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Abstract

We give a presentation of the asymptotic expansion of the Kashaev invariant of the 52 knot.
As the volume conjecture states, the leading term of the expansion presents the hyperbolic volume
and the Chern-Simons invariant of the complement of the 52 knot. Further, we obtain a method to
compute the full Poincare asymptotics to all orders of the Kashaev invariant of the 52 knot.

1 Introduction

In [16, 17] Kashaev defined the Kashaev invariant ⟨L ⟩
N
∈ C of a link L for N = 2, 3, · · ·

by using the quantum dilogarithm. In [18] he conjectured that, for any hyperbolic link L,

2π · lim
N→∞

log ⟨L ⟩
N

N
= vol(S3 − L),

where “vol” denotes the hyperbolic volume, and gave evidence for the conjecture for
the figure-eight knot, the 52 knot and the 61 knot, by formal calculations. In 1999, H.
Murakami and J. Murakami [24] proved that the Kashaev invariant ⟨L ⟩

N
of any link L

is equal to the N -colored Jones polynomial JN(L; e
2π

√
−1/N) of L evaluated at e2π

√
−1/N ,

where JN(L; q) denotes the invariant obtained as the quantum invariant of links associated
with the N -dimensional irreducible representation of the quantum group Uq(sl2). Further,
as an extension of Kashaev’s conjecture, they conjectured that, for any knot K,

2π · lim
N→∞

log |JN(K; e2π
√
−1/N)|

N
= vol(S3 −K),

where “vol” in this formula denotes the simplicial volume (normalized by multiplying
by the hyperbolic volume of the regular ideal tetrahedron). This is called the volume
conjecture. As a complexification of the volume conjecture, it is conjectured in [25] that,
for a hyperbolic link L,

2π
√
−1 · lim

N→∞

log JN(L; e
2π

√
−1/N)

N
= cs(S3 − L) +

√
−1 vol(S3 − L) (1)

for an appropriate choice of a branch of the logarithm, where “cs” denotes the Chern-
Simons invariant. Furthermore, it is conjectured [11] (see also [3, 12, 46]) from the view-

point of the SL(2,C) Chern-Simons theory that the asymptotic expansion of JN(K; e2π
√
−1/k)
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of a hyperbolic knot K as N, k → ∞ fixing u = N/k is given by the following form,

JN(K; e2π
√
−1/k) ∼

N,k→∞
u=N/k: fixed

eNςN3/2 ω ·
(
1 +

∞∑
i=1

κi ·
(2π√−1

N

)i)
(2)

for some scalars ς, ω, κi depending on K and u, though they do not discuss the Jones
polynomial in the Chern-Simons theory in the case of vanishing quantum dimension,
which is discussed in [38]. These conjectures look interesting in the sense that they make
a bridge between quantum topology and hyperbolic geometry, and it suggests the existence
of a future theory between them.

An approach toward a proof of the volume conjecture has been known, which is due to
Kashaev [18], Thurston [35] and Yokota [42]. We briefly review this approach, as follows.
By definition, the Kashaev invariant ⟨K ⟩

N
(which we review in Section 2.1) of a knot K

is given by a sum of fractions whose denominators are product of copies of (q)n, where
q = exp(2π

√
−1/N) and (x)n = (1 − x)(1 − x2) · · · (1 − xn); for example, the Kashaev

invariant ⟨ 52 ⟩N of the 52 knot is given by

⟨ 52 ⟩N =
∑
0≤ i,j
i+j <N

N3q

(q)i+j(q)N−i−j−1(q)j(q)j(q)i
,

as shown in (7). By the approximation (q)n ∼ exp
(

N
2π

√
−1

(
Li2(1) − Li2(e

2πn
√
−1/N)

))
, we

expect the following approximation,

⟨ 52 ⟩N ∼
?
N3q

∑
0≤ i,j
i+j <N

exp
( N

2π
√
−1

V̌ (e2π
√
−1 i/N , e2π

√
−1 j/N)

)
,

where we put

V̌ (x, y) = Li2(xy) + Li2
( 1

xy

)
+ Li2(y)− Li2

(1
y

)
− Li2

(1
x

)
− Li2(1).

Further, by formally replacing the sum with an integral putting t = i/N and s = j/N ,
we expect that

⟨ 52 ⟩N ∼
??

N5q

∫
0≤ t,s
t+s≤ 1

exp
( N

2π
√
−1

V̌ (e2π
√
−1 t, e2π

√
−1 s)

)
dt ds.

Furthermore, by applying the saddle point method, we expect that the asymptotic behav-
ior might be described by a critical value of V̌ . Yokota [42] showed that a critical value
of such a function V̌ is given by the hyperbolic volume of the knot complement. There
are problems justifying this series of arguments.

The volume conjecture has been rigorously proved for some particular knots and links
such as torus knots [19] (see also [5]1), the figure-eight knot (by Ekholm, see also [1]2),

1A detailed asymptotic expansion of the colored Jones polynomial for torus knots is given in [5].
2A detailed proof of the volume conjecture for the figure-eight knot was given in [1] and the term N3/2 in (2) was also

verified there.
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Whitehead doubles of (2, p)-torus knots [47], positive iterated torus knots [37], the 52
knot [20], and some links [9, 15, 36, 37, 41, 47]; for details see e.g. [22]. They (except
for the 52 knot) have particular properties; for example, the simplicial volumes of the
complements of torus knots are 0, and a critical point of V̌ for the figure-eight knot is on
the original contour of the integral. The volume conjecture for them has been proved by
using such particular properties. In particular, the 52 knot is of a general case; the volume
conjecture for the 52 knot has been proved by Kashaev and Yokota [20] by presenting the
above mentioned sum by the residue of a certain integral.

The aim of this paper is to give a presentation of the asymptotic expansion of the
Kashaev invariant ⟨ 52 ⟩N of the 52 knot rigorously (Theorem 1.1 below). Let y0 be the
unique solution with positive imaginary part of (y − 1)3 = y,

y0 = 0.3376410213...+
√
−1 · 0.5622795120... .

We put

x0 = 1− 1

y0
,

ς =
1

2π
√
−1

(
Li2(x0y0) + Li2

( 1

x0y0

)
+ Li2(y0)− Li2

( 1
y0

)
− Li2

( 1
x0

)
− π2

6

)
= 0.4501096100...+

√
−1 · 0.4813049796... ,

ω = eπ
√
−1/4

( y0 − 1

2y0 + 1

)1/2
= 0.0901905774...− √

−1 · 0.6499757866... .

Then, we have

Theorem 1.1. The asymptotic expansion of the Kashaev invariant ⟨ 52 ⟩N of the 52 knot
is given by the following form,

⟨ 52 ⟩N = eNςN3/2 ω ·
(
1 +

d∑
i=1

κi ·
(2π√−1

N

)i
+O

( 1

Nd+1

))
,

for any d, where κi is some constant given by a polynomial in y0 with rational coefficients;
in particular, κ1 is given by

κ1 =
1

(2y0 + 1)3

(37
4
y20 −

31

6
y0 +

35

8

)
+ 1 =

1

12696
(1650y20 − 3498y0 + 2197) + 1

= 1.0537470859...− √
−1 · 0.1055728779... .

We can numerically observe that the limit of q−1⟨ 52 ⟩N e−N ςN−3/2 tends to the above
mentioned value of ω.

N q−1⟨ 52 ⟩N e−N ς N−3/2

200 0.0915851738...− √
−1 · 0.6519891312...

500 0.0907489101...− √
−1 · 0.6507787459...

1000 0.0904698237...− √
−1 · 0.6503768725...
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Further, we can numerically observe that the limit of (⟨ 52 ⟩N (eN ςN3/2ω)−1−1)N/(2π
√
−1)

tends to the above mentioned value of κ1.

N (⟨ 52 ⟩N (eN ςN3/2ω)−1 − 1)N/(2π
√
−1)

200 1.0567234007...− √
−1 · 0.0885918466...

500 1.0549811019...− √
−1 · 0.0987904427...

1000 1.0543713307...− √
−1 · 0.1021833710...

As the conjecture (2) suggests, ω and κi’s of (2) are expected to be invariants of K
for any hyperbolic knot K. We have computed ω and κ1 for the 52 knot in this paper.
It is conjectured that 2

√
−1ω2 of a hyperbolic knot is equal to the twisted Reidemeister

torsion associated with the action on sl2 of the holonomy representation of the hyperbolic
structure; see Remark 1.4 below. We discuss about it for some knots in [28].

We give a proof of the theorem in Section 5 by justifying the above mentioned approach.
An outline of the proof is as follows. We rewrite the sum (7) by an integral by the Poisson
summation formula. When we apply the Poisson summation formula, the right-hand side
of the Poisson summation formula consists of infinitely many summands, and we show
that we can ignore them all except for the one at 0 in the sense that they are of sufficiently
small order at N → ∞ (Proposition 4.6 and Lemma 5.8). Further, by the saddle point
method (Proposition 3.5), we calculate the asymptotic expansion of the integral, and
obtain the presentation of the theorem.

By the method of this paper, the asymptotic behavior of the Kashaev invariant is
discussed for the hyperbolic knots with up to 7 crossings in [27, 26] and for some hyperbolic
knots with 8 crossings in [34].

Remark 1.2. The author has written the first version of this paper in August 2011. In
February 2012, [2] was uploaded in the arXiv, in which Dimofte and Garoufalidis define a
formal power series from an ideal tetrahedral decomposition of a knot complement, which
is expected to be equal to the asymptotic expansion of the Kashaev invariant of the knot.

Remark 1.3. The right-hand side of (1) is equal to 2π
√
−1 ς, and it is called the complex

volume. It is known, see e.g. [45], that the complex volume can be expressed by a critical
value of the potential function. It is also known, see e.g. [10], that the complex volume
can be regarded as the SL(2,C) Chern-Simons invariant.

Remark 1.4. The normalization of the above mentioned Reidemeister torsion is the
cohomological Reidemeister torsion associated with the meridian used in [23]. We note
that the twisted Reidemeister torsion in [4] is the twisted Reidemeister torsion associated
with the longitude, and it can be changed to the twisted Reidemeister torsion associated
with the meridian by [29, Théorème 4.1] as mentioned in [23].

The paper is organized as follows. In Section 2, we review definitions and basic proper-
ties of the notation used in this paper. In Section 3, we calculate the asymptotic expansion
of Gaussian integrals by the saddle point method, and show Proposition 3.5. In Section
4, we calculate the sum corresponding to the integrals of Section 3 by the Poisson sum-
mation formula, and show Proposition 4.6. In Section 5, we give a proof of Theorem 1.1
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by using the Poisson summation formula (Proposition 4.6) and the saddle point method
(Proposition 3.5).

The author would like to thank Yoshiyuki Yokota for many helpful comments on the
volume conjecture and the calculation of the Kashaev invariant, and Takashi Kumagai
for many helpful comments on the calculation of the saddle point method and the Pois-
son summation formula. The author would also like to thank Tudor Dimofte, Stavros
Garoufalidis, Rinat Kashaev, Hitoshi Murakami, Toshie Takata and Dylan Thurston for
many helpful comments. He would also like to thank the referees for careful reading of
the manuscript.

2 Calculation of the Kashaev invariant of the 52 knot

In this section, we review the definition of the Kashaev invariant and the calculation of the
Kashaev invariant ⟨ 52 ⟩N of the 52 knot in Section 2.1. Further, we continue to calculate
the value of ⟨ 52 ⟩N toward its asymptotic expansion in Section 2.2.

2.1 The Kashaev invariant of the 52 knot

In this section, we review the definition of the Kashaev invariant of oriented knots, and
review the calculation of the Kashaev invariant ⟨ 52 ⟩N of the 52 knot, which are due to
Yokota [43]. The aim of this section is to show (7) which gives the value of ⟨ 52 ⟩N .

Let N be an integer ≥ 2. We put q = exp(2π
√
−1/N), and put

(x)n = (1− x)(1− x2) · · · (1− xn)

for n ≥ 0. It is known [24] that, for any n,m with n ≤ m,

(q)n(q)N−n−1 = N, (3)∑
n≤k≤m

1

(q)m−k(q)k−n
= 1. (4)

Following Yokota [43],3 we review the definition of the Kashaev invariant. We put

N = {0, 1, · · · , N − 1}.

For i, j, k, l ∈ N , we put

Ri j
k l =

N q−
1
2
+i−k θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]
, R

i j

k l =
N q

1
2
+j−l θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]
,

where [m] ∈ N denotes the residue of m modulo N , and we put

θi jk l =

{
1 if [i− j] + [j − l] + [l − k − 1] + [k − i] = N − 1,

0 otherwise.
3We make a minor modification of the definition of weights of critical points from the definition in [43], in order to make

⟨K ⟩N invariant under Reidemeister moves.
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Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K such
that its string is oriented downward at its end points. Let D be a diagram of the 1-tangle.
We present D by a union of elementary tangle diagrams shown in (5). We decompose the
string of D into edges by cutting it at crossings and critical points with respect to the
height function of R2. A labeling is an assignment of an element of N to each edge. Here,
we assign 0 to the two edges adjacent to the end points of D. For example, see (6). We
define the weights of labeled elementary tangle diagrams by

W
( i j

k l

)
= Ri j

k l , W
(

k l

)
= q−1/2δk,l−1 , W

(
k l

)
= δk,l ,

W
( i j

k l

)
= R

i j

k l , W
( i j )

= q1/2δi,j+1 , W
( i j )

= δi,j .

(5)

Then, the Kashaev invariant ⟨K ⟩
N
of K is defined by

⟨K ⟩
N

=
∑

labelings

∏
crossings

ofD

W (crossings)
∏

critical
points ofD

W (critical points) ∈ C.

Following Yokota [43],4 we review the calculation of the Kashaev invariant ⟨ 52 ⟩N of
the 52 knot, where the 52 knot is the closure of the following 1-tangle.

