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Numerical Solution of Multi-Point Boundary-Value Problems
in Chebyshev Series-Theory of the Method

Minoru URABE

1. Introduction

In the recent paper

Urabe, M., Numerical solution of multi-point boundary
value problems in Chebyshev series-Theory of the method,

Numer. Math., 9(1967), 341-366,

the writer gave the mathematical certification to the method to
compute solutions of boundary-value problems in Chebyshev series.
Such a method had been proposed by Clenshaw and Norton in their

papers:

yélenshaw, C.W. and Norton, H.J., The solution of nonlinear
crdinary differential equations in Chebyshev series, Comput. J.,
6(1963), 88-92,

Norton, H.J., The iterative sdlution of non-linear ordinary
differential equations in Chebyshev series, Comput. J., 7(1964),

78-85.

By several numerical examples, they showed that such a method is
of much use for practical computations. But they did not give
mathematical certification to such a method. In the present note,
the writer will sketch his approach and thereby he will show how

such a method can be certified mathematically.

Consider the boundary value problem of the following form:



(1.1) 9—?; = X(x,t) ,
‘ N
(1.2) ZLix(ti) =4 .
1=0

In (1.1), x and X(x,t) are vectors and X(x,t) 1is defined
in the region D of the tx-space intercepted by two hyperplanes

t=-1 and t=1. In (1.2),

L=t <t <, Kty <ty L
Li are the given square matrices and ‘,[ is a given vector.

Our boundary condition is very general and so our boundary-value

/

problem includes the Cauchy problem and the ordinary two-point

boundary-value problem.

)

To seek an approximate solution of our boundary-valuc problen

¢

we consider a finite Chebyshev series

m
(1.3) x (t) = ag + f'izanTn(t)
n=1
with undetermined coefficients ag, ay, a,,""r,a, and we
determine these unknown coefficients so that
(1.4) >
;Z:Lixm(ti) :Jé’
i=0
dxm(t)
(1.5) ——-é————- = Pm_lX[Xm(t),t}
. t .
may hold. Here Pm—l is an operator which expresses the

truncation of the Chebyshev series of the operand discarding



the terms of the order higher than m-1. The factor J2 s
introduced in an Chebyshev series merely for simplication of

theoretical approach. If one can determine xm(t) so that it
may satisfy (1.4) and (1.5), then it is expected that xm(t)

determined in such a way will be a reasonable approximation of
a solution of our boundary-value problem. In what follows, we
shall call a finite Chebyshev series xm(t) "satisfying (1.4)

and (1.5) the Chebyshev approximation of the order m.

In our approach, we restrict the solution of (1.1) satisfying

N
(1.2) to the one for which matrix G=ZZ:Li§(ti) is nonsingular
i=0

where &(t) 1is the fundamental matrix of the first variation
equation of (1.1) satisfying the initial condition d(-1)=E (E
is a unit matrix). We shall call such a solution the isolated

sclution, since in a sufficiently small seighborhood of such a
sclution, there is no other solution satisfying (1.2).

In our approach, for vectors, we use Euclidean norms and
for matrices, we use norms correspondiné to Euclidean norms of
vectors in-a way of functional analysis. These norms will be
denoted by [-+-l. For continuous vector-functions defined on
the interval J[-1,1], we use two kinds of norms, namely,

“7"“n and “"'“q' Namely let f£(t) be an arbitrary

continuous vector-function defined on J, then

I £, means f£(O)l,

= sup [If(t)
t&J
and
18
1 A 2. 1/2
nf(t)“ means uf(t)u = [: Hf(cosb)f, CEC’]
4 q T A
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2. Basic propositions

Our approach is based on the following three propositions

Proposition 1. Let

(2.1) F(L) =0

be a given real system of equations, where

and F() are

vectors of the same dimension and F(A) 1is continuously

differentiable with respect to

A in some region JSL of the

A-space,

A
Assume that (2.1) has an approximate solution o = o« for

which the determinant of the Jacobian matrix

J) of F®)

does not vanish and that there are a positive constant g‘ and

a non-negative constant }{<1 . such that

W Qy={Alk-L1<§} C n,

2.2y @ Haeh - J(@) iig_&’ﬁ‘— for any € Q? ,

Giy M'r
|- X =S S /

where 1 and M'(>0)

.

are numbers such that

A A
He) i <y and | J7hy I Emr.

