
RIMS Kôkyûroku Bessatsu
Bx (201x), 000–000

The Anabelian Geometry of Curves over

Algebraically Closed Fields of Positive

Characteristic: A Survey

By

Yu Yang∗

Abstract

In the present paper, we overview some recent developments in the anabelian geometry

of curves over algebraically closed fields of characteristic p > 0.

§ 1. Introduction

Let k be a field, and let Z be a hyperbolic curve over k (See §2 for the definition

of hyperbolic curves). Roughly speaking, the ultimate goal of the anabelian geometry

of curves is the following question:

Question 1.1. Can we reconstruct the isomorphism class of Z group-theoretically

from various versions of its fundamental group?

The various formulations of Question 1.1 are called Grothendieck’s anabelian con-

jecture or the Grothendieck conjecture, for short.

When k is an arithmetic field (e.g. a number field, a finite field, a p-adic field),

the Grothendieck conjecture has been proven in many cases. Suppose that k is of

characteristic 0. For example, if k is a number field, then the Grothendieck conjecture

was proved by H. Nakamura in the case of genus 0 ([5], [6]), by A. Tamagawa in the

case of affine hyperbolic curves ([12]), and by S. Mochizuki in the case of projective

hyperbolic curves ([2]). Moreover, Mochizuki also obtained a very general version (i.e.,
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Hom-version) of the Grothendieck conjecture when k is a sub-p-adic field (i.e., a subfield

of a finitely generated extension of a p-adic number field) ([3]).

On the other hand, Tamagawa also considered the Grothendieck conjecture in pos-

itive characteristic and proved it for affine hyperbolic curves over finite fields ([12]).

Afterwards, Mochizuki generalized this result to the case of projective hyperbolic curves

([4]), and J. Stix generalized this result to the case where the base fields are finitely

generated over Fp ([10], [11]). Note that all the proofs of the Grothendieck conjecture

for curves over arithmetic fields require the use of the highly non-trivial outer

Galois representation induced by the fundamental exact sequence of étale (or tame)

fundamental groups.

Suppose that the base field is algebraically closed. In this situation, the Galois

group of the base field is trivial, and the étale (or tame) fundamental group coincides

with the geometric fundamental group, thus in a total absence of a Galois action of

the base field. In the case of algebraically closed fields of characteristic 0, by applying

GAGA, we have that the étale fundamental groups of curves depend only on the genera

and the cardinality of the sets of cusps. This means that the hyperbolic curves over

algebraically closed fields of characteristic 0 cannot be determined by their étale funda-

mental groups. Thus the anabelian geometry of curves does not exist in this situation.

On the other hand, some developments of M. Raynaud, F. Pop, M. Säıdi, and Tama-

gawa ([7], [8], [13], [15], [16]) from the 1990’s showed evidence for very strong anabelian

phenomena for curves over algebraically closed fields of characteristic p > 0. This

kind of anabelian phenomena go beyond Grothendieck’s original anabelian geometry,

and shows that the étale (or tame) fundamental group of a smooth pointed stable curve

over an algebraically closed field must encode “moduli” of the curve. This is the reason

that we do not have an explicit description of the étale (or tame) fundamental group of

any pointed stable curve in positive characteristic.

In the present paper, we give a survey of the currently known results on the

Grothendieck conjecture for curves over algebraically closed fields of characteristic p > 0.

§ 2. Basic definitions and notations

We fix some notations which will be used in the present paper. Let n and g be

non-negative integers such that 2g − 2 + n > 0. A pointed stable curve X• := (X,DX)

of type (g, n) over a scheme S consists of a flat, proper morphism π : X → S, together

with a set of n distinct sections DX := {si : S → X}ni=1 such that for each geometric

point s of S:

(i) The geometric fiber Xs is a reduced and connected curve of genus g with at

most ordinary double points (i.e., nodes).
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(ii) Xs is smooth at the points of si(s) (1 ≤ i ≤ n).

(iii) si(s) ̸= sj(s) for i ̸= j.