0

a k

j c

i
c+1

b i−1 d

l e

e+10

(6)

We consider the above labeling. Then, it is shown by arguments in [43] that the labelings
of edges adjacent to the unbounded regions vanish, i.e., a = b = c = d = e = 0. Hence,
the Kashaev invariant of the 52 knot is given by

⟨ 52 ⟩N =
∑
i,j,k,l

q1/2R
0 0

0 k R
0 k

0 j R
i j

0 1 R
0 0

i−1 l R
0 l

0 1

4Our resulting formula (7) in this section is q times the corresponding formula in [43]. This difference is because of the
difference of the definitions of ⟨K ⟩N between ours and [43].
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=
∑
i,j,k,l

q1/2 · Nq
1
2
−k

(q)[−k](q)[k−1]

· Nq
1
2
+k−j

(q)[−k](q)[k−j](q)[j−1]

· Nq−
1
2
+j

(q)[i−j](q)[j−1](q)[−i]

× Nq
1
2
−l

(q)[−l](q)[l−i](q)[i−1]

· Nq−
1
2
+l

(q)[−l](q)[l−1]

=
∑
i,j,k,l

N3q

(q)[−k](q)[k−j](q)[j−1](q)[i−j](q)[j−1](q)[−i](q)[−l](q)[l−i](q)[i−1]

,

where we obtain the last equality from (3). Further, by (4), the above formula is rewritten,

⟨ 52 ⟩N =
∑

1≤j≤i≤N

N3q

(q)i−1(q)N−i(q)j−1(q)j−1(q)i−j

=
∑

0≤j≤i<N

N3q

(q)i(q)N−i−1(q)j(q)j(q)i−j

=
∑
0≤ i,j
i+j <N

N3q

(q)i+j(q)N−i−j−1(q)j(q)j(q)i
, (7)

where we obtain the second equality by replacing i and j with i+1 and j+1, and obtain
the last equality by replacing i with i+ j. Hence, we obtain the presentation (7) of ⟨ 52 ⟩N .

2.2 Calculation of ⟨ 52 ⟩N toward its asymptotic expansion

In this section, we continue to calculate the value of the Kashaev invariant ⟨ 52 ⟩N of the
52 knot toward its asymptotic expansion.

To calculate the asymptotic expansion of ⟨ 52 ⟩N , we review an integral expression of
(q)n. It is known [8, 40] that

(q)n = exp
(
φ
( 1

2N

)
− φ

(2n+ 1

2N

))
,

(q)n = exp
(
φ
(
1− 2n+ 1

2N

)
− φ

(
1− 1

2N

))
.

(8)

Here, following Faddeev [6], we define a holomorphic function φ(t) on {t ∈ C | 0 < Re t <
1} by

φ(t) =

∫ ∞

−∞

e(2t−1)xdx

4x sinhx sinh(x/N)
,

noting that this integrand has poles at nπ
√
−1 (n ∈ Z), where, to avoid the pole at 0, we

choose the following contour of the integral,

γ = (−∞,−1 ] ∪
{
z ∈ C

∣∣ |z| = 1, Im z ≥ 0
}

∪ [ 1,∞).

We review some properties of φ(t) in Appendix A.
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By using φ(t), we rewrite the presentation (7) of ⟨ 52 ⟩N by (8) as

⟨ 52 ⟩N = N3q
∑
0≤ i,j
i+j <N

exp
(
N · Ṽ

(2i+ 1

2N
,
2j + 1

2N

))
,

where we put

Ṽ (t, s) =
1

N

(
φ
(
t+ s− 1

2N

)
+ φ

(
1− t− s+

1

2N

)
+ φ(s)− φ(1− s)

− φ(1− t)− 3φ
( 1

2N

)
+ 2φ

(
1− 1

2N

))
=

1

N

(
− φ(1− t)− 2φ(1− s)

)
− 1

2π
√
−1

π2

6

− 2π
√
−1
(1
2

(
t+ s− 1

2N

)2
+

1

2
s2 − 1

2
t− s+

1

6

)
− 5

2N
logN − 3π

√
−1

4N
+
π
√
−1

4N2
.

Here, we obtain the second equality by Lemmas A.2 and A.3. Hence, by putting

V (t, s) = Ṽ (t, s) +
5

2N
logN

=
1

N

(
− φ(1− t)− 2φ(1− s)

)
− 1

2π
√
−1

π2

6

− 2π
√
−1
(1
2

(
t+ s− 1

2N

)2
+

1

2
s2 − 1

2
t− s+

1

6

)
− 3π

√
−1

4N
+
π
√
−1

4N2
,

the presentation of ⟨ 52 ⟩N is rewritten

⟨ 52 ⟩N = N1/2 q
∑
0≤ i,j
i+j <N

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N

))
. (9)

The range of (i/N, j/N) in this sum is given by the following domain,

∆ =
{
(t, s) ∈ R2

∣∣ 0 ≤ t, 0 ≤ s, t+ s ≤ 1
}
.

Further, it follows from Proposition A.1 that V (t, s) converges to the following function
as N → ∞,

V̂ (t, s) =
1

2π
√
−1

(
− Li2(e

−2π
√
−1 t)− 2 Li2(e

−2π
√
−1 s)− π2

6

)
−2π

√
−1
(1
2
t2 + s2 + ts− 1

2
t− s+

1

6

)
.

(10)

We will show that the asymptotic expansion of (9) is of order eNςR times polynomial
order in N , where ς

R
is the real part of ς which is given in the introduction,

ς
R

= Re ς = 0.4501096100... .
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Hence, we can ignore summands of (9) in the domain where Re V̂ (t, s) ≤ ς
R
− ε, since

they do not contribute to the resulting expansion. Further, as we can see in Figure 1,
Re V̂ (t, s)− ς

R
is positive only for (t, s) in a particular subdomain of ∆. In the following

lemma, we consider to restrict ∆ to a smaller domain ∆′ which includes this subdomain;
this restriction will be used to verify the assumptions of the Poisson summation formula
and the saddle point method later.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

∆

∆′

Figure 1: The domain
{
(t, s)

∣∣ Re V̂ (t, s) ≥ ςR
}

Lemma 2.1. We put

∆′ =
{
(t, s) ∈ ∆

∣∣ 0.04 ≤ t ≤ 0.4, 0.05 ≤ s ≤ 0.4, t+ s ≤ 0.6
}
.

Then, the following domain{
(t, s) ∈ R2

∣∣ Re V̂ (t, s) ≥ ς
R
− ε
}

(11)

is included in ∆′ for some sufficiently small ε > 0.

We give a proof of the lemma in Appendix D. we can graphically observe the inclusion of
the lemma in Figure 1.

We put

∆′′ =
{
(t, s) ∈ ∆

∣∣ 0.04 ≤ t ≤ 0.9, 0.05 ≤ s ≤ 0.9
}
. (12)

By Lemma B.1, V (t, s) uniformly converges to V̂ (t, s) as N → ∞ in this domain. By this
uniform convergence, we can restrict ∆′′ to ∆′ later. Before this restriction, we consider
to restrict ∆ to ∆′′ in the following calculation of ⟨ 52 ⟩N .

We consider the value of ⟨ 52 ⟩N given in (7). The summand of the sum (7) is estimated
by ∣∣∣ N3q

(q)i+j(q)N−i−j−1(q)j(q)j(q)i

∣∣∣ =
∣∣∣ N2

(q)i(q)2j

∣∣∣ , (13)

where we obtain the equality by (3). Since (q)n = (1−qn)(q)n−1 from the definition of (q)n,
the value of 1/|(q)n| is monotonically increasing with respect to n for 0 ≤ n ≤ N

6
. Hence,
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for 0 ≤ i ≤ 0.04 ·N and 0 ≤ j ≤ 0.05 ·N , the value of (13) is monotonically increasing
with respect to i and j. Further, we can similarly show that, for 0.9 ·N ≤ i < N and
0.9 ·N ≤ j < N , the value of (13) is monotonically decreasing with respect to i and j.

Furthermore, since V (t, s) uniformly converges to V̂ (t, s) as N → ∞ on ∆′′ by Lemma
B.1, ReV (t, s) is bounded by eN(ς

R
−ε1) for some ε1 > 0 on ∂∆′′ by Lemma 2.1. Hence,

(13) is bounded by the order eN(ς
R
−ε2) for some ε2 > 0. Therefore, by (7),

⟨ 52 ⟩N =
∑
i,j∈Z

(i/N,j/N)∈∆′′

N3q

(q)i+j(q)N−i−j−1(q)j(q)j(q)i
+O(N2eN(ς

R
−ε2)).

Hence, similarly as (9), we have that

⟨ 52 ⟩N = N1/2 q
∑
i,j∈Z

(i/N,j/N)∈∆′′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N

))
+O

(
N2eN(ς

R
−ε2)
)

= eNςN1/2 q
∑
i,j∈Z

(i/N,j/N)∈∆′′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N

)
−Nς

)
+O

(
N2eN(ς

R
−ε2)
)
.

By Lemma 2.1, we can restrict ∆′′ to ∆′, where the error term of the sum is estimated
by the order N2e−Nε. Hence,

⟨ 52 ⟩N = eNςN1/2 q

( ∑
i,j∈Z

(i/N,j/N)∈∆′

exp
(
N · V

(2i+ 1

2N
,
2j + 1

2N

)
−Nς

)
+O(e−Nε3)

)
, (14)

for some ε3 > 0. Further, by the Poisson summation formula, we will see that the above
sum is expressed by an integral,

⟨ 52 ⟩N = eNςN5/2 q

(∫
∆′

exp
(
N · V (t, s)−Nς

)
dt ds+O(e−Nε4)

)
for some ε4 > 0.

We will analyse this integral in Section 5 using the saddle point method and give the
proof our main Theorem 1.1 there. We will therefore devote the following two sections to
recalling the saddle point method and the Poisson summation formula.

3 Calculation by the saddle point method

In this section, we calculate Gaussian integrals by the saddle point method. We calculate
a Gaussian integral in Proposition 3.1, a Gaussian integral with perturbative terms in
Proposition 3.2, and multi-variable cases in Propositions 3.4 and 3.5. We use Proposition
3.5 in the proof of Theorem 1.1 in Section 5. For the saddle point method, see e.g. [39].
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Proposition 3.1. For a non-zero a ∈ C, the domain {z ∈ C | Re az2 < 0} has two
connected components. We choose z0, z1 from the two components respectively. Let C be
a path from z0 to z1 in C. (See Figure 2.) Then, there exists ε > 0 such that∫

C

eN ·az2dz =

√
π

√
−a ·

√
N

+O
(
e−εN

)
,

where we choose the sign of
√
−a such that Re z1

√
−a > 0.

We note that ε depends on z0, z1 and a.

z0

z1− 1√
−a

1√
−a

C

Figure 2: The domain {z ∈ C | Re az2 < 0} is shaded.

Proof. By replacing z with z/
√
−a, we can reduce the proof to the case where a = −1.

Putting a = −1, we show that∫ z1

z0

e−Nz
2

dz =

√
π√
N

+O(e−εN).

Since
∫∞
−∞ e−Nz

2
dz =

√
π/

√
N , it is sufficient to show that∫ z0

−∞
e−Nz

2

dz = O(e−εN),

∫ ∞

z1

e−Nz
2

dz = O(e−εN).

We show the latter formula. (The former formula can be shown similarly.) The latter
formula is calculated,∫ ∞

z1

e−Nz
2

dz =

∫ Re z1

z1

e−Nz
2

dz +

∫ ∞

Re z1

e−Nz
2

dz,

and the two terms of the right-hand side are estimated,∣∣∣ ∫ Re z1

z1

e−Nz
2

dz
∣∣∣ ≤

∫ Re z1

z1

|e−Nz2 | · |dz| ≤
∫ Re z1

z1

e−NRe z2 |dz|

≤
∫ Re z1

z1

e−NRe z21 |dz| = |Im z1| · e−NRe z21 = O(e−εN),

11



0 ≤
∫ ∞

Re z1

e−Nz
2

dz ≤
∫ ∞

Re z1

e−N(Re z1)zdz =
e−N(Re z1)2

N · Re z1
= O(e−εN)

for some ε > 0. Hence, we obtain the required formula.

We generalize Proposition 3.1 to the case where there are perturbative terms in the
exponential of the integrand.

Proposition 3.2. Let a be a non-zero complex number, and let ψ(z) and r(z) be holo-
morphic functions of the forms,

ψ(z) = az2 + r(z), r(z) = b3z
3 + b4z

4 + · · · ,

defined in a neighborhood of 0. The domain{
z ∈ C

∣∣ Re ψ(z) < 0
}

(15)

has two connected components in a neighborhood of 0. We choose z0, z1 from these two
components respectively. Let C be a path from z0 to z1 in C. (See Figure 3.) Then,∫

C

eN ψ(z)dz =

√
π

√
−a ·

√
N

(
1 +

d∑
k=1

λk
Nk

+O
( 1

Nd+1

))
,

for any d, where we choose the sign of
√
−a similarly as in Proposition 3.1, and λk’s

are constants given by using coefficients of the expansion of ψ(z); such presentations are
obtained by formally expanding the following formula,

1 +
∞∑
k=1

λk
Nk

= exp
(
N r
( ∂
∂u

))
exp

(
− u2

4Na

)∣∣∣
u=0

. (16)

In particular, λ1 is given by

λ1 = − 15b23
16a3

+
3b4
4a2

.

z0

z1

C

Figure 3: The domain {z ∈ C | Reψ(z) < 0} is shaded.
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Proof. We show the proposition modifying a proof of the saddle point method written
in [39].5 We show the proposition, for simplicity, putting a = −1 as in the proof of
Proposition 3.1. We put r̂(z) = r(z)/z2. Since r̂(z) is analytic in a neighborhood of 0,
there exists a sufficiently small δ1 > 0 such that

r̂(z) =
∞∑
i=1

bk+2 z
k

for |z| < δ1. Let w be a non-negative real parameter. For each fixed w, we have that

ew r̂(z) =
∞∑
k=0

Pk(w) z
k

for |z| < δ1, where Pk(w) is a polynomial in w of degree ≤ k. Since r̂(0) = 0, there exist
small δ2 > 0 and ε1 > 0 such that |r̂(x)| ≤ ε1 for −δ2 ≤ x ≤ δ2; we can further assume
that ε1 < 1 and δ2 ≤ δ1. For each fixed integer m > 0, we can put

ew r̂(x) =
m∑
k=0

Pk(w)x
k +Rm x

m+1 (17)

for −δ2 ≤ x ≤ δ2 and any w ≥ 0, where Rmx
m+1 is the error term, which is estimated by

|ReRm| ≤ max
|x| ≤ δ2

∣∣∣Re dm+1

dxm+1
ew r̂(x)

∣∣∣ , |ImRm| ≤ max
|x| ≤ δ2

∣∣∣ Im dm+1

dxm+1
ew r̂(x)

∣∣∣ .
Further, since

dm+1

dxm+1
ew r̂(x) = ew r̂(x) ·

(
polynomial in w and differentials of r̂(x) of degree ≤ m+1

)
,

we have that

|Rm| ≤ eε1wK1(w
m+1 + 1) ≤ K2 e

ε2w (18)

for some K1, K2 > 0 and ε2 < 1, which are independent of x and w (noting that m is
bounded by using d later). Further, we replace the path C with the union of a path C1

from z0 to −δ, a path C2 from −δ to δ along the real axis, and a path C3 from δ to z1.
We can assume that there exist sufficiently small δ, ε3 > 0 such that δ ≤ δ2 and C1 and
C3 are in the domain {

z ∈ C
∣∣ Reψ(z) ≤ −ε3

}
. (19)

Then, the integral of the proposition is given by∫
C

eN ψ(z)dz =

∫
C1

eN ψ(z)dz +

∫
C2

eN ψ(z)dz +

∫
C3

eN ψ(z)dz. (20)

5As for the 1-variable case, a proof of a more general statement of the saddle point method is written in [39], though
the multi-variable case is not written in [39]. We review (a simpler modification of) the proof of [39], in order to generalize
it to the multi-variable case later (Proposition 3.5).
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Since C1 and C3 are in the domain (19), we have that∫
C1

eN ψ(z)dz = O(e−Nε3) and

∫
C3

eN ψ(z)dz = O(e−Nε3). (21)

Hence, it is sufficient to show that the integral along C2 gives the required formula.
The integral along C2 is calculated as∫

C2

eN ψ(z)dz =

∫ δ

−δ
eN ψ(x)dx =

∫ δ

−δ
e−Nx

2

eNx
2r̂(x)dx

=
2d+1∑
k=0

∫ δ

−δ
Pk(Nx

2)xke−Nx
2

dx +

∫ δ

−δ
R2d+1 x

2d+2e−Nx
2

dx, (22)

by (17), putting w = Nx2 and m = 2d + 1. When k is odd, the summand of the first
term of (22) is equal to 0, since the integrand is an odd function. When k is even, the
summand of the first term of (22) is given by a sum of integrals of the following form,∫ δ

−δ
(Nx2)l xke−Nx

2

dx =

∫ ∞

−∞
N lx2l+ke−Nx

2

dx +O(e−Nε4)

=
1

Nk/2
√
N

∫ ∞

−∞
y2l+ke−y

2

dx +O(e−Nε4)

=
(2l + k − 1)!! ·

√
π

2l+k/2Nk/2
√
N

+O(e−Nε4),

for some ε4 > 0, where we obtain the first equality in a similar way as in the proof of
Proposition 3.1, and obtain the second equality putting y =

√
Nx. Hence, the first term

of (22) is given by the following form,

√
π√
N

(
1 +

d∑
k=1

λk
Nk

)
+O(e−Nε4).

