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On non-linear ordinary and evolution equations
1 By Haruo Murakami
(Kobe University)
Recently F. Browder [1] and T. Kato [5] proved the existence

and uniqueness of (mild) solutions of the ordinary differential

equation
() -3 - r(t,u)

as well as of the evolution equation

(2) __%%_ = A(t)u + £(t,u),

where the unknown function u(t) takes values in a Hilbert space

H, and E&(ti} are densely defined closed linear operators of
hyperbolic type. Their mothods are based on the monotoni?ity
argument; i.e., they assume thst f(t,u) satisfies the :
monotonicity condition

(%) Re (f(t,u) - £(t,v), uwv)é;.M iu-viz R

and vse this property rather extensively. For proving the
existence of a solution of the ordinary differential equation

(1) they use Peano's existence theorem for the finite dimen-
sional spaces and the so-called Galerkin's method of approximating
the space H by a sequence of increasing finite dimensional
spaces.,

Instead of assuming the monotonicity of f(t,u) we impose

a more general condition as follows. Let IT be an interval

t®§:1;§ t, + T and X be a Banach space. Suppose that
there exists a real valued continuous function g(t,u,v) on

a set D

This work was done during the author was staying in the University
of Kansas under NSF Grant G17057 and ONR Contract Nonr 583%(12).
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in ITXTX>(X which satisfies some of the following properties?)
(Pq) @(t,U,V)P 0 if u:\sv; =0 if u = v,
(P2> é? (t,un,vn)-§ O imples u, - v —» O for each ¢.

(P3)

(P3)  P(,u,v) is continuously (Fréchet) differentiable

Dfé = g% + Z% f(tﬂI) + ‘g% f(t1v>é 0. '
BB 28
oV

(F) For any positive number M, -g%=, 55— X,

éﬁ(t,un,vn)aé 0 imples u, - vn-9»0 uniformly in ¢+,

and

are continuous in {(u,v) uniformly for
(t,u,v) € D and Ex}é M,

We see, in particular, that if  satisfies the monotonicity
condition (%) then @it,ugv) defined by é(t?u,v) = e'ZMtguwvga
satisfies all these conditions on EEJ<X?fXa Cn the other hand,
the example 2 of Section 1 shows that our conditionm is more
ceneral than the monotonicity. For proving the existence of
sclutions of the ordinary differential equation (1), we don't
need to use Galerkin's method, Instead, we approximate the
solution by & family of suitable piecewlse smooth curves, and
osur proofs are short and elementary.

For the evolubtion equation (2), however, our results are by

no means satisfactory. To arply our method to the esvolution

equation we have to assume one more condition; namely,

22

5 Su

rove the existence of a mild solution of (2) under

Alt)u + %%é_ A(t)vé 0.
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introduced by CUkamura for classical ordinary differen-
s about thirty years ago (9], [101].

(%)
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1. Uniquness and stability the solution

T
e

T N
Let X Dbe a normed space, I, an interval

=]

S t, + 71, D(¢), t € I;, a subset of X, and
D= f(tu); telp uedt)}.

Consider the equation

<b - £(s,u),

where f(t,u) is defined §n D. Note that f(t,u) need not
be continuous,

We say that u(t) is a solution of (1) on Iy if u(t)
is defined on IT’ taking values in X, strongly differentiable
in ¢t for to<1:§to+ T, and satisfying the equation on

t, <&t + T If, moreover, u(t) 1is continucus on Ip and
satisfies u(t ) = u, then u(t) 4is said to be a solution of

°
(1) on IT taking the initial value u

o.
Theorem 1. Let u  be in D(0), f(t,u) be defined on the
set {(t,u); £, <tSt+ Ty ue D(t)} . Suppose that there

exists a real valued continuous function é(t,u,v) on some

neighbourhood of A= {-(t,u,v): (t,v) € D, (t,v) € Dj with the

properties (Pq) and (P;). Then there is at most one solution

of (1) taking the initial value u,. Furthermore, if é?

satisfies (P2) then uft) depends continuously on u_ for

o

each &,
Proof, Suppose that there exist. two solutions u1(t),

u,(t) satisfying (1) and uy(t)) = u2<to) = u,. Then we have

£0 - for t>t.