(iv) For every nonsingular rational component E of Xs, the sum of the number

of points of E where E meets another component of Xs and the number of

points in {si(s)}ni=1 included in E is at least 3.

Let X• be a pointed stable curve of type (g, n) over S. We shall call DX the set of

marked points of X• and X the underlying scheme of X•. We shall call that X• is

smooth if the morphism of schemes π : X → S is smooth. Let l be a field, l an algebraic

closure of l, and Z a smooth curve over l. We shall call Z hyperbolic if there exists a

smooth pointed stable curve Z
•
over l such that Z ×l l is l-isomorphic to Z

• \DZ .

Let k be an algebraically closed field, and

X• := (X,DX)

be a pointed stable curve of type (g, n) over k. Recall that a semi-graph G consists of

the following data:

(i) A set v(G) whose elements we refer to as vertices;

(ii) A set e(G) whose elements we refer to as edges; moreover, any element

e ∈ e(G) is a set of cardinality 2 satisfying the following property: for each

e ̸= e′ ∈ e(G), we have e ∩ e′ = ∅;

(iii) a set of maps {ζGe }e∈e(G) such that ζGe : e → v(G) ∪ {v(G)} is a map from

the set e to the set v(G) ∪ {v(G)}.

We can define a dual semi-graph ΓX• associated to X• as follows:

(i) v(ΓX•) := {vE}E∈Irr(X), where Irr(X) denotes the set of irreducible compo-

nents of X;

(ii) write Node(X) for the set of nodes of X; then we put e(ΓX•) := ecl(ΓX•)∪
eop(ΓX•), where ecl(ΓX•) := {es}s∈Node(X) and eop(ΓX•) := {em}m∈DX

;

(iii) for each es = {b1s, b2s} ∈ ecl(ΓX•), we define ζΓX•
es (b1s), ζΓX•

es (b2s) in order

that {ζΓX•
es (b1s), ζΓX•

es (b2s)} := {vE ∈ v(ΓX•) | s ∈ E};

(iv) for each em = {b1m, b2m} ∈ eop(ΓC ), we define ζΓX•
em (b1m) to be the unique

element vE in v(ΓX•) with m ∈ E, and we set ζΓX•
em (b2m) := v(ΓX•).

Let p be a prime number and Fp an algebraic closure of Fp. In the remainder of the

present paper, we suppose that Fp ⊆ k is an algebraically closed field of characteristic

p > 0. Let

Mg,n
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be the moduli stack of pointed stable curves of type (g, n) over Fp and Mg,n the open

substack of Mg,n parameterizing pointed smooth curves. Write

Mg,n

for the coarse moduli space of the moduli stack Mg,n. Moreover, write

Mlog

g,n

for the log stack obtained by equippingMg,n with the natural log structure associated to

the divisor with normal crossings Mg,n \Mg,n ⊂ Mg,n relative to Fp. Let s := Spec k,

and let slog → Mlog

g,n be a morphism from an fs log point slog (i.e., an fs log scheme

whose underlying scheme is s) whose underlying morphism s → Mg,n is determined by

X• → s. Thus, we obtain a stable log curve

X log := slog ×Mlog
g,n

Mlog

g,n+1

whose underlying scheme is X. By choosing suitable base points of X log and slog,

respectively, we obtain a natural surjection of log étale fundamental groups

π1(X
log) ↠ π1(s

log)

of X log and slog. Moreover, we denote by

ΠX• := ker(π1(X
log) ↠ π1(s

log))

the geometric log étale fundamental group ofX log, and we shall call ΠX• the admissible

fundamental group of X• which depends only on X•. For each open subgroup

H ⊆ ΠX• , there exists an associated covering

X•
H := (XH , DXH

) → X•

over k, called an admissible covering. If X• is smooth over k, then the admissible

fundamental group ΠX• is naturally (outer) isomorphic to the tame fundamental group

of X \DX , and, for each open subgroup H ⊆ ΠX• , the morphism

XH \DXH
→ X \DX

over k induced by the admissible covering X•
H → X• is a tame covering. Write

π : X̃•,adm → X•

for the universal admissible covering space of X• (which is not a scheme but a pro-

scheme) corresponding to the admissible fundamental group ΠX• . For each e ∈ eop(ΓX•)∪
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ecl(ΓX•) and for each v ∈ v(ΓX•), write ẽ and ṽ for any elements of the inverse images

