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A two point connection pro

single linear ordinary differential equation

by Mituhiko KOHNC

(R.I.M.S. Kyoto University,

1. Introduction.

In this lecture, we should like to talx abtcut az topics ona
two point connection problem for an n-th crder singie linear
ordinary differential equation with an irregular singular point
of rank 2. A two point connection problem is tc seex "the solu-
tions in the large' of given ordinary differentizl equations.

Until now, there are several investigaticns c-n this preoolem. 5.
> 3

(9]

Birkhoff initiated this study, and then, H.w.in
-and K.Okubo developed it to a certain extent. Scms of them treated
a system of ordinary differential equations with an irregular
singular point of rank 1 and the other studied a single ordinary
differential equation of which the coefficients of convergent
solutions satisfy the two term recurrence formula.

Now, we shall explain the above last line. One method to
seek''the solutions in the large™ is to analyze the convergent
solutions in the neighbourhood of a regular or regular singular
point for the purpose of deriving the asymptotic behavior of them
near an irregular singular point. Ordinarily, the convergent
power series solutions can be represented by the product of a
multivalued function (fractional power) and an entire function,
in the case when the given ordinary differential equation has a

regular singular point at origin, an 1irregular singular point
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at infinity and no other singular point elsewhere in the whole
cOmpléx plane.

"It-is.clear‘that the entire function will mainly contribute
to the asymptotic behavior of convergent solution near infinity.
.‘Henée, wé had better to investigate the asymptotic behavior of
the ehtire'fuﬁctioﬁ near infinity which depends on the coeffi-
cients of power series of the entire function. The coefficients

of convergent power series solutions of ordinary differential

equations satisfy the recurrence formula. We reduce the recurrence

formula to the same difference equation by the change of integer
to complex variable.
And then, if we could -analyze the behavior of solutions of
’,the,difference equation, we will be able to get the behavior of
.. the céefficients.of'large powers and the asymptotic behavior of
the entire functiqn, or the convergent solution near infinity.
de,,if the coefficients happen to .satisfy the two term
recurrence formula, the céefficients, in general, can be represent-
ed bybthe generalized Gamma function which have been studied in
detail‘b& E.M.Wright and others.

So, the two point connection problem for linear ordinary
differential equations with an irregular singular point of rank 1
has been almost completely solved because the coefficients of

fton&ergent soiutiohs of that equations also satisfy the two term

recurrence formula.

The two point connection problem for linear ordinary differen--

tial equations with an irregular singular point of higher rank has .
"n§t yet.studied and it seems to be a very difficult problem, since

the solutions .of the reduced difference equation can not so easily



analvzed as Gamma function.

Recently, K.Okubo showed results for a syster . _.dinacy
differential equations with an irregular singular point of rank
2 without complete proof in the book '"Proceeding of United States-
Japan Seminor on Differential and Functional Equations'.

Here, we shall explain some results derived for an n-th order
single linear ordinary differential equation with an irregular
singular point of rank 2.

The difference between a single ordinary differential equa-
tion and a system of ordinary differential eqﬁations has not yet
clarified as described in fhe paper "Solvable Related Equations

Pertaining to Turning Point Problem'" by H.L.Turrittin.

2. Properties of convergent solutions and asymptotic solutions.
An n-th order single linear differential equation with a

regular singular point at origin has the following form,

n n n-4
(1) £ d 'x Zil a (t) tn-z d X
S att ¥

where ag(t] (¢=1,2,...,n) are holomorphic at origin.
On the other hand, an n-th order single linear ordinary
differential equation with an irregular singular point of rank.2

at infinity can be written down as follows,

dn—2x~

ath%

ut 2
(2) = 2L by(t) ¢t
2=1

where bz(t) (2=1,2,...,n) are holomorphic at infinity.
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singular

point at origin, an irregular singular point of rank 2 at infinity

and no other singular point elsewhere, we have from (1) and (2), -

(3) a, (t) = tzzbz(t) (2=1,2,...,n)

from which the coefficient ag(t) must be a polynomial of degree

at most 22

And, if we write

~o
P

(9 et = a,  tf

o, (2=1,2,...,n)

a1
1
<
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we have the most general n-th order single linear ordinary

differential equation with above property as follows,

n’ n 29
(5) tn.é_E = zii tn'z (

T

T
. al,rt Y.

