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Finite Type System of Partial
Differential Operators and
Decomposition of Solutions of

Partial Differential Equations(x}

by
Shigetake MATSUURA

1. Introductidn, ;)(D}~ponvexitz.

First we fix some notaions. Let ¢ be an open set in the
n-dimensional Euclidean space R™  whose points shall be denoted
by their coordinates x = (xl,--n,xn} . Let €{Xl’i";xn} be
the polynomial rving in n variables X = (X1,=-»,Kn} over the
complex number field ¢
A partial differential operator with constant coefficients

P(D) is obtained from the polynomial P{X)é& C{X --.,xn} just

1?
by replacing the variables X = {K],»-s,xﬂ} by the differenti-
ations D = (D,.--,D) with D = 5%7 (3 = 1,2,-20,0) .
, ; X )

Now let })(Xj = (?ik(X}) be a matrix with q rows and p
~columns with coefficients in m{x},--.,xn] La = {ij{X))
be a relation matrix with r vrows and ¢ columns for 5)(X) ,

i.e., the row vectors in1(K3’°’"’Qiq(X)) {(j = 1,.++,1r) generat

o

the relation module

(*) The content of this article was partly spoken in a slightly

different form in S&minaire MALGRANGE {1964) ¥ Orsay.
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{(Qlix)""'9Qq{x’-)) 3 . X} = (1& = 1,"",}))

Xk
it

Then we get the following differential complex

(1.1 [€7()]P 2L, (=079 —2D) @,

AD P =0

o in R" is called P (D)-convea

DEFINITION. An open set
if the above sequence is exact.

EXAMPLES.

For the case of a single operator P{D) (p = q = 1} ,

1}
the exactness of (1.1} is reduced to the subjectivity

1.2) P(DICT(a) = C7(a)

.
41,

since the relation module is © . Thus the concept of P (D)-
convexity is a generalization of that of the usual P({D}-convexity

(see (3], [41).

Z2) When ])(D) = D

1\ is the gradient operdtor, the exa:t-

is just the vanishing of the first de Rham cohomology group

ness

(1.3) Hi(e, ©) = 0

3) If we identify the complex space ¢ with R% (n = 2m)

in the usual manner, then the pseudo-convexity of an open set

N
N3

can be characterized by the exactness of the following sequence
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4

where the space of

defined on o (see [2}], [5]}. This tan be stated as the exact-

ness of the following sequence

N X 3 5 .
(1.4)° B~ B, —25E,
- i Z
PRSI ¥ ~ — h.,l Faled . . .y
Wit r‘§ S35 B = i L {{} a) { 1), ;’,,5 == ot
- G::j . i B -

in the form [1.1).

ot
oy
=
[N
i
]

43 is quite general, we know only the following
THEQREM 1.1, ({Ehrenpreis-Malgrange) IFf a is convex, then
N . 2 . » i Yy o o 14 It
§ 15 (D) ~conver For any + {D) (See [1%, 2], [81).
J 2 L .

§2.° Finite type systems of partial differential operators.

In the preceeding section, we have explained the (D)~

But, other thun these, no general

1@ example

results arve known. Therefore 1t-will have some meaning to state

connected, then D is-}D{D}"

convexr for any ;}U}) ¢ ite type.
Before giving & sketchy proof of the above theorem, we should

xplain some notions.

(6]

Yy with g vrows and p columns

w!

To a matrix  PLX) = (P., (X

A
we associste the ideal # = ﬁﬁ})} generated by all the {(p,p)-
minors of  D{X). (If p > g, we only put ¢ = 0.) Let V = V(P

be the algebraic variety defined by #H(P) , i.e,

V(P) = {zet ; P(z) = 0  for all PedZ(P)) .

{*} See the definition below.

Nt



This is called the variety attoched to the system of differential
operators :{)(i}}.

DEFINITION. A system of partial differential operators  § (D)
is called of finite type if the attached variety is of dimension
0

0, 1l.e. V{f)} consists of only a finite number of points.

Now consider the following homogeneous eguation
(2.1 ' POy =0
where U 1is an unknown element of V[Cm(gj}p

Then, using Hilbert's Nullstellensatz, it is not di¥fficult to show

the following

o

LEMMA The vector epace ocver & of the solutions of (2.1) is

. . e ird .

of finite dimension +f and only if the system P{D) 1is of finite
, J

funetions, more presisely the exponential-polynomial sclutions of
(2.1).