Hence

(8 P (o8, uy(8)) - @(to,%(to),ug(to)_)g 0.
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Since @(t ,uq(t ) u2(t ) = @(to,uo,u ) = 0, we see that
ég(t,uq(t),u2(t)) - 0. Therefore u,(t) = us{t).
Since é@(t,u,v) is continuous, !u1(to) - uZ(to)i-é'O
implies @ (t_,u,(t ),us(t,)) 5 0. This implies
@(t,u,‘(t),ua(t)) >0 by (4), If é satisfies (P,), then

we have ‘u1(t) - ue(t)[ > 0,

‘ Remark, -We.could weaken the condition (PE) to the following:
(P ) ég(t u(t),v(t)) is monotone-increasing in t for.any

' two solutions wu(t) and v(t) of (1),
Then, i% pufns oﬁt,that the existence of such a continuous
function\satisiyigg‘_(Pﬂﬁgn(Pg} and. (Pb’},_is also a necessary
condition for uniqueness of the solution 1if f(t,u) is assumed
tQ bte bounded ani~c0ntinuous, but,weﬂshall gng go.into,the details
hére. ‘ ; |
- .Examples: ,1; If X is a Hilbert space and f(t,u)
L‘%atlafiég the moncton;city condition . (%) tﬁen, as mentioned
in the 1Ptr0duction, é@(t u,v) = .- 2Mt[u vfg satisfies our
condltionsa . o
2. If A(%) . is of hyperbolic type then we havetthe dissipative

property
Re(A(t)u, u)gs 0,

so that 1f we consider

S - £(s,u) = A(8)n + glt,u)

where g(t,u) satisfies the monotonicity condition (32), then
f{t,u) also satisfies (%)  and hence we have the uniqueness

of the solution.,

z» Let X =R, Consider the differential equation
a 1 -9
_E.E.._.f(t,u}_,;q u uz=z0
S | u < 0,

Then the function f(%t,u) does not satisfy Lipschitz' condition
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but does satisfy the monotoniclty condi}:ion. On the other hand,

when we consider

dau (1 +qu uz2o0
T = f(t,u) =
1 u40,

we see that the second member of this differential equation
does not satiéfy the monotonicity condition. ' But there does
exist a function @ (t,u,v) which satisfies our conditions

P

(P'I) - (Pu) for this equation, namely,

g (5 - V5 - log(1+d) + log(144R))°  uz0, vZO
{fu - 10@(1-*%) --'--%"'V)a uz0, v«<O
@(t,ugf} = 1 N2
( ——u -4v + log(1+4~)) : u<0, vz20
é © o (u - ¥)° : u <0, v,
Sa¥e ' ' ' o
4, " Consider the following simple parabb’iic équationg
. . 2 ) : i ’ : -
2 L - 2 Flt,x,u)
2 & 3 x2 . A

on a rezion bounded by. t=t_, t=t_+ T, x=A,(t) and x=A,(t),

=\_,‘o%
where A4(t){ A,(t) for 6 Ct¢t + T. The initial and

.
[

boundary conditions are: u=g(x) on t=t_, uéh,!(t) and
u=h2(t) on x= A4(t) and x=7\2(t) respectively, where g,
h, and h, are continuous and g( 7\,4({:0)) = h’1<to)’
g(a;(te)) = hz(to), It is knownj) that if

F(t,x,u,) = F(t,x,uz)é K(u, - ug) holds for u,;> uy then
the solution is unique. By the argument of Theorem 1 it can
be proved as follows. Let D(t) be a set of all functions in
x which are continuous on 7\1(t)<x(hz(t), belong to ¢ on
?\ﬁt)( :i()%?(t)§ and take values h,,(t) and he(t)' at

x = A,{t) and x = Xz(t) respectively.
, T . Axl¢)
. -2
Define @(t,u,v) - oKt Ju(x) - v(x)}zdx, and
2,(t)

1 [el, (7], -

(#X)
]
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: 2
f(t,u) = _Ji_ﬂéil + P(t,x,u(x)) for u € D(t). Then we have

2k &%
2 2
ngé = [Q_Eézl + F(t,x,u(x)) - Q‘Xézl - F(t,x,v(x)) ]} (u(x)-v(x))ax
® 50 &= @
- K\ Ju(x) - v(x) |Pax < - ,g( d(u(xg = v(x))y24, < 0,
< — <
2 () A6

so that the solution is unique.