Now, by the theory of ordinary differential equations,

the convergent solutions in the neighbourhood of a regular

singular point have the form

(6) o (8) = £33 G " (j=1,2,...,n)
' J - m=0 J

where o5 are roots of the characteristic equation

joo]

(7) p(p-1) °°* (p-n+l) = %21 a)Z 0 p(p-1)..+(pP-n+2+1)
=1 ’ ’

and pj-pk # integer'(j#k) are assumed because the convergent




solutions involving no logarithmic polynomials are consid

in this lecture.
We use the following abbreviatiocn according to Ince’s
= ‘0~ PN o-n+1 olA=1
lel, o(p-1) (p-n+1),  [oljy

and the characteristic equation (7), for example, can be

At first, we shall investigate the coefficients G, (
<
convergent solutions. Now we denote the differential ope
t%f by D and then we have

p _af

(8) tf —— = D(D-1) -++ (D-p+1l) = [D]

If we apply the differential operator (8) to Gi(m)t

we have
aP ) m+o. . m+p .

9 tP - 6. mt I = ¢, .1t 9.
(9) 1P Jtm) J(m)[m Dj]p

Hence, if we substitute the convergent solution xj(

into the differential equation (5), we obtain

ey +0.
(10) mz_ G; (m) {m+0j}ntm J
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cc n 22 m+e. .
= 27 (X > s _G.(m-r)[m-ree;]l_ )t 2
m=0 =1 r=0 Lt g ] nil
where we put G.(-r) = 0 for r=1,2,...2n.

ike power of t 1in the both

[

Equating the coefficients of

side of (10), we have the rollowing 2n-th order recurrence

formulas
: n 22
L:j’min bjim) = gz% 2 ak,r[pj+m—r]n—2 Gj(m-r),
117 N
i Gj(—r) =0 (r=1,2,...,2n).
Specifically, if we put m=0, we have the characteristic
gguaticn as follows,
n 2%
[0.1.G.(0) = a G.(-v)[-T+p.
(o156 (0) Ega > 2,r G50 eyl

n
= Z 3'2”0 [pj]n-Q. Gj(o)
and we can put Gj{0)=1 from the assumption P3Pk # integer.
Next, we shall consider the formal solutions in the neigh-
bourhood of an irregular singular point with the following form
(12) ) ~ explzitieg )t &Y nN()t™S (k=1,2,...,n)
s=0

where the constants ;k are roots of the characteristic equation

n
‘\n_
13 "= 2 a a0

>



and the constants uk, Uy are determined later.
. . .. k R
In order to investigate the coefficients h" s) of formal

solutions, we introduce new notation

: _ p.k X 3 o e
(14) xlg(t) = ¢7P 9—3 - exp(—z—ktzjockt)t K ; hg{s)t s,
dt s=0
Since
, -1 p-1_k
k -1d -p+1 df “x 2 p+t1l dF “x
x(t) =t = 52( —) + (p-1)t -t -
P dt P 1 qtP 1
-1 d _k v.-2 _k
=t axp_l(t) + (P‘l)t Xp_l(t) ’
we have

A

‘ u ® B
(15) exp(=X t? + o t) t & > n¥(s)e”S
2 k o P
_ Ak, 2 My < K -s
= exp(7t? + o)t [y 27 hr(s)t
s=0

% k -s = k -s
+ h -1t T+ +p+l-s)h -2)t
o g;; 51 (1) Ezz(uk pri-s)hj 4 (s-2)t %]

Equating the coefficients of like power in the both side

of (15), ﬁe obtain the first recurrence formulas
K,y k k _ vk
(16)  hp(s)=hhy ) (s)+aghy 1 (s-1)+(uyrprlos)hy ) (s-2)

(k=1,2,...,n)

where for the moment we assume h§(5)=0 for s< 0.

