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GALERKIN'S PROCEDURE
FOR NONLINEAR PERIODIC SYSTEMS

Minoru URABE

Depariment of Mathematics, Faculty of Science, Kyushu University, Fukuoka

SOMMAIRE

L'auteur se propose de déterminer si un systéme périodique non-linéaire. du
type vectoriel

dx _ o
a—t--X(x,t}

peut toujours &tre traité avec succés par la méthode approchée de Galerkin, c'est-
d-dire en admettant que la solution d'ordre m est représentée par um polynome
trigonométrique & m termes de la forme a,cosnt +b_ sinnt, dont les coefficien:s
gont déterminés de maniére i satisfaire une certaine équartion moyennée. Les
conditions de validité de cette étude sont moins larges que celles envisagées par
Cesari : en revanche, les résultats soni susceptibles d'une appiication pratique
immédiate, On suppose que X et ses dérivées par rapport & x sont continQmen:
différentiables en x et en t, et que la solution périodique considérée est 'iselée”,
c'est-a-dire gqu'il n'existe pas d'autres solutions périodiques voisines.

On démontre que, dans ces conditions, lexistence d'une sciution péricdique
isolée entraine celle d'une approximation de Galerkin d'ordre aussi élevé quion
le désire, et qufun certain opérateur linéaire lié & la marrice Jacobienne de
resgte alors borné ; et que si cet opérateur est borné, llexistence d'ume approxi-
mation de Galerkin d'ordre aussi élevé qu'on veut entralne celle d'ume sclution
périodique isolée.

~ Des exemples numériques sont donnés.

-

§0., INTRODUCTION.

Given a real nonlinear periodic system

dx

= Xix, v, (0. 1)

where x and X(x,t) are the vectors of the same dimension and I{x 1) is
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with undetermined coefficients (@,, @; , by, ..., 2y, bg) and, next, we de-
termine these coefficients so that x {t/ may satisfy the equation

. . .
dxg'((t) =-:zi—-' «[ X [ x.(s), s] ds

+ 1 z §cosnt f” X [x,(s), s} cosns ds {0.3)
jis ]

=1

3

+ sinnt j: X [x.(s), s] sinns d'si .

Then it is guessed that the trigonometric polynomial xg(t) determined in
the above way will be a periodic approximate solution of the given system
(0. 1) provided m is large. This procedure is nothing but Galerkin's pro-
cedure applied to the system (0.1), In the present paper, we shall call
the trigonometric polynomial (0. 2} satisfying (0. 3) the Galerkin aspproxima-
tion of the order m. The question in the present paper is whether Galer- -
kin's procedure applied to a nonlinear periodic system (0.1) is always
successful or not. i

This preoblem: was studied by Cesari [1], He studied the problem
under very mild conditions and he gave the very general conditions that
Galerkin's procedure may be successful in seeking a periodic solution of
'a nonlinear system., But his approach is based on a theorem on inva-

iance of degree of topological mapping and the conditions of that theorem
are not specialized into the form connected directly with the given sys-
tem. So, when his results are applied to practical prohlems, some more
technigues are needed and this does not seem to be an easy work usually.

Such being the case, seiting some more conditions upon the given
system and restricting a periodic solution somewhat, we tried to get the
results more convenient to practical application, We assumed ¥(x, t} and
its derivatives with respect to x are both continuously differentiable with
rTespect to x and ¢ and we restricted a periodic sclution to such one
that the multipliers of the equation of first variation with respect to the
periodic solution are all different from one. In the present paper, we
shall call such a periodic solution an isolated periodic solution, because
there is no other periodic solution in the neighborhood of such a periodic
solution. The condition of smoothness of X(x,t) and the restriction to an
igolated periodic solution will not be severe limitations from a standpoint
of practical application.

The equation (0.3) can be written as follows
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Fim' (o) ‘2};— X [x,(s), s] ds = 0,
Fim () . s [xa{s), 8] cosns ds - nb, = O, (0.4)
“Vaq . ;
p2m o
G (o)t T;-;t— _[ X [%a(s), sl sinns ds + na, = 0
(n = 1: 2:» LI ] m);
where o= (a;,,val,,bl, cees Gy, by)
. - ‘ [
and x.(t} = a,. + V2~ Y (a, cosnt + b, sinnt). (0. 5)
. . a=k

Since the coefficients of Galerkin approximations are determined by (0. 4),
in the present paper, we shall call the equation (0.4) the determining
equation of Galerkin approximetions.