Let X be a Banach space and f(t,u) be a mapping from

IT)fx to X. We say that f(t,u) is demi—continnousq) if

it is continuous from IT><X with the strong topology to X
with the weak topology.

Theorem 2. Let X be a Banach space and f(t,u) be

defined and demi-continuous on a set D(:{(t,u); t <t< t +T, uGX}

for which we assume that D(t)= { u; (t,u)€ D} s closed in X

for each ¢ in t <t < ¢t +T. Furthermore we assume that

f(t,u) is dominated by a summable function M(t) in such g

way that |f(t,u)| < M(t) for (t,u)€é D. Suppose that there

exists a real valued function ﬁE(t,u,v) on a neighbourhood of

the set / =£(t,u,v); (t,u)€D, (t,v)€ D} and satisfying

(P,), (P,) and (P;). Assume that there is a gcontinuous curve

u =Y(t) in D for which sup P, ¥(6), W=>0 as t—>t_.
ueDe) ©

Assume furthermore that for t

in t  <t,< t_+T the eguation &)

1
has solutions starting to the right from (t19 #’(tq)) reaching tg

the plane t = t,* T in D. Then there is a unigue solution
u(e) of (1) with wu()) = u = Y(t).

Proof. Denote by u = @(%; t1) a solution starting from
(t,, yk(tq)). Then if we take t, < t, < t, we have

S5 D, 95 £, P65 £,)) SO for t, <t <t 4+ T,
so that

[N
1

1y [1]. ' -

9
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Bie, @l 1), Glos )€ Plogy Kegi 620, Higs 840 |
= B oY), Pl 60)>0 a5 bt
thus | @ (65 t,) - §Cts t )| 20 4f by, 5, P b Tet
ﬁ’/’(t) = 111?!?(% t,). Then (%, f(t)}éD and @(%) is a
mﬁlutlon of (1), since fortarbitrary s (>t,) we have
Sa(t; t,) -go(%; t4) = j(Af('C @ (T £40)aT t,d64< %

and hence by 1 tting t,‘u)t we get
Sﬁ(t) - @{At ﬁf( T, ?(’Z})dt Thus ¢ is a solution of

(1) in D. Uniqueness of the solution is obvious, since if

x,(t) is such a solution then

Bt Gs 8,0, L) £ PCoqn Plogs 64D, ZT84))
= Ploy, YTty ),;;’(t,,)) »0
shows that @(t; t,) =» X(t ).

Example. 1) Let. H be a Hilbert space and f(t,u) be a
continuous function on E = g;(t,u); t0<t§to+ T, i"u - uojé c j
to H, Suppose that

i) f(t,u) =0 as (t,u)=»>0 4in E,
11) Re( £(t,u) - £(t,¥), u = v ) £ -%-—},-—%c-lu - v!g on E.
_ o
Then there is a unique solution Sa(t) of (1) such that

) -
ff(t, >u, as t -t
In fact, take é(t,u,V) =

- 1t )2 {u - v!2.' Then Dfég_o

on {(t u,v); (t,u) € E, (&,v) € E} Let '\\J'(t) . We may

assume by the condition i) tha® g ,u)'< m if
< 1 <
t0< t§t0+ T, ( £ £+ T), ‘u - ucigc,] (£ c) and also mT, = c4.

Now pub

ALt) = max{!f(t?u)} i fu - u, /€ m{t - tolj.

1) A& generalization and a proof along {9] of Nagumo's

uniqueness condition (8], .
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Then A (t) >0 as t=>t_. Set

p(e) = §a<'t)dt
Then D = {(t u) t o< tSt ¢ T !u - uo{“’%fl(t)} is contained

in E and

e, Ue), uw) = ()2 0 b >t .
srde o g [l o e o,

Since there exists a solution starting to the right from

(t,, Nht,;)), for each t, in t < t,{t,+ T4, reaching to the
plane’ t o= t5+ Tq by the Theorem % below, we obtain the result
by applying the previous theorem. |

2. Existence theorems for ordinary differential eguations.

Let X be a Banach space and f(t,u) be a mapping from
IT)(_X to X. We assume that f(t,u) sends bounded sets into
bounded sets. Then for any b > O there exists a positive
number M such that (f(t,u)fé M for (t,u) € IpX V,, where
Vy ={u€L; |u-u|£vl. Tet a>0 be such that aM < b,

Theorem 2. Suppose that f(t,u) is continuous on Ia)( Vb

and that there exists a real valued continuocus function i_(t,u,v)

on I X VX7V, satisfying conditions (®;), (P,), (P;) and

(P,). Then (1) has a solution on I, taking initial value u_
at’ t,.