To prdye Theorem 2.1, first we fix a covering of @2 by its
convex open ‘subsets: o = \f/gi’ and consider_the equatidn

1

(2.2) PMU = F
where F i;ian arbitrary given element in [c”(2)1% such that
(2.3) . ‘ 2(DF =0 .

In each convex open set o, , we can apply Theorem 1.1. and

we get a solution in ;- in the intersection AR of two
¥

such convex open sets, the difference of the solutions should
|



satisfy the homogeneous equation (2.1). Hencge, accéfding to the
above lemma, we get a sclution of (2.2} in the union Q. Va, by

~ o
adjusting ?hﬁ&ﬁ solutions by a certain entire function. Now start-
ing at some fixed point we can proceed along curves vepeating such
adjustiments in a manney similar to the usuval analytic continuation
in function theory. The resulting solution § should be univalent

according to the assumption that £  be simply connected. This

shows that (1.1} is exact. This completes the proof.

§3. Decomposition of solutions of partial differential equations.

Since partial differential operators with constant coefficients
tatively, we see clearly that
+f polynomials Py, ?Z and for any paiv of

such that

-

(3.1 Py (Dyuy = 0, P,(Dju, = 0
}; 1 L L
the sum

(3.2} u o= ou, +tou

ja)

satisfies the equation for the product cperator
(3.3) PL(D)R,(DIu = 0 ;

(I1) For any polynomial P and for any multiindexed family

o . M * 3 ) I
of solutions uuéii (2)  (ial ;‘v~1}( ) of the equation

{(*) For a multiindex s« = (a_,‘-~,an) {a sequence of non-negative

integers) we set |af = ayp *oereta o E X = {xl,*=-,xn) is

Q

. . S ‘1
variable point, we set X = X
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(3.4) P{u = 0
the sum

{3.5) uwo= o x %y

=]
s
[l
hage

is a solution of the equation for the v-times interacted operator

o~
Tl
o
p—
s
<
£
#
<

Our question is to ask when the converses of the above facts

5

are true, naturally a uming always that

(i) Pl and PZ have no common Facton
for the converse of {IY, and that

{(ii}y P 43 trreducible

. {?1§Q}X

e ca PR . ~ e §
THEOREM 3.1, If o 4g P Lli-conver with D(D) =i ( v o
P B ks a0

P
o]

for the converse

£ {11

o
~—

} .y Y
J STNES TR (D
e “
tnen any solution u €6 (8} of (3.3} can be decomposed ‘o the
Form {(3.2) with {3.1). Convers if each solution u of (3.3

be written in +the Form (3.2Y with (3.1) and 4f o 4s p (Dyp

convexr, then O e P (D)-conven,

DEFINITION, We say that an open set §  is a deaoﬁposing
domain if the converses of (I) and (I1) are true for all Pi’ PZ
and P satisfying the conditions (i) and (ii).

Application of Ehrehpreis—ﬁaigrange's theorem thus shows

THEOREM 3.2. 717 g 18 convew, th

¥

en @ is a decomposing
domain.

In the plane R" , we can pProve a more precise result, using

Theorem 2.1.

|8

THEOREM 3.3. 4n open set 0 in IR is a decomposing domain

: 7 s r : H . v 37 0 o 4 o T
if and only if o iz swniply connected,



The "only if' part comes from the fact that, for an open set

f# in the plane tRZ , the vanishing of the first de Rham cohomology

*)

group (1.3} is equivalent to the simple-connectedness of n

-

Theorem 3.3 is mo leonger true for n > 3.

1f we restrict ourselves to the polynomial or exponential
polynomial sclutions then we get, by a purely algebraic argument,
the following

THEQREM 3.4. If we assume (1) and (ii), then any polynomial

(resp. exponential-polynomiall soluticon of (3.3) or (3.6) wan be

u or u

decomposed into tne form (3.2) or (3.5) with u 2 «

li

polynomials (resp. emponential-polynomials).

The content of the present articie cvan be considered as a
completion of our previocus work [6}. The more detailed treatment

shall be published elsewhere.
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