Qur results are :
Onder the conditions of smoothness of X(x,t),

1/ the e{istence of an tisolated periodic solution lyiné inside the
-region of definition of X(x,t) always implies the existence of a Galerkin
gpproximation of any high order and the boundedness of a certain linear
operator connected with the Jacobi-matrix of Xix, t) with respect to x ;

_ 2/ the existence of a Galerkin approximation of the sufficiently high
‘grder always implies the existence of an isolated exact periodic solution
provided the boundedness condition of 1/ is satisfied.

From the first result, the uniform convergence of the Galerkin
approximation is readily proved. From the second result, there are given
a requisite and an error estimate for a Galerkin approximation which
can affirm the existence of an exact pericdic solution.

The determining equation of Galerkin approximations is nonlinear,
so, at first sight, it seems very difficult to solve such a nonlinear sys-
tem of equations. But the examples of the last paragraph show it will
be not so difficult in practical problems to solve the nonlinear determi-
ning equation by a computer if we use Newton's method. The reason is
in the rapid convergence of the Fourier series. Moreover, in numerical
solution of the determining equation, we do not need the explicit form of
the determining equation if we use some techniques of Fourier analysis.

However, if the explicit form of the determining equation is wanted;
it can be generated also by a computer provided the right-hand side of
(0.1) is a polynomial of x.

The programs for computation in the present paper have been all
written by A. Reiter of the Mathematics Research Center and the com-
putation has been carried out by CDC 1604 of the University of Wiscon-
sin. Here the author wishes to express his hearty thanks to Mr. A. Reiter
for his earnest and constant co-operation.
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§1. PRELIMINARIES.

In the present paper, we use Euclidean norms for vectors and ma-
trices and denote them by the symbol || ...]|. For continuous periodic
vector-functions, we use two kinds of norms, Namely, let f(t) be a con-
tinuous periodic vector-function with period 2r, Then, in the present
paper, we use two kinds of norms | f| and } ], which are defined as

follows :
[gfrfv el at ]"2.

max fFecoll .

Helt
il

Here [[fft)] is a2 norm of the vector f(t).

The approach of the present paper is based on the following three
propositions.

Proposition 1, Given a linear pertodic system

T AWx + o), (1.1)

where 4{i} is G continuous periodic matrix with pertiod 2% and o@ft) is e con-
tinuous pertodic vector with the same period. If the multipliers of the
corrasponding Romodengous system

4y .
3t Alt)y (1.2)

are all different from one, then (1.1)hasone and only one periodic solutton
with period 2n, which is given by

xt) = [ Ht, s)p(s) as (1.3)

where H(t, s} i3 a plece-wlse continuous pertodic matrix such that

a(t) [(E - o(2n)]™ Ti(s)
0S$ss ts2m

H(t, 8} = : (1.4)
o(t) [E - a(2n)]™* o(2M) o7Y(s)
for 0$ts ss 2xn
and H(t, s) = H{t + 2mn, ‘s + 2nn) (m, n : integers). (1.5)

Here & is a unit matrix and ®(t) ts & fundamental matrix of (1.2) such that
N0) = &. ~

The formula (1.3) defines a linear mapping # in a space of con-
tinuous periodic functions. Consequently, the norms of this linear mapping
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are defined corresponding to the norms of continuous periodic functions.
We shall denote them by & and }#l. Then, by means of Schwar:z'
inequality, it is readily seen that

172
fuj < U TR S dsdt] , (1.6)
2m ‘
4] < [2".max f

where £, (t, s} are the elements of the matrix #(t,s).

11

1/2
Hk (t, s) ds ) (1.7}

k l

-

In what follows, we shall call the linear mapping # defined by (1.3}
the F-mapping corresponding to a given matrix 4(t).

Preposition 2. Given a real system of equations

F(z)} = 0, (1.8)
where a and F(x) are the vectors of the same dimension and Fla) is a conti-~
nuously differentiable function of a defined in some rzgion Q of a.

Assume that (1, 8) has an approximate solution o = & for which the de-
terminant of a Jacobi-matrix Jix}) of F(a) with respect to a does not vanish
aend that there are a positive constant 6 and G non-negattive constant % < 1
such that

(@) 9 = (af o - & <8} Co,

(i) 13 - J@E Sw/M*  for any a€Q,,

Mr <6

(111)

where r and ¥' are the numbers such that
IF@J $r aa JJIH@N € M.