Proof. Let /A be a subdivision of It t0< t,'<...<tn= to* a.
For ¢, _ 1§55 St we define

G0 = ¢ () +f 22, § ()T §log) = uge
Then i"' Ao

jid(t) ?(t )+ Jf(t’ ?(t AT+ ... ff(t So(t VLYo
(e, g»(-t )4z @

fi’ts
u, ff(?)d R

L}

+

£(t, ¢(¢ Y) for % {8l t, .
SZ k~1 o 8;{_-»1 k

\.45\

b -
~~
<t
Nt
L}
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Let 4 and 4' Ybe two subdivzsicns of Ia, and consida*’*— ?(t

and CP‘(t} as above, If t 1is not a subdivision point of

either A or A tk_u,%<t<t and t' (t(t* sey, ther

6
dg %(t gp(t) So(t)) = gt- + aé? (¢) + b% g%;(‘i;)
= g% + ;ff(t ;a(tk 4)) + Bé —=1(%, f( SN}

5 & e@; aé

av - 3v v 1(t, ?(t ’i))
where
2 >
2% . ‘)é SHACE 9><-z:>>, 3%- -—,—,%(t,gctkﬂ),gz’ctg,px
. a
snd similarly for ;f and i% N

By the assumption (P,), for any £7 O there exists a §> 0
such that if we take fAE= max(t, - %, _4) < X and

!Q i = maxﬁta - t3_1}4§“ then we have
28 23 28 aé
i’bt '%64:;% %&u"‘ >f(tf<tk’i))i<§'
5% 2B _ 08, g g aD|C E
4

Thus

@(t (a(t) q;ctn Ce .
Therefore ‘
REAQE §(0)- 0t 6 p (1), §C00)- et AU AL M€ ea,
and t‘nls ohows that there musts a S(‘c) such that
?(t) «)fkt) for each t.
Now fix ¢ in I . Then for each subdivision A there
exists a k such that tk-’3<t&=tk° Then {?gtkm,‘) -%(t) |
«ﬁ: M(t -t _4) <M iA! shows that ?(tk » ﬁf(t), Therefore
£ (s, @(tk 1)) = d(t)m) £(%, g:(t)), and

v‘i" u (20, ©(T))aT.
e S

0

i

9ED
-9 -
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So far we have been assuming that f£{t,u) is continuous.

But the conclusion of Theorem 2 is still true under weaker

hypotheses on f.

Theorem 4. Suppose that X i

P—tna}

real reflexive Banach

o

space. Then the conclusion of Theorem % is true if we replace

the continuity of f by demi-continuity. In this case, we take

o

the differentiastion in the sense of weak topology.
o8
2V

Proof. Note that f§%¥ and are bounded linear
functionals. Therefore by an argument similar to that used in
the proof of Theorem 5 we can prove that
fd (t) = (s, S’(t)) ( =» means weak convergence).
S0 that we have ~
3,'(1:) = £(t, @£, |
Remark 1. If f satisfies the monotonicity condition on
IT)<_X then we may take a = T, for in this case we can prove
that {g(t)} is uniformly bounded on Ip.
Remark 2. The assumptions on f(t,u) c¢an be weakend even
further; if f{t,u) is measurable in t, demi-continuous in u
~and dominated by a summable function’ M(t) for u's remaining
in a bounded set, then we can prove the existence of a local
solution in the same fashion. But, for such a Carathéodory-type

equation, we don't enter into details.

2. Evolution egquations.,

First we shall summarize some of the resultsq) that have

been obtained so far for the linear equation

(5) S - aB)u + glb) t € I,

where §$(t2} is a family of densely defined closed linear

operators on a Banach space X and g{t) is a functiomn en I,

1) (21, (21, (4] ang (5],
-l:O—
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taking values in X. Usually A(t) is unbounded.

