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Abstract

We study the computational complexity of computing optimal solutions but not just
giving optimal costs for NP optimization problems where the costs of feasible solutions
are bounded above by a polynomial in,the length of their instances (we call such an NP
optimization problem an NP combinatomal optimization problem, or simply, an NPCOP).
It is of particular interest to find a computational structure (or equivalently, a complexity
class) which captures that complexity, if we consider the problems of computing optimal
$solutions\cdot for$ NPCOP’s as a class of functions giving those optimal solutions. In this paper,
we will observe that $PF_{\iota\iota}^{NP}$ , the class of functions computable in polynomial-time with one
free evaluation of unbounded parallel queries to NP oracle sets, captures that complexity.
We first show that for any NPCOP $\Pi$ , there exists a polynomial-time bounded randomized
algorithm which, given an instance of $\Pi$ , uses one free evaluation of parallel queries to an NP
oracle set and outputs some optimal solution of the instance with very high probability. We
then show that for several natural NPCOP’s, any function giving those optimal solutions is
at least as computationally hard as all functions in $P\Gamma_{\iota\iota}^{\tau^{NP}}$ . To show the hardness results, we
introduce a property of NPCOP’s, called linear paddability, and we show a general result
that if $\Pi$ is a linearly paddable NPCOP and its associated decision problem is NP-hard,
then all functions in $P\Gamma_{\iota\iota}^{NP}${ are computable in polynomial-time with one free evaluation of
an arbitrary function giving optimal solutions for instances of $\Pi$ . The hardness results are
applications of this general result. Among the NPCOP’s, we include MAXIMUM CLIQUE,
MINIMUM COLORING, LONGEST PATH, 0-1 TRAVELING SALESPERSON, and 0-1
INTEGER PROGRAMMING.

1 Introduction

Many papers have been devoted to the study of the complexity of NP optimization problems (NPOP
for short) from different points of view. One approach to NPOP’s has been to study the complexity
of their associated decision problems [5]. For example, instead of studying the complexity of finding a
maximum clique of a given graph, one may study the complexity of deciding whether, given a graph
$G$ and a positive integer $k,$ $G$ has a clique of size at least $k$ . Since NP-complete problems are widely
believed to be intractable and solving an NPOP is at least as computationally hard as its associated
decision problem, an NPOP appears to be hard to solve if its associated decision problem is proved
to be NP-complete.

Another approach to NPOP’s has been developed by Krentel [6]. In [6], he considered the com-
plexity of NPOP’s by investigating the computational complexity of computing optimal costs for
NPOP’s. He defined two classes of functions to capture that complexity. One is $PF^{NP}$ , the class
of functions computable in polynomial-time with polynomial number of queries to NP oracle sets.
The other is $PF^{NP[log1}$ , the class of functions computable in polynomial-time with logarithmic number
of queries to NP oracle sets. Krentel showed that computing optimal costs for several well-known
NPOP’s falls into $PF^{NP}$ and is as computationally hard as all functions in $PF^{NP}$ , while computing
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optimal costs for several other well-known NPOP’s falls into $PF^{NP[Iog\}}$ and is as computationally
hard as all functions in $P\Gamma^{NP[1\circ d}|[6]$ . Since $PF^{NP}=PP^{NPR\circ\epsilon I}$ implies $P=NP[6]$ , Krentel concluded
that not all NPOP’s appear to have the same computational complexity when considering the com-
putational complexity of computing the optimal cost for them. For example, computing the length of
shortest tours is strictly harder than computing the size of maximum cliques unless $P=NP$. Krentel’s
results make finer distinctions on the complexity of NPOP’s than previously known in the theory of
NP-completeness.

In this paper, we study the computational complexity of computing optimal solutions but not just
giving optimal costs for NP optimization problems where the costs of feasible solutions are bounded
above by a polynomial in the length of their instances (we call such an NP optimization problem an
NP combinatorial optimization problem, or simply, an NPCOP). It is of particular interest to find
a computational structure (or equivalently, a.complexity class) which captures that complexity, if we
consider the problems of computing optimal solutions for NPCOP’s as a class of functions giving
those optimal solutions. This question was posed by Gasarch and has been stated by Krentel as a
further step of his research on the computational complexity of optimization problems [6]. However,
to our knowledge, no progress along these lines has been known. We think that the difficulty in
investigating the computational complexity of computing optimal solutions for NPCOP’s is finding
a suitable approach. In order to investigate the complexity of computing the optimal cost for a
given NPOP $\Pi$ , the approach was to investigate the complexity of the function which computes
the optimal cost of $x$ for any given instance $x$ of $\Pi[6]$ . Nevertheless, since an arbitrary instance of
NPCOP’s may have two or more optimal solutions, we can not make the same approach when we
investigate the complexity of computing optimal solutions. As introduced in this paper, we overcome
this difficulty by considering the problem of computing optimal solutions for a given NPCOP $\Pi$ as
a class of functions giving an optimal solution for any given instance of $\Pi$ (we call such a function $an$

optimal-solution function of $\Pi$ ). When discussing the upper bound of the complexity of computing
optimal solutions for a given NPCOP $\Pi$ , we may only require an algorithm solving $\Pi$ to compute
some optimal-solution function of $\Pi$ . On the other hand, when discussing the lower bound of the
complexity of computing optimal solutions for an NPCOP $\Pi$ , we examine the relative complexity
between all optimal-solution functions of $\Pi$ and some complexity classes of functions. Our this
approach enables us to observe that $PFN^{P}$ the class of functions computable in polynomial-time
with one free evaluation of unbounded parallel queries to NP oracle sets, captures the computational
complexity of computing optimal solutions for NPCOP’s.