Then the system (1.8) has one and only one solution a =0 irnQ, and

' M'r
- € —
. nﬂ &ﬂ 21 - n’

This proposition can be proved by Newton's iterative process :
1. = all - J-x(&) F (an) (n = 0, 1: 2; ';')’

where «, = &.

Proposition 3. Gtven a real system of differential equations

dx

2 - X, 1. | (1.9)

21
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Here x cnd ¥(x,t}) are the vectors of ithe same dimension and X(x,t) is periodic
int with period 27 cnd is continucusly differenatiable with respect to x for
x&Dand t&[ where D is a given redion of x and [ is a real line.

Assume (1.9) has a periodic approximate solution x = X(t) lying tn D
and there are a continuous pertodic matrix A(t), a positive constant & and a
non-negative constant w <1 such that

(i)>the multipliers of the linear homogeneous system
dy _
3 - Ay
are all different f’rom- one,
(i) Dy = {x(t)] lIx(t) - T <8} cC D,

(iii) ¥ [x(t), t] - &)} S »/M, for any x(t) € Dy,

My r
1 - n

{(iv)

$s.

Bere

¥ (x,.t) i3 a Jacobl-matrix of X(x,t} with respect to x,'l!1 ts a positive
constant such that

fuf S ™

where § is a F-mapping correspondtng to A(t) ; r ls a positive consiant suck
that - .

Id—iaitﬂ -~ X [X(t), tlg < r.

Then the given 3system (1,9) has onre oand only one ‘pertodic solution

x = x(t) in Dy and this is an tisolated pericdic sclution. Further, for
x = X(t}), it holds that

- - M

by - ®ol $ 2 (1. 10)

This proposition can be proved by means of the iterative process :

Zoa®) = [ Ht, 8) [K(x,(s), 8) - Als)x,(s)] ds
(m=0 12 ...),

where x,(t) = x(t)and #(t,8) is a matrix of the: E—-mapping corresponding
to 4(t).
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§2, THE EXISTENCE OF A GALERKIN APPROXIMATION

2.1 A truncated trigonometric polvnnmial of a periodic =7 minn.
Let f(t) be a continuous periodic vector-function with period 27 and let
its Fourier series be :

f(t) ~ co = V2 ¥ (c, cosnt + d, sinnt),
n=1

where ¢,, ¢;,d;,¢;,d,, .. . are vectors. Then the trigonometric po-
lynomial

1

f(t) =c + V2 (é,,'cos nt + d, sinnt)

L]
ns

™

is a truncated trigonometric polynomial of a given periodic function fft}.
In the sequel, we shall denote such truncation of a periodic function by
P, and write a truncated polynomial f‘(t) of a periodic function f{t) as
follows :

f.(t) = P f(t).

If we put Y = (¢

2s € »8ps oo s €, d_J, then it is readily seen-that

el =l

This propérty will be used often in the sequel.

For a continuously differentiable périodic function, there holds

Lemma 2,1, Let f(t) be acontinuously differentiable periodic vector-function
with period 2n. Then, :

It - Bfl £ otm) [[f]] € o(m) REL,
e - Butll < o(m) [f£N,
where . = d/dt and
- . 1 . 1 xre
o(m) = V2 [(m+ 12 (m + 2F +] .
o1
% (m) = m+1°
Por g(m), it holds that
V2 V2
m( O'(m) < VE .

This can be proved easily by means of Schwartz' inequality and
Parseval's equality.
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If we apply Lemma 2,1 to a periodic solution of a differential equa-
tion, then we have the following lemma concerning its truncated trigono-
metric polynomials.

Lemma 2.2, Given a real periodic system

dx

o C Xlx, t), (2.1)

where x and X{x,t) are the vectors of the same dimension and X(x,t} its periodic
in t with period 2m. ¥e assume that XY(x,t) and its derivatives with respect
to x are continuously diffsrentiatle with respect to x and t in the region
D x L, where D is a closed bounded region of x and L is a real line.

Let K, X; aond X, be the non-negative constants such that

K = max [[X(x, t)], K,; = max || ¥(x, t){,
DxlL Gx L
(2.2)
K, = ';‘_aL BX(x t)”

wherg ¥(x,t) is a Jacobi-matrix of X{x, t} with respect to x.