Further, by (18) putting w = Nx2, the second term of (22) is estimated by∣∣∣ ∫ δ

−δ
R2d+1 x

2d+2e−Nx
2

dx
∣∣∣ ≤

∫ δ

−δ
|R2d+1| x2d+2e−Nx

2

dx

≤ K2

∫ δ

−δ
x2d+2e−(1−ε2)Nx2dx = O

( 1

Nd+ 3
2

)
,

where we obtain the last equality in a similar way as the above calculation. Hence, by
(22), ∫

C2

eN ψ(z)dz =

√
π√
N

(
1 +

d∑
k=1

λk
Nk

+O
( 1

Nd+1

))
.

Therefore, by (20) and (21), the integral of the proposition is given by the following form,∫
C

eN ψ(z)dz =

√
π√
N

(
1 +

d∑
k=1

λk
Nk

+O
( 1

Nd+1

))
.
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In particular, λ1 is concretely calculated by refining the above calculation, as follows.
Since

r̂(z) = b3z + b4z
2 + · · · ,

we have that

ew r̂(z) = 1 + wr̂(z) +
1

2
w2r̂(z)2 + · · · = 1 + b3wz +

(b3
2
w2 + b4w)z

2 + · · · .

Hence, ∫
C

eN ψ(z)dz =

∫ ∞

−∞
e−Nx

2
(
1 + b3Nx

2 · x+
(b23
2
(Nx2)2 + b4Nx

2
)
x2 + · · ·

)
dx

=

√
π√
N

(
1 +

(15
16
b23 +

3

4
b4
) 1
N

+O
( 1

N2

))
.

This is the required formula for d = 1 when a = −1.
We obtain a concrete presentation of any λk by the following formal calculation. Noting

that

zm =
( ∂
∂u

)m
euz
∣∣
u=0

,

we have that ∫
eNaz

2

zmdz =

∫ ( ∂
∂u

)m
eNaz

2+uz
∣∣
u=0

dz

=

∫ ( ∂
∂u

)m
exp

(
Naw2 − u2

4Na

)∣∣∣
u=0

dw

=

√
π

√
−a ·

√
N

·
( ∂
∂u

)m
exp

(
− u2

4Na

)∣∣∣
u=0

,

which can be justified by a similar calculation as above, to be precise. Hence, putting
exp

(
N r(z)

)
=
∑

m b̃mz
m,∫

eN ψ(z)dz =

∫
eNaz

2

exp
(
N r(z)

)
dz

=

∫
eNaz

2(∑
m

b̃mz
m
)
dz

=

√
π

√
−a ·

√
N

·
∑
m

b̃m
( ∂
∂u

)m
exp

(
− u2

4Na

)∣∣∣
u=0

=

√
π

√
−a ·

√
N

· exp
(
N r
( ∂
∂u

))
exp

(
− u2

4Na

)∣∣∣
u=0

,

and this gives (16). By expanding this formula formally, we obtain concrete presentations
of λk’s in terms of coefficients of the expansion of ψ(z).
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Remark 3.3. We can extend Proposition 3.2 to the case where ψ(z) depends on N in
such a way that ψ(z) is of the form

ψ(z) = ψ0(z) + ψ1(z)
1

N
+ ψ2(z)

1

N2
+ · · ·+ ψm(z)

1

Nm
+ rm(z)

1

Nm+1
, (23)

where ψi(z)’s are holomorphic functions independent of N , and we assume that ψ0(z)
satisfies the assumption of the proposition and |rm(z)| is bounded by a constant which is
independent of N . Then, eNψ(z) = ϕ(z)eNψ0(z), where we put

ϕ(z) = exp
(
ψ1(z) + ψ2(z)

1

N
+ · · ·+ ψm(z)

1

Nm−1
+ rm(z)

1

Nm

)
= ϕ0(z) + ϕ1(z)

1

N
+ ϕ2(z)

1

N2
+ · · ·+ ϕm−1(z)

1

Nm−1
+ r̃m(z)

1

Nm
.

Here, r̃m(z) is the error term such that |r̃m(z)| is bounded by a constant which is indepen-
dent of N . As written in [39], in the same way as in the proof of Proposition 3.2, we can
show the asymptotic expansion of

∫
ϕi(z)e

Nψ0(z)dz by expanding ϕi(z) at z = 0. Further,

we can estimate
∫
r̃m(z)e

Nψ0(z)dz similarly as in the proof of Proposition 3.2, noting that
only values of r̃m(z) in a sufficiently small neighborhood of 0 contribute to the resulting
expansion. In this way, we can justify the statement of Proposition 3.2 in the case where
ψ(z) depends on N as in the form (23).

We generalize Proposition 3.1 to the case of n variables. Let A be a non-singular
symmetric complex n×n matrix, and let z be a column vector (z1, · · · , zn)T ∈ Cn. The
domain {

z ∈ Cn
∣∣ Re zTA z < 0

}
(24)

is homotopy equivalent to Sn−1. Let D be an oriented n-ball embedded in Cn such that
∂D is included in the domain (24), whose inclusion is homotopy equivalent. There exists

a matrix P such that −A = P TP ; we note that detP = ±
√

det(−A). We choose an
n-ball as a neighborhood of the origin in Rn ⊂ Cn. The matrix P−1 takes this n-ball
to an n-ball satisfying the above assumption of D. We choose the sign of

√
det(−A) by

setting it to be detP if P takes the orientation of D to the standard orientation of Rn,
and −detP otherwise.

Proposition 3.4. Let A,D be as above. Then, there exists ε > 0 such that∫
D

eN ·zTA zdz =
πn/2

Nn/2
√
det(−A)

+O
(
e−εN

)
,

where we put dz = dz1 · · · dzn, and we choose the sign of
√

det(−A) as above.
Proof. By changing the coordinate of z linearly, we can reduce the proof to the case where
A is a diagonal matrix. Further, since d(eN ·zTA zdz) = 0, we can move the domain D in
Cn by Stokes’ theorem; we can also move ∂D in the domain (24) ignoring error terms of
order e−Nε for some ε > 0 as in the proof of Proposition 3.1. In this way, we can move D
into Rn ⊂ Cn, which means that we can reduce the proof to the product of copies of the
formula of Proposition 3.1.
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We generalize Proposition 3.4 to the case where there are perturbative terms in the
exponential of the integrand.

Proposition 3.5. Let A be a non-singular symmetric complex n×n matrix, and let ψ(z)
and r(z) be holomorphic functions of the forms,

ψ(z) = zTA z+ r(z),

r(z) = r(z1, · · · , zn) =
∑

i,j,k bijkzizjzk +
∑

i,j,k,l cijklzizjzkzl + · · · ,
(25)

defined in a neighborhood of 0 ∈ Cn. The restriction of the domain{
z ∈ Cn

∣∣ Reψ(z) < 0
}

(26)

to a neighborhood of 0 ∈ Cn is homotopy equivalent to Sn−1. Let D be an oriented n-ball
embedded in Cn such that ∂D is included in the domain (26) whose inclusion is homotopic
to a homotopy equivalence to the above Sn−1 in the domain (26). Then,∫

D

eN ψ(z)dz =
πn/2

Nn/2
√

det(−A)

(
1 +

d∑
i=1

λi
N i

+O
( 1

Nd+1

))
,

for any d, where we choose the sign of
√
det(−A) as in Proposition 3.4, and λi’s are

constants given by using coefficients of the expansion of ψ(z); such presentations are
obtained by formally expanding the following formula,

1 +
∞∑
i=1

λi
N i

= exp
(
N r
( ∂

∂u1
, · · · , ∂

∂un

))
exp

(
− 1

4N
uTA−1u

)∣∣∣
u=0

. (27)

In particular, λ1 is given by

λ1 =
−1

28 · 3
∑

i1,i2,··· ,i6
σ∈S6

bi1i2i3bi4i5i6aiσ(1)iσ(2)
aiσ(3)iσ(4)

aiσ(5)iσ(6)
+

1

32

∑
i1,i2,i3,i4
τ∈S4

ci1i2i3i4aiτ(1)iτ(2)aiτ(3)iτ(4) ,

where Sn is the nth symmetric group, and we put
(
aij
)
i,j

= A−1.

Proof. Similarly as in the proof of Proposition 3.4, we can reduce the proof to the case
where A = −E, where E denotes the identity matrix of size n. Then, the integral of the
problem is rewritten, ∫

D

eN ·zT z exp
(
N r(z)

)
dz, (28)

where we can let D be a sufficiently small neighborhood of 0 in Rn as in the proof of
Proposition 3.4. The second exponential in the integrand of (28) is calculated as

exp
(
N r(z)

)
= 1 +N r(z) +

1

2
N2r(z)2 + · · ·

= 1 +N
∑
i,j,k

bijkzizjzk +N
∑
i,j,k,l

cijklzizjzkzl

+
1

2
N2

∑
i1,i2,··· ,i6

bi1i2i3bi4i5i6zi1zi2zi3zi4zi5zi6 + · · · .
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Hence, we can calculate the asymptotic expansion of the integral (28) similarly as the
calculation of λ1 in the proof of Proposition 3.2, and we can show that the asymptotic
expansion of (28) is given by the following form,∫

D

eN ψ(z)dz =
πn/2

Nn/2

(
1 +

λ1
N

+
λ2
N2

+ · · ·
)
.

We estimate the remaining part “· · · ” of the above formula as in the proof of Propo-
sition 3.2, as follows. We can put

r(z) =
∑
i,j

zizj r̂ij(z)

for some r̂ij(z) which satisfies that r̂ij(z) = r̂ji(z). Let wij be non-negative real parameters,
and put w = (wij). For each fixed w, we have that

exp
(∑

i,j

wij r̂ij(z)
)

=
∞∑
k=0

∑
i1,··· ,ik

Pi1···ik(w) zi1 · · · zik

for sufficiently small z, where Pi1···ik(w) is a polynomial in wij’s of degree ≤ k. Further,
for each fixed integer m > 0, we can put

exp
(∑

i,j

wij r̂ij(x)
)

=
m∑
k=0

∑
i1,··· ,ik

Pi1···ik(x)xi1 · · · xik +
∑

j1,··· ,jm+1

Rj1···jm+1xj1 · · · xjm+1

where Rj1···jm+1xj1 · · · xjm+1 is the error term. Similarly as in the proof of Proposition 3.2,
we can estimate it by

|Rj1···jm+1| ≤ K exp
(∑

i,j

εijwij

)
for some K > 0 and εij > 0 which satisfies that εij = εji and E−(εij) is positive definite.
Further, similarly as in the proof of Proposition 3.2, putting m = 2d + 1, we can show
that the error term is of order O(1/Nn/2+d+1). Hence, we can show that the integral of
the problem has the asymptotic expansion of the required formula.

We obtain concrete presentations of λk’s by the following formal calculation. Noting
that

zi1 · · · zim =
∂

∂ui1
· · · ∂

∂uim
eu

T z
∣∣
u=0

we have that∫
eN ·zTA zzi1 · · ·zimdz =

∫
∂

∂ui1
· · · ∂

∂uim
eN ·zTA z+uT z

∣∣
u=0

dz

=

∫
∂

∂ui1
· · · ∂

∂uim
exp

(
N ·wTAw − 1

4N
uTA−1u

)∣∣∣
u=0

dw

=
πn/2

Nn/2
√

det(−A)
· ∂

∂ui1
· · · ∂

∂uim
exp

(
− 1

4N
uTA−1u

)∣∣∣
u=0

.
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Hence, we obtain (27) from this formula similarly as in the proof of Proposition 3.2.
The above expansion is concretely calculated as

∂

∂ui1
· · · ∂

∂ui2k
exp

(
− 1

4N
uTA−1u

)∣∣∣
u=0

=
∂

∂ui1
· · · ∂

∂ui2k

1

k!

(
− 1

4N
uTA−1u

)k
=

(−1)k

k! 4kNk

∑
σ∈S2k

aiσ(1)iσ(2)
· · · aiσ(2k−1)iσ(2k)

.

In particular, we obtain the presentation of λ1 from such calculation.

Remark 3.6. Similarly as Remark 3.3, we can extend Proposition 3.5 to the case where
ψ(z) depends on N in such a way that ψ(z) is of the form

ψ(z) = ψ0(z) + ψ1(z)
1

N
+ ψ2(z)

1

N2
+ · · ·+ ψm(z)

1

Nm
+ rm(z)

1

Nm+1
, (29)

where ψi(z)’s are holomorphic functions independent of N , and we assume that ψ0(z)
satisfies the assumption of the proposition and |rm(z)| is bounded by a constant which is
independent of N .

4 Calculation by the Poisson summation formula

In this section, we calculate the sums corresponding to the integrals of the propositions in
the previous section by the Poisson summation formula. Corresponding to Propositions
3.1, 3.2, 3.4 and 3.5 in the previous section, we show Propositions 4.1, 4.2, 4.5 and 4.6
in this section. We use Proposition 4.6 in the proof of Theorem 1.1 in Section 5. We
remark that the Poisson summation formula has also been used in the study of large level
asymptotics of quantum invariants of Seifert 3-manifolds [13, 14, 30, 31, 32].