In Section 3, we decribe a polynomial-time bounded randomized algorithm for any NPCOP $\Pi$

which given an instance $x$ of $\Pi$ , uses one free evaluation of parallel queries to a set in NP and outputs
some optimal solution for $x$ with very high probability. This general result shows that computing
optimal solutions is as easy as evaluating parallel queries to NP sets, giving an upper bound of
computing optimal solutions for NPCOP’s.

In Section 4, we show that for several natural NPCOP’s $\Pi$ , any optimal-solution function of $\Pi$ is
at least as computationally hard as all functions in $PF_{\iota\iota}^{NP}$ . To show the hardness results, we introduce
a notion called linear paddability. Intuitively speaking, we say that an NPCOP $\Pi$ is linearly paddable
if we can efficiently pad any two instances of $\Pi$ into one instance of $\Pi$ whose length is linear in the
sum of the lengths of the original two instances, and we can efficiently compute optimal solutions for
the original two instances from any optimal solution for the padded instance. In addition, with each
NPCOP $\Pi$ , we associate a decision problem of deciding whether the optimal cost of $x$ is at least
(or at most if $\Pi$ is a minimization problem) $k$ for a given pair $\{x, k\}$ of an instance and an integer.
Then we show a general result that if $\Pi$ is a linearly paddable NPCOP and its associated decision
problem is NP-hard, then all functions in $PF_{\iota\iota}^{NP}$ are computable in polynomial-time with one free
evaluation of any optimal-solution function of $\Pi$ . This general result provides a uniform way to show
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the hardness of computing optimal solutions for NPCOP’s whose associated decision problems are
known to be’NP-hard. In fact, our hardness results are applications of this general result. Among the
natural NPCOP’s, we include MAXIMUM CLIQUE, MINIMUM COLORING, LONGEST PATH,
0-1 TRAVELING SALESPERSON, 0-1 INTEGER PROGRAMMING, and MAXIMUM TWO SAT-
ISFIABILITY.

2 Preliminaries

We assume that the reader is familiar with the basic concepts from the theories of optimization
problems and computational complexity. We use $\Sigma=\{0,1\}$ as our alphabet. By a language or
a set, we mean a subset of $\Sigma$ . We denote by $|x|$ the length of a string $x$ . The empty string is
denoted by $\lambda$ . For any finite set $A,$ $||A||$ denotes the number of elements of $A$ and $\chi_{A}$ denotes
the characteristic function of $A$ . Let $A^{\leq n}$ and $A=\mathfrak{n}$ denote the sets $\{x\in A : |x|\leq n\}$ and
$\{x\in A : |x|=n\}$ , respectively. For any sets $A$ and $B,$ $A\oplus B$ denotes the marked union of $A$ and
$B$ ; that is, $A\oplus B=\{Ox : x\in A\}\cup\{1y : y\in B\}$ . The symbol $\oplus is$ also used to denote the
exclusive-or operation of Boolean values. We write $N$ for the set of non-negative integers. Let bin $(n)$

be a standard binary representation of non-negative integer $n$ over $\Sigma$ , and write $\log(n)$ to mean the
base 2 logarithm of $n$ for $n>0$ . We assume a standard one-to-one pairing function from $\Sigma$ ‘ $x\Sigma$ “

to $\Sigma^{*}$ that is polynomial-time computable and polynomial-time invertible. For strings $x$ and $y$ , we
denote the output of the pairing function by $(x, y)$ ; this notation $is$ extended to denote any k-tuples
for $k>2$ in a usual manner.

An $op$timization problem $\Pi$ is a quintuple $(op,D, S, R,c)$ , where
(1) $op \in\{\max,\min\}$ is the underlying operation (i.e., maximization or minimization),
(2) $D$ is the set of instances,
(3) Sistheset of feasible solutions,
(4) $R\subseteq DxS$ is the instance-solution relation, and
(5) $c:DxSarrow N$ is the solution cost function (for simplicity, we consider only

the case that all costs are non-negative integers).
We call $\Pi$ a maximization problem if $op= \max$ and call it a minimization problem otherwise. To
each instance $x\in D$ , we associate a finite subset $S(x)=$ { $y\in S$ : $R(x,$ $y)$ holds true}, and call it
the solution space of $x$ . The optimd cost function c’ : $Darrow N$ of $\Pi$ is defined by

$c^{c}(x)=op\{c(x, y) : y\in S(x)\}$

and the set of optimal solutions for an instance $x\in D,$ $optso1_{\Pi}(x)$ , is defined by

$optso1_{\Pi}(x)=\{y\in S(x) : c(x,y)=c(x)\}$ .
The objective in solving a given optimization problemm $\Pi$ is to compute an optimal solution for any
instance of $\Pi$ . We particularly note that examining the complexity of computing optimal solutions
but not just giving optimal costs is the essence of this paper.

A combinatorial optimization problem is an optimization problem $\Pi=(op, D, S, R, c)$ for which
there exists a polynomial $p$ such that for all $x\in D$ and all $y\in S(x),$ $c(x,y)\leq p(|x|)$ . We call a
combinatorial optimization problem $\Pi=(op, D, S, R, c)$ an $NP$ combinatorial optimization problem
(NPCOP for short) if it satisfies the following additional conditions:

(1) $D,$ $S$ , and $R$ are polynomial-time decidable,
(2) $c$ is polynomial-time computable, and
(3) for some polynomial $p$, all $x\in D$ , and all $y\in S,$ $y\in S(x)$ implies $|y|\leq p(|x|)$ .

When $\Pi$ is a maximization (resp., minimization) problem, we $s$ee from these conditions that the
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[)$ro$blem of deciding whether, given an instance $x\in D$ and a natural number $k$ , the optimal cost $c^{l}(x)$

is at least (resp., at most) $k$ is decidable in NP. This is the reason why $\Pi$ is called an NP combinatorial
optimization problem. Throughout this paper, we will deal with only NP combinatorial optimization
problems.