Ther, if there ts a periodic solution x = x(t) of (2.1) lying tn D,
tt holds that

@ Iz -zl
(i) §2 - &}

where xy(t} = P x(t].

A

a(m} K,
c.(m)K,
olm) (KK, + K,),

HUA HA

From this lemma, readily follows the following corollary.

Corollary, If x = x{(t} is an isolated periodic solution of (2,1)lying inside
D, then there exists 2z positive integer n, Such that, for any = ; Rys

(i) 2,()E D ;

(ii) the multipliers of the linear homogeneous system
dy
o - YR, t)y

are all different from one and the H-mapping B, corresponding to ¥ {%g(t],t]
ig gqui-bounded, namely, there exists a non-negative constant ¥ such that

e, Tl S

ooy G s T . ;
(iii) PT; ¥ (Xq(t), t] is equi-bounded, namely, there exists a non-

negative constant K3 such that

Il_ ?rx ‘t ] S‘- Kj‘
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2.2 The Jacobi-matrix of the determining equation of Galerkin ap-
proximations. Let J, () be the Jacobi-mairix of the lelt membs - of ‘he
determining equation (0, 4) of Galerkin approximations, To find e basic
properties of J (aj,let us consider a linear system

nla) & +Y =0, (2.3)

where § = (u,, u;, vy, ...,u,, V) and Y =(¢,, ¢, dp, ...,¢, dJ. If
we put ‘

y{t} = u, + VZ_):‘ (u, casnt + v, sinnt),
@t} = cs + V'Z_f_ {ca cosnt + d, sinnt),

LESS

then, by the defi.hitian of J,(al, corresponding to (2.3), we have a dif-
ferential system

DO - e v, v + 9, @
where x_(t] is of the form (0.5).

Now we can prove

Lemma 2.3. We assume the conditions of Lemma 2.2 and further we assume
the system (2.1) has an isolated periodic solution x = 2(t) tying tnside D.
Poking m, sufficiently large, we consider the differential system

2= Pav (20, 4y + o) (2. 5)

form 2 By, where X (t} = P %(t} ond @{t) i3 on orbitrary continuous periodic
function with period 2T,

Then, for aeny periodic solution y = yltiof (2.8),1f it exists. it holds

that
< M [1 + chl(m)]
W 2k, ) o, m) 190
The equation (2, 5) is rewritten as follows :
d -
3 = YR, tly +ot) +m,
where

n=-(-RB)Y[e), t]ly.

Here I is an identical operator. Estimating n by means of Lemma 2.1,
We can prove the lemma using Corollary of Lemma 2,2,
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Let

2(t) = 4, + V2 ¥ (5, cosnt + b, sinnt) (2. 6)

LEDS

be the Fourier series of an isolated periodic solution x = %(t) of (2.1)
lying inside D. Then, from the above lemma, readily follow the following
corollaries,

Corollary 1, There exists a positive integer m, such that
det J (@) # 0
for any m 2 m,, where
3-e,, 8 b, ..., &, b). (2.7

Corollary 2, There is a positive tnteger rrio such that, for any m 2 m, J;I(&)
exists and

M {1 + K,o,(m)]
1 - M(K, + K}) o,(m)’

@) S
For the difference J (a') - J, (¢"), we can precve

Lemma 2.4. Fe assume “the condittons of Lemma 2.2. Let K, be a positive

constant such that
2
- Xalx, t) \2
K =
* [in‘akx n?;,, ( 3x;¥x, )]

where X, (xt)and x; are respectively the components of the vectors X(x,t)and x.

Then, if both of

x'(t) = a! * vz Y (a! cosnt + b! sinnt)
asl

x'(t) =a) + V2 2 (a' cosnt + b sinnt)

n=}
belong to D together with 8x'(t) + (1 - 8) x"(t) (0 S 9 $1), then
9a(e) - Jo@") SKy I - X"l SKy VZm + T |o' - o',

where a' = (a!, aof, b, ..., a:, b)) and o' = (a7, a7, bf, ..., &, b]).