π−1(e) and π−1(v), respectively. We denote by

Iẽ ⊆ ΠX•

and

Πṽ ⊆ ΠX•

the stabilizer of ẽ and ṽ, respectively. We shall call Iẽ an inertia subgroup of e. Note

that Iẽ ∼= Ẑ(1)(p′), where Ẑ(1)(p′) denotes the maximal prime-to-p quotient of Ẑ(1). On

the other hand, write Xv for the irreducible component of X corresponding to v and

nlv : X̃v → Xv for the normalization morphism of Xv. We write gv for the genus of X̃v,

and nv for the cardinality of nl−1
v ((Node(X) ∪ DX) ∩ Xv). Then we obtain a smooth

pointed stable curve

X•
v := (X̃v,nl

−1
v ((Node(X) ∪DX) ∩Xv))

of type (gv, nv) over k. We shall call X•
v a pointed irreducible component of X•.

By choosing a base point of X•
v , we obtain the admissible fundamental group

ΠX•
v

of X•
v ; moreover, we have a natural outer isomorphism of profinite groups

ΠX•
v

∼→ Πṽ.

For more details on the theory of admissible coverings and admissible fundamental

groups for pointed stable curves, see [1], [2].

§ 3. Group-theoretical reconstructions of various invariants

We maintain the notations introduced in Section 1. Before reconstructing the

isomorphism class of X• as scheme group-theoretically from ΠX• , we should reconstruct

the “topological structure” (e.g. the type (g, n)) of X• group-theoretically from ΠX• .

When the base field is “an arithmetic field” (e.g. a number field, a p-adic field, a finite

field, etc.), the topological structure of a pointed stable curve can be reconstructed

group-theoretically from its admissible fundamental group by applying the non-trivial

outer Galois action induced by the fundamental exact sequence of fundamental groups

(e.g. the theory of weight). When the base field is an algebraically closed field of

characteristic p > 0, the reconstruction of the topological structure of a pointed stable

curve group-theoretically from its admissible fundamental group is highly non-trivial.

In the case of smooth pointed stable curves, Tamagawa proved the following theo-

rem ([15, Theorem 0.1 and Theorem 5.2]).
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Theorem 3.1. Suppose that X• is smooth over k. Then there exists a group-

theoretic algorithm whose input datum is ΠX• , and whose output data are

• the type (g, n);

• the conjugacy class of Iẽ in ΠX• for each e ∈ eop(ΓX•) and each ẽ ∈ π−1(e).

Remark. Tamagawa also obtained an étale fundamental group version of The-

orem 3.1 ([13, Theorem 0.1, Theorem 2.5, and Theorem 2.7]). Note that, since the

tame fundamental group of a smooth pointed stable curve is a quotient of the étale

fundamental group of the smooth pointed stable curve, Theorem 3.1 is stronger than

the étale fundamental group version of Theorem3.1.

The author generalized Tamagawa’s result to the case of arbitrary pointed stable

curves as follows ([21, Theorem 0.5]).

Theorem 3.2. There exists a group-theoretic algorithm whose input datum is

ΠX• , and whose output data are

• the type (g, n) and the dual semi-graph ΓX• ;

• the conjugacy class of Iẽ in ΠX• for each e ∈ eop(ΓX•) ∪ ecl(ΓX•) and each ẽ ∈
π−1(e);

• the type (gv, nv) and the conjugacy class of Πṽ in ΠX• for each v ∈ v(ΓX•) and

each π−1(v).

Proof. The key tools of the proof of the theorem are the pointed stable curve

version of p-average theorem ([17, Theorem 3.10]) and the general theory of p-Galois

admissible coverings (i.e., Galois admissible covering whose Galois group is a p-group).