When discussing the upper bound of the complexity of computing optimal solutions for a given
NPCOP $\Pi$ , we may only require an algorithm solving $\Pi$ to compute some optimal solution for any
given instance of $\Pi$ . In particular, when we consider a randomized algoritbm solving the NPCOP,
the algorithm may produce some different optimal solutions depending on random bits used; we will
never require the algorithm to compute a single optimal solution independent of random bits used.
Only a requirement to randomized algorithms is that for each instance, they must compute some
optimal solution with very high probability.

On the other hand, when discussing the lower bound of the complexity of computing optimal
solutions for a given NPCOP, we will examine the relative complexity between solving the NPCOP
and the other classes of problems, as in the theory of NP-completeness. Intuitively speaking, we want
to show that solving the NPCOP is at least as hard as a problem whose computational complexity
appears to be settled. As mentioned in the introduction, we regard the problem of solving an NPCOP
as a class of functions giving an optimal solution for any given instance of the NPCOP, and the
opponents compared with those functions are functions in the class $PF_{tt}^{NP}$ . Thus, with each NPCOP
$\Pi=(op, D, S, R,c)$ , we associate a class $OPTSOL_{II}$ of functions defined by

$OPTSOL\Pi=\{\dot{F} ; Darrow S : (\forall x\in D)[F(x)\in optso1_{\Pi}(x)]\}$ .

Then, the reducibility notion below will capture the above purpose.

Definition 2.1 Let $F$ and $H$ be two classes of functions, and let $H$ be a function. Then,
$H$ is uniformly polynomial-time l-Tunng reducible to $F$ , in symbols $H\leq_{1-T}^{u\dot{m}form-PF}F$ , if there exist
polynomial-time computable functions $f$ and $g$ such that for every function $F\in F$ and every $x\in\Sigma$“,
$H(x)=g(x, F(f(x)))$ . We call the pair $(f,g)$ a $\leq_{1-T}^{u\mathfrak{n}ifonn-PF}$ -reduction of $H$ to $F$ (note that the
reduction { $f,g\rangle$ of $H$ to $F$ must be the same for all functions chosen from F). $F$ is $\leq_{1-T}^{unifo--PF_{- hard}}$

for $H$ if every function in $H$ is $\leq_{1-T}^{u\mathfrak{n}iform-PF}$ -reducible to F.

If we can show that some $OPTSOL_{\Pi}$ is $\leq_{1-T}^{u\dot{m}form-PF}$ -hard for PF$l\ell NP$ then we see that computing
optimal solutions for the NPCOP $\Pi$ is at least as computationally hard as computing the hardest
functions in $PF_{tt}^{NP}$ .

We finally mention some complexity classes that we deal with in the present paper. Throughout
this paper, we mean by an NTM a nondeterministic Turing machine. Let NP be the class of sets
accepted by polynomial-time bounded NTM’s. A language $A$ is NP-hard if for any language $B$ in NP,
there exists a polynomial-time computable function $f$ such that for every $x\in\Sigma$“, $x\in A$ if and only if
$f(x)\in B$ . $PF_{tt}^{NP}$ is the class of all functions $F$ for which there exist a set $A$ in NP and two polynomial-
time computable functions $g,$ $e$ such that for all strings $x,$ $F(x)=e(x,\chi_{A}(y_{1}),$ $\cdots$ , $\chi_{A}(y_{m}))$ , where
$g(x)=(y_{1}, \cdots , y_{m})$ . More intuitively, a function $F$ is in $PF_{tt}^{NP}$ if there exist a polynomial-time bounded
deterministic oracle transducer (DOTM for short) $N$ and a set $A\in NP$ such that $N^{4}$ computes $F$ and
$N^{A}$ on all inputs prepares all query strings before asking them to the oracle set $A$ . In Section 3, we
will use this intuitive definition of $PF_{tt}^{NP}$ , to describe an algorithm computing a function in $PF_{tt}^{NP}$ .

3 An upper bound of computing optimal solutions

In this section, we first show an upper bound on the complexity of computing optimal solutions.
Intuitively speaking, we describe a polynomial-time bounded randomized algorithm for any NPCOP
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$\Pi$ which, given an instance $x$ of $\Pi$ , uses one free evaluation of parallel queries to a set in NP and
outputs some optimal solution for $x$ with very high probability. Thus, computing optimal solutions
is as easy as evaluating parallel queries to NP sets. To show this, we use a technique developed by
Valiant and Vazirani [8]. They developed a randomization technique, with using a small amount of
random bits, by which we can reduce any given finite subset of $\{0,1\}$ “ (for $n\geq 1$ ) to a set of exactly
one element with high $pro$bability.

For any strings $x$ and $y$ in $\{0,1\}^{n}$ , let $x\cdot y$ denotes $(x_{1}\wedge y_{1})\oplus\cdots\oplus(x_{n}\wedge y_{n})$ , where $x$ ; (resp., $y_{i}$ )
denotes the i-th bit of $x(resp., y)\grave{a}nd\oplus denotes$ the exclusive-or. Let $X$ be a finite set of strings and
$Q$ be a predicate over strings. We denote by $Prob\{w_{1}, \cdots , w_{k}\in X : Q(w_{1}, \cdots , w_{k})\}$ the probability
that $Q(w_{1}, \cdots , w_{k})$ holds for strings $\iota v_{1},$ $\cdots,$ $w_{k}$ chosen randomly from $X$ under uniform distribution.
Then, Valiant and Vazirani showed the following result:

Theorem 3.1 [8] Let $n$ be a positive integer. Then, for any subset $S$ of $\{0,1\}^{n}$ ,
$Prob\{w_{1},$ $\cdots,$

$w_{n}\in\{0,1\}^{\mathfrak{n}}$ :
$(\exists j,0\leq j\leq n)[||\{y\in S : (\forall i, 1\leq i\leq j)[y\cdot w;=0]\}||=1]\}$ $\geq\frac{1}{4}$

