Finite Type System of Partial

Differential Operators and

Decomposition of Solutions of

Partial Differential Equations (*)

by
Shigetake MATSUURA

§1. Introduction, p(D)-convexity.

First we fix some notaions. Let Ω be an open set in the n-dimensional Euclidean space \mathbb{R}^n whose points shall be denoted by their coordinates $\mathbf{x}=(\mathbf{x}_1,\cdots,\mathbf{x}_n)$. Let $\mathbf{C}[\mathbf{X}_1,\cdots,\mathbf{X}_n]$ be the polynomial ring in \mathbf{n} variables $\mathbf{X}=(\mathbf{X}_1,\cdots,\mathbf{X}_n)$ over the complex number field \mathbf{C} .

A partial differential operator with constant coefficients $P(D) \quad \text{is obtained from the polynomial} \quad P(X) \in \mathbb{C}[X_1, \cdots, X_n] \quad \text{just}$ by replacing the variables $X = (X_1, \cdots, X_n) \quad \text{by the differentiations} \quad B = (B_1, \cdots, B_n) \quad \text{with} \quad B_j = \frac{3}{9X_j} \quad (j=1,2,\cdots,n) \quad .$

Now let $\mathcal{P}(X) = (P_{jk}(X))$ be a matrix with q rows and p columns with coefficients in $\mathbb{C}[X_1,\cdots,X_n]$. $\mathcal{Q}(X) = (Q_{jk}(X))$ be a relation matrix with r rows and q columns for $\mathcal{P}(X)$, i.e. the row vectors $(Q_{j1}(X),\cdots,Q_{jq}(X))$ $(j=1,\cdots,r)$ generat the relation module

^(*) The content of this article was partly spoken in a slightly different form in Séminaire MALGRANGE (1964) à Orsay.

$$\{(Q_1(X), \dots, Q_q(X)) : \sum_{j=1}^{q} Q_j(X) P_{jk}(X) = 0 \ (k = 1, \dots, p) \ .$$

Then we get the following differential complex

$$(1.1) \quad [C^{\infty}(\Omega)]^{p} \xrightarrow{\mathcal{P}(D)} [C^{\infty}(\Omega)]^{q} \xrightarrow{\mathcal{Q}(D)} [C^{\infty}(\Omega)]^{r} ,$$

$$\mathcal{Q}(D) \mathcal{P}(D) = 0 .$$

DEFINITION. An open set Ω in \mathbb{R}^n is called $\mathcal{P}(D)$ -convex if the above sequence is exact.

EXAMPLES.

1) For the case of a single operator P(D) (p = q = 1), the exactness of (1.1) is reduced to the subjectivity

$$P(D)C^{\infty}(\Omega) = C^{\infty}(\Omega),$$

since the relation module is 0. Thus the concept of $\mathfrak{P}(D)$ convexity is a generalization of that of the usual P(D)-convexity
(see [3], [4]).

2) When $\mathcal{P}(D) = \begin{pmatrix} D_1 \\ \vdots \\ D_n \end{pmatrix}$ is the gradient operator, the exact-

ness is just the vanishing of the first de Rham cohomology group

$$(1.3) H1(\Omega, \mathbb{C}) = 0.$$

3) If we identify the complex space \mathbb{C}^m with \mathbb{R}^n (n = 2m) in the usual manner, then the pseudo-convexity of an open set \mathfrak{I} can be characterized by the exactness of the following sequence

$$(1.4) \quad C_{(0,0)}^{\infty}(\Omega) \xrightarrow{\overline{\partial}} C_{(0,1)}^{\infty}(\Omega) \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} C_{(0,m)}^{\infty}(\Omega) \to 0$$

where $C_{(0,q)}^{\infty}$ denotes the space of all C^{∞} -forms of type (0,q) defined on Ω (see [2], [5]). This can be stated as the exactness of the following sequence

$$(1.4)' \qquad E_{1} \xrightarrow{\overline{\partial}} E_{2} \xrightarrow{\overline{\partial}} E_{3}$$

with $E_1 = \frac{m-1}{q=0}$ $C_{(0,q)}^{\infty}(\Omega)$, $E_2 = \frac{m}{q=1}$ $C_{(0,q)}^{\infty}(\Omega)$, $E_3 = \frac{m+1}{q=2}$ $C_{(0,q)}^{\infty}(\Omega)$. Thus it can be written in the form (1.1).