Remark. Theorem 3.2 can be regarded as a “mono-anabelian version of the com-

binatorial Grothendieck conjecture for semi-graphs of anabelioids of PSC-type”. More-

over, a “bi-anablian version” of Theorem 3.2 was proved in [19, Theorem 1.2].

§ 4. Various versions of the Grothendieck conjecture for curves over

algebraically closed fields of characteristic p > 0 and results

We maintain the notations introduced in previous sections. In this section, un-

der certain conditions, we reconstruct the scheme structures of pointed stable curves

(i.e., the isomorphism classes of pointed stable curves) group-theoretically from their

admissible fundamental groups.
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Let us introduce some notations. Let q ∈ Mg,n be an arbitrary point, k(q) the

residue field of q, kq an algebraic closure of k(q). Write X•
q := (Xq, DXq ) for the pointed

stable curve of type (g, n) over kq determined by the natural morphism Spec kq → Mg,n

and ΓX•
q
for the dual semi-graph of X•

q . Since the isomorphism class of the admissible

fundamental group of X•
q depends only on q, we write

Πadm
q

for the admissible fundamental group of X•
q .

First, we consider the case of smooth pointed stable curves. Let Sn be the nth

symmetric group. Note that there exists a natural action of Sn on Mg,n. We denote by

Mg,[n] := [Mg,n/Sn]

the quotient stack, and denote by

Mg,[n]

the coarse moduli space of Mg,[n]. Note that we have a morphism

[π] : Mg,n → Mg,[n]

induced by the quotient morphism Mg,n → Mg,[n]. For any closed points c1, c2 ∈
M cl

g,n, where (−)cl denotes the set of closed points of (−), we define an equivalence

relation as follows:

c1 ∼ c2 if there exists m ∈ Z such that [π](c2) = [π](c
(m)
1 ), where c

(m)
1 de-

notes the closed point corresponding to the mth Frobenius twist of the curve

corresponding to c1.

Moreover, let q1, q2 ∈ Mg,n be arbitrary two points. We denote by Vq1 and Vq2 for the

topological closure of {q1} and {q2} in Mg,n. Write

Vq1 ⊇ec Vq2

if, for each closed point c2 ∈ Vq2 , there exists a closed point c1 ∈ Vq1 such that c2 ∈
{c(m)

1 }m∈Z. Moreover, we write

Vq1 =ec Vq2

when Vq1 ⊇ec Vq2 and Vq1 ⊆ec Vq2 . We shall call that Vq1 essentially contains Vq2

if Vq1 ⊇ec Vq2 , and that Vq1 is essentially equal to Vq2 if Vq1 =ec Vq2 . One can

check that Vq1 =ec Vq2 if and only if X•
q1 and X•

q2 are isomorphic as schemes (see [20,

Proposition 7.2]).

The following conjecture was posted by Tamagawa ([14, Conjecture 1.33]):
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Conjecture 4.1. Let q1, q2 ∈ Mg,n be arbitrary two points.

(weak Isom-version) The set of continuous isomorphisms of profinite groups

Isompro-gps(Π
adm
q1 ,Πadm

q2 )

is non-empty if and only if Vq1 =ec Vq2 .

For Conjecture 4.1, Tamagawa proved the following theorem ([15, Theorem 0.2]):

Theorem 4.2. Let q1, q2 ∈ M0,n be arbitrary closed points. Then Conjecture

4.1 holds.

Recently, by following Tamagawa’s ideas, A. Sarashina proved the following result

([9, Theorem 1.2]):

Theorem 4.3. Let q1, q2 ∈ M1,1 be arbitrary closed points. Suppose that p ̸=
2. Then Conjecture 4.1 holds.

Remark. In fact, Sarashina only treated the case of étale fundamental groups.

By applying Theorem 3.1, we can prove that Sarashina’s result also holds for the case

of admissible (or tame) fundamental groups ([18, Theorem 6 (ii)]).

For the case of higher genus, we have the following finiteness theorem ([8, Théorème

2.1.2], [11, Theorem B], [16, Theorem 0.1]).