Theorem 3.2 Let $\Pi=(op, D, S,R, c)$ be an NPCOP and let $e$ be any polynomial. Then, there
exist a function $G\in PF_{tt}^{NP}$ and a polynomial $r$ such that for all $x\in D$ with $|x|=n$ ,

$Prob\{w\in\{0,1\}^{r(n)} : G(x, w)\in optso1_{\ddagger I}(x)\}\geq 1-2^{-e\langle n)}$ .
Proof We consider only the case that $\Pi$ is a maximization problem. The other case is quite

similar. For simplicity, we assume that there exists a polynomial $q$ such that for all $x\in D$ and all
$y\in S,$ $y\in S(x)$ implies $|y|=q(|x|)$ . We lose no generality under this assumption. Let $p$ be a
polynomial such that for all $x\in D$ and all $y\in S(x),$ $c(x, y)\leq p(|x|)$ . Then we first define two sets $A$

and $B$ as follows:
$A=$ { $(x,$ $i)$ : $i\geq 0,$ $x$ has a solution with cost $i$ }
$B=\{(x,i,j)$ : $x\in D,$ $0\leq i\leq p(|x|),$ $1\leq j\leq q(|x|)$ , and

there exists a $y\in S(x)$ with cost $i$ such that the j-th symbol of $y$ is 1}
$\cup\{(x,$ $i,j,w_{1},$ $\cdots$ , $w_{k}\rangle$ : $x\in D,$ $0\leq i\leq p(|x|),$ $1\leq j\leq q(|x|),$ $1\leq k\leq q(|x|)$ ,

$w_{1},$ $\cdots,$
$w_{k}\in\{0,1\}^{q(|x|)}$ , and there exists a $y\in S(x)$ with cost $i$ such

that the j-th symbol of $y$ is 1 and $y\cdot w_{1}=\cdots=y\cdot w_{k}=0$ }.
Obviously, $A$ and $B$ are in NP. Thus, we have $A\oplus B\in NP$. We also define the polynomial $r$ by

$r(n)=3\cdot e(n)\cdot q(n)^{2}$ .
Below, we define a deterministic oracle transducer $N$ which uses $A\oplus B$ as an oracle set. Given an

instance $x\in D$ with $|x|=n$ and a string $w\in\{0,1\}^{r(\mathfrak{n})},$ $N$ operates as follows:

Step 1. $N$ computes the optimal cost $c(x)$ . This is done by asking the queries $(x, 0),$ $(x, 1),$ $\cdots$ ,
$(x,p(n)\rangle$ to the oracle set $A$ and computing the largest integer $k(=c(x))$ such that $(x, k)$ is in
$A$ .

Step 2. Let $w_{1},$ $w_{2},$ $\cdots,$ $w_{3e\{\mathfrak{n})}$ be the strings in $\{0,1\}^{q(n)^{2}}$ such that $\iota o_{1}w_{2}\cdots w_{3\epsilon(n)}=w$ , and for
every $l,$ $1\leq l\leq 3e(n)$ , let $w_{l.1},$ $\cdots,$ $w_{l.q(n)}$ be the strings in $\{0,1\}^{q(\mathfrak{n})}$ such that $w_{l.1}\cdots w_{l,q\langle n)}=w_{l}$ .
Then, by asking queries to the oracle set $B,$ $N$ computes strings $s_{i.l.m}$ as follows: for all $i,$ $l,$ $m$

such that $0\leq i\leq p(n),$ $1\leq l\leq 3e(n)$ , and $0\leq m\leq q(n)$ ,
(a) $s_{i.l,0}=\chi_{B}(\{x, i, 1))\chi_{B}((x, i,2))\cdots\chi_{B}(\{x,i,q(n)\rangle)$ and
(b) $s_{i,l,m}=\chi_{B}((x,i, 1, w_{l.1}, \cdots , w_{l.m}))\cdots\chi_{B}((x, i, q(n), w_{l,1}, \cdots , w_{l,m}))$ for $1\leq m\leq q(n)$ .

Step 3. Let $k=c^{c}(x)$ . If $s_{k,l,m}\in S(x)$ for some $l$ and $m$ , then $N$ outputs the string $s_{k.l.m}$ ; otherwise,
$N$ outputs nothing (in this case, the function computed here is supposed to be Jndefined’ on
$x$ and $w$ ).
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Let $G$ denote the function computed by $N^{A\oplus B}$ . We can easily see that $N$ is polynomial-time
bounded and each query string is prepared independently of the other query strings; hence, the query
strings made by $N$ on input $(x,w)$ can be realized as parallel queries to the oracle set $A\oplus B$ . Thus,
$G$ is in $PF_{t}^{N_{t}P}$ . To show that $G$ satisfies the theorem, we first show the following claim:

Claim Suppose that for some $l$ and $m,$ $||\{y\in optsol_{n}(x) : y\cdot w_{l.1}=y\cdot\iota 0_{l,2}=\cdots=w_{l.m}=0\}||=1$ .
Then $s_{k.l,m}$ is an optimal solution of $x$ , where $k=c^{*}(x)$ .

