorème 1]).

Theorem 2.4. Let G be a p-group, $f: Y \to X$ a G-stable covering, and $x \in X$ a vertical point associated to f. Suppose that x is a smooth point of X_s . Then the p-rank of each connected component of the vertical fiber $f^{-1}(x)$ is equal to 0. In particular, the dual graph of each connected component of the vertical fiber $f^{-1}(x)$ is a tree.

Raynaud considered the vertical fibers associated to smooth vertical points. In the following, we consider a similar assertion for the vertical fibers associated to singular vertical points.

Let G be a finite p-group, $f: Y \to X$ a G-stable covering and x a vertical point associated to f. Suppose that x is a singular point of X_s . Then there are two irreducible components X_{v_1} and X_{v_2} (which may be equal) of X_s such that $x \in X_{v_1} \cap X_{v_2}$. Write Y' for the normalization of X in Y and $\psi: Y' \to X$ for the resulting normalization morphism. Let y' be a closed point of Y' such that $\psi(y') = x$. In order to compute the prank of each connected component of the vertical fibers associated to x, by applying the Zariski-Nagata purity and replacing $f: Y \to X$ by the quotient morphism $Y \to Y/I_{y'}$, we may assume that the inertia subgroup $I_{y'} \subseteq G$ of y' is equal to G. Let Y'_{v_1} (resp. Y'_{v_2}) be an irreducible component of Y'_s such that $\psi(Y'_{v_1}) = X_{v_1}$ and $y' \in Y'_{v_1}$ (resp. $\psi(Y'_{v_2}) = X_{v_2}$ and $y' \in Y'_{v_2}$). Write $I_{Y'_{v_1}} \subseteq I_{y'}$ (resp. $I_{Y'_{v_2}} \subseteq I_{y'}$) for the inertia subgroup of Y'_{v_1} (resp. Y'_{v_2}). Write V_x for the vertical fiber $f^{-1}(x)$. Note that since $I_{y'}$ is equal to G, V_x is connected.

The following theorem was proved by M. Saïdi (cf. [8, Theorem]).

Theorem 2.5. If $I_{y'}$ is isomorphic to a cyclic p-group $\mathbb{Z}/p^r\mathbb{Z}$, then we have $\sigma(V_x) \leq p^r - 1$.

We generalize Saïdi's result to the case where $I_{y'}$ is a finite abelian *p*-group as follows:

Theorem 2.6. (1) ([15, Lemma 2.1]) Write Γ_x for the dual graph of the vertical fiber V_x . If $I_{y'}$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$, we have the following results: (a) If $I_{Y'_{v_1}} = \mathbb{Z}/p\mathbb{Z}$ and $I_{Y'_{v_2}}$ is trivial, then $\sigma(V_x) = 0$. (b) If $I_{Y'_{v_1}} = I_{Y'_{v_2}} = \mathbb{Z}/p\mathbb{Z}$, then one of the following conditions are satisfied: (i) $\sigma(V_x) = 0$; (ii) $\sigma(V_x) = p - 1$ and $\operatorname{rank}(\operatorname{H}^1(\Gamma_x, \mathbb{Z})) = p - 1$; (iii) $\sigma(V_x) = p - 1$ and Γ_x is a tree.

(2) ([16, Theorem 1.4]) If $I_{y'}$ is a finite abelian p-group of order p^r , then there exists a bound of $\sigma(V_x)$ which only depends on p^r .

Remark. We can construct some examples for Theorem 2.6 (1-a) and (1-b-ii) (cf. [15, Section 4]).

§2.3. Ordinariness

In Subsection 2.2, we studied the *p*-ranks of vertical fibers of stable coverings. We also have some global results concerning the *p*-ranks of the special fibers of stable coverings. In order to study an étale covering of X_{η} with bad reduction, Raynaud (cf. [6, Proposition 3]) proved the following theorem: ON THE EXISTENCE, GEOMETRY AND p-RANKS OF VERTICAL FIBERS OF COVERINGS OF CURVES 7

Theorem 2.7. Let G be a finite group and $f : Y \to X$ a G-stable covering. Suppose that X is smooth over S and f_s is not generically étale. Then Y_s is not ordinary.

By applying Theorem 2.6 (1), we partially generalize Theorem 2.7 to the case where X is not necessarily smooth over S and G is solvable as follows:

Theorem 2.8. ([15, Theorem 3.4]) Let G be a finite solvable group and $f: Y \to X$ a G-stable covering. Suppose that the genus of the normalization of each irreducible component of X_s is > 1, and f_s is not generically étale. Then Y_s is not ordinary.

Acknowledgements

I would like to thank the referee for carefully reading the manuscript and for giving many comments which substantially helped improving the quality of the paper.

References

- Grothendieck, A. and Raynaud, M., Revêtements étales et groupe fondamental (SGA 1). Séminaire de géométrie algébrique du Bois Marie 196061. *Lecture Notes in Math.*, 224, Springer, Berlin. 1971.
- [2] Liu, Q., Stable reduction of finite covers of curves. Compos. Math. 142 (2006), 101-118.
- [3] Mochizuki, S., The geometry of the compactification of the Hurwitz scheme, *Publ. Res. Inst. Math. Sci.* **31** (1995), 355-441.
- [4] Pop, P. and Saïdi, M., On the specialization homomorphism of fundamental groups of curves in positive characteristic. Galois groups and fundamental groups, 107-118, Math. Sci. Res. Inst. Publ., 41, Cambridge Univ. Press, Cambridge, 2003.
- [5] Raynaud, M., p-groupes et réduction semi-stable des courbes. The Grothendieck Festschrift, Vol. III, 179-197, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.
- [6] Raynaud, M., Mauvaise réduction des courbes et p-rang. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 12, 1279-1282.
- [7] Raynaud, M., Sur le groupe fondamental d'une courbe complète en caractéristique p > 0. Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 335-351, Proc. Sympos. Pure Math., **70**, Amer. Math. Soc., Providence, RI, 2002.
- [8] Saïdi, M., p-rank and semi-stable reduction of curves. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 1, 63-68.
- [9] Tamagawa, A., Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups. J. Algebraic Geom. 13 (2004), 675-724.
- [10] Tamagawa, A., Resolution of nonsingularities of families of curves. Publ. Res. Inst. Math. Sci. 40 (2004), 1291-1336.
- [11] Vidal, I., Contributions à la cohomologie étale des schémas et des log-schémas, Thèse, U. Paris-Sud (2001).
- [12] Yang, Y., Degeneration of period matrices of stable curves, RIMS Preprint 1835.

- [13] Yang, Y., On the existence of vertical fibers of coverings of curves over a complete discrete valuation ring, RIMS Preprint 1843.
- [14] Yang, Y., Finite morphisms of stable curves, preprint.
- [15] Yang, Y., On the ordinariness of coverings of stable curves, RIMS Preprint 1845.
- [16] Yang, Y., On the boundedness and graph-theoreticity of p-ranks of coverings of curves, RIMS Preprint 1864.