Theorem 4.4. Let q ∈ Mg,n be a closed point and Sq the set of closed points

Mg,n such that Πadm
q

∼= Πadm
q′ for each q′ ∈ Sq. Then we have

#Sq < ∞.

Remark. Theorem 4.4 means that over Fp, there are only finitely many isomor-

phism classes of smooth pointed stable curves have the same admissible (or tame)

fundamental group.

Remark. Theorem 4.4 was proved by Raynaud and Pop-Saidi under certain as-

sumptions on Jacobian, and by Tamagawa in the general case.

The author posed a generalized version of Conjecture 4.1 as follows ([20, Section

7.1]):

Conjecture 4.5. Let q1, q2 ∈ Mg,n be arbitrary two points.

(weak Hom-version) The set of open continuous homomorphisms of profinite groups

Hompro-gps(Π
adm
q1 ,Πadm

q2 )

is non-empty if and only if Vq1 ⊇ec Vq2 .



anabelian geometry of curves in positive characteristic 9

Remark. Note that, we have

Conjecture 4.5 ⇒ Conjecture 4.1.

For Conjecture 4.5, we have the following result ([20, Theorem 6.2 and Remark

6.2.1]):

Theorem 4.6. Let q1, q2 ∈ Mg,n be arbitrary two points, and assume that q1 is

a closed point (i.e., dim(Vq1) = 0). Suppose that (g, n) is equal to either (0, n) or

(1, 1). Moreover, suppose that p ̸= 2 when (g, n) = (1, 1). Then Conjecture 4.5 holds.

In particular, q2 is also a closed point, and Vq1 =ec Vq2 (i.e., q1 ∼ q2).

Proof. We can prove that the inertia subgroups of marked points of X•
q1 and X•

q2

can be reconstructed group-theoretically from open continuous surjective homomor-

phisms between Πadm
q1 and Πadm

q2 . By using this fact, we can prove Theorem 4.6 by

similar arguments to those in the proofs of Theorem 4.2 and Theorem 4.3.

Next, let us consider the case of pointed stable curves. We have the following

results, which generalizes Theorem 4.2, Theorem 4.3, and Theorem 4.4 to the case of

(possibly singular) pointed stable curves ([21, Corollary 0.6]):

Theorem 4.7. (i) Let q1, q2 ∈ Mg,n be arbitrary two points, and assume that q1

is a closed point. Suppose that X•
q1 is irreducible, that the genus of the normalization

of Xq1 is 0, and that Πadm
q1

∼= Πadm
q2 . Then q2 is also a closed point, and X•

q1
∼= X•

q2 as

schemes.

(ii) Let q ∈ Mg,n be a closed point and Sq the set of closed points q′ ∈ Mg,n such

that Πadm
q

∼= Πadm
q′ . Then

#Sq < ∞.

Proof. The theorem follows from Theorem 3.2, Theorem 4.2, Theorem 4.3, and

Theorem 4.4.

Remark. If the curves corresponding to q1 and q2 are not irreducible, then Weak

Isom-version Conjecture does not hold in general ([21, Corollary 0.6]).

At present, all the results recalled above (Theorem 4.2, Theorem 4.3, Theorem 4.4,

Theorem 4.6, and Theorem 4.7) were only proved in the case of curves over Fp. One

of the main goals of the anabelian geometry of curves in positive characteristic is to

extend the results to the case of curves over arbitrary algebraically closed fields of

characteristic p > 0.

Finally, we will pose a conjecture (Conjecture 4.10) which makes clear the relation-

ship between Conjecture 4.1 or Conjecture 4.5 for closed points of moduli spaces and
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Conjecture 4.1 or Conjecture 4.5 for arbitrary points of moduli spaces. Let q ∈ Mg,n

be an arbitrary point. The main difficulty of proving Conjecture 4.1 or Conjecture 4.5

for arbitrary points is that we do not know how to reconstruct the admissible fundamen-

tal groups of the closed points of Vq group-theoretically from Πadm
q . Once the admissible

fundamental groups of the closed points of Vq are reconstructed group-theoretically from

Πadm
q , then, by applying Conjecture 4.1 or Conjecture 4.5 for closed points, the set of

closed points of Vq would be reconstructed from Πadm
q . Thus, Conjecture 4.1 or Con-

jecture 4.5 for arbitrary points would follows from Conjecture 4.1 or Conjecture 4.5 for

closed points.