This can be proved making use of the correspondence between (2.3)
and (2.4),
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2.3 The existence of a Galerkin approximation. The existence of
a Galerkin approximation is affirmed from that of an isolated periodic
solution by the following theorem,

Theorem 1. Given a real nonlinear veriodic systenm
== X{x, t) (2, 8)

where x and X{x, t} are the real vectors of the same dirmension and X(x,t) ts
periodic in t with period 2%, We assume that X(x,t) and its derivetives with
-respect to x are continuously differentiable with respect to x and t in the
region D x L, where D is a closed bounded region of x and L is a real line.

Then, if there is an isoloted periodic solution x = %{tJ) of (2.8} lying
inside D, thére exists a Galerkin cpproximation x=Xe (i} of cny order m 2 m,
lytng in D provided m, is taken sufficiently large.

Proof. Take a small positive number &, so that
={x(t)] [x(t) - *(t)] <8} CD.

Then, by Lemma 2.2, P,%(t) =  ({)EUCD for any a 2 n

= my provided m,
is sufficiently large. For such », we have

B - B x (a0, ]+ R, (2.9)

dt

where

R(t) = P(X[2(t), t] - X[&,(t), t]}.
By Lemma 2.2, it is readily seen that
IR.} £ KK,0,(m). (2.10)

For brevity, let us write the determining equation (0.4) in the vec-
tor form as follows :

F*'@) = 0. (2.11)
Then (2.9) and (2.10) implies

F-‘-'(a){}" p;-}
and

lot>'} £ KK, a,(m), (2.12)

where & is a vector defined in (2.7). This says a = & is an-approximate.

solution of (2..11). Therefore let.us now apply Proposition 2 to the equa-
tion (2. 11),

region
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D a 8, - K
. = gli o - ‘{‘g-—m__._—ii_i.yl)%, (2.13)

If my is sufficiently large, then, for any m2n by Corollaries 1 and 2

N o’
-1

of Lemma 2,3, Jg*({%) exists and

o= —MIL* Ky o(mo)] (2. 14)
) 1 - M(K, + K}) c,(m) " )

I @)

nA

Let » be an arbitrary number such that 0 < » <1, Then, if we
take sufficiently large positive integer m, 2 m, then, for any =m Znm,,
we can take 5, such that

a*

M'KK, <z < 1 . " N
-—-1——_———:'t—-cl(rn) = Cp = %—:—1 min (W, Ca =~ Kc(mo))- (2. 15)

Then, by (2.12) ~ (2.15) and Lemma 2.4, we can easily prove that the
conditions of Proposition 2 are all fulfilled for & = §,. Thus we see that
the determining equaticn (2,11) has one and only one solution a = ¥ in
Rsm» This proves the theorem. Q. E, D.

 Errors and some properties of Galerkin approximations. An

= i
error estimate of a Gaglerkin approximation is given by the follewing

Thecrem 2. ¥¢ assume the conditions of Theorem 1, Let x = X!t} be an
isolated pericdic solution of (2,.8) lying tnside D and X = Xp(t) be 1ts Ga-
lerkin approximation affirmed in Theorem 1, If we take m, sufficiently large,
ther, for any positive inteder mZm, we have

M'KK;, VZm + 1

A

2. - 2l = 5—2. ——<—+ K om), (2.16)
s _ 3 < (K + 32 ‘M'KK]  VZm + 1
I -2l . (K, + 2KK) olm) + 5. ——5—  (2.17)

where

% i8 an arbitrary fixed number such that 0 < n <1 ;

X, X, and X, are the constants defined in Lemma 2.2 ;
ol(m) ts a number defined in Lerﬁma 2.1 ;
¥' is a constant defined tn (2. 14).

Proof. The inequality (2, 16) can be easily proved.by means of Pro-
position 2 and Lemma 2,2,

Now, by the definition, for the Galerkin approximation x = ¥g(t),
it holds that

T - xR, 0. (2. 18}
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This can be rewritten as follows

dxgi” = X [R(1), t]+ nyv), (2.19)

where
n.(t) = - (I - Py X [X,(t), t].

By Lemma 2.1, it is readily seen that
In 1 £ oim) (KK, + K,). (2. 20)
Then we can get (2,17) readily from the equality

o) B Lz, 1] - X (&, )+ 0. QE.D.

From this theorem, readily follows the following corollary.