Ve make the standing assumption that there exists an evolution
operator U(t,s) associated with A(%). This_means that |
{U(t,s)} is a family of bounded linear operators from X %o X
defined for t0§.5§17§t0+ T, strongly continuous in the tw§
variables jointly and satisfying the conditions ’

U(t,s) U(s,r) = U(t,r), U(s,s) = I,

22Ut s)u. _ Act) U(t,s)u

2t ' for some u€X specified

QU@t,s}u
2 S

We understand that u(t) is a strict solution of (5) on

U(t,s) A(s)u in each case.

IT with the initial value u, if u(t) is strongly‘continuous
on In = ([t , t + 71, u(to) = U5, strongly continuously
differentiable and satisfying (5) on (t o Bot T), Then, if
g(t) is continuous, any strict solutlon is of the form
(6)  u(t) = Ult,t v, 5 U(t,8)g(s)ds.

Follow1ng ‘P, Browder (1] u(t) is said to be a mild solution

(5) with the initial value u, if u(t) is continuous on
Ip 2nd satisfies (6).
"~ Roughly speaking there are two cases of (5) which are called
"parabolic" and "hyperbolic". The family A(t) 1is said to be

uniformly parabolic if:

\

i) The spectrum of A(t) is in a sector
5,4 {z, arg(z-D | L @ < T} | (- A(t))-1\<“!/>\ for M% S
and \A(t)'q\égM,,where (@ and M are independent of t.
ii) TFor some h = 1/m, where. m is a positive integer,
L)l s independent of t, and
| a(e)Pa(e) L m
|aw)Pae)™ - 1] £

where M does not depend on ¢t.

Ct,s € I, 1-hdx<n,
M t - SP{K 8

- 11 -
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Then it is known that there exists a unique eveclution crerator
with the following properﬁies: U(t,s0% CB(A(E)) for s<t,

4 U(t,s)ﬁ is Holder continuous in t and s  for uc¢ %‘=%“(A(to)h),
and (6) is a strict solution of (5) if g(t) is Hdlder
conﬁinuous on IT’ wherev u, is an arbitrary element of X.

The family EA(t)% is said to be hyperbolic if A(t), for
each t, is the infinitesimal generator of a contraction |
semigroup, PTA(t)) is independent of "y , and A(t)A(to)-q,
which is s hounded operator, is strongly continuously differentia-
ble., Then, it is known that there exists a unique evolution
operator such that U(t,s}ﬁ"{.&(s))g,@{}x(t)), and (6) 1is a
strict soclution of (5) if g(t)e J{A(L)) and u€ (A(to)).

Now we shall go into the non-linear evolution egustion

(2) du
- dt

= A(t)u + £(t,u).
Ve assume that the continuous function f£(t,u) sends bounded
sets in ITX X  into bounded sets in X, Then there exists a
positive number M  such that lf(t,u)\éi"ﬁ if te I, and
ue Vy = {uﬁX; {u - uolg‘t%, Take a positive number a so small
shat  |UCt,6 du |+l (5 -t )€ b if |t - t,|& 8, where
.. ,
ﬁﬂz, sup(U(t,;s)i .

Suppcse that there exists a real valued continuous function

@(t,u,v) on I X Vb)( Vb having the properties (P,}), (Pé),
(P;), (B) sna

(25) 28 2P

2u Altu + v

A(e)v £ 0.

Let /4 be a subdivision of I: to<t,,'< e b, = 5+ A,

For t__,.< t<& N E define

k-1 £

fi(t) = UCE, b, ¢ (6 ) + %~U<t,s>f s,U(s, b, _4) P (5, _4))ds,
4 i’

SD(“O = u. '

f)

=7

tion can be weakend further, see [27,
- 1z

}“.l
0
¢}
(o]
e
(8N
o
<t
Wi



Then we can write +

P () = Uls,t 0y, + S £,(t,s)as,
4 t,

-

where f (t s) = U(t,s)f(s,U(s, ta 4)5"("?3 1)) segt jo10 b

[~

4 @
i8]
Hence cfﬂ(t/ €V,

4hen {A(t)} is parabolic we assume that u s,%"u«(t Y, and
that f(t,u) is Holder continuous in t and wu. Then we have

8’ (tk ) Gg'(A(t _1)), and U(t, by 1)9(tk 1) is HoJ.der

contlnuous in t for t,_ 1é tét Hence go(t) is dlf erentiable
in (tk_q,t, ), and we have
(7) C? (t) = a(£)UCE, by _ 1)3>(tk 1)+ £(5,U atk_q)?(tk_q)).