Proof of Claim. Let $y$ be the unique optimal solution of $x$ in the set { $y\in optso1_{\Pi}(x)$ :
$y\cdot w_{l,1}=\cdots=y\cdot w_{l,m}=0\}$ . Then we see, from the definition of $B$ , that for all $1\leq j\leq q(|x|)$ ,
$\chi_{B}((x, k,j,w_{l,1}, \cdots , w_{l,m}))=1$ iff the j-th bit of $y$ is 1. Thus, we have $s_{k.l,m}=y$ . I

From this claim and Theorem 3.1, we have that for all $x\in D$ with $|x|=n$ ,
$Prob\{w\in\{0,1\}^{r(n)} : G(x,w)\in optso1_{\Pi}(x)\}$

$=Prob\{w\in\{0,1\}^{r(n)} : (\exists l,m, 1\leq l\leq 3e(n),0\leq m\leq q(n))[s_{c(x),l,m}\in optso1_{\Pi}(x)]\}$

$\geq Prob\{w\in\{0,1\}^{r(n)}$ : $(\exists l, m, 1\leq l\leq 3e(n),0\leq m\leq q(n))$

$[||\{y\in optso1_{\Pi}(x) : y\cdot w_{l,1}=\cdots=y\cdot w_{l.m}=0\}||=1]\}$

$\geq 1-\Pi_{l=1}^{3\epsilon\langle \mathfrak{n})}Prob\{w_{l,1},$
$\cdots,$

$w_{l,q(n)}\in\{0,1\}^{\eta(\mathfrak{n})}$ : $(\forall m,0\leq m\leq q(n))$

$[||\{y\in optso1_{\Pi}(x) : y\cdot w_{l,1}=\cdots y\cdot w_{l,m}=0\}||\neq 1]\}$

$\geq 1-(\frac{3}{4})^{3\epsilon(n)}=1-(\frac{27}{64})^{e(n)}\geq 1-2^{-\epsilon(n)}$.
Thus, we have this theorem. I

4 Hardness of computing optimal solutions

In this section, we first give a sufficient condition for showing that for a given NPCOP $\Pi,$ OPTSOLn
$is\leq_{1-T}^{u\dot{m}form-PF}$-hard for $PF_{\iota\iota}^{NP}$ . We use the following notions in the general result.

Definition 4.1 Let $\Pi=(op, D, S, R,c)$ be an optimization problem. Then, we define the decision
problem $L_{\Pi}$ associated with $\Pi$ as follows:

$L_{\Pi}=$ {{ $x,$ $k\rangle$ : $x\in D,$ $k$ is a non-negative integer, and $c^{*}(x)\theta k$ },

svhere $\theta$ is $\leq$ (less than or equal to) if $op= \min$ , and $\theta$ is $\geq$ ($greater$ than or equal to) otherwise. $\Pi$ is
said to be linearly paddable if there exist two polynomial-time computable functions $f_{1}$ : $DxDarrow D$

and $f_{2}$ : $D\cross D\cross Sarrow S\cross S$ such that
(a) for all $x_{1},$ $x_{2}\in D,$ $|f_{1}(x_{1},x_{2})|=O(|x_{1}|+|x_{2}|)$ , and
(b) for all $x_{1},$ $x_{2},$ $x\in D$ , and all $H\in OPTSOLn$ , if $x=f_{1}(x_{1}, x_{2})$ and $f_{2}(x_{1}, x_{2}, H(x))$

$=(y_{1}, y_{2})$ , then $y_{1}\in optso1_{\Pi}(x_{1})$ and $y_{2}\in optso1_{\Pi}(x_{2})$ .
Intuitively speaking, we say that $\Pi$ is linearly paddable if we can efficiently pad any two instances,

into one instance (by using the function $f_{1}$ ), and we can efficiently compute optimal solutions of the
original two instances from any optimal solution of the padded instance (by using the function $f_{2}$ ).
The condition (a) above guarantees that after we pad two instances into a single instance, the length
of the padded instance is linear in the sum of the lengths of the original instances.

Theorem 4.1 Let $\Pi=(op, D, S, R, c)$ be a linearly paddable NPCOP whose associated decision
problem $L_{\Pi}$ is NP-hard. Then, $OPTSOL_{fI}$ is $\leq_{l-T}^{uniform-PF}$-hard for $PF_{tt}^{NP}$ .

$\backslash t^{t}e$ next show that several well-known NPCOP’s are linearly paddable. For the graph-theoretic
problems below, we suppose that each graph is encoded by its adjacency matrix, an $n$ by $n(0,1)-$
matrix whose $(i, j)$-componenl is 1 if and only $if$ the i-th vertex $is$ connected to the j-th vertex in
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the graph, wliere $n$ is the number of vertices in the graph and all vertices are assumed to be indexed
by 1 through $n$ .

Theorem 4.2 The following NPCOP’s are linearly paddable:. MAXIMUM TWO SATISFIABILITY ( $MAX2SAT$ for short):
Instance: A CNF Boolean formula $\phi$ such that each clause of $\phi$ contains at most

two literals.
Output: A truth assignment to the variables under which the maximum number of

clauses become true.. MAXIMUM CLIQUE (MAXCLIQUE for short):
Instance: An undirected graph $G$ .
Output: Amaximum clique of G.. MINIMUM COLORING (MINCOLOR for short):
Instance: An undirected graph $G=(V, E)$ .
Output: A partition { $U_{1},$ $U_{2},$

$\cdots,$
$U_{k}$ ) of $V$ such that $k$ is the chromatic number of

$G$ and no two vertices $u,$ $v$ of $G$ belong to the same $U_{j}$ whenever $\{u,v\}\in E$ .
(Below, we simply call such a partition of $V$ a k-colot$ing$ of $G.$ ). LONGEST PATH (LONGPATH for short):

Instance: An undirected graph $G$ .
Output: Alongest simple path in G.

0-1 INTEGER PROGRAMMING (OIIP for short):
Instance: A 3-tuple { $A,$ $B,$ $C$) of a $(0,1)$ -matrix and two $(0,1)$-vectors.
Output: A $(0,1)$-vector $X$ maximizing $C^{T}X$ subject to $AX\leq B$ .

0-1 TRAVELING SALESPERSON (OITSP for short):
Instance: An undirected complete graph $G$ with weights $0$ or 1 on the edges.
Output: A shortest traveling salesperson tour in $G$ .