Corollary. If there is an isolated periodtc solution x = X(t) of (2,8)Iyting
tnside D, then its Galerkin agpproxination x = Xg{t) 2ffirmed in Theorem 1
converdes uniforaly tc the original solution x = x{t)together with ivs first
order derivative a8 m —» @,

(3]

By Theorem . if we take m, sufficiently large, then, for any
m 2 m, the conclusions of Corollary of Lemma 2.2 are all valid for
E.{t} as well as for %./t). Thus, by means of Corollaries { and 2 of
Lemma 2,3, we have

Theorem 3., ¥s assume the conditions of Theorem 1 and suppose {2.8) has
an isolaoted periodtc solution lying inside D. Let

X, (t) =3, + V2 i; (g, cosnt + B, sinnt)

be its Galerkin approximation affirmed tn Theorem 1 and suppose me LS suf-
ftciently large. '

‘Then, for any m 2 m,,
det J (&) # O,
and there exists a constant ¥’ such that

1@l € M,

where @ = (&*,,7, %y, 01, ..., @a, bg), Purther, the multipliers of the linear
homogengous system

dy _ -y A
e vLx (), t:y

are all different from one and the H-mapping B, corresponding to ¥ [x,(t), t] )
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is equi-bounded, narmely, there i3 a non-negative constont 4; such that

"Hm“’ 'Hu i <= :\Il'

§3. THE EXISTENCE OF AN ISOLATED PERIODIC SOLUTION,

According 'to Theorem 3, let us assume the equi-boundedness of
the H-mapping #,. Then we can get.the following theorem.

Theorem 4. W¥e assume the conditions of Theorem 1.

) Let my, be a certain positive integer and & be a region such that its
e(> 0)-neighrhood is contained in D.

Then, if there is a Galerkin approximation x=Xxe(t)Oof any order m2~,
lying in . such that, for the H-mapping H, corresponding toTlx (t,,t], } &
s equi-bounded, then there exists one and only one exact isolated periodic
solution x = x(t) of (2.8) in the neighborhood of x = Xglt) and, between

Xe(t) and %(t), the following inequality holds -

M .
12 - %1 £ 75 (KK, + K,) o(m), (3.1)

where
w I8 an grbitrary fixed number suchthat 0 < un <1 ;
i K and Ka are the constants defined in Lemma 2.2 ;
gi{m} ts ¢ number defined in Lemma 2,1 ;

¥; ts a non-nedative constant Such that
I <M,

Proof. For x=Xg(t), (2,18) holds and we have (2. 19) and (2. 20).

Let » be an arbitrary fixed number such that 0 < » <1, Then, if
we take sufficiently large positive integer =, 2 m,, then we can take &
such that

M V2 ¢, < ; " .
<5 S €, ——
1w (KK, + K,) Voo & = mm( MK, ° (3.2)

where I, is a constant defined in Lemma 2.4. Then, by means of (2. 20)
and (3.2), .we can easily prove that, for any = 2 m;, the conditions of
Proposition 3 are all fulfilled for X(t) = X,(t) and 4(t) =¥ (X,(t),t]. Thus
we see that there exists one and only one exact isclated periodic solu-
tion x = x(t)of (2. 8) in D;. The inequality (3. 1) readily follows from (2, 10).

Q. E. D.

Remark. In Theorem 4, we have assumed that the multipliers of the li-
near homogeneous system

dy _
5= U, t]
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are all different from one. However- this can be proved if we assume
the existence and the equi-boundedness of J;I(T) where o is a vector cor-
responding to the Fourier coefficients of X (t). But the equi-boundedness
of the g-mapping corresponding to ¥ [X,ftJ, t] which is also assumed in
Theorem 4, seems not to follow from sole assumption of :he existence
and the equi-boundedness of J;*(3).

&. NUMERICAL EXAMPLES

4.1 Example 1,

£+ 1.5 x + (x - 1.5sint)’ = 2sint. (4.1)

If x=x(t) is a solution of (4.1), then -x(-t)and -x(t+w} are also
the solutions. - Therefore, if the.periodic solution of (4.1) is unique, then
the Fourier series of such a periodic solution must be of the form

x(t} = a, sint + a,; sin3t + ... .

3

Now, let us seek the 3rd ordef Galerkin approximation of the} above
form.

The equation (4.1} can be written in the form of first order sys-
“tem as follows :

>

@

¥

- 1.5 - (x - 1.5 sintP + 2 sint.

