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ANVARKIANT IMBEDDING AND MULTirlk ECATTERING PRUCLSSES

cuec \Jeno

Institute of Astrophysics, Kyoto University

I. Introduction : In problems of solving classical eguations of mathe-

matical physics two types of difficulties are inseparably assoéiated,i.C,
difficulties of analytical character and of computational nature, beca-
use the classical methods reduce problems to the solution of systems of
linear eguations. If we use the invariant imbedding in a systematic fa-
shion, we shall try to reduce problems to the iteration of non-linear
transformation.® will permit us to avoid such untractable matters. Such
rroblems will be encountered in the fieldsof radiative transfer,neutron
diffusion, raréefied gas dynramics , random walk and wave propagation.
Particularly, this approach is powerful to treat with the interaction
of photons and gas particles in stochastic media \e.g.,sﬁocks, turbulen-
ce convection)and others), allowing for the magnetic field.

Then, the characteristic of the invariance principles consists in
the transformation of the two-points boundary value problems to the ini-
tial value problems. 1In the field of radiative transfer Chandrasekhar
has developed elegantly the theory of invariance principles due to ori-
ginally Ambarzumian. Whereas the angular distribution of emergent ra-
diation is evaluated with the aid of this techmigue, however, the deter-
mination of the internal radiation also is reduced to the above problenm
by the use of the initial value method(cf. Keference ,Books (4)).

A summary of some recent developments of this approach .is presented
by Bailey and Wing (cf.u.Math.Analy. and appl., : ) . Tke
generalized Riccati transformation gprovides another manipulative deriva-

tion of the result (cf.kybicki and Usher,Ap.J.la46 ,871(1966)).
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The rod model

]
.

2.1 The stationary multiple scattering processes

2.1.i The transygort equation : Consider an inhomogeneous rod exten-

aing from zwa to z=b, The interval is thought of as being rod materi-
al capable of transporting particles, whereas these particles can move

nly to the right or to the left (See Fig.l).

(6]

V(z w(z) U(b)
PR ) V(Z) r | s
Z=a Z v-lo O ‘Ps«t‘de
Fig.l. The rod model Pzr&&und,

Let

u{z )= expected number density of particles at z and moving to

the right,

v(z)=expected number dehsity of particles at z and moving to the

left.

The transport equation appropriate to this case is written in the

form

(1) du/dz = a(z)u(z) + B(z)v(z), 4dv/dz = ﬁ(z)u{z) + alz)v(z),
where

(2) a(z)= 6(z)(p(z) - 1), 8(z)=G(z)alz) (0<Lz<x).

In the above §{(z) is the cross-section,plz) represents an expected
total of particles moving in thé'direction of the original -particle at
z in each collision, and qi{z) arises going in the direction oprosed.

Eg.(1) should be solved subject to the boundary conditions

(3) u(a)=0, v(b)=1.

2.1.2 Invariant imbedding equations : Let

R{b,a)=expected number of particles emerging to the right each
second at b due to a flux of one particle per second injec-
ted at z=b,

T(b,a/= expected number of particles emerging to the left each

second at z=a due to a flux of one particle per second in-

jected at z=b.- 2



We shall call K and ' functicns the reflection and transmission fun-
ctions, respectively. Furtnermcre, R(a,b) and T(a,b) functions rerrese-
nt the above global guantities when one particle is incident on z=a,
beéause of the polarity of an inhomogeneous properties-of the rod.

It is eviaent that
(4) E(b,a)=ulb), T(b,as=vta).

Add an infinitesimal length A to the rod at z=b. As the incident
flux passes through the interval (b,b+3 )}, some of the particles cause
scattering and others pass through unaffected to become incident upon
ta,b}). When a scatteriug occurs 1in A , a scattered particle emerges
at b+ A , whereas the other becomes a part of the incident flux at b.
some of particles reflected from (a,b,) may cause scattering while pas-
sing through (b,b+ A )f The products of this scattering yield a con-
tributionvto the‘reflected flﬁx at b+ > and furnish another scurce
of particles incident upon (a,by. Ey,téking & to b;van infinitesi-
mal,rall other events have a probability of occufence of order .* or
higher, apart from those taken account of above.

Adding up the various -effects and their associated probabilitiés; we
get the equation’

(5) R(b+A,a)= 8(b)A + F(vJR(b,a) AR(b,a) + 2« (b)R(b,a)A +R(b,a)+0ﬂ3l

If we let A—> 0, we derive a kiccati type of first-order differenti-
al equation. This type of quadréticﬁliyrnon—linear equat{on is chéfact-
eristic of the equation given by invériant imbedding technique. ”Lt is
rrovided by
(6) dR(b,a)/db = -g(b) + 2x(b)R(b,a) + g{b)R(bv,a)R(b,a),

together'with the boundary condition R{(b,b}=0.