4) When $\mathcal{P}(D)$ is quite general, we know only the following THEOREM 1.1. (Ehrenpreis-Malgrange) If Ω is convex, then Ω is $\mathcal{P}(D)$ -convex for any $\mathcal{P}(D)$ (See [1], [2], [5]).

§2. Finite type systems of partial differential operators.

In the preceeding section, we have explained the $\mathcal{F}(D)$ -convexity and some examples. But, other than these, no general results are known. Therefore it will have some meaning to state the following

THEOREM 2.1. If Ω is simply connected, then Ω is $\mathcal{P}(D)$ -convex for any $\mathcal{P}(D)$ of finite type. (*)

Before giving a sketchy proof of the above theorem, we should explain some notions.

To a matrix $\mathcal{P}(X) = (P_{jk}(X))$ with q rows and p columns we associate the ideal $\mathscr{U} = \mathscr{U}\mathcal{P}$) generated by all the (p,p)-minors of $\mathcal{P}(X)$. (If p > q, we only put $\mathscr{U} = 0$.) Let $V = V(\mathcal{P})$ be the algebraic variety defined by $\mathscr{U}(\mathcal{P})$, i.e.

$$V(\mathcal{P}) = \{ \zeta \in \mathbb{C}^n : P(\zeta) = 0 \text{ for all } P \in \mathcal{B}(\mathcal{P}) \}$$
.

^(*) See the definition below.

This is called the variety attached to the system of differential operators $\mathcal{P}(D)$.

DEFINITION. A system of partial differential operators $\mathcal{P}(D)$ is called of finite type if the attached variety is of dimension 0, i.e. $V(\mathcal{P})$ consists of only a finite number of points.

Now consider the following homogeneous equation

$$\mathfrak{P}(D)U = 0$$

where U is an unknown element of $[C^{\infty}(\Omega)]^p$ Then, using Hilbert's Nullstellensatz, it is not difficult to show the following

LEMMA The vector space over ${\bf C}$ of the solutions of (2.1) is of finite dimension if and only if the system ${\bf p}({\bf D})$ is of finite type. And then the solutions of (2.1) consist only of entire functions, more precisely the exponential-polynomial solutions of (2.1).

To prove Theorem 2.1, first we fix a covering of Ω by its convex open subsets: $\Omega = \bigcup_i \Omega_i$, and consider the equation

$$(2.2) \qquad \qquad \mathcal{P}(D)U = F$$

where F is an arbitrary given element in $[C^{\infty}(\Omega)]^q$ such that

(2.3)
$$Q(D)F = 0$$
.

In each convex open set $\,\Omega_{i}\,$, we can apply Theorem 1.1. and we get a solution in $\,\Omega_{i}\,$. In the intersection $\,\Omega_{i} \wedge \Omega_{i}\,$ of two such convex open sets, the difference of the solutions should

satisfy the homogeneous equation (2.1). Hence, according to the above lemma, we get a solution of (2.2) in the union $\Omega_{\hat{i}} V \Omega_{\hat{j}}$ by adjusting those solutions by a certain entire function. Now starting at some fixed point we can proceed along curves repeating such adjustments in a manner similar to the usual analytic continuation in function theory. The resulting solution U should be univalent according to the assumption that Ω be simply connected. This shows that (1.1) is exact. This completes the proof.

§3. Decomposition of solutions of partial differential equations.