Recall (see e.g. [33]) that the Poisson summation formula states that∑
m∈Zn

f(m) =
∑

m∈Zn

f̂(m) (30)

for a continuous integrable function f on Rn which satisfies that

|f(z)| ≤ C
(
1 + |z|

)−n−δ
, |f̂(z)| ≤ C

(
1 + |z|

)−n−δ
(31)

for some C, δ > 0, where f̂ is the Fourier transform of f defined by

f̂(w) =

∫
Rn

f(z) e−2π
√
−1wT zdz.

Proposition 4.1. Let a, c be complex numbers satisfying that

Re a < 0,
∣∣Im c

∣∣ < −π
2
Re

1

a
.

We put

Λ =
{ k
N

+ c ∈ C
∣∣∣ k ∈ Z, b0 ≤

k

N
≤ b1

}
,
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C =
{
t+ c ∈ C

∣∣ t ∈ R, b0 ≤ t ≤ b1
}

for some b0, b1 ∈ R and ε0 > 0 satisfying that Re (b0 + c) < 0 < Re (b1 + c) and Re a(bi +
c)2 < −ε0 (i = 0, 1); see Figure 4. Then, there exists ε > 0 such that

1

N

∑
z ∈Λ

eN ·az2 =

∫
C

eN ·az2dz +O
(
e−εN

)
.

We note that ε depends on a, c and ε0.

b0+c

b1+c

Λ

Figure 4: The domain {z ∈ C | Re az2 < 0} is shaded.

Proof. By Proposition 3.1, the required formula is rewritten,∑
k∈Z

b0 ≤ k/N ≤ b1

eN ·a(k/N+c)2 =

√
π ·

√
N√

−a
+O

(
e−εN

)
.

Since ∑
k∈Z

k/N <b0

eN ·a(k/N+c)2 = O
(
e−εN

)
,

∑
k∈Z

b1<k/N

eN ·a(k/N+c)2 = O
(
e−εN

)
,

for some ε > 0, it is sufficient to show that∑
k∈Z

eN ·a(k/N+c)2 =

√
π ·

√
N√

−a
+O

(
e−εN

)
. (32)

In order to apply the Poisson summation formula (30), we put f(z) = eN ·a(z/N+c)2 . Then,
its Fourier transform is

f̂(ζ) =

∫ ∞

−∞
eN ·a(z/N+c)2−2π

√
−1 ζzdz

=

∫ ∞

−∞
e(a/N)(z+cN−π

√
−1ζN/a)2dz · eNπ2ζ2/a+2π

√
−1 cNζ

=

√
π ·

√
N√

−a
eNπ

2ζ2/a+2π
√
−1 cNζ ,
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where we obtain the last equality by Proposition 3.1. These f(z) and f̂(ζ) satisfy the
assumption (31) of the Poisson summation formula. Hence, by the Poisson summation
formula (30), ∑

k∈Z

eN ·a(k/N+c)2 =

√
π ·

√
N√

−a
∑
m∈Z

eNπ
2m2/a+2π

√
−1 cNm.

The summand at m = 0 gives the right-hand side of (32). When m ̸= 0, the power of the
summand is

N · πm2
(π
a
+

2
√
−1 c

m

)
,

and its real part is negative by the assumption of the proposition. Hence, the summands
at m ̸= 0 are of order e−εN for some ε > 0. Therefore, we obtain (32).

We generalize Proposition 4.1 to the case where there are perturbative terms in the
exponential of the summand.

Proposition 4.2. We put

Λ =
{ k
N

+ c ∈ C
∣∣∣ k ∈ Z, b0 ≤

k

N
≤ b1

}
,

C =
{
t+ c ∈ C

∣∣ t ∈ R, b0 ≤ t ≤ b1
}

for some b0, b1 ∈ R and c ∈ C. Let a be a complex number whose real part is negative, let
δ0 be a real positive number, and let ψ(z) be a holomorphic function of the form,

ψ(z) = az2 + b3z
3 + b4z

4 + · · · ,

defined in a neighborhood of 0 including the δ0-neighborhood of C. The domain (15) has
two connected components in a neighborhood of 0. We assume that b0 + c and b1 + c are
in these two components respectively, and Reψ(bi + c) < −ε0 (i = 0, 1) for some ε0 > 0.
(See Figure 5.) Further, we assume that

b0 + c and b1 + c are in the same connected component of{
w + δ

√
−1 ∈ C

∣∣ w ∈ C, δ ∈ [0, δ0], Re
(
ψ(w + δ

√
−1)− 2πδ

)
< 0
}
,

(33)

and

they are in the same connected component of{
w − δ

√
−1 ∈ C

∣∣ w ∈ C, δ ∈ [0, δ0], Re
(
ψ(w − δ

√
−1)− 2πδ

)
< 0
}
.

(34)

Then,
1

N

∑
z∈Λ

eN ψ(z) =

∫
C

eN ψ(z)dz +O(e−Nε)

for some ε > 0.

We note that ε depends on ψ(z), c, δ0 and ε0; in particular, ε directly depends on ε′2 of
(39) in the proof of the proposition.
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b0+c

b1+c

Λ

Figure 5: The domain {z ∈ C | Reψ(z) < 0} is shaded.

Proof. The sum of the left-hand side of the required formula is rewritten,∑
k∈Z

b0 ≤ k/N ≤ b1

exp
(
N · ψ

( k
N

+ c
))
. (35)

In order to apply the Poisson summation formula (30), we put

f(z) = g
( z
N

+ c
)
exp

(
N · ψ

( z
N

+ c
))
,

where g is a differentiable function on R+ c satisfying that

g(w) =

{
1 if w ∈ C,

0 if w /∈ N(C),

0 ≤ g(w) ≤ 1 if w ∈ N(C)− C.

Here, N(C) is a neighborhood of C in R+c such that N(C)−C is included in the domain{
z ∈ C

∣∣ Reψ(z) < −ε0/2
}
. Then, the Fourier transform of f is given by

f̂(ζ) =

∫
R
g
( z
N

+ c
)
exp

(
N · ψ

( z
N

+ c
))
e−2π

√
−1 ζzdz

= N

∫
R+c

g(w) eN
(
ψ(w)−2π

√
−1 ζ(w−c)

)
dw,

where we put w = z/N + c. Further,

ζ2f̂(ζ) = − 1

4π2N

∫
R+c

g(w) eN ψ(w)
(( d
dw

)2
e−2π

√
−1Nζ(w−c)

)
dw

= − 1

4π2N

∫
R+c

(( d
dw

)2
g(w) eN ψ(w)

)
e−2π

√
−1Nζ(w−c)dw

= − 1

4π2N

∫
R+c

h(w) eN ψ(w) e−2π
√
−1Nζ(w−c)dw,

where we put

h(w) = g′′(w) + 2 g′(w)ψ′(w) + g(w)
(
ψ′′(w) + ψ′(w)2

)
.
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Since the above integral is bounded independently of ζ, f̂(ζ) satisfies the assumption (31)
of the Poisson summation formula. Further, f(z) also satisfies (31). Therefore, by the
Poisson summation formula (30),

(35) =
∑
m∈Z

f̂(m).

When m ̸= 0, we have that

f̂(m) = − 1

4π2N
· 1

m2

∫
R+c

h(w) eN
(
ψ(w)−2π

√
−1m(w−c)

)
dw

= − 1

4π2N
· 1

m2

∫
C

(
ψ′′(w) + ψ′(w)2

)
eN
(
ψ(w)−2π

√
−1m(w−c)

)
dw (36)

− 1

4π2N
· 1

m2

∫
N(C)−C

h(w) eN
(
ψ(w)−2π

√
−1m(w−c)

)
dw, (37)

since h(w) = ψ′′(w) + ψ′(w)2 for w ∈ C and h(w) = 0 for w ∈ (R+ c)−N(C). Further,
since Reψ(w) < −ε0/2 for w ∈ N(C)− C,∑

m̸=0

(37) = O(e−Nε1)

for some ε1 > 0. Furthermore, when m > 0, by pushing the contour C to a contour C ′ in
the domain of (34), we can show that∫

C

(
ψ′′(w) + ψ′(w)2

)
eN
(
ψ(w)−2π

√
−1m(w−c)

)
dw

=

∫
C′

(
ψ′′(w) + ψ′(w)2

)
eN
(
ψ(w)−2π

√
−1m(w−c)

)
dw = O(e−Nε2) (38)

for some ε2 > 0, which we can choose independently of m, since there exists ε′2 > 0 such
that

Re
(
ψ(w)− 2π

√
−1 (w − c)

)
< −ε′2 (39)

for any w ∈ C ′. Hence, ∑
m>0

(36) = O(e−Nε2).

When m < 0, by pushing the contour C into the domain of (33), we similarly obtain∑
m<0

(36) = O(e−Nε3)

for some ε3 > 0. Therefore, ∑
m̸=0

f̂(m) = O(e−Nε4)

for some ε4 > 0. Hence,

(35) = f̂(0) +O(e−Nε4) = N

∫
C

eN ψ(w)dw +O(e−Nε5)

for some ε5 > 0, and this implies the required formula.
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Remark 4.3. The assumptions (33) and (34) of Proposition 4.2 can be replaced with the
condition that there exist positive integers m0,m1 and positive real numbers δ0, δ1 such
that for any integer m satisfying that −m0 < m < 0 or 0 < m < m1,∫

C

eN
(
ψ(w)−2π

√
−1m(w−c)

)
dw = O(e−Nε)

for some ε > 0, and

b0 + c and b1 + c are in the same connected component of{
w + δ

√
−1 ∈ C

∣∣ w ∈ C, δ ∈ [0, δ1], Re
(
ψ(w + δ

√
−1)− 2πδm1

)
< 0
}
,

and

they are in the same connected component of{
w − δ

√
−1 ∈ C

∣∣ w ∈ C, δ ∈ [0, δ0], Re
(
ψ(w − δ

√
−1)− 2πδm0

)
< 0
}
.

Proposition 4.2 for this assumption can be proved by modifying the above proof of Propo-
sition 4.2.

Remark 4.4. Proposition 4.2 can naturally be extended to the case where the holomor-
phic function ψ(z) depends on N , if ψ(z) uniformly converges to ψ0(z) as N → ∞, and
ψ0(z) satisfies the assumption of the proposition, and |ψ′′(z)+ψ′(z)2| is bounded by a
constant which is independent of N . In this case, (39) holds for sufficiently large N , and
hence, (38) holds. Therefore, Proposition 4.2 also holds in this case, where we note that
we can choose ε independently of N .

We generalize Proposition 4.1 to the case of n variables.

Proposition 4.5. For c ∈ Cn and an oriented n-ball D′ in Rn, we put

Λ =
{ 1

N
k+ c ∈ Cn

∣∣∣ k ∈ Zn,
1

N
k ∈ D′

}
,

D =
{
z+ c ∈ Cn

∣∣ z ∈ D′ ⊂ Rn
}
.

Let A be a non-singular symmetric complex n×n matrix such that Re (A−1) is negative
definite. We assume that ∂D is included in the domain (24). Further, we assume that

(Im c)T m < −π
2
mT · Re (A−1) ·m

for any m ∈ Zn−{0}. Then,
1

Nn

∑
z∈Λ

eN ·zTA z =

∫
D

eN ·zTA zdz +O(e−Nε),

for some ε > 0.

Proof. By Proposition 3.4, the required formula is rewritten,∑
z∈Λ

eN ·zTA z =
πn/2Nn/2√
det(−A)

+O
(
e−εN

)
. (40)
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Further, in a similar way as in the proof of Proposition 4.1, putting f(z) = eN ·(z/N+c)TA (z/N+c),
we can show that

f̂(ζ) =
πn/2Nn/2√
det(−A)

eNπ
2 ζTA−1ζ+2π

√
−1NcT ζ

by using Proposition 3.4. Hence, we obtain∑
k∈Zn

eN ·(k/N+c)TA (k/N+c) =
πn/2Nn/2√
det(−A)

∑
m∈Zn

eNπ
2 mTA−1m+2π

√
−1NcTm

by the Poisson summation formula (30). By the assumption of the proposition, the real
part of

Nπ2 mTA−1m + 2π
√
−1NcTm

is negative for any m ∈ Zn−{0}. Therefore, only the summand at m = 0 survives, and
we obtain (40) from it.

We generalize Proposition 4.5 to the case where there are perturbative terms in the
exponential of the summand. Let e1, e2, · · · , en be the standard basis vectors of Cn,

e1 = (1, 0, · · · , 0)T , e2 = (0, 1, 0, · · · , 0)T , · · · , en = (0, · · · , 0, 1)T .

Proposition 4.6. For c ∈ Cn and an oriented n-ball D′ in Rn, we put

Λ =
{ 1

N
k+ c ∈ Cn

∣∣∣ k ∈ Zn,
1

N
k ∈ D′

}
,

D =
{
z+ c ∈ Cn

∣∣ z ∈ D′ ⊂ Rn
}
.

Let A be a non-singular symmetric complex n×n matrix, and let ψ(z) be a holomorphic
function of the form (25) defined in a neighborhood of 0 ∈ Cn including D. We assume
that ∂D is included in the domain

{
z ∈ Cn | Reψ(z) < −ε0

}
for some ε0 > 0. Further,

we assume that there exist δi, δ
′
i > 0 (i = 1, · · · , n) such that

∂D is null-homotopic in{
w + δ

√
−1 ei ∈ Cn

∣∣ w ∈ D, δ ∈ [0, δi], Re
(
ψ(w + δ

√
−1 ei)− 2πδ

)
< 0
}
,

(41)

and

∂D is null-homotopic in{
w − δ

√
−1 ei ∈ Cn

∣∣ w ∈ D, δ ∈ [0, δ′i], Re
(
ψ(w − δ

√
−1 ei)− 2πδ

)
< 0
}
,

(42)

for i = 1, · · · , n, assuming that ψ is holomorphic in these domains. Then,

1

Nn

∑
z∈Λ

eN ψ(z) =

∫
D

eN ψ(z)dz +O(e−Nε),

for some ε > 0.

We note that ε depends on ψ(z), c, δi, δ
′
i and ε0.
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Proof. The sum of the left-hand side of the required formula is rewritten,∑
k∈Zn

k/N ∈D′

exp
(
N · ψ

( 1
N
k+ c

))
. (43)

In order to apply the Poisson summation formula (30), we put

f(z) = g
( 1
N
z+ c

)
exp

(
N · ψ

( 1
N
z+ c

))
,

where g is a differentiable function on Rn+ c satisfying that

g(w) =

{
1 if w ∈ D,

0 if w /∈ N(D),

0 ≤ g(w) ≤ 1 if w ∈ N(D)−D.