Eq.(6] gives directly the value of the reflected intensity‘from the
right end due to a unit input without the necessity of finding'the in-

ternal flux of the rod.



Similarly, we find the functional equations for R- and T-functions
Jas below:
:’(7) dT(b,a)/db= x(b)T(b,a) + B(b)T(b,asR(b,ay,
(&) -dR(b,a)/da = Bia)T(b,a;T(a,b),
(9) -dT(b ayld=x(a)T(v,a) + B(a)T(b,a)R(a,b),
together with the boundary condition 17(b,b)=1.
It is of interest to mention that eqs.(6)-(9) consist of half of all
differential equations for R- and T-functions.
2.2 Time-dependent multiple scattering procésses

2.2.1 _The transfer equation
Consider a one-dimensional homogeneous medium of optical thickness

z=x, illuminated by radiation of time-dependent specific intensity wit)

incident on the right-hand boundary 2z =x.(See rig.2). Scattering of

light in either direction is assumed egually probable.

v (e, D vz, t) wz, v w(x,t)
< < \ > I
= X VX, k)

¥ig.2, A time-dependent transport process

Let u(z,t) and v(z,t) denote respectively the spébific intensities
of radiation at level 2z at time t, directed towards the boundaries z=x
and z=0.

The equation of transfer appropriate to the case of relaxation is
expressed in the form
(10) du/sz  + t2 du/ét = -u + B(z,t),
T (11) -3 v/iz + t av/&t = =v + B(z,t),
where t2 is the mean free time, and the source function B is given by
(12) B(z,t)= -ﬂu(z t') + v(z, c-))exp —(t-t')/t !_, dt'/ty

In eq.(12) O is the albedo for single scattering,i.e. the probability
of photon survival, and tl is the duration of temyporal carpture, which

corresponds to the mean molecular interaction time in kinetic theory of

dilute gases.
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Egs,.{(10) and (11) should be solved subject to the tzundary and ini- \
tial conditions
(132 u{C,t)=0, v(x,t)=wlt),
(I4) wu(z,0)=C, viz,0)=C (C<¢z< x).

The quantities u(x,t) and v(C,t) are called respectively the reflectea

and transmitted intensities, snd v(x,t) is the intensity of radiation
incident on the boundary z=x at time t.

2.2.2 The reflected intemnsity : Let R{x,t) denote the reflection func-

tion. Define

\15)  u(x,t) =J R(x,t-t")¥(x,tr)dt",
e

where 7(x,t) is ziven by eq.(13).

We shall ssek an integral equation for the reflection function R(x,t)
naking use of the invariant imbedding techrique in verturbation schrme.
Imbeddine the rod of opticel thickness x in vositicn and time, we ret

{16) ul{x+ A,t+t, A)= ulx,t) +3¢ -u(x,tz*B(x,t)} + GQa),

A N . .. . 2
magnituse of the infinitesimal A .

173 C(x,t*:v(x+,ﬁ,t-t? A)=vix,t+A +BL{x,t)A * 6‘(¢ ).

“v ipitial condition (14), eq.(17) becomes ’
e .
AN N -{t=t"NV /L,
(18} Tix,t)=wlt-t_  A)-wit)A *%A} ulx,t' e th lct'/tl
2 ’ -
T ety . ‘
+ =4 ’ Wit T g w0 @),
P o L
On makingz use of eas.(11l) and (13), we obtain
t » T
(19) ulx,t)= ( R0x b=t Wt -t,A0 )dt! - AJ Rlx,t-tw t' dz' 4
- +t’ RN ,
*%arx R{x.,t=tt gzt it uix «»t{\e“\t-t")/tw gt /t +
2l O ETEEE L, BV oL !
+ 2af R(xat-—‘:“ft'j wit'tie T 1t /r, +G(A D,
<0k : R ~
Cr the other nand, we have
Trgh
(20)  u’xs Aiiee 0 )= R(x+ 4 tat, s~ hw(t!datr.
-

With the aid of egs.119’ and (2C), eg.(l&} vecomes
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(21) ) R{x+ A sEHts A —t"wft')dt':'f fo,t-t'>w(t'-t24 ydtr -
— o9 -

~ t x’ - 1+t
-2 Ag‘"9<x,t-t')w(t')dt' +%¢s( R(x, t-t’)dt'( u{x,t*" e (tr-t )/tl
I-0a
e "f
Adtle/j:_} *%A‘ R(X,t"‘")d"'j (L;r\ (t'-t“)/t ‘tts//tl +
1 J- )
AT (ot
‘“%AJ Lix, e ETE/E e /ty *iﬁ‘ w(tr)e (E-E/Ey at'/ty + Q).
-3 o —tA

First, we shall consider the case of Dirac delta time-dependent fun=~
ction,w(t)=f 3(t), where F is a constant and & is the Dirac delta
function. The substitution of w(t) into eq.(21) provides (after letting
A= 0)

(22) 9 R(x,t)/3 x + 2t23 R/¢ t +2R a{ 1/2t } R(x,t-t"')
e_t /tl dt'/t j‘ dt'f R{x,t=t")R(x,t'")e -(er-tre )/tl at'+/t }

The cordition imvposed on R are
23) R(x,0)=0 for 02t; R(0,t)=0 for t2=>0. .