Let the desired 3rd order Galerkih approximation be

%x = x(t) = a; sint + a, sin3t,

y = y(t} = %(t) = a, cost + 3a, cos3t,

fhen. after solving the determining equation, we get the following Galerkin
gpproximation :

x = X(t} = 1,59941 sint -~ @, 00004 sin 3t. (4.3
Let  be the #-mapping corresponding to

Alt) 0 A
-1.52 o /!

then, by (1.7), we find

13V2
12

[H] < T = 4.81312... < 4.8132,

Let ¥ (x, I, t} be the Jacobi-matrix of the right member of (4.2},
then it is readily seen that
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i i < R =
DY (x vt s M) LS B(5 + 0, 09945F

for x = x(t) such that Ix(t) -.X(t}]-5.8.

Since
[X(t) + 1,52 X(t) + (Xt} = 1.5 sint)? 02gint} <07 000025,

according to Proposition 3, let us seek 5 and }4(; 1) such that

%
4,8132.%

| 4,8132 x 0.000025
~ 1 -w = o

3(5 + 0.09945)P £
g {4. 4)

If we suppose & to. 0002,then(4.4) canbe replaced. :téjr\:’;h_ﬁe:ftstrohger

B i_i;egqalities
0.00012033 <5 < _u. <.
T ° 6-"& 1-—---—-.439 -70, 09945,

From this, we readily see that (4.4) is valid for x = 0. 144_‘7‘3,‘1‘;15_1 5 ‘such
that 0.000141 < & £ 0,0002. Thus, by Proposition 3, we see that the given
equation (4, 1) has an exact isoloted periodic sozuttorz.a.‘:_i‘(ﬂi} and that

| ®(t) - 2(t)] £ 0.000141

for the Galerktin approximatton (4.3),

4.2 Example 2.
_.g + x¥ = sint, (4. 5)
This equation is taken up in Cesari's paper EI].
First, we compute the Galerkin approximation of _the form
x(t)=b,sint  and we find b, = 1.4923.
Next, starting from

b1=1.4923 a°= a, = 32 = b2= eee =T ax,"‘.‘ b‘x,='_0‘

3

we solve the determining equation by means of Newton's methed and we
get the desired Galerkin approximation as follows :

X(t) = 1.4311 89037 sint - 0.1269 15530 sin 3t
+0.0097 54734 sin 5t - 0.0007, 63601 sin Tt
+0.0000 59845 sin 9t - 0.0000 04691 sin 11t
+0.0000:00368: §in:13t- 0.0000 00029 'sin-i5t.

(4. 6)
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or this Galerkin. approximation, we see that
ix + X3 - smt!é r = 713 x 1077, (4.7)

To find the value of ¥; (Cf. Theorem 4),. first, we compute the
fundamental matrix: of the -equation of flrst variation by means of the
Runge-Kutta method - with mesh- size 2t _’\ext we. compute the matrix.

g{t,s) by means of (1. 4) and, f;nally, we compute the value of ¥; by
s I :
means of (1.7). We have computed the integral Jl S H (t,sids by
» S L ¢ ky i
Simpson's rule. The obtained value of ¥; is

M, = 11, 4107. (4.8)

From (4‘ 7) and (4.8), we see by Proposition 3 that the-given equation
(4. 5) has . an exact isolated periodic solution.x = X(t} and that,

| X(t): - 2(t)] < 8.231 x.107-

for the Galerkin approximatton (4.6).

4.3 Examgle 3.

£ - A(1l - x2) x + x - A sint =0, (4. 9)

This is a van der Pol equation with a harmonic forcing term.

For A =0,1, we get the following Galerkin approximation :

-

= X(t) =- 2.3787 85902 cos t - 0.1423 30099 sint
-~ 0.0046 46924 cos 3t + 0.0418 67539 sin 3t
+ 0.0012 23706 cos St + 0.0002 15278 sin 5t

]

0.0000 09756 cos Tt 0.0000 39873 sin Tt
0.0000 01355 cos 9t - 0.0000 00430 sin St
0.0000 00019 cos 11t + 0.0000 00047 sin 11t
+ 0.0000 00002 cos 13t + 0.0000 00001 sin 13t
+ 0.0000 00000 cos 15;\. 0.0000 00000 sin 15t.