When fA(t)} is hyperbolic we assume that u, e.g'(A(t DR
that  £(t,u) € Q(A(t)) whenever u €D (A(t)), and that
e (8, Ut &, 1}53(1: 1)) is strongly continuous. Then again
k- ‘A K= :
we have (7). 4 ,
Let A and A' Dbe two subdivisions of I. Theg,- if t is
not a subdivision point of either A or A' , then we can take

k and j such that ¢, ,I<t<t and t' 1<t<t' say.

We have
"%‘g%(t, gz(t), fg’(t)ﬁ fé + g% (A(t)2(t)+f(t,U(t,tk4)§(tk4>>
N + }3; (A(t)T(t) + f\t,U(t,té_q)‘gi(té_q))
= [( f% - i%) + i?] + aé A<+>t’e(t) + if*ﬁ(t)i’(t)]
+ (¢ i% - "E} + ii Ef(t,U(t,té_q)S’Z}(té_q))
° ~ ‘
where 2% . b%’ (5, 9, ¢ (02, g% - 2’{ (t,U(t,t,i_{q)i(%MD,
bmg(t’tﬁ”)(%,(té‘“))’ and similarly for 2% ) §§ ' g%
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Since lq7(t) U(t, 6y _ 1)5P<tk 1)[
- !/(U(t 8)£(s,U(s, b, 1)69(tk 1))am{ | u)lal,
and 51mllar1§ ’
l()o(t) ult, b 1)30(1;' Dl gl (s
we see that 33’(tzg is a strongly ‘convergent family. <Thus there
exasts.:F(t) such that ?(t) —9§(t) Furthermore, by the
assumptlon (P ), we ‘see that this convergence is uniform.
Hence |
(t s)-> u(s, s)f(S,jf(s))
Therefore we have +
Q) = U(t tu, fU(t s)f(s, Sa(s))ds,
which shows that jP is a mild solution of (2).

Furthermore, when A(t) is hyperbolic, we can prove that
439(t) thus obtained is a strict solution under some additional
conditions., Namely, if we assume that ’A(t)f(t,u)l is bounded
whenever u remains in a bounded set, we see that there is a
positive number L such that ‘A(t)f(t,U(t,tk_ﬂ))légjL. Then

So (£) = A(t)U(t t At ) A(t u,

t

£e)u(t,9)a() 7 als) 1 (s, 8, 3-1) P (t5.4))ds
}:'t ﬁj—\ A
+ Sf A()U(t,s)A(s)” A(s)f(s), U(s,tk_q)?;(tk_q))ds

-1
+ £(6,UC8, by 1) @ (5 1))
a

shows- that

(SO'(”'
where A = SUp(A(t)U(t,S)A(S)—1[ .  Thus { A() P (%) g is

Va
bounded. Since A(t) is closed, this shows that § (%) e D<a(t))
when X is reflexive?) Then by the assumption that A(t)f(tﬂr(t))
is strongly continuous in t if ﬂy(t) GEQ(A(t)), it follows that

A(tc)uo! + L(t - to))A + M,

1) Lemma 5, (2], p. 214,
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?(t) is a strict solution of (2). Thus we obtain the following

Theorem 5. Let X be a Banach space and f(t,u) be a

continuous function from IT)( X to X which sends bounded sets

into bounded sets. Suppose that there exists a real valued

continuous function é(t,u,v) having the properties (P,’), (Pe‘),

(P-ﬁ), (P,) and (P5‘)' Then the evolution equation (2) has a

mild solution on Ia’ where a is a positive number £ T, under

the cdnditions that, a) when A(t) is parabolic, u, is i

%’(A(to)) and f(t,u) is Holder continuous in t and u, and

b) when A(t) is hyperbolic, wu, is in ﬁ'(A(to)), and

ACt)f(t,u(t)) is defined and strongly continuous whenever
u(t) e Hlas)). Furthermore, in the latter case, the mild so-

lution thus obtained is actually gsﬁrict golution if X is

reflexive and if we assume the additional condition that

A(t)f(t,u) is bounded whenever u remains in a bounded set.

- 15 -
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