Since partial differential operators with constant coefficients operate on $\,\,C^\infty(\Omega)\,\,$ commutatively, we see clearly that

(I) For any pair of polynomials P_1 , P_2 and for any pair of functions u_1 , $u_2 \in C^\infty(\Omega)$ such that

(3.1)
$$P_1(D)u_1 = 0$$
, $P_2(D)u_2 = 0$,

the sum

$$u = u_1 + u_2$$

satisfies the equation for the product operator

(3.3)
$$P_1(D)P_2(D)u = 0$$
;

(II) For any polynomial P and for any multiindexed family of solutions $u_{\alpha} \in C^{\infty}(\Omega)$ $(|\alpha| \le \nu-1)^{\binom{*}{2}}$ of the equation

^(*) For a multiindex $\alpha=(\alpha_1,\cdots,\alpha_n)$ (a sequence of non-negative integers) we set $|\alpha|=\alpha_1+\cdots+\alpha_n$. If $x=(x_1,\cdots,x_n)$ is variable point, we set $x^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$.

$$(3.4) P(0)u_{\alpha} = 0$$

the sum

$$u = \sum_{\alpha \mid \alpha \mid \leq \nu-1} x^{\alpha} u_{\alpha}$$

is a solution of the equation for the v-times interacted operator

(3.6)
$$P(D)^{\vee}u = 0$$
.

Our question is to ask when the converses of the above facts are true, naturally assuming always that

- (i) P_1 and P_2 have no common factor of for the converse of (I), and that
- (ii) P is irreducible for the converse of (II).

THEOREM 3.1. If Ω is $\mathcal{P}(D)$ -convex with $\mathcal{P}(D) = \begin{pmatrix} P_1(D) \\ P_2(D) \end{pmatrix}$, then any solution $u \in C^{\infty}(\Omega)$ of (3.3) can be decomposed into the form (3.2) with (3.1). Conversely, if each solution u of (3.3) can be written in the form (3.2) with (3.1) and if Ω is $P_1(D)P_2(D)$ -convex, then Ω is $\mathcal{P}(D)$ -convex.

DEFINITION. We say that an open set $\,\Omega\,$ is a decomposing domain if the converses of (I) and (II) are true for all $\,P_1^{}$, $\,P_2^{}$ and $\,P\,$ satisfying the conditions (i) and (ii).

Application of Ehrenpreis-Malgrange's theorem thus shows THEOREM 3.2. If Ω is convex, then Ω is a decomposing domain.

In the plane $\ensuremath{\mathrm{I\!R}}^2$, we can prove a more precise result, using Theorem 2.1.

THEOREM 3.3. An open set $\,\Omega\,$ in $\,\mbox{\rm IR}^{\,2}\,$ is a decomposing domain if and only if $\,\Omega\,$ is simply connected.

The "only if" part comes from the fact that, for an open set Ω in the plane \mathbb{R}^2 , the vanishing of the first de Rham cohomology group (1.3) is equivalent to the simple-connectedness of Ω (*)

Theorem 3.3 is no longer true for n > 3.

If we restrict ourselves to the polynomial or exponential polynomial solutions then we get, by a purely algebraic argument, the following

THEOREM 3.4. If we assume (i) and (ii), then any polynomial (resp. exponential-polynomial) solution of (3.3) or (3.6) can be decomposed into the form (3.2) or (3.5) with u_1 , u_2 or u_{α} polynomials (resp. exponential-polynomials).

The content of the present article can be considered as a completion of our previous work [6]. The more detailed treatment shall be published elsewhere.

References.

- [1] Ehrenpreis, L., A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications, Proc. Intern. Symp. on Linear Spaces, 161-174, Jerusalem, 1961.
- [2] Hormander, L., An introduction to complex analysis in several variables, D. Van Nostrand, Princeton, N. J., 1966.

^(*) This can be proved by a combinatorial argument, for that I thank Prof. H. TODA.

- [3] Hörmander, L., Linear partial differential oeprators, Springer-Verlag, 1963.
- [4] Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier 6, 271-354.(1955).
- [5] Malgrange, B., Sur les systèmes différentiels à coefficients constants, Coll. C. N. R. S., 113-122, Paris, 1963.
- [6] Matsuura, S., Factorization of differential operators and decomposition of solutions of homogeneous equations, Osaka Math. J., 213-231, 15 (1963).