Proof. (OITSP) Let $G_{1}=(V_{1}, E_{1})$ and $G_{2}=(V_{2}, E_{2})$ be two complete graphs with weights $0$

or 1 on their edges. We first construct a copy $G_{c1}$ of $G_{1}$ and a copy $G_{c2}$ of $G_{2}$ . That is, there exists
a one-to-one correspondence between vertices of $G_{1}$ (resp., $G_{2}$ ) and $ve$rtices of $G_{c1}$ (resp., $G_{c2}$ ), and
for any two vertices $u$ and $v$ in $G_{1}$ (resp., $G_{2}$ ), the weight on the edge $\{u,v\}$ in $G_{1}$ (resp., $G_{2}$ ) is the
same as the weight on the edge $\{u., v.\}$ in $G_{c1}$ (resp., $G_{c2}$ ) if $u_{c}$ and $v_{c}$ are the vertices in $G_{c1}$ (resp.,
$G_{c2})$ corresponding to $u$ and $v$ , respectively. Without loss of generality, we assume that $V_{1},$ $V_{2},\backslash V_{c1}$ ,
and $V_{c2}$ are pairwise disjoint. Fix two vertices $v_{0}^{(c1)}\in V_{c1}$ and $v_{0}^{(c2)}\in V_{c2}$ . We now introduce six new
vertices $s^{(1)},$ $t_{1}^{(1)},$ $t_{2}^{(1)},$ $s^{(2)},$ $t_{1}^{(2)},$ $t_{2}^{(2)}$ , and define $f_{1}(G_{1}, G_{2})$ to be the graph $G=(V, E)$ such that

(1) $V=V_{1}\cup V_{2}\cup V_{1}\cup V_{c2}\cup\{s^{(1)},t_{1}^{(1)},t_{2}^{\{1)}, s^{(2)}, t_{1}^{(2)},t_{2}^{(2)}\}$ ,
(2) $E=$ { $\{u,v\}$ : $u$ and $v$ are two distinct vertices in $V$ }, and
(3) olny the following edges are of weight $0$ in $G:\{s^{(1)},v_{0}^{(c1)}\},$ $\{t_{1}^{(1)}, t_{2}^{(1)}\},$ $\{s^{(2)},v_{0}^{(c2)}\}$ ,

$\{t_{1}^{(2)},t_{2}^{(2)}\}$ , all the edges of weight $0$ in $G_{1},$ $G_{2},$ $G_{c1}$ , or $G_{c2}$ , all edges $\{u, t_{1}^{(1\}}\}$ such
that $u\in V_{c1}$ and the weight on $\{v_{0}^{(c1)},u\}$ is $0$ , and all edges $\{u,t_{1}^{(2)}\}$ such that $u\in V_{c2}$

and the weight on $\{v_{0}^{(c2)},u\}$ is $0$ .
Then, $f_{1}$ satisfies the condition (a) in the definition of linear paddability. Intuitively speaking, $G$

contains four subgraphs $G_{1},$ $G_{2},$ $G_{c1}$ , and $G_{c2}$ , and each of $G_{1},$ $G_{2},$ $G_{c1}$ , and $G_{c2}$ will play a special
role: $G_{c1}$ (resp., $G_{c2}$ ) will be used to find a shortest traveling salesperson tour of cost $0$ in $G_{1}$ (resp.,
$G_{2})$ , if $G_{1}$ (resp., $G_{2}$ ) contains such a traveling salesperson tour; on the other hand, $G_{1}$ (resp., $G_{2}$ )
will be used to find a shortest traveling salesperson tour in $G_{1}$ (resp., $G_{2}$ ) when the cost of shortest
traveling salesperson tours in $G_{1}$ (resp., $G_{2}$ ) is greater than $0$ . These will become clear in the following.

7
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Let $\Pi$ be an arbitrary function in OPTSO $I_{\lrcorner 0\iota\uparrow SP}$ . $Tl$) $at$ is, $H(G)$ is a shortest traveling salesperson
tour in $G$ . Below, we sbow that we can compute a shortest traveling salesperson tour in $G_{1}$ from $G_{1}$ ,
$G_{2}$ , and $H(G)$ in time polynomial in $|G_{1}|+|G_{2}|+|H(G)|$ . We first need to show two claims. For
convenience, we define the cost of a path or a cycle $P$ to be tbe sum of weights on the edges in $P$ ,
and denote it by $c(P)$ .

Claim 1 The cost of shortest traveling salesperson tours in $G_{c1}$ is $0$ if and only if $H(G)$ contains a
path of cost $0$ which starts at $s^{(1)}$ , passes througb exactly all vertices of $G_{c1}$ and $t_{1}^{(1)}$ , and terminates
at $t_{2}^{(1)}$ .

Proof of Claim 1 $(\Leftarrow)$ Suppose $H(G)$ contains a path $P$ of cost $0$ which starts at $s^{(1)}$ , passes
through exactly all vertices of $G_{c1}$ and $t_{1}^{(1)}$ , and terminates at $t_{2}^{\{1)}$ . We first note that all edges in $P$

have weight $0$ . Let $P’$ be the path of cost $0$ pbtained by removing the start vertex $s^{(1)}$ and the end
vertex $t_{2}^{(1)}$ from $P$. Since $\{s^{(1)}, v_{0}^{(c1)}\}$ (resp., $\{t_{1}^{(1)},$ $t_{2}^{(1)}\}$ ) is the unique edge of weight $0$ adjacent to
$s^{(1)}$ (resp., $t_{2}^{(1)}$ ) in $G$ , the start vertex and the end vertex of $P’$ must be $v_{0}^{(c1)}$ and $tf^{1)}$ respectively.
Let $u$ be the neighbor of $t_{1}^{(1)}$ in $P’$ . Then, the weight on $\{u,v_{0}^{(c1)}\}$ is $0$ in $G_{c1}$ , because the weight on
$\{u,v_{0}^{\langle c1)}\}$ is the same as the weight on $\{u, t_{1}^{(1)}\}$ which is $0$ by our construction of $G$ . Thus, if we remove

$t_{1}^{(1)}$ from $P’$ and add the edge $\{u, v_{0}^{(c1)}\}$ to $P’$ , then we obtain a traveling salesperson tour of cost $0$

in $G_{c1}$ . Furthermore, note that this traveling salesperson tour can be obtained in time polynomial in
$|G_{1}|+|G_{2}|+|H(G)|$ .