Then system (2.1) has one and only one solution o =;' in

Sly, and, for c{=;: it holds that




(2.3) det J@) % 0,

=
-

2.) Hd-J0 <

This proposition can be proved by means of the Newton

iterative process:

ooy =y - TR =0, 1, 2,..0)

n+l

where d°=2. The condition (2.2) is related with the accuracy of
the approximate solution 52. By Propostion 1, if we know a certain
accurate approximate solution, we can assert the existence of an
exact solution and further we can geﬁ an error estimate for such an

approximate solution.

Next proposition is concerned with the boundary-value

problem for linear differential svstems.

Proposition 2. Let

mrﬁ
e b

(2.5) = A(t)x +\(t)

be a given linear differential system, where A(t) 1is a matrix

continuous on J and Y(t) 1is a vector continuous on J. Let

@(t) be the fundemental matrix of the corresponding homogeneous

System
dy
(2.6) Ir = Alt)y

satisfying the initial condition ¢ (-1)=E. Then, if matrix

N
Ch=2:Li§(ti) is non-singular for
1=0
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_1=to<t <-..<tN_1<tN=1

1
4

and given square matrices Li’ the cgiven system (2.5) has one

and only one solution satisfying the boundary condition

N
(2.7) i%(,)L.lx(ti) -

wn

for an arbitrary vector 17 and such a sclution x=x(t) 1

given in the form

1
(2.8) x(t) = ®)c" L+ 5 H(t,s)Y(s)ds ,
‘1

where H(t,s) 1is the piece-wise continuous Green matrix

corresponding to the homogeneous boundary condition

N
(2.9) ZOLix(ti) =0
1."'..

This proposition can be easily proved by means of the
method of variation of constants and the explicit formula for
H(t,s) can be easily obtained. The matrix H(t,s) 1is dependent

only on @(t), in other words, it depends only on A(t).
If we put

1
(2.10) 4,(t) = j H(t,s)?(s)ds,
71

then x=¥(t) satisfies the given differential system (2.5) and
the homogeneous boundary condition (2.9). Since y(t) is

continuous, the formula (2.10) expresses a linear mapping in the



space of continuous vector-functions. We shall call such a

mapping the H-mapping corresponding to matrix A(t). It is

7

evident that for the H-mapping there are two kinds of norms

a

corresponding to two kinds of norms of continuous vector-functions.

The last proposition is of the same character as Proposition

1.The difference is that Proposition 1 is concerned with a sys

ot

1

=

of finite equations while the last proposition is concerned with

a system of differential eguations.

Proposition 3. In differential system (1.1), we suppose

hat X(x,t) 1is continuously differentiable with respect to x

in the region D of the tx-spacc intercepted by two hyperplanes

t=-1 and t=1 and that (1.1) has an approximate solution

£33y -3 e 7
spproXimately.,

For approximate solution x=x(t), assume that

(2.11) }g_@%@- - X[x),t1l€r on T = [-1,17 ;
. ’%i ‘
(2.12) I L LX) - iﬂé&;
N
there is a matrix A(t) such that matrix G=;ZjLi§Kti)
' i=0

non-sincular where iﬁt) is the fundamental matrix of the

bl
192}

linear homogeneous systen

(2.13) = A(t)y

o

satisfying the initial condition § (-1)=E;

~J
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there are a positive constant J} and a non-negative

constant ) </ such that
() D =§ (t, )] 1x - x(0I<§, teJ} €D,

W) 1f (x,t) - A(t) I g,—ZLA for any (t,x)€Ds,
M
1

where ;(x,t) is the Jacobian matrix of X(x,t)

with respect to x and My is a positive constant

such that
(2.14)
LHY S M)

where H is the H-mapping corresponding to A(t);

M,T + Mzg

1
1 -X

i)

<3

where M2 is a non-negative constant such that

I $e)e € M, on J.

/\

Then, in DX’ the given system (1.1) has one and only one
solution x=x(t)

satisfyvying the boundary condition (1.2), and

. . - - /\
this is an isolated solution and, moreover, for x=x(t), we have

M]T + Mo €

1 -X

(2.15) I X(t) - R €

This proposition can be proved by means of the iterative

process:



1
(2.16) X, (t) = é(t)c']%rj H(t,s)%X[xn(s) ,s]-A(s)xn(s)gds
-1

(n =0, 1, 2,-++),

where xo(t)=;(t) and H(t,s) is the matrix of the H-mapping

H corresponding to A(t). The iterative process (2.16) comes from

the idea of the Newton method. the condition (2.14) is related
with the accuracy of the approximate solution . x=§(t) and

inequality (2.15) gives an error bound for the given approximate

solution.
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3. Main theorems

Theorem 1. Suppose X(x,t)E:Ci t[D] and system (1.1) has

A
an isolated solution x = x(t) satisfying (1.2) and the inter-

nality condition

(3.1) v={(t,0] 1x-0I<f, tey { < D for some §_> 0.