(4.10)

Checking the conditions of Proposition 3}, we see that, for A =0.1,
the given equation (4.9) has one and only one \LsoZated periodic solution.
x = X(t} in the neighborhood of the Galerkin approxwatton {4. 10) end that

[Z(t) - ()] € 2,50 x 1077

for thel'_‘Gq"le‘rkin Qpprgkt*niatﬁén. (4, 10),
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Remark !, In the course of computation of ¥ we have computed the mul-
tipliers of the equation of first variation, They are 0.87449 and 0.35980.
This savs the periodic solution whose existence is certified by the above
computation will bte stable.

Remark 2. It is easily found by the method of averaging that, for suf-
ficiently small \ > 0, the equation (4.9) has a unique stable periodic solu-
tion whose first approximation is

A .
X = a, cost - 3 (ag = 1) sin3t

where a, ® - 2,3830 is a unique real r(')otr of the >equation
al - 4a, + 4 = 0.
For A = 6.1, the above first approximation becomes
x = - 2,3830 cost + 0.04229 sin3t. (4.11)

Comparing the above results with ours, we see

1/ the conclusion on the existence of a stable periodic solution
is right for A = 0.1(1) . :

2/ the first approximation (4.11) has notv sufficient accuracy.
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DISCUSSION

M. FORBAT : M. Urabe n'a-t-il pas de remarque 2 faire au sujet du cas ol le
gystéme algébrique fournissant les coefficients de l'approximation de Galerkin
admettrait plusieurs solutions ? Je signale & cette occasion que l'excellent ou-
vrage du Professeur Kauderer (Nichtlineare Mechanik, Springer, Berlin 1959)
décrit de nombreuses méthodes approchées, souvent précieuses,

M. URABE : L'équaticn déterminante n'a naturellement pas toujours une solution
unique ; mais elle fournit une seule solution pour chaque solution périodique iso-
lée. Si l'équation proposée posséde n solutions périodiques isolées, les équations
déterminantes ont n solutions qui donnent les approximations de Galerkin satis-
faisant aux conditions de la proposition 2. Lorsqu'on résoud numériquement les
équations déterminantes, on obtient telle ou telle solution suivant les valeurs de
départ. ’

cenccccccns o=

(1) Note that the conclusion derived by the method of averaging has no certification
for its validity for a given value of A unless the conclusion is checked for the
given value of A. Our method is, of course, one of the methods available for
checking the conclusion for the given value of A,
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Je pense que la méthode de Newton est trés commode pour résoudre le sys-
teme non linéaire pour de nombreuses équations

M. SETHNA : Pour l'équation de Duffing
X+x+xi=cosyt,

.1
on trouve que si 3 "E<Y¥< % + g, 0 <t <« 1, l'application de la méthode en

premidre approximation en partant de

x = a{!’ cos vt

donne une amplitude a;“ qui différe considérablement de celle qu'on obtient par
la deuxiéme approximation

2y

x=al (21

cos Yt + a, cos3vyt

Est-ce que votre procédé permet de prévoir un tel comportement ?

M. URABE : Il est bien évident que dans les cas critiques il faut recourir a des
techniques spéciales ; mais parfois la méthode des perturbations permet de trou-
ver les valeurs de départ.

M. CESARI : L'exemple de l'équation X + x3= sin t, traité tant par Cesari que
par Urabe, peut éclairer la question. De&s la premiére approximation, trois so-
lutions périodiques apparaissent comme possibles ; on n'a analysé que celle qui
est harmonigue, et pour elle on a démontré l'existence d'une solution périodique
exacte voisine. On avait eu le sentiment que pour arriver a des conclusions ana-
logues en ce qui concerne les deux autres solutions, il eQt fallu recourir & des
approximations de Galerkin d'ordres plus élevés. La fagon de faire de M. Urabe,
qui fait intervenir des approximations de Galerkin d'ordres supérieurs obtenues
& Yaide de calculateurs analogiques et de la méthode de Newton, avec comme
conségquences la possibilité de discuter l'existence et d'évaluer les bormes de
'erreur, me semble trés adéquate et donne d'excellents résultats.

M. ROSENBERG : M. Forbat a mentionné le livre de Kauderer. Il est vrai qu'on
y frouve de nombreux exemples de procédés numériques, mais on n'y démontre
jamalis l'existence de solutions périodiques avant d'admettre qu'il y en a.

Additional References

For details of the proof, computation and application,
see: : ’ *
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