$(\Rightarrow)$ Assume, on the contrary, that the cost $of$ shortest traveling salesperson tours in $G_{c1}$ is $0$ but
$H(G)$ does not contain any path of cost $0$ which starts at $s^{(1)}$ , passes through exactly all vertices $of$

$G_{c1}$ and $t_{1}^{(1)}$ , and terminates at $t_{2}^{(1)}$ . Then, for some $l\geq 2,$ $H(G)$ must be of the form: $T_{1},$ $e_{1},$ $P_{1},$ $e_{2}$ ,
$T_{2},$ $e_{3},$ $\cdots,$

$P_{l},$ $e_{2\mathfrak{l}}$ , where each $T_{j}$ is a path of $H(G)$ not including any vertex of $V_{c1}\cup\{s^{(1)}, t_{1}^{(1)},t_{2}^{(1)}\}$ ,
each $P_{j}$ is a path of $H(G)$ including only vertices of $V_{c1}\cup\{s^{\{1)}, t_{1}^{(1)}, t_{2}^{(1)}\}$ , each $e_{2j-1}$ is the edge in
$H(G)$ connecting $T_{j}$ and $P_{j}$ , and each $e_{2j}$ is the edge in $H(G)$ connecting $P_{j}$ and $T_{j+1}$ (let $T_{l+1}=T_{1}$ ).
Since the cost of shortest traveling salesperson tours in $G_{c1}$ is $0$ , there exists a traveling salesperson
tour $T_{G_{c1}}$ of cost $0$ in $G_{c1}$ . Let $u$ be one of the two neighbors of $v_{0}^{(c1)}$ in $T_{G_{\epsilon 1}}$ . We construct a
path $T_{p}$ from $T_{G_{c1}}$ by deleting $\{v_{0}^{(c1)}, u\}$ from $T_{G_{\epsilon}}$ , and adding three edges $\{s^{(1)}, v_{0}^{(c1)}\},$ $\{u, t_{1}^{(1)}\}$ , and
$\{t_{1}^{(1)},t_{2}^{(1)}\}$ to $T_{G_{\epsilon 1}}$ . Then, it is easy to see that the cost of $T_{p}$ is $0$ and $T_{p}$ passes through exactly all
vertices in $V_{c1}\cup\{s^{(1)},t_{1}^{(1)}, t_{2}^{(1)}\}$ . From $H(G)$ , we now construct another traveling salesperson tour
$T_{G}$ in $G$ by first removing $e_{j}’ s$ from $H(G)$ , secondly using $T_{p}$ to replace $P_{j}’ s$ , and finally using 1+1
edges (of weight $\leq 1$ ) to connect $T_{j}’ s$ and $T_{p}$ so that they become a cycle. Then, we have that
$c(T_{G})\leq\Sigma_{j=1}^{l}c(T_{j})+(l+1)+c(T_{p})=\Sigma_{j=1}^{l}c(T_{j})+(l+1)$ . On the other hand, since the weight
on each of $e_{1},$ $\cdots,$ $e_{2l}$ must be 1, we have that $c(H(G))=\Sigma_{j=1}^{l}c(T_{j})+2l+\Sigma_{j=1}^{l}c(P_{j})$ . Thus,
$c(H(G))-c(T_{G})\geq l-1\geq 1$ . However, this contradicts the fact that $H(G)$ is a shortest traveling
salesperson tour in G. (End of Claim 1)

Claim 2 If the cost of shortest traveling salesperson tours in $G_{1}$ is greater than $0$ , then we can
compute a shortest traveling salesperson tour in $G_{1}$ from $G_{1},$ $G_{2}$ , and $H(G)$ in time polynomial in
$|G_{1}|+|G_{2}|+|H(G)|$ .

Proof of Claim 2 Obviously, for some $l\geq 1,$ $H(G)$ must be of the form: $T_{1},$ $e_{1},$ $P_{1},$ $e_{2},$ $T_{2},$ $e_{3}$ ,..., $P_{l},$ $e_{2l}$ , where each $T_{j}$ is a path of $H(G)$ not including any vertex of $G_{1}$ , each $P_{j}$ is a path of $H(G)$

including only vertices of $G_{1}$ , each $e_{2j-1}$ is the edge in $H(G)co$nnecting $T_{j}$ and $P_{j}$ , and each $e_{2j}$ is the
edge in $H(G)$ connecting $P_{j}$ and $T_{j+1}$ (let $T_{l+1}=T_{1}$ ). We now construct a traveling salesperson tour
$T_{G_{1}}$ in $G_{1}$ by picking $P_{j}’ s$ out of $H(G)$ and using $l$ edges (of weight $\leq 1$ ) to connect these $P_{j}’ s$ so that
they consist of a cycle. Note that $T_{G_{1}}$ can be obtained in time polynomial in $|G_{1}|+|G_{2}|+|H(G)|$ .
Below, we show that $T_{G_{1}}$ is a shortest traveling salesperson tour in $G_{1}$ .