Here, N(D) is a neighborhood of D in Rn+ c such that N(D) − D is included in the
domain

{
z ∈ Cn | Reψ(z) < −ε0/2

}
. Then, the Fourier transform of f is given by

f̂(ζ) =

∫
Rn

g
( 1
N
z+ c

)
exp

(
N · ψ

( 1
N
z+ c

))
e−2π

√
−1 ζT zdz

= Nn

∫
Rn+c

g(w) eN
(
ψ(w)−2π

√
−1 ζT (w−c)

)
dw,

where we put w = z/N + c. Further, for an integer l > n/2,

|ζ|2lf̂(ζ) =
( n∑
i=1

ζ2i
)l
f̂(ζ)

= Nn
( −1

4π2N

)l ∫
Rn+c

g(w) eN ψ(w)
(( n∑

i=1

∂2

∂w2
i

)l
e−2π

√
−1NζT (w−c)

)
dw

= Nn
( −1

4π2N

)l ∫
Rn+c

(( n∑
i=1

∂2

∂w2
i

)l
g(w) eN ψ(w)

)
e−2π

√
−1NζT (w−c)dw

= Nn
( −1

4π2N

)l ∫
Rn+c

h(w) eN ψ(w) e−2π
√
−1NζT (w−c)dw,

where h(w) is some polynomial in derivatives of g(w) and ψ(w). Since the above integral is

bounded independently of ζ, f̂(ζ) satisfies the assumption (31) of the Poisson summation
formula. Further, f(z) also satisfies (31). Therefore, by the Poisson summation formula
(30),

(43) =
∑

m∈Zn

f̂(m).

When m ̸= 0, we have that

f̂(m) = Nn
( −1

4π2N

)l · 1

|m|2l

∫
Rn+c

h(w) eN
(
ψ(w)−2π

√
−1mT (w−c)

)
dw
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= Nn
( −1

4π2N

)l · 1

|m|2l

∫
D

Ψ(w) eN
(
ψ(w)−2π

√
−1mT (w−c)

)
dw (44)

+Nn
( −1

4π2N

)l · 1

|m|2l

∫
N(D)−D

h(w) eN
(
ψ(w)−2π

√
−1mT (w−c)

)
dw, (45)

where Ψ(w) is some polynomial in (at most the 2lth) derivatives of ψ(w). Further, since
Reψ(w) < 0 for w ∈ N(D)−D,∑

m ̸=0

(45) = O(e−Nε1)

for some ε1 > 0. Furthermore, when m1 > 0, pushing the contour D into the domain of
(42), we obtain ∑

m∈Zn

m1>0

(44) = O(e−Nε2)

for some ε2 > 0, similarly as in the proof of Proposition 4.2. Similarly we obtain∑
m∈Zn

m1<0

(44) = O(e−Nε3)

for some ε3 > 0, from the assumption (41). Hence,∑
m ̸=0

(44) =
∑
m̸=0
m1=0

(44) +O(e−Nε4)

for some ε4 > 0. By repeating this argument for m2, · · · ,mn, we obtain∑
m ̸=0

(44) = O(e−Nε5)

for some ε5 > 0. Therefore,

(43) = f̂(0) +O(e−Nε6) = Nn

∫
D

eN ψ(w)dw +O(e−Nε6)

for some ε6 > 0, and this implies the required formula.

Remark 4.7. The assumptions (41) and (42) of Proposition 4.6 can be modified similarly
as in Remark 4.3.

Remark 4.8. Similarly as in Remark 4.4, Proposition 4.6 can naturally be extended to
the case where the holomorphic function ψ(z) depends on N , if ψ(z) uniformly converges
to ψ0(z) as N → ∞, and ψ0(z) satisfies the assumption of the proposition, and |Ψ(z)| is
bounded by a constant which is independent of N . Similarly as in Remark 4.4, we can
also choose ε independently of N in this case.
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5 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. In Section 5.1, we give a proof of the
theorem by using lemmas proved in Sections 5.2, 5.3 and 5.4. In Section 5.2, we show
lemmas which calculate the asymptotic expansion. In Section 5.3, we show a lemma
which verifies the assumption of the saddle point method. In Section 5.4, we show a
lemma which verifies the assumption of the Poisson summation formula.

5.1 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1, which presents the asymptotic expansion
of the Kashaev invariant ⟨ 52 ⟩N of the 52 knot. To obtain the asymptotic expansion, as
mentioned in Section 2.2, we rewrite the sum (14) of ⟨ 52 ⟩N by using an integral by the
Poisson summation formula (Proposition 4.6) and calculate the asymptotic expansion of
the integral by the saddle point method (Proposition 3.5).

Proof of Theorem 1.1. We recall that ⟨ 52 ⟩N is presented by the sum (14). By Proposition
4.6 (Poisson summation formula) (see also Remark 4.8 and Appendix B), this sum is
expressed by an integral,

⟨ 52 ⟩N = eNςN5/2 q

(∫
∆′

exp
(
N · V (t, s)−Nς

)
dt ds+O(e−Nε4)

)
(46)

for some ε4 > 0, noting that we verify the assumptions of Proposition 4.6 in Lemma 5.8
below.

In order to apply the saddle point method (Proposition 3.5, see also Remark 3.6 and

Appendix B) to (46), we consider a critical point of V̂ (t, s). From the definition of V̂ (t, s),
a critical point is a solution of the following equations,

∂

∂t
V̂ (t, s) = − log(1− e−2π

√
−1 t)− 2π

√
−1
(
t+ s− 1

2

)
= 0,

∂

∂s
V̂ (t, s) = −2 log(1− e−2π

√
−1 s)− 2π

√
−1
(
t+ 2s− 1

)
= 0.

(47)

Hence, putting x = e2π
√
−1 t and y = e2π

√
−1 s,(

1− 1

x

)
xy = −1,

(
1− 1

y

)2
xy2 = 1.

Therefore,

x = 1− 1

y
, (y − 1)3 = y.

Let (x0, y0) be the solution of these equations mentioned in the introduction. We consider

the critical point (t0, s0) such that (Re t0,Re s0) ∈ ∆′ and (e2π
√
−1 t0 , e2π

√
−1 s0) = (x0, y0).

It is numerically given by

t0 = 0.22404487...− √
−1 · 0.04475430... , s0 = 0.16393269...+

√
−1 · 0.06713145... .
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Let (tc, sc) be the critical point of V (t, s) which goes to (t0, s0) as N → ∞. We consider
to apply Proposition 3.5 to V (t− tc, s− sc). We consider the expansion

V (t, s) = V (tc, sc) +
1

2
Vtt · (t− tc)

2 + Vts · (t− tc)(s− sc) +
1

2
Vss · (s− sc)

2 + · · · (48)

at the critical point, where we put

Vtt =
∂2V

∂t2
(tc, sc), Vts =

∂2V

∂t ∂s
(tc, sc), Vss =

∂2V

∂s2
(tc, sc).

As we show in Section 5.3, we can make a concrete homotopy which moves ∆′ to a new
domain containing the above critical point in such a way that it satisfies the assumption
of the saddle point method.6 Hence, we obtain the following expansion by applying
Proposition 3.5 (see also Remark 3.6 and Appendix B) to (46),

⟨ 52 ⟩N = N5/2 q exp
(
N V (tc, sc)

)
· 2π
N

(
VttVss−V 2

ts

)−1/2
(
1+

d∑
i=1

λiℏi +O(ℏd+1)
)
, (49)

where λi’s are given in the proposition, noting that we verify the assumptions of Propo-
sition 3.5 in Lemma 5.7 below. Here, we also note that eNς×O(e−Nε4) in (46) is in-
cluded in exp

(
N V (tc, sc)

)
×O(ℏd+1) in (49); see Lemma 5.2 below for the behavior of

exp
(
N V (tc, sc)

)
.

We calculate the concrete form of (49), for simplicity, when d = 1. By Lemmas 5.2,
5.3 and 5.4 below, (49) is rewritten,

⟨ 52 ⟩N = N5/2q × eNς e−π
√
−1/4

(
1− y0

)1/2 (
1 + (C1 + C2)ℏ +O(ℏ2)

)
× 2π

N

× 1

2π
√
−1

(
− 2y0 − 1

)−1/2
(
1 + C3ℏ +O(ℏ2)

)
×
(
1 + (C4 + C5)ℏ +O(ℏ2)

)
= eNς N3/2 eπ

√
−1/4

(2y0 + 1

y0 − 1

)−1/2
(
1 + ℏ

(
1 + C1 + C2 + C3 + C4 + C5

)
+O(ℏ2)

)
,

where the constants C1, · · · , C5 are given in the lemmas. In particular, κ1 of the theorem
is given by

κ1 = 1 + C1 + C2 + C3 + C4 + C5

=
1

184
(−16y20 + 33y0 + 9) +

1

24
(2y20 − 5y0) +

1

46

(
8y20 − 17y0 + 9

)
+

1

92
(2y20 + 15y0)−

1

3174
(197y20 + 127y0 + 227) + 1

=
1

12696
(1650y20 − 3498y0 + 2197) + 1.

Hence, we obtain the required formula for d = 1.

6That is, the new domain is in the area Re V̂ (t, s) ≤ ςR − ε except for a neighborhood of the above critical point.
In order to obtain this new domain, it is sufficient to push the shaded part in Figure 1 into the imaginary direction by
(−

√
−1 · 0.04475430...,

√
−1 · 0.06713145...). For details, see Section 5.3.
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For general d, each λi of the expansion (49) is given by a linear sum of higher coefficients
of the expansion (48) by Proposition 3.5 (see also Remark 3.6 and Appendix B). In the
same way as the above case of d = 1, such coefficients are given by some polynomials in y0
with rational coefficients. Hence, each κi of the theorem can be given by some polynomial
in y0 with rational coefficients.

5.2 Calculation of the asymptotic expansion

In this section, we show some lemmas used in the proof of Theorem 1.1.

Let (t0, s0) and (tc, sc) be the critical points of V̂ (t, s) and V (t, s) given in the previous

section. We put x0 = e2π
√
−1 ·t0 , y0 = e2π

√
−1 ·s0 and xc = e2π

√
−1 ·tc , yc = e2π

√
−1 ·sc . In

order to show Lemma 5.2 below, we calculate (xc, yc) in terms of (x0, y0), as follows. We
show a proof of the following lemma in Appendix C.

Lemma 5.1. We can put xc = x0 + x1ℏ + O(ℏ2) and yc = y0 + y1ℏ + O(ℏ2) for some
x1, y1 ∈ C in a sufficiently small neighborhood of (x0, y0) (i.e., for sufficiently large N).
Here, O(ℏ2) means that the absolute value of the error term is bounded by Cℏ2 with a
constant C which is independent of N .

We calculate x1 and y1, as follows. We put x = e2π
√
−1 ·t and y = e2π

√
−1 ·s. From the

definition of V (t, s) and Proposition A.1, we have that

∂

∂t
V (t, s) = − log

(
1− 1

x

)
− 2π

√
−1
(
t+ s− 1

2
− 1

2N

)
+O(ℏ2),

∂

∂s
V (t, s) = −2 log

(
1− 1

y

)
− 2π

√
−1
(
t+ 2s− 1− 1

2N

)
+O(ℏ2).

(50)

Then, since (tc, sc) is a critical point of V (t, s), we have that
(
1− 1

xc

)
(−q−1/2xcyc) = 1 +O(ℏ2),(

1− 1

yc

)2
q−1/2xcy

2
c = 1 +O(ℏ2).

These are rewritten, {
(1− xc)yc = q1/2 +O(ℏ2),
q1/2yc = (yc − 1)2(yc − q1/2) +O(ℏ2).

Hence, putting xc = x0 + x1ℏ+O(ℏ2) and yc = y0 + y1ℏ+O(ℏ2) by Lemma 5.1, we have
that x0 = 1− 1

y0
,

y0 = (y0 − 1)3,


− x1
1− x0

+
y1
y0

=
1

2
,

y1 +
1

2
y0 = (y0 − 1)2

(
3y1 −

1

2

)
.

Therefore, we obtain that

y1 =
y20

2(2y0 + 1)
, x1 = − y0 + 1

2y0(2y0 + 1)
.
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Further, in order to show Lemmas 5.2, 5.3 and 5.4 below, we calculate the expansion
(48) concretely, as follows. Putting ť = t− tc, we expand φ(1− t)/N at tc as follows,

φ(1−t)
N

=
φ(1−tc)

N
−φ

′(1−tc)
N

ť+
1

2

φ′′(1−tc)
N

ť2−1

6

φ(3)(1−tc)
N

ť3+
1

24

φ(4)(1−tc)
N

ť4+· · · ,

where we can calculate φ(k)(1 − tc)/N concretely by Proposition A.1. Hence, putting
ť = t− tc and š = s− sc, we can show by concrete calculation that V (t, s) is expanded at
a critical point (tc, sc) in the following form,

V (t, s) = V (tc, sc)+(degree 2 part)+(degree 3 part)+(degree 4 part)+(degree ≥ 5 part),

(51)

where

(degree 2 part) = 2π
√
−1
( ť2
2

1

1− xc
+
š2

2

1 + yc
1− yc

− (ť+ š)2

2

)
+O(ℏ2), (52)

(degree 3 part) = (2π
√
−1)2 (y0 − 1)

( ť3
6
· y0 +

š3

6
· 2
)

+O(ℏ), (53)

(degree 4 part) = (2π
√
−1)3

( ť4
24

(x20 + x0)y
3
0 −

š4

24
2(y0 + 1)

)
+O(ℏ). (54)

Now, we show lemmas used in the proof of Theorem 1.1.

Lemma 5.2. Under the notation in the proof of Theorem 1.1,

exp
(
N V (tc, sc)

)
= eNς e−π

√
−1/4

(
1− y0

)1/2(
1 + (C1 + C2)ℏ +O(ℏ2)

)
,

where we put

C1 =
1

184
(−16y20 + 33y0 + 9), C2 =

1

24
(2y20 − 5y0).

Proof. We put tc = t0+ t1/N+ · · · and sc = s0+s1/N+ · · · . Recalling that xc = e2π
√
−1 ·tc

and yc = e2π
√
−1 ·sc , we have that

t1 =
x1
x0

= − y0 + 1

2(y0 − 1)(2y0 + 1)
, s1 =

y1
y0

=
y0

2(2y0 + 1)
.

Putting ť = −t1/N and š = −s1/N in the degree 2 part (52) of the expansion (51), we
have that

V (t0, s0) = V (tc, sc) + 2π
√
−1
( t21
2N2

1

1− x0
+

s21
2N2

1 + y0
1− y0

− (t1 + s1)
2

2N2

)
+O(ℏ3).