On the other hand, since Πadm
q is topologically finitely generated, the isomorphism

class of Πadm
q as profinite groups is determined by the set πadm

A (q), where πadm
A (−)

denotes the set of finite quotients of the fundamental group Πadm
(−) . Then we may consider

the following question:

Question 4.8. (i) For each closed point t of Vq, which collection of finite groups

contained in πadm
A (q) is equal to πadm

A (t)?

(ii) For each closed point t of Mg,n, if π
adm
A (t) ⊆ πadm

A (q), then is t a closed point

of Vq?

To approach Question 4.8, we introduce a kind of collection of finite groups con-

tained in πadm
A (q) called a pointed collection as follows:

Definition 4.9. Let G ∈ πadm
A (q) be an arbitrary finite group and UG ⊆ Mg,n

the subset such that, for each q′ ∈ UG, we have G ∈ πadm
A (q′). Note that UG is an open

subset of Mg,n ([20, Proposition 7.3]). We denote by qgen the generic point of Mg,n,

and let

C ⊆ πadm
A (qgen) =

∪
q∈Mcl

g,n

πadm
A (q)

be a collection of finite groups contained in πadm
A (qgen).

We shall call that C is a pointed collection if the following conditions are satisfied:

(i) (
∩

G∈C UG) ∩M cl
g,n ̸= ∅;

(ii) #((
∩

G∈C UG) ∩M cl
g,n) < ∞;

(iii) UG′ ∩ (
∩

G∈C UG) ∩M cl
g,n = ∅ for each G′ ∈ πadm

A (qgen) such that G′ ̸∈ C.

On the other hand, for each closed point t ∈ M cl
g,n, we may define a collection associated

to t as follows:

Ct := {G ∈ πadm
A (qgen) | t ∈ UG}.

Note that, if t ∈ V cl
q , then Ct ⊆ πadm

A (q). Moreover, we denote by

Cq := {C pointed collection | C ⊆ πadm
A (q)}
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the set of pointed collections contained in πadm
A (q).

We conjectured the set of closed points V cl
q can be reconstructed from πadm

A (q) as

follows ([20, Section 7.2]):

Conjecture 4.10.

(pointed collection conjecture) For each t ∈ M cl
g,n, the collection Ct associated to t is a

pointed collection. Moreover, the natural map θq : V cl
q /∼ → Cq that [t] 7→ Ct is a

bijection, where [t] denotes the image of t in V cl
q /∼.

Remark. Note that since πadm
A (q) =

∪
t∈V cl

q
πadm
A (t), we obtain that Conjecture

4.10 is equivalent to Conjecture 4.5.

For Conjecture 4.10, by applying Theorem 4.6, we have the following result ([20,

Theorem 7.6]):

Theorem 4.11. (i) Let q be an arbitrary point of M cl
0,n. Then, for each t ∈

M cl
0,n, the collection Ct is a pointed collection, and for each pointed collection C ∈ Cq,

there exists s ∈ M cl
0,n such that C = Cs. Moreover, the map θq is an injection.

(ii) Let q be an arbitrary point of M cl
0,n, and

Xq \DXq
∼= P1

k(q)
\ {1, 0,∞, a1, . . . , an−3}.

Suppose that ai, i ∈ {1, . . . , n− 4}, is an element of Fp. Then Conjecture 4.10 holds.

Remark. Suppose that g = 0. Theorem 4.11 (i) gave an answer of Question 4.8

(i), and Theorem 4.11 (ii) gave an answer of Question 4.8 (ii) in a special case. In

particular, Conjecture 4.10 holds when q is a closed point of M0,n.
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