£g.(21) is the regquisite integral equation governing the reflection
function.

Furthermore, we consider a fluorescence problem for which the diffuse-
1y reflected light decreases for a long time after the sudden switching~
off of the external radiation field incident or the boundary x, assuming
no emitting source within the medium.

Writing
(24) vix,t) = FH*(t),
where

(25) B (t) = § 9 £>0

1 t <0,
e find the requisite intensity u(x,t), reflected by the end z=x at
time t , is given by
(26) ulx,t)= Fjiﬁ(x,t—t')H‘(t')dt' = FitR(x.y)dy,
where R-function is glvcn by eq.(22).

2.2.% The
Let T

ransmission functlon. Then, we have

(27) v(0,t) =} T(x,t-t')v(x,t')dt",
-3

where t* = t-xtz.



de inquire into an integral equation for T(x,t). In a manner similar
to that used in a previous section, we have
(23)  v(0,t+t,0=v(0,%) + ©Ca).

From eq.(27) we obtain

~ tk
(29) V(O,t+t2'2§)= }—-N T(x+ A t+t54 -t')w(t'-tZA Ydt'.

On the other hand, using eq..1R), we see that the trammitted intensity
v(0,t) is provided by
t)(’

%‘
(30)  v(0,t) :f T(x,t-t % (x, t*)ﬂt' fT(x t-tw(t'=t A Jdt! -
- A(’“(x,u-t‘)w(t’)ct' 8 af grene t')dr{u<x £1)e JETENY R CIINVN

+ f- A‘v[wT(x t-t')at’ ,‘_‘t/w(t")e"‘ BARAZY at'r/ty o+ Qar.
The, recalllng eqs.114),(29, and (30), we xj_‘.‘ind that eq.(28) becones
(31) fw'r(x+_x E+E, A -t')w(t‘—ftrA Yat' = _[t’i(x,t-t*)w(t'-t24 Ydat!
- A "‘(x t=t Dw(tt)dt! += _\} T(x,t-t" )dt'f:qu(x £t )e (t"'t”)/tl dt"/tl
=(tr=t' ")/t

‘Jf xtt')dt" w(t")e 1dttr/ey e G ().

-
_Jlsertlng‘ w(t)=F $(t) into eq.{31) and letting A>» O, we have

(32) IT(x,t)/dx +t2
a{'* "’

j dt'j T(x,t-t IR(x,tr)e  EmE )/t dt"/tl}

57/ t + 7 =% j T(x,t-t e /8 at'/ty

¥
alonz with the boundary and initial conditions
(33) T(x,t)=0 (x>)0, 0>t or t<xt,), T(0,t)=Fa(t) (t>0).

Eq.(32) is the requisite integral equation for the T=function in the case
of Dirac delta-functién time~dependence. .

FPurthermore, consider the same quenching fluorescence problem as thét
treated in the préceding section.

Under the incident intensity v(x,t), given by eq.{(13), the required
intensity transmi,;tted from the boundary z=0 at time t is provided by

ol

{34) v(O,t):FJZ}’(x,t-t')H*{t'\,dt':F '{tT(x,y)dy,

where T(x,v) satisfies eq.(32).

3, The slab model




3.1 Stationary multipnle scattering processes

2.1.1 The eguation of transfer

Let a parallel beam of radiation of net flux @®F per unit area nor-
mal to the direction of the propragation be incident on the upper surface
z=x of the atmosphere a% polar angle cos,~ with the inwards ncrmal and
an azimuth ¢ (0< g 1,0<4 <€ 21 ). Consider an inhomoreneous plane-

arallel atmosphere of Zinite optical thickness x with anisotropic scatt=-

Rel
kel

rirn~ and an internal source distribution B, whose bottom surface reflects

1)

racdiation isotropically. The optical altitude is measured from the bottom.