Then for sufficiently large mos there 1is a Chebyshev approxi-

“mation x = im(t) of any order m 2 m, such that im(t) con-

A . . . . .
verges to x(t) uniformly together with its first order deri-

vative as m —¥ o,

This theorem says that, for any isolated solution satis-
fying (3.1), we can always get its approximation as accurately

as we desire by computing the Chebyshev approximation.

Theorem 2. Under the assumptions of Theorem 1, the Chebyshev

approximation x = im(t) is determined wuniquely in a sufficiently

small neighborhood of x=§(t) provided the order m 1is suf-

ficiently large.

This theorem says that the obtained Chebyshev approximation

corresponds . one-to-one to the isolated solution satisfying (3.1).

Theorem 3. In Theorem 1, the existence of the initial iso-

. A
lated solution x = X(t) <can be assured by applying Proposition

5 to a computed Chebyshev approximation x = im(t) of the order

sufficiently high. In the application of Proposition 3, the error

bound of the computed Chebyshev approximation x=xm(t) can be

also obtained.

io
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In most practical problems, the existence of an isolated
solution satisfying the given boundary condition is not known
beforehand and moreover it is usually not an easy work to prove
analvtically the existence of an exact solution. In addition,
even when we get Chebyshev approximation by computation, we are
nct sure about the existence of an exact solution.

Hence Propesition 3 plays an important role in practical
applications, because it enables us to assure the existence of an
exact solution from a computed approximate solution and furthermore
it enables us to get an error bound of the computed approximate

solution.

To prove our theorems, we use some properties of Chebyshev
series.
Let £f(t) be an arbitrary vector-function continuous on J

and let its Chebyshev series be
>
(3.2) £(t) ~ a_ + Jz D a T (t).
n=1
Then it is evident that
. * m
(3.3) f(cos@®) Anvrag + Ja.z:ancosn@ .

Hence we see that

< |
(3.4) o2 \flcos @)cos nBdl  (n=0,1,2,---),
. “n —TYQH 0

where e, = JE- or 1 according as n =0 or n21l. If we

apply Parseval's equality to (3.3), we readily get

) 2 _ 5 2
(3.5) ey = D hagl
n=0

11
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and, hence, for a finite Chebyshev series of the form

m
£ (t) = ag + 2 ) a T (1),
n=1 .
we have'
(3.6) Il fm Hq =Ll ,
where

A = col(ag,az, - +,a ).

When f(t) € C; , let the Chebyshev series of f(t) = ‘a f(t)
be
0 m
(3.7) f(t)~ray' + (23 a 'T (1),
n=1
then we can prove that
2 A
(3.8) a ' = —— > (n+ 2p - Dy, n-1 (n=0,1,2,.-+)
n p=1
and that
_ i 1 < c
(3.9 (H@A-PRfY Lomll (1-P I q = S(m) | £1 q?

*

ICT-PE I < oym) 1 (T-Py EL  <Em NEl

q

(m=0,1:2,"'§ P-l =0) N

where Y
o] 2 f'"
sm = 2]y ¢ &,
[‘H=Mﬂn2 [m
Sy (m) = m41-1

12



Formula (3.8) 1is frequently convenient for theoretical approach

more than well-known formula

/ / -
€ -1%n-1 a =‘Znan (n=1,2,:-+).

From (3.9), we can easily see that

(3.10)

G"(m) “rs
I (I-P )£ g;_ﬁTHTTTIIf‘uq’

| ge
i (I-P )E llq < miDmm-D) £ Fq

(m 2 2)
if £(t) € ¢ [J].
For Chebyshev series, the operation P and é%—'are not
commutative since 4
o dt
m-1 while Pm'é% f(t) 1is in general a polynomial of degree m,

me(t) is in general a polynomial of degree

lowever, 1f we put

1 B v
T Puf = fn o

then, after some manipulations, we can prove that

m'q="r7

and, if the Chebyshev series of  f(t) is uniformly cohvergent,

.« . m . . .
He-£ 1< I (T-p El h(r-p ) f Hq

| E-£ 0, € me2) I (TR E I+ (IR T

- When = f(t) é’ci

[J], the ChebyShév series of ‘f(t) is uniformly
convergent, hence applying (3.9) ‘twice to the right-hand side

of the above inequalities, we have

13
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P m*2 §(m+1) e
WE-f o £ e e [
(3.11)
. . 2 ‘ ‘9;;
L £-f | < [YF + THE N
nla 2l TEnmt M

(m Z 2).