Hence,
N V (tc, sc) = N V (t0, s0) + C1ℏ +O(ℏ2),
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where we put

C1 = −1

2

(
t21

1

1− x0
+ s21

1 + y0
1− y0

− (t1 + s1)
2
)

=
1

184
(−16y20 + 33y0 + 9).

Hence,

exp
(
N V (tc, sc)

)
= exp

(
N V (t0, s0)

)
·
(
1 + C1ℏ +O(ℏ2)

)
. (55)

Further, we calculate V (t0, s0), as follows. From the definition of V (t, s), we have that

V (t0, s0) =
1

N

(
− φ(1− t0)− 2φ(1− s0)

)
− 1

2π
√
−1

π2

6

− 2π
√
−1
(1
2

(
t0 + s0 −

1

2N

)2
+

1

2
s20 −

1

2
t0 − s0 +

1

6

)
− 3π

√
−1

4N
+
π
√
−1

4N2
.

Since this goes to V̂ (t0, s0) as N → ∞, we have that

V̂ (t0, s0) =
1

2π
√
−1

(
− Li2

( 1
x0

)
− 2 Li2

( 1
y0

)
− π2

6

)
− 2π

√
−1
(1
2
(t0 + s0)

2 +
1

2
s20 −

1

2
t0 − s0 +

1

6

)
=

1

2π
√
−1

(
Li2(x0y0) + Li2

( 1

x0y0

)
+ Li2(y0)− Li2

( 1
y0

)
− Li2

( 1
x0

)
− π2

6

)
= ς.

Hence, by Proposition A.1,

V (t0, s0) = ς +2π
√
−1

t0 + s0
2N

− 3π
√
−1

4N
+

2π
√
−1

N2

( 1

24(x0−1)
+

1

12(y0−1)

)
+O

( 1

N3

)
.

Therefore,

exp
(
N V (t0, s0)

)
= eNςe−

3
4
π
√
−1
(
x0y0

)1/2(
1 + C2ℏ +O(ℏ2)

)
= eNςe−π

√
−1/4

(
1− y0

)1/2(
1 + C2ℏ +O(ℏ2)

)
,

where we put

C2 =
1

24(x0 − 1)
+

1

12(y0 − 1)
=

1

24
(2y20 − 5y0).

Hence, from the above formula and (55), we obtain the required formula.

Lemma 5.3. Under the notation in the proof of Theorem 1.1,

VttVss − V 2
ts = −4π2(−2y0 − 1)

(
1− 2C3ℏ +O(ℏ2)

)
,

(VttVss − V 2
ts)

−1/2 =
1

2π
√
−1

(
− 2y0 − 1

)−1/2
(
1 + C3ℏ +O(ℏ2)

)
,

where we put

C3 =
1

46

(
8y20 − 17y0 + 9

)
.
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Proof. From the degree 2 part (52) of the expansion (51), we have that

Vtt =
∂2V

∂t2
(tc, sc) = 2π

√
−1
( 1

1− xc
− 1
)

+O(ℏ2) = 2π
√
−1 · xc

1− xc
+O(ℏ2),

Vts =
∂2V

∂t ∂s
(tc, sc) = −2π

√
−1 +O(ℏ2),

Vss =
∂2V

∂s2
(tc, sc) = 2π

√
−1
(1 + yc
1− yc

− 1
)

+O(ℏ2) = 2π
√
−1 · 2yc

1− yc
+O(ℏ2)

Hence,

VttVss − V 2
ts = −4π2

( xc
1− xc

· 2yc
1− yc

− 1
)

+O(ℏ2)

= −4π2
(2q−1/2xcy

2
c

1− yc
− 1
)

+O(ℏ2)

= −4π2
(
− 2yc ·

1− q−1/2yc
1− yc

− 1
)

+O(ℏ2)

= −4π2
(
− yc

(
2 +

y0
1− y0

ℏ
)
− 1
)

+O(ℏ2)

= −4π2(−2y0 − 1)
(
1− y20(y0 + 2)

(y0 − 1)(2y0 + 1)2
ℏ
)

+O(ℏ2)

= −4π2(−2y0 − 1)
(
1− 2C3ℏ

)
+O(ℏ2),

where

C3 =
y20(y0 + 2)

2(y0 − 1)(2y0 + 1)2
=

1

46

(
8y20 − 17y0 + 9

)
.

Therefore, we obtain the required formulas.

Lemma 5.4. Under the notation in the proof of Theorem 1.1,

λ1 = C4 + C5 ,

where we put

C4 =
1

92
(2y20 + 15y0), C5 = − 1

3174
(197y20 + 127y0 + 227).

Proof. We show the lemma by using Proposition 3.5. As shown in Proposition 3.5, λ1
consists of two contributions from the degree 3 part and the degree 4 part of the expansion
(51).

We calculate the contribution from the degree 4 part of the expansion (51), as follows.
As in (54), the degree 4 part of this expansion is given by

(2π
√
−1)3

( ť4
24

(x20 + x0)y
3
0 −

š4

24
2(y0 + 1)

)
+O(ℏ). (56)

33



As explained in Proposition 3.5, the contribution from ť4 is calculated as

N ·
( ∂

∂u1

)4
exp

(
− 1

4N

(
u1
u2

)T
A−1

(
u1
u2

))∣∣∣∣∣
u1=u2=0

=
1

2
N ·

( ∂

∂u1

)4(− 1

2N

(
u1
u2

)T(
Vtt Vts
Vts Vss

)−1(
u1
u2

))2

=
1

8N (VttVss − V 2
ts)

2

( ∂

∂u1

)4(
Vssu

2
1 − 2Vtsu1u2 + Vttu

2
2

)2
=

1

8N (VttVss − V 2
ts)

2
· 4! · V 2

ss

=
4!

8N (2π
√
−1)2 (2y0 + 1)2

( 2y0
1− y0

)2
+O(ℏ),

by using Lemma 5.3 and formulas in the proof of Lemma 5.3. Similarly, the contribution
from š4 is calculated as

1

8N (VttVss − V 2
ts)

2

( ∂

∂u2

)4(
Vssu

2
1 − 2Vtsu1u2 + Vttu

2
2

)2
=

1

8N (VttVss − V 2
ts)

2
· 4! · V 2

tt

=
4!

8N (2π
√
−1)2 (2y0 + 1)2

( x0
1− x0

)2
+O(ℏ).

Hence, the contribution from (56) is equal to

2π
√
−1

8N (2y0 + 1)2

(
(x20 + x0)y

3
0

( 2y0
1− y0

)2 − 2(y0 + 1)
( x0
1− x0

)2)
= C4ℏ,

where we put

C4 =
1

8(2y0 + 1)2

(
(x20 + x0)y

3
0

( 2y0
1− y0

)2 − 2(y0 + 1)
( x0
1− x0

)2)
=

1

92
(2y20 + 15y0).

We calculate the contribution from the degree 3 part of the expansion (51), as follows.
As in (53), the degree 3 part of this expansion is given by

(2π
√
−1)2 (y0 − 1)

( ť3
6
· y0 +

š3

6
· 2
)

+O(ℏ),

and, hence, the corresponding degree 6 part is given by

1

2
(2π

√
−1)4 (y0 − 1)2

( ť3
6
· y0 +

š3

6
· 2
)2

+O(ℏ)

=
1

2
(2π

√
−1)4 (y0 − 1)2

( ť6
62

· y20 +
š6

62
· 4 + ť3š3

62
· 4y0

)
+O(ℏ). (57)
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The contribution from ť6 is calculated as

N2 ·
( ∂

∂u1

)6
exp

(
− 1

4N

(
u1
u2

)T
A−1

(
u1
u2

))∣∣∣∣∣
u1=u2=0

=
1

6
N2 ·

( ∂

∂u1

)6(− 1

2N

(
u1
u2

)T(
Vtt Vts
Vts Vss

)−1(
u1
u2

))3

=
−1

48N (VttVss − V 2
ts)

3

( ∂

∂u1

)6(
Vssu

2
1 − 2Vtsu1u2 + Vttu

2
2

)3
=

−1

48N (VttVss − V 2
ts)

3
· 6! · V 3

ss

=
6!

48N (2π
√
−1)3 (2y0 + 1)3

( 2y0
1− y0

)3
+O(ℏ),

by using Lemma 5.3 and formulas in the proof of Lemma 5.3. Similarly, the contribution
from š6 is calculated as

−1

48N (VttVss − V 2
ts)

3

( ∂

∂u2

)6(
Vssu

2
1 − 2Vtsu1u2 + Vttu

2
2

)3
=

−1

48N (VttVss − V 2
ts)

3
· 6! · V 3

tt

=
6!

48N (2π
√
−1)3 (2y0 + 1)3

( x0
1− x0

)3
+O(ℏ).

Similarly, the contribution from ť3š3 is calculated as

−1

48N (VttVss − V 2
ts)

3

( ∂

∂u1

)3( ∂

∂u2

)3(
Vssu

2
1 − 2Vtsu1u2 + Vttu

2
2

)3
=

−1

48N (VttVss − V 2
ts)

3
· 6! ·

(2
5
(−Vts)3 +

3

5
VttVss(−Vts)

)
+O(ℏ)

=
6!

48N (2π
√
−1)3 (2y0 + 1)3

(2
5
+

3

5

x0
1− x0

2y0
1− y0

)
,

by using Lemma 5.3 and formulas in the proof of Lemma 5.3. Hence, the contribution
from (57) is equal to

5 · 2π
√
−1 (y0 − 1)2

24N (2y0 + 1)3

(
y20
( 2y0
1− y0

)3
+ 4

( x0
1− x0

)3
+ 4y0

(2
5
+

3

5

x0
1− x0

2y0
1− y0

))
= C5ℏ

where we put

C5 =
5(y0 − 1)2

24(2y0 + 1)3

(
y20
( 2y0
1− y0

)3
+ 4

( x0
1− x0

)3
+ 4y0

(2
5
+

3

5

x0
1− x0

2y0
1− y0

))
= − 1

3174
(197y20 + 127y0 + 227).

Therefore, we obtain the required formula of the lemma.
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5.3 Verifying the assumption of the saddle point method

In this section, in Lemma 5.7, we verify the assumption of the saddle point method
(Proposition 3.5, see also Remark 3.6 and Appendix B) when we apply Proposition 3.5
and Remark 3.6 to (46). The arguments of this section are due to Yokota [44].

Let V (t, s) and V̂ (t, s) be as in Section 2.2. As shown in Appendix B, V (t, s) uniformly

converges to V̂ (t, s) on ∆′ as N → ∞. Hence, as mentioned in Remarks 3.3 and 3.6
and Appendix B, the saddle point method of the problem can be reduced to the saddle

point method of an integral of the form
∫
ϕ(t, s) eN V̂ (t,s)dt ds. Therefore, we verify the

assumption of the saddle point method for V̂ (t, s). We recall that the differentials of

V̂ (t, s) are given in (47).
In order to show Lemma 5.7 below, we calculate the behavior of the following function,

ft,s(δ1, δ2) = Re V̂ (t+ δ1
√
−1, s+ δ2

√
−1)− ς

R
.

The differentials of this function are given by

∂

∂δ1
ft,s(δ1, δ2) = Re

(√
−1

∂

∂t
V̂ (t+ δ1

√
−1, s+ δ2

√
−1)

)
= −Im

(
− log

(
1− 1

x

)
− 2π

√
−1
(
t+ s− 1

2

))
= Arg

(
1− 1

x

)
+ 2π

(
t+ s− 1

2

)
, (58)

∂

∂δ2
ft,s(δ1, δ2) = Re

(√
−1

∂

∂s
V̂ (t+ δ1

√
−1, s+ δ2

√
−1)

)
= −Im

(
− 2 log

(
1− 1

y

)
− 2π

√
−1 (t+ 2s− 1)

)
= 2

(
Arg

(
1− 1

y

)
+ 2π

(1
2
t+ s− 1

2

))
, (59)

where x = e2π
√
−1 (t+δ1

√
−1) and y = e2π

√
−1 (s+δ2

√
−1).

Lemma 5.5 (Yokota [44]). Fixing (t, s) ∈ ∆′ and δ2 ∈ R, we regard ft,s(X, δ2) as a
function of X ∈ R.
(1) If t+ s ≥ 1

2
, then ft,s(X, δ2) is monotonically increasing for X ∈ R.

(2) If t+ s < 1
2
, then ft,s(X, δ2) has a unique minimal point at X = g1(t, s), where

g1(t, s) =
1

2π
log

sin 2π(t+ s)

sin 2πs
,

i.e., ft,s(X, δ2) is monotonically decreasing for X < g1(t, s), and is monotonically increas-
ing for X > g1(t, s).

Proof. We put x = e2π
√
−1 (t+X

√
−1). Then, 1/x = e2πXe−2π

√
−1 t. We put θ = Arg (1 − 1

x
)

in this proof. Since t < 1
2
, θ is in the following range,

0 < θ < 2π
(1
2
− t
)
.
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When t+ s ≥ 1
2
, we show the lemma, as follows. By (58),

∂

∂X
ft,s(X, δ2) = θ + 2π

(
t+ s− 1

2

)
> 0.

Therefore, ft,s(X, δ2) is monotonically increasing, and (1) holds.
When t+ s < 1

2
, we show the lemma, as follows. In this case, by (58),

∂

∂X
ft,s(X, δ2)


> 0 if θ > 2π(1

2
− t− s),

= 0 if θ = 2π(1
2
− t− s),

< 0 if θ < 2π(1
2
− t− s).

Further, θ and X are related as shown in the following picture.

1
0 1

2πt θ

e2πX

1/x

Hence, X is monotonically increasing as a function of θ, and they satisfy that

e2πX

sin θ
=

1

sin(π − 2πt− θ)
.

This is rewritten,

X =
1

2π
log

sin θ

sin(π − 2πt− θ)
.

Therefore,

∂

∂X
ft,s(X, δ2)


> 0 if X > g1(t, s),

= 0 if X = g1(t, s),

< 0 if X < g1(t, s),

where we put

g1(t, s) =
1

2π
log

sin 2π(1
2
− t− s)

sin 2πs
=

1

2π
log

sin 2π(t+ s)

sin 2πs
.

Hence, (2) holds.

Lemma 5.6 (Yokota [44]). Fixing (t, s) ∈ ∆′ and δ1 ∈ R, we regard ft,s(δ1, Y ) as a
function of Y ∈ R.
(1) If t+ 2s ≥ 1, then ft,s(δ1, Y ) is monotonically increasing for Y ∈ R.
(2) If t+ 2s < 1, then ft,s(δ1, Y ) has a unique minimal point at Y = g2(t, s), where

g2(t, s) =
1

2π
log

sin π(t+ 2s)

sinπt
,

i.e., ft,s(δ1, Y ) is monotonically decreasing for Y < g2(t, s), and is monotonically increas-
ing for Y > g2(t, s).
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Proof. We put y = e2π
√
−1 (s+Y

√
−1). Then, 1/y = e2πY e−2π

√
−1 s. We put θ = Arg (1 − 1

y
)

in this proof. Since s < 1
2
, θ is in the following range,

0 < θ < 2π
(1
2
− s
)
.