Let the intensity of radiation at altitude z directed towards the top

(J}

rface z=x be denoted by I (z," yX), where [ stands for (O<\y <
0 é.Q?é;ZTC), and let the intensity of radiation directed towards the bot=
tom be denoted by I_(Z,Q sX)e The direczion of the beam is specified by
its direction cosin ' }L with respect to the outward normal to the at-
mosphere at z=x. The albedo for single scatteaing A\ depends upon z, where
0 <z <x. |

#e shall égtermine :he>ahgular.distribution of diffﬁselv reflected light
emerging ﬂé&i the top of the ;fmosphere,i:e.yiﬁe soigtion of the Chandra-
sexhar planefary roblem with thérmal emission. i

“he equation of transfer is written in the form
(35)  pdIlz,2 ,x)/dz + I = /\(2)4%_(7(2,;’2 yaNI(z,2,x)d0 * +B(z,0Q

s Ma)Fe™ X2 Yz, 0,00 /4,

where the mmse function 7 (2, ,(}) is normalized to 47T on the unit
sphere, and 3(z,Q ) represen-s the internal source.

Eq. (33' should be solved subject te the boundary conditions
(36) I_(x,2:x)=0,
(37) 1 (O,-_,x)- A ’l% (O,-.,x)p dﬁdf, +FA Yo e -x/He
where A is a constant.

3.1.2 The reflected intensity




Let the principle of invariant imbedding be

- A M Co- ~ —_—
(7’5) I‘_(qu ,X) = I*(Z,Q',Z) + ‘ S(ZQQ 1%51/‘1_(295' ax\d"’ /"“"‘r‘- ’

-
.

where S represents the scattering function and the subscript on the integ-
ral indicates the integration over -nezative values of  only. In ea. (38}

N
I (z,Q2,2) represents the intensity of radiation emitted at level z if

+
there is no layer from x to z , and I_(z,Q +X  represents the insénsity
of radiation dif usely reflected at level z directed towards the bottonm.
The downward directed radiation consists of the diffuse radiation field
and the radiation field due to the emitting source B.

In the limit z=x we have
(39) I (x,0x)=I (x,2 x)1=I% (x,0 ,%) + FS(x;Q ,00) /b

On differentiating eq.(38), with respect to z, passing to the limit
z=x, and makins use of the above relation, we cet
(40) 4T (x,0 ,x:/dx + I_(x,2,x)/p =% B(x,Q ) + Nx)F Y {(x,0 ,0, 1 /h

L
N v I ; NN N 7
# A Y0, 2, 80T (6, 2 x>da/tm) s+ mifstxs 2,00 B2

'L
+ /\(x)er(x,j_’, 9.">I+(x, Qxd QLT+ A%;QF r(x, &, i d d@//;-\"
~FS(xs Q, Q) /b b po

It is the requisite invariant imbedding equation, whose boundarv con-
diticn is

(L1 . I, (0,0 ,0)= .«A\4° (0<ps s 1o

The scattering function S is governed by
2y 35(x52,2)0/6x + (1/p + 1/Ke )5S = A(x){Y'(x;Q o) 4+
}Y(x Q,00)s(x; 0, 0)a QT fs(x-ﬂ 2"y Mx, Q7 e’
16T 1!_ ‘ S(x QL) T (x, Q' )S(x; 0, 00)d 0 4D /,AFL}.

In the absence of an internal source, putting

(43) I+(x,9. s x)=FS(x3; 0 ,2)/4H,

rom eq.{(40) we get eq.(42). The boundary condition is given by

(L) S(0392 ,0 0= bAp fe o

3.2 Time-dependent multiple scattering processes

o
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2.2.1 'ne eguation of transfer and invariant imbedding eguation

Consider the time-dependent diffuse reflection of parallel rays by
a homogeneous, non-emitting and isotropically scattering slab. e shall -
deﬁermine the time historyv of radiation which is diffuselv reflected
from a slab as a result of a constant incident flux starting at time

zero(see Fig . 3). A
/‘\_D‘a\"v‘] M~

RN sl

Fig.3 Incident and reflected beam
for a slab of thickness x

The equation of transfer is
1

(45)  pRI(z, P ,tiz + (1/c)21Ht + 61 = (A5/2) f I(z, 4 st d p,
where ¢ is the veleocity of licht, § is the volume agtenuation coef-
ficient, ané XN 1is the albedo for single scattering, together with
the boundaryvy and initial conditions
(L6) I1(0,+{,%)=0, W O I(x,—\,\ ,t'):TH{t)E(\J\ - ), \rDO“

in a manner similar to the stationary case, we find that an invariant
imbedding equation for S-function is given by
(47} ”':'(X g x +(1/p 41/ (ot 418 /\iHM/W‘

+(1/2)'S Slx,t; p ,r\)dp /p +(1/2 ¢ )g S(x,t; r ,F,)dlx
o
+Sat' fS(x AN EY S}Q(x t=t' kWt dy‘/},\" }

together with the initial condition
(48 “§(x\,o;h,w)=o.
In egs.(46) and (47) H is the Heaviside unit step function

c t<0,
= 1, t>O0.

In the above S is the required solution of the'nbn—linear‘integro~
%iffenential equation of convolution type (see figures which shew.
the general way in which the reflected intensities build up to their

liniting values).

10
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