Now we shall sketch the proof of our theorems.
By (3.4), the equations (1.4) and (1.5) are equivalent

to the following system of equations

. |
Fo(i) 48 STiix () - 4 = 0,
i=0

def J;.

TCe

(3.12)

F_(dl) X[x_(cos 8),cos¢ Jcos(n-1)8 d 6

n-1
;
- an-l (d) = Q

(n=1,2,--- am),

where ol = col(ag,aq,-*’,a ) and

(3.13)

n-1 () = "'é" [nan + (n+2)an+2 + oen] (n=1,2,-+,m)

n-1

We shall call the system of equations (3.12) the determining

equation of Chebyshev approximations and we shall write this

briefly in a vector form as follows:

~

(3.14) Mgy =0

Now, in Theorem 1, the existence of an isolated solution
A .
x = x (t) satisfying the boundary condition (1.2) and the inter-
nality condition (3.1) is assumed. Hence, from this isolated

. A .. .
solution x (t), we can make a finite Chebyshev series

14
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A
PR () = x () = D, ﬁn);lé\n"rn(t)

VAN
Put o= col(ay,2y, ***,2 ). Then, using (3.9), (3.10)

and (3.11), we can prove that
(3.15) I FM Xy £ xm™3/2

’for any m z,ml and some K independent of m provided m, is
sufficiently large. This shows that o = ;? is an approximate
solution of (3.14) provided m is large. Hence we apply our
Proposition 1 to '(3{14) in order to prove the existence of an
exact solution of (3.14), namely; the existence of a Chebyshev
approximation. |

| Hawavér, to apply Proposition 1 to (3.14), we have to know
some properties of the Jacobian matrix Jm(d ) of Fm(c(). To

derive the necessary properties of Jm(d‘), we consider the linear

systsﬁ
(3.16) Jm(.g)$ + Y = o0.
Corresponding to-d=col(ag,ay, "",a ), F=col(u ,u;, - ",u)
and EEcol(Co,Cl,"',Cm), put
-
x (t) = ap + 2 ) aT (t),
n=]
m
YO =g 72 T
W1
Gty =+ 2 lcn+1Tn(t).
n=

Then we readily see that (3.16) yields the following system of

equations:

15
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3 L) * e =0,
i=0
(3.17)
D© T, tym) - 9.

If we rewrite the second of (3.17) in the form

O - P 0,y +190 - (1P ) Blx, (0, (0,

then this can be regarded as the linear equation withgreépect to
y(t). The first of (3.17) ‘then gives a boundary condition fof
y(t). Hence we apply Proposition 2 to (3.17). 'Then, using the
corespondence between (3.16) and (3.17), we can get the necessary
properties of JmCd‘)' Then we check the conditions of Proposition
1 for (3.14) and we see that all these conditions are satisfied
by x = ?%(t) provided m is sufficiently large. From this,
we see the existence of Chebyshev approximations.

The convergence of Chebyshev approximations together with
their first order derivatives can be proved without difficulty by

using the error estimation (2.4) of Proposition 1.

Theorem 2 can be easily proved if we use the properties of

the solutions of the equation of the form (3.17).

. . ) — A
Since the Chebyshev approximation xm(t) converges to x(t)
uniformly, we can prove Théorem 3 without.difficulty if we use

the isolatedness of x ='§(t);

4. Remarks about the numerical solution of the determining

equation

16



As well known, the Chebyshev coefficients of the known function

can he easilv evaluated if we use the techniques of Fourier analysis.

jav}

Hence, if we apply the Newton method to the determining equation,

then we can easily solve the determining equation numerically

-
=
.
ot
oyt
v
pr
<
s
o]
Pt

culating the explicit form of the determining equation.
Since the convergence of Chebyshev series is usually very rapid,

we can find the first approximation necessary for Newton method
by solving the determining equation with very small number of
unknown’Chebyshev coefficients. One or two unknown coefficients
are frequently sufficient. Numerical examples are shown in Norton's
paper. When X(x,t) 1is linear in x, the determining equation is
linear in o and the proof of our theorem 1 implies the determinant
of.coefficients of unknown ©® does not vanish. In such a case, of
course, the first approximation is not necessary for computation

of Chébyshev approximations. Numerical examples based on our

theory will be published elsewhere.
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