When t+ 2s ≥ 1, we show the lemma, as follows. By (59),

∂

∂Y
ft,s(δ1, Y ) = 2

(
θ + π

(
t+ 2s− 1

))
> 0.

Hence, ft,s(δ1, Y ) is monotonically increasing, and (1) holds.
When t+ 2s < 1, we show the lemma, as follows. In this case, by (59),

∂

∂Y
ft,s(δ1, Y )


> 0 if θ > 2π(1

2
− 1

2
t− s),

= 0 if θ = 2π(1
2
− 1

2
t− s),

< 0 if θ < 2π(1
2
− 1

2
t− s).

Further, similarly as in the proof of Lemma 5.5, θ and Y are related by

Y =
1

2π
log

sin θ

sin(π − 2πs− θ)
.

Since Y is monotonically increasing as a function of θ,

∂

∂Y
ft,s(δ1, Y )


> 0 if Y > g2(t, s),

= 0 if Y = g2(t, s),

< 0 if Y < g2(t, s),

where we put

g2(t, s) =
1

2π
log

sin 2π(1
2
− 1

2
t− s)

sin
(
π − 2πs− 2π(1

2
− 1

2
t− s)

) =
1

2π
log

sinπ(t+ 2s)

sin πt
.

Hence, we obtain the lemma.

Lemma 5.7 (Yokota [44]). When we apply Proposition 3.5 (saddle point method) to (46),
the assumption of Proposition 3.5 holds.

Proof. We show that there exists a homotopy ∆′
δ (0 ≤ δ ≤ 1) between ∆′

0 = ∆′ and ∆′
1

such that

(tc, sc) ∈ ∆′
1, (60)

∆′
1 − {(tc, sc)} ⊂

{
(t, s) ∈ C2

∣∣ Re V̂ (t, s) < ς
R

}
, (61)

∂∆′
δ ⊂

{
(t, s) ∈ C2

∣∣ Re V̂ (t, s) < ς
R

}
. (62)

For a sufficiently large R > 0, we put

ĝ1(t, s) =

{
max {−R, g1(t, s)} if t+ s < 1

2
,

−R if t+ s ≥ 1
2
,
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ĝ2(t, s) =

{
max {−R, g2(t, s)} if t+ 2s < 1,

−R if t+ 2s ≥ 1.

We note that, since g1(t, s) → −∞ as t+s→ 1
2
, ĝ1(t, s) is continuous, and similarly, since

g2(t, s) → −∞ as t+ 2s→ 1, ĝ2(t, s) is continuous. We put

∆′
δ =

{(
t+ δ · ĝ1(t, s)

√
−1, s+ δ · ĝ2(t, s)

√
−1
)
∈ C2

∣∣ (t, s) ∈ ∆′}.
We show (62), as follows. From the definition of ∆′,

∂∆′ ⊂
{
(t, s) ∈ C2

∣∣ Re V̂ (t, s) < ς
R

}
.

Further, by Lemmas 5.5 and 5.6,

Re V̂
(
t+ δ · ĝ1(t, s)

√
−1, s+ δ · ĝ2(t, s)

√
−1
)

≤ V̂ (t, s)

for any δ ∈ [0, 1] and any (t, s) ∈ ∆′. Hence, (62) holds.
We show (60) and (61), as follows. Consider the following functions

F (t, s,X, Y ) = Re V̂
(
t+X

√
−1, s+ Y

√
−1
)
,

h(t, s) = F
(
t, s, ĝ1(t, s), ĝ2(t, s)

)
.

When t + 2s ≥ 1, −h(t, s) is sufficiently large (because we let R be sufficiently large),
and (61) holds in this case. When t + 2s < 1, it is shown from the definitions of g1(t, s)

and g2(t, s) that ∂F
∂X

= 0 at X = g1(t, s) and ∂F
∂Y

= 0 at Y = g2(t, s). Hence, Im ∂V̂
∂t

=

Im ∂V̂
∂s

= 0 at
(
t + g1(t, s)

√
−1, s + g2(t, s)

√
−1
)
. Further, ∂h

∂t
= Re ∂V̂

∂t
and ∂h

∂s
= Re ∂V̂

∂s

at
(
t + g1(t, s)

√
−1, s + g2(t, s)

√
−1
)
. Therefore, when (t, s) is a critial point of h(t, s),(

t + g1(t, s)
√
−1, s + g2(t, s)

√
−1
)
is a critical point of V̂ . It follows that h(t, s) has a

unique maximal point at (t, s) = (Re tc,Re sc). Therefore, (60) and (61) hold.

5.4 Verifying the assumption of the Poisson summation formula

In this section, in Lemma 5.8, we verify the assumption of the Poisson summation formula
(Proposition 4.6, see also Remark 4.8 and Appendix B) when we apply Proposition 4.6

and Remark 4.8 to (14). As in the previous section, we consider V̂ (t, s) instead of V (t, s)
in this section.

We calculate a critical point (tr, sr) ∈ ∆′ of Re V̂ (t, s), as follows. Putting x = e2π
√
−1 ·t

and y = e2π
√
−1 ·s, we have that

∂

∂t
Re V̂ (t, s) = Re

(
− log

(
1− 1

x

))
,

∂

∂s
Re V̂ (t, s) = Re

(
− 2 log

(
1− 1

y

))
,

since t, s ∈ R. Hence, putting xr = e2π
√
−1 ·tr and yr = e2π

√
−1 ·sr ,∣∣xr − 1

∣∣ =
∣∣ yr − 1

∣∣ = 1,
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noting that |xr| = |yr| = 1. Therefore, xr = yr = e2π
√
−1/3, and ReV (t, s) has a unique

maximal point (1
6
, 1
6
) on ∆′. Its maximal value is given by

Re V̂
(1
6
,
1

6

)
− ς

R
= Re

1

2π
√
−1

(
Li2(e

π
√
−1/3)− 2 Li2(e

−π
√
−1/3)

)
− ς

R

= 0.03448931080... .

Hence,

Re V̂ (t, s)− ς
R

≤ 0.03448931080... , (63)

for any (t, s) ∈ ∆′.

Lemma 5.8. When we apply Proposition 4.6 to (14), the assumptions of Proposition 4.6
hold.

Proof. We verify the assumptions (41) and (42) for i = 1 in Lemmas 5.9 and 5.10 be-
low, and verify the assumptions for i = 2 in Lemmas 5.11 and 5.12 below. The other
assumptions of Proposition 4.6 can be verified easily.

Lemma 5.9. The assumption (41) holds for i = 1.

Proof. As for the assumption (41) for i = 1, we show that ∂∆′ is null-homotopic in{
(t+ δ

√
−1, s) ∈ C2

∣∣ (t, s) ∈ ∆′, δ ≥ 0, ReV (t+ δ
√
−1, s) < ς

R
+ 2πδ

}
.

To show it, we show that the following disk bounds ∂∆′ in the above domain,{
(t+ δ0

√
−1, s) ∈ C2

∣∣ (t, s) ∈ ∆′} ∪
{
(t+ δ

√
−1, s) ∈ C2

∣∣ (t, s) ∈ ∂∆′, δ ∈ [0, δ0]
}
.

We put
Ft,s(δ) = ReV (t+ δ

√
−1, s)− ς

R
− 2πδ

in this proof. Then, it is sufficient to show that

Ft,s(δ0) < 0 for any (t, s) ∈ ∆′, and (64)

Ft,s(δ) < 0 for any (t, s) ∈ ∂∆′ and δ ∈ [0, δ0], (65)

for some δ0 > 0.
To show these, we estimate the differential of Ft,s(δ), as follows. The differential of

Ft,s(δ) is given by

d

dδ
Ft,s(δ) = Re

(√
−1

∂

∂t
V̂ (t+ δ

√
−1, s)

)
− 2π

= −Im
(
− log

(
1− 1

x

)
− 2π

√
−1
(
t+ s− 1

2

))
− 2π

= Arg
(
1− 1

x

)
+ 2π

(
t+ s− 3

2

)
,

where we put x = e2π
√
−1(t+δ

√
−1). Since 0.04 ≤ t ≤ 0.4, it is shown that Arg (1− 1

x
) is in

the following range,

0 < Arg
(
1− 1

x

)
< π.
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Therefore, since t+ s ≤ 0.6,

d

dδ
Ft,s(δ) < 2π

(1
2
+ 0.6− 3

2

)
= −2π · 0.4.

We show (64), as follows. We have that

Ft,s(δ0) = Ft,s(0) +

∫ δ0

0

d

dδ
Ft,s(δ) dδ < Ft,s(0)− 2π · 0.4 · δ0 .

Further, by (63),

Ft,s(0) = Re V̂ (t, s)− ς
R

≤ 0.03448931080... .

Hence, (64) is satisfied for a sufficiently large δ0.
We show (65), as follows. From the definition of ∆′, we have that Ft,s(0) < 0 for any

(t, s) ∈ ∂∆′. Since d
dδ
Ft,s(δ) < 0 as shown above, it is shown similarly as above that

Ft,s(δ) < 0 for any δ ≥ 0. Hence, (65) is satisfied.

Lemma 5.10. The assumption (42) holds for i = 1.

Proof. We put
Ft,s(δ) = ReV (t− δ

√
−1, s)− ς

R
− 2πδ

in this proof. Similarly as the proof of Lemma 5.9, it is sufficient to show that there exists
ε > 0 such that

d

dδ
Ft,s(δ) < −ε, (66)

for any (t, s) ∈ ∆′.
We calculate this as

d

dδ
Ft,s(δ) = Re

(
−

√
−1

∂

∂t
V̂ (t− δ

√
−1, s)

)
− 2π

= Im
(
− log

(
1− 1

x

)
− 2π

√
−1
(
t+ s− 1

2

))
− 2π

= −Arg
(
1− 1

x

)
− 2π

(
t+ s+

1

2

)
,

where we put x = e2π
√
−1(t−δ

√
−1). Since 0.04 ≤ t ≤ 0.4, it is shown that Arg (1− 1

x
) is in

the following range,

0 < Arg
(
1− 1

x

)
< π .

Therefore, since t+ s ≥ 0.09,

d

dδ
Ft,s(δ) < −2π

(
0.09 +

1

2

)
= −2π · 0.59,

and (66) is satisfied.

Lemma 5.11. The assumption (41) holds for i = 2.
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Proof. We put
Ft,s(δ) = ReV (t, s+ δ

√
−1)− ς

R
− 2πδ

in this proof. Similarly as the proof of Lemma 5.9, it is sufficient to show that there exists
ε > 0 such that

d

dδ
Ft,s(δ) < −ε, (67)

for any (t, s) ∈ ∆′.
To show these, we calculate the differential of Ft,s(δ) as

d

dδ
Ft,s(δ) = Re

(√
−1

∂

∂s
V (t, s+ δ

√
−1)

)
− 2π

= −Im
(
− 2 log

(
1− 1

y

)
− 2π

√
−1
(
t+ 2s− 1

))
− 2π

= 2Arg
(
1− 1

y

)
+ 2π

(
t+ 2s− 2

)
,

where we put y = e2π
√
−1(s+δ

√
−1). Since 0.05 ≤ s ≤ 0.4, it is shown that Arg (1− 1

y
) is in

the following range,

0 < Arg
(
1− 1

y

)
< 2π

(1
2
− s
)
.

Therefore, since t ≤ 0.4,

d

dδ
Ft,s(δ) < 2 · 2π

(1
2
− s
)
+ 2π

(
t+ 2s− 2

)
= 2π(t− 1) ≤ −2π · 0.6,

and (67) is satisfied.

Lemma 5.12. The assumption (42) holds for i = 2.

Proof. We put
Ft,s(δ) = ReV (t, s− δ

√
−1)− ς

R
− 2πδ

in this proof. Similarly as the proof of Lemma 5.9, it is sufficient to show that there exists
ε > 0 such that

d

dδ
Ft,s(δ) < −ε, (68)

for any (t, s) ∈ ∆′.
We calculate this as

d

dδ
Ft,s(δ) = Re

(
−
√
−1

∂

∂s
V (t, s− δ

√
−1)

)
− 2π

= Im
(
− 2 log

(
1− 1

y

)
− 2π

√
−1
(
t+ 2s− 1

))
− 2π

= −2Arg
(
1− 1

y

)
− 2π

(
t+ 2s

)
,
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where we put y = e2π
√
−1(s−δ

√
−1). Since 0.05 ≤ s ≤ 0.4, it is shown that Arg (1− 1

y
) is in

the following range,

0 < Arg
(
1− 1

y

)
< π .

Therefore, since t+ s ≥ 0.09 and s ≥ 0.05,

d

dδ
Ft,s(δ) < −2π

(
0.09 + 0.05

)
= −2π · 0.14,

and (68) is satisfied.

A Properties of φ(t)

In this appendix, we review some basic properties of φ(t).

We put ℏ = 2π
√
−1/N , and put

Φd(z) = Li2
(
z
)
+
∑

1≤k≤d

ℏ2kc2k ·
(
z
d

dz

)2k−2 z

1− z
,

where we define c2k by
y/2

sinh(y/2)
=
∑
k≥0

c2k y
2k.

Proposition A.1. We fix any sufficiently small δ > 0 and any M > 0. Let d be any
non-negative integer. Then, in the domain{

t ∈ C
∣∣ δ ≤ Re t ≤ 1− δ, |Im t| ≤M

}
, (69)

φ(t) and φ(k)(t) are presented by

φ(t) =
N

2π
√
−1

Φd(e
2π

√
−1 t) +O

( 1

N2d+1

)
, (70)

φ(k)(t) =
N

2π
√
−1

( d
dt

)k
Φd(e

2π
√
−1 t) +O

( 1

N2d+1

)
, (71)

for each k > 0, where O(1/N2d+1) means the error term whose absolute value is bounded
by C/N2d+1 for some C > 0, which is independent of t (but possibly dependent on δ).

In particular, 1
N
φ(t) uniformly converges to 1

2π
√
−1

Li2(e
2π

√
−1 t) in the domain (69), and

1
N
φ′(t) uniformly converges to − log(1− e2π

√
−1 t) in the domain (69).

Proof. We show (70). We have that

φ(t) =

∫ ∞

−∞

Ne(2t−1)x

4x2 sinhx
· x/N

sinh(x/N)
dx =

∫ ∞

−∞

Ne(2t−1)x

4x2 sinhx

∑
k≥0

c2k
(2x
N

)2k
dx. (72)
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We put the “k=0” part of (72) to be

f(t) =

∫ ∞

−∞

Ne(2t−1)x

4x2 sinhx
dx.