8
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Assume, on the contrary, that $T_{G_{1}}$ is not a shortest traveling salesperson tour in $G_{1}$ . Then, there
must exist a traveling salesperson tour $T_{G_{1}}$ in $G_{1}$ shorter than $T_{G_{1}}$ . Since the cost of shortest traveling
salesperson tours in $G_{1}$ is greater than $0$ , there exists an edge $e$ of weight 1 in $T_{G_{1}}’$ . Let $T_{G_{1}}^{u}$ be the
path obtained by removing the edge $e$ from $T_{G_{1}}’$ . We now construct a traveling salesperson tour $T_{G}$

from $H(G)$ by first removing $e_{j}’ s$ from $H(G)$ , secondly using $T_{G_{1}}^{u}$ to replace $P_{j}’ s$ , and finally using
$l+1$ edges (of weight $\leq 1$ ) to connect $T_{j}’ s$ and $T_{G_{1}}’’$ so that they become a cycle. Then, we have
that $c(T_{G})\leq\Sigma_{j=1}^{l}c(T_{j})+(l+1)+c(T_{G_{1}}^{u})=\Sigma_{j=1}^{l}c(T_{j})+l+c(T_{G_{t}}’)<\Sigma_{j=1}^{l}c(T_{j})+l+c(T_{G_{1}})\leq$

$\sum_{j=1}^{l}c(T_{j})+l+(\sum_{j=1}^{l}c(P_{j})+l)=\sum_{j=1}^{l}c(T_{j})+\Sigma_{j=1}^{l}c(P_{j})+2l$ . On the other hand, since the weight
on each of $e_{1},$ $\cdots,$ $e_{2l}$ must be 1, we have that $c(H(G))= \sum_{j=1}^{l}c(T_{j})+2l+\sum_{j=1}^{l}c(P_{j})$ . Thus,
$c(H(G))-c(T_{G})>0$ . However, this contradicts the fact that $H(G)$ is a shortest traveling salesperson
tour in G. (End of Claim
2)

We now use Claim 1 and Claim 2 to compute in polynomial-time a shortest traveling salesperson
tour in $G_{1}$ from $G_{1},$ $G_{2}$ , and $H(G)$ as follows: $ifH(G)$ contains a path of cost $0$ which starts at $s^{(1)}$ ,
passes through exactly all vertices of $G_{c1}$ and $t_{1}^{(1)}$ , and terminates at $t_{2}^{(1)}$ , then we compute a shortest
traveling salesperson tour in $G_{c1}$ (equivalently, in $G_{1}$ ) as shown in the proof of Clai $m1$ ; otherwise,
$\iota ve$ compute a shortest traveling salesperson tour in $G_{1}$ as shown in the proof of Claim 2.

Claim 1 and Claim 2 also hold even if we replace $G_{1}$ with $G_{2}$ and replace $G_{c1}$ with $G_{c2}$ at the
same time. Since the proofs for these are very similar to the above two, we omit the details. Thus,
we can also compute in polynomial-time a shortest traveling salesperson tour in $G_{2}$ from $G_{1},$ $G_{2}$ ,
and $H(G)$ . Therefore, from $G_{1},$ $G_{2}$ , and $H(G)$ , we can compute in polynomial-time some shortest
traveling salesperson tours in $G_{1}$ and $G_{2}$ , respectively, and thus we complete the proof of the linear
paddability of OITSP. 1

All decision problems associated with the NPCOP’s in Theorem 4.2 are well known to be NP-
complete [1, 2, 3, 5, 7] (see [2] for a comprehensive reference). Thus, we have the following corollary.

Corollary 4.3 For any NPCOP $\Pi$ in Theorem 4.2, OPTSOLn is $\leq_{1-T}^{unifo--PF}$ -hard for $PF_{\iota\iota}^{NP}$ .

5 Conclusion

We have developed an approach to study the complexi ty of computing optimal solutions for NPCOP’s.
To summarize, we have first shown that for any NPCOP $\Pi$ , there exists a polynomial-time bounded
randomized algorithm which, given an instance $x$ of $\Pi$ , uses one free evaluation of parallel queries
to an NP oracle set and outputs some optimal solution for $x$ with very high probability. This result
shows that computing optimal solutions for NPCOP’s is as easy as evaluating parallel queries to
NP oracle sets. We have then defined the notion of linear paddability and have shown that if $\Pi$ is
a linearly paddable NPCOP and its associated decision problem is NP-hard, then all functions in
$PF_{\iota\iota}^{NP}$ are computable in polynomial-time with one fr$ee$ evaluation of an arbitrary function giving
an optimal solution for any given instance of $\Pi$ . We have finally shown the hardness of computing
optimal solutions for several natural NPCOP’s whose associated decision problems are known to
be NP-hard, by showing their linear paddability. Thus, we consider the linear paddability as one
of tbe interesting properties of NPCOP’s; this property tells us that unbounded parallel queries to
NP-complete sets can be embedded into a single instance of NP-hard NPCOP’s.

Some interesting questions still remain open. A natural question closely related to this $wo$rk is
wbetber P $FN^{P}$ -hardness of NPCOP’s as in this paper implies the linear paddability of the NPCOP’s.
A typical NPCOP for this question is LONGEST CYCLE, the problem of finding a longest cycle
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of a given undirected graph. It is not so hard to show that LONGEST CYCLE is $PF_{tt}^{NP}$ -hard in
the sense of this paper, but it seems slightly hard to show tbat the problem is linearly paddable.
A relaxed version of linear paddability can be considered. For instance, we can consider polynomial
paddabihty which is defined by removing the condition (a) in the definition of linear paddability, In
fact, it is not so hard to sbow that LONGEST CYCLE is polynomially paddable. However, we have
not been able to show that the $po$ lynomial paddability of NPCOP’s implies $PF_{\iota\iota}^{NP}$ -hardness of the
NPCOP’s, as in Theorem 4.1. As mentioned by Krentel [6], there are some NPCOP’s which have
not been classified yet. Some typical NPCOP’s are BIN PACKING and EDGE-COLORING [4].
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