To calculate f(t), we consider the following contour,[
− (m+ 1

2
)π,−1

]
∪
{
z ∈ C

∣∣ |z| = 1, Im z ≥ 0}
∪
[
1, (m+ 1

2
)π
]
∪
{
z ∈ C

∣∣ |z| = m+ 1
2
, Im z ≥ 0

}
.

Then, the integrand has poles at nπ
√
−1 (n = 1, 2, · · · ,m) in the region bounded by the

contour. Hence,

f(t) = lim
m→∞

m∑
n=1

2π
√
−1 Res

x=nπ
√
−1

Ne(2t−1)x

4x2 sinhx

= 2π
√
−1

∞∑
n=1

−N
4π2

(e2π
√
−1 t)n

n2
=

N

2π
√
−1

Li2(e
2π

√
−1 t).

Further, for general k > 0, the “k” part of (72) is calculated as

c2k
N2k

f (2k)(t) =
N

2π
√
−1

· c2k
N2k

( d
dt

)2k
Li2(e

2π
√
−1 t) =

N

2π
√
−1

· ℏ2kc2k
(
z
d

dz

)2k−2 z

1− z
.

Therefore, we can put

φ(t) =
N

2π
√
−1

Φd(e
2π

√
−1 t) +Rd,

where Rd is the error term. We estimate it, as follows. Since |(y/2)/ sinh(y/2)| is bounded
for y ∈ R, there exists M0 > 0 such that∣∣∣ 1

y2d+2

( y/2

sinh y/2
−

d∑
k=0

c2ky
2k
) ∣∣∣ ≤ M0

for any y ∈ R. Hence, putting y = 2x/N ,

|Rd| =
∣∣∣φ(t) − N

2π
√
−1

Φd(e
2π

√
−1 t)

∣∣∣
=
∣∣∣ ∫ ∞

−∞

Ne(2t−1)x

4x2 sinhx

( x/N

sinh(x/N)
−

d∑
k=0

c2k
(2x
N

)2k)
dx
∣∣∣

≤
∫ ∞

−∞

∣∣∣ Ne(2t−1)x

4x2 sinhx

∣∣∣ ·M0

∣∣2x
N

∣∣2d+2
dx

=
22dM0

N2d+1

(∫ ∞

1

e(2Re t−1)x

| sinhx|
x2d dx+

∫ −1

−∞

e(2Re t−1)x

| sinhx|
x2d dx+

∫
|z|=1

Im z≥ 0

eRe ((2t−1)z)

| sinh z|
|dz|

)
.

(73)
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For x ≥ 1, the integrand of (73) is bounded by M1e
−2δxx2d for some M1 > 0. For x ≤ −1,

the integrand of (73) is bounded byM2e
2δxx2d for someM2 > 0. For |z| = 1, the integrand

of (73) is bounded by a constant. Hence, the values of the integrals of (73) is bounded by
a constant. Therefore, |Rd| is bounded by C/N2d+1 for some C > 0, which is independent
of t. Hence, we obtain (70).

We obtain (71) by similar arguments for φ(k)(t).

Lemma A.2. For any t ∈ C with 0 < Re t < 1,

φ(t) + φ(1− t) = 2π
√
−1
(
− N

2

(
t2 − t+

1

6

)
+

1

24N

)
.

Proof. By definition,

φ(t) + φ(1− t) =

∫
γ

e(2t−1)x + e(1−2t)x

4x sinhx sinh(x/N)
dx.

Since this integrand is an odd function, if the contour was R, the integral would vanish.
In this case, since the contour γ avoids the pole at x = 0, the contribution from the
residue at this pole survives. By expanding the numerator and the denominator of the
integrand as power series of x concretely, we can calculate this residue, and obtain the
required formula.

Lemma A.3 (Kashaev).

φ
( 1

2N

)
=

N

2π
√
−1

π2

6
+

1

2
logN +

π
√
−1

4
− π

√
−1

12N
,

φ
(
1− 1

2N

)
=

N

2π
√
−1

π2

6
− 1

2
logN +

π
√
−1

4
− π

√
−1

12N
.

Proof. It is sufficient to show that

φ
( 1

2N

)
+ φ

(
1− 1

2N

)
= 2π

√
−1
(
− N

12
+

1

4
− 1

12N

)
, (74)

φ
( 1

2N

)
− φ

(
1− 1

2N

)
= logN. (75)

We obtain (74) from Lemma A.2 by putting t = 1/2N .
We show (75), as follows. By (3) and (8),

exp
(
φ
( 1

2N

)
− φ

(
1− 1

2N

))
= N. (76)

Further, from the definition of φ(t),

φ
( 1

2N

)
− φ

(
1− 1

2N

)
=

∫
γ

e(1−1/N)x − e(1/N−1)x

4x sinhx sinh(x/N)
dx.

By a similar argument as in the proof of Lemma A.2, we can see that the residue of this
integrand at 0 vanishes. Hence, the value of this integral is real, and we obtain (75) from
(76).
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B Convergence of V (t, s) to V̂ (t, s)

When we apply the saddle point method and the Poisson summation formula to V (t, s),

it is necessary to note how V (t, s) converges to V̂ (t, s) as N → ∞. In this appendix, we
verify that this convergence is suitable in those applications.

We recall that in Section 2.2 we put V (t, s) and V̂ (t, s) by

V (t, s) =
1

N

(
− φ(1− t)− 2φ(1− s)

)
− 1

2π
√
−1

π2

6

− 2π
√
−1
(1
2

(
t+ s− 1

2N

)2
+

1

2
s2 − 1

2
t− s+

1

6

)
− 3π

√
−1

4N
+
π
√
−1

4N2

and

V̂ (t, s) =
1

2π
√
−1

(
− Li2(e

−2π
√
−1 t)− 2 Li2(e

−2π
√
−1 s)− π2

6

)
− 2π

√
−1
(1
2
t2 + s2 + ts− 1

2
t− s+

1

6

)
.

Lemma B.1. Let m be any non-negative integer. Then, in the domain ∆′′ of (12), V (t, s)
is presented by the following form

V (t, s) = V̂ (t, s) + V1(t, s)
1

N
+ V2(t, s)

1

N2
+ · · ·+ Vm(t, s)

1

Nm
++Rm(t, s)

1

Nm+1

where Vi(t, s)’s are holomorphic functions independent of N , and |Rm(t, s)| is bounded by
a constant which is independent of N .

In particular, V (t, s) uniformly converges to V̂ (t, s) in the domain ∆′′.

Proof. We obtain the required presentation by applying Proposition A.1 to V (t, s). In

particular, by Proposition A.1, 1
N
φ(t) uniformly converges to 1

2π
√
−1

Li2(e
2π

√
−1 t) as N →

∞ in the domain ∆′′. Hence, we obtain the lemma.

Lemma B.2. Let i and j be any non-negative integers. Then, in the domain ∆′′,∣∣ ∂i+j

∂it∂js
V (t, s)

∣∣ is bounded by a constant which is independent of N .

Proof. By Proposition A.1,
∣∣ ∂i+j

∂it∂js
V (t, s)

∣∣ uniformly converges to
∣∣ ∂i+j

∂it∂js
V̂ (t, s)

∣∣ as N → ∞
in the domain ∆′′. Since ∆′′ is compact,

∣∣ ∂i+j

∂it∂js
V̂ (t, s)

∣∣ is bounded in ∆′′. Hence, we obtain
the lemma.

When we apply the saddle point method, we need to show that V (t, s) satisfies the

condition of Remark 3.6, noting that V̂ (t, s) satisfies the assumption of the saddle point
method as shown in Section 5.3. In fact, we can show the condition of Remark 3.6 for
V (t, s) by Lemma B.1.

When we apply the Poisson summation formula, we need to show that V (t, s) satisfies

the condition of Remark 4.8, noting that V̂ (t, s) satisfies the assumption of the Poisson
summation formula as shown in Section 5.4. In fact, we can show the condition of Remark
4.8 for V (t, s) by Lemmas B.1 and B.2.
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C Critical points of V (t, s) and V̂ (t, s)

In this appendix, we show a proof of Lemma 5.1.

We put ℏ = 2π
√
−1/N , and use the notation in Section 5.2. By Proposition A.1, we

can put
1

N
φ′(1− t) = − log(1− e−2π

√
−1 t) + r(t, ℏ) ℏ2

for some smooth function r(t, ℏ) of t and ℏ. Then, from the definition of V (t, s), we have
that

∂

∂t
V (t, s) = − log

(
1− 1

x

)
− 2π

√
−1
(
t+ s− 1

2
− 1

2N

)
+ r(t, ℏ) ℏ2,

∂

∂s
V (t, s) = −2 log

(
1− 1

y

)
− 2π

√
−1
(
t+ 2s− 1− 1

2N

)
+ 2 r(s, ℏ) ℏ2.

Hence, a critical point of V (t, s) is a solution of
(
1− 1

x

)
(−q−1/2xy) = er(t,ℏ) ℏ

2

,(
1− 1

y

)2
q−1/2xy2 = e2 r(s,ℏ) ℏ

2

.

This is rewritten as {
(1− x)y = q1/2er(t,ℏ) ℏ

2

,

x(y − 1)2 = q1/2e2 r(s,ℏ) ℏ
2

.

Further, by putting

F (t, s, ℏ) = (1− x)y − q1/2er(t,ℏ) ℏ
2

,

G(t, s, ℏ) = x(y − 1)2 − q1/2e2 r(s,ℏ) ℏ
2

,

the above system of equations is rewritten as{
F (t, s, ℏ) = 0,

G(t, s, ℏ) = 0.
(77)

We note that (t0, s0, 0) is a solution of (77).

Proof of Lemma 5.1. It is sufficient to show that there exists a smooth solution
(
f(ℏ), g(ℏ), ℏ

)
of (77) in a sufficiently small neighborhood of (t0, s0, 0). Hence, by the implicit function
theorem, it is sufficient to show that

det

(
∂
∂t
F (t0, s0, 0)

∂
∂s
F (t0, s0, 0)

∂
∂t
G(t0, s0, 0)

∂
∂s
G(t0, s0, 0)

)
̸= 0. (78)

Since x = e2π
√
−1 t, d

dt
= 2π

√
−1x d

dx
. Similarly, d

ds
= 2π

√
−1 y d

dy
. Therefore, from the

definitions of F (t, s, ℏ) and G(t, s, ℏ), we have that

1

2π
√
−1

∂

∂t
F (t0, s0, 0) = x

∂

∂x

(
(1− x)y

)∣∣
ℏ=0

= −x0y0 ,
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1

2π
√
−1

∂

∂s
F (t0, s0, 0) = y

∂

∂y

(
(1− x)y

)∣∣
ℏ=0

= (1− x0)y0 ,

1

2π
√
−1

∂

∂t
G(t0, s0, 0) = x

∂

∂x

(
x(y − 1)2

)∣∣
ℏ=0

= x0(y0 − 1)2,

1

2π
√
−1

∂

∂s
G(t0, s0, 0) = y

∂

∂y

(
x(y − 1)2

)∣∣
ℏ=0

= 2x0y0(y0 − 1).

Hence, the determinant of (78) is calculated as

− 4π2 · det
(

−x0y0 (1− x0)y0
x0(y0 − 1)2 2x0y0(y0 − 1)

)
= 4π2 · x0y0(y0 − 1)(x0y0 + x0 + y0 − 1)

= 4π2 · (2y0 + 1)(y0 − 1)3/y0 = 4π2 · (2y0 + 1) ̸= 0,

since x0 = 1 − 1/y0 and (y0 − 1)3 = y0. Therefore, we obtain (78), completing the proof
of the lemma.

D Proof of Lemma 2.1

In this appendix, we give a proof of Lemma 2.1.

Proof of Lemma 2.1. We put

Λ(t) = Re
( 1

2π
√
−1

Li2(e
2π

√
−1 t)

)
for t ∈ R. We note that this function has period 1, and Λ(−t) = −Λ(t). Since

Λ′(t) = − log
(
2 sin πt

)
for 0 < t < 1, the behavior of Λ(t) is as follows.

t 0 · · · 1
6 · · · 1

2 · · · 5
6 · · · 1

Λ(t) 0 → Λ(1
6
) → 0 → −Λ(1

6
) → 0

Here, Λ(1
6
) = 0.161533... . See Figure 6 for the graph of Λ(t).

0.60.2 0.4 0.8

−

−

−

0.05

0.05

0.10

0.10

0.15

0.15

1.0

Figure 6: The graph of Λ(t) for 0 ≤ t ≤ 1

We consider the following domain,{
(t, s) ∈ R2

∣∣ Re V̂ (t, s) ≥ ς
R

}
. (79)
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For t, s ∈ R,
Re V̂ (t, s) = −Λ(−t)− 2Λ(−s) = Λ(t) + 2Λ(s).

Since 2Λ(1
6
)− ς

R
= −0.127043... < 0, the values of Λ(t) and Λ(s) must be positive when

(t, s) is in the domain (79). Hence, the domain (79) is included in the following area,{
(t, s) ∈ R2

∣∣ 0 ≤ t ≤ 0.5, 0 ≤ s ≤ 0.5
}
.

We assume that 0 ≤ t ≤ 0.5 and 0 ≤ s ≤ 0.5 in the following of this proof.
We consider the minimal value tmin of t such that (t, s) is in the domain (79). It satisfies

that Λ(tmin) + 2Λ(1
6
) = ς

R
. Since Λ(0.04) + 2Λ(1

6
)− ς

R
= −0.031768... < 0, we have that

0.04 < tmin. Hence, the domain (11) is included in the area 0.04 ≤ t for some sufficiently
small ε > 0. Further, in similar ways, we can show that the domain (11) is included in
the area {

(t, s) ∈ R2
∣∣ 0.04 ≤ t ≤ 0.4, 0.05 ≤ s ≤ 0.4

}
for some sufficiently small ε > 0. We assume that (t, s) is in the above area in the following
of this proof.

By expanding Λ(t) at t = 0.3, we can show that

Λ(t) ≤ Λ(0.3) + Λ′(0.3)(t− 0.3).

If (t, s) is in the domain (79),

ς
R

≤ Λ(t) + 2Λ(s) ≤ Λ(0.3) + Λ′(0.3)(t− 0.3) + 2
(
Λ(0.3) + Λ′(0.3)(s− 0.3)

)
.

Hence,

t+ 2s ≤ ς
R
− 3Λ(0.3)

Λ′(0.3)
+ 0.9.

Further, since t ≤ 0.4,

t+ s ≤ 1

2

(ς
R
− 3Λ(0.3)

Λ′(0.3)
+ 1.3

)
= 0.571668... < 0.6.

Therefore, the domain (11) is included in ∆′ for some sufficiently small ε > 0, as required.
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