Now we substitute xi(t) into the differential equation



ndh & & r-20, -(n-2) a% %«
t o = { - a, I't t R
dt =1 r=0  7° dt
and we derive
; N k -5 o 24 = k -s+r-24
(17) >, nS(s)t3=37 37 a4 37 hE (s)t
£ n s — L,T 4= n-2
s=0 i=1 r=0 s=0
n 2% ©
k -s
=§Z a E h™  (s+r-28)t
£=1 r=0 LT s=r-28 M L

Again equating the coefficients of like power in the both

side of {17), the second recurrence formulas are derived as follows,
A K n 24 K
18 hn{s)= 2. a, . hn_g(s+r-2z) (k=1,2,...,n)
=1 r=0 ’

Here, we shall try to represent hg(s) by hk(s)=hg(s)

from the first recurrence formulas (16).
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where [ ] denotes Gauss' symbol and
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With respect to the coefficient H(p,q,r:s) in the brachet,
it seems not tc have an explicit formula in general. ‘We can
only say that H(p,q,r:s) 1is a sum of 1 degree polynomial of
(uk+1-s-j). For example,

H (p,q,0:s) =1

4 5531

' D
H (p,q,1:s) = c, D7 (u+l-s+j)
J=q-

where cq is a constant independent of s

But, with respect to the coefficients of the terms needed
later, we can fortunately give them explicit forms and, in fact,

we have
k _ P .k p-1 ko
(20) hp(s) = Ak ha(s) + pAk oy ho(s 1)
- -2 - P X k
*‘{—pT—(p D P2 o2 4p-1 J%(uku-su) } hg(s-2) +

cae F pcxk[uk-s+2p—l]p_1 hg(s-2p+l)

. k
* [we-s+2ply, hy(s-2p)

The proof is done by induction. For p=1, it is evident from

the first recurrence formulas
k _ k k k
hl(s) = A ho(s) * o ho(s-l) + (uk+2-s) ho(s—Z) .
If we suppose that the formulas (20) are true for p and

substitute these formulas into the first recurrence formulas

for p+l , we have
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- -2 2 1P . 3
« (2p-1)p ’d£+K§ IZZl(hk+l-s+j)]hg(s~Z)+...f
5 pans
*ay f AR hS(s-1+p Pl hg(s-2)+...+[uk-s;1+zp]phg(s-zp—1ﬁ

k
...+{uk[uk—s+1+2p]p+pak(uk+p+2-s)[uk-s+2p+l]p_1}ho(s-Zp-l)

, N X
Giprpr2-s){ab hKfS—Z)+...+p@k[pk—s+2p+l}p_1ho(s~2p—l)
+ [up-s+2p+2]_ h¥(s-2p-2)
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3. Invariant identity

Now we shall investigate an invariant identity of tne line:

+
i
;

T

o3

ordinary differential equations with an irregular singular point
of rank 2 which is described in general form in Ince's book. The
invariant identity will play an important role later in the proof
of independence of solutions of the recurrence formulas for G%{m}.
If we assume that hg(s) =0 for s €0, it is clear from
the representation formulas (19) that for all p , h_{sj=0 are
éatisfied whenever s <0
Here, we shall put s = 0 . From the second recﬁrrence
formulas, we have under the above assumption,

nEe) = 37 nk (o
(21) n(0) = 27 a5 My, (0).

On the other hand, we obtain from the representation formulas,

(2) hg(O) = P n¥0).

Substituting (22) into (21), we have

n .k _ B n-% k
Ay hp(0) = (%2% a4 ptx ) B0
Since Kk is a root of the characteristic equation for an
irregular singular point,

3, uh =0

i
~
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(23)
=1

the last formula is satisfied for arbitrary hg(O) and we can

put hg(O) - 1.



st

Next, we shall put s = 1. Again from the second recurrenc:

formulas, we obtain

n n

k _ k k
(@) hg(1) = 27 Ay gy Ry () ¢ 2% &, P )

and from the representation formulas, we have

k, 1

Ry k -
LN P ohp(1) prAd

~~
~
[%2]
st

k
oy hO(O)
Substituting {23) and (22) into (24), we have

S U P NI
Lk 2,20k 0

n "
@t Y7 ay 2y (1) Ay ) o hE(0)

n
_ , n-% .k
= gz; 3y 29-1%  1(0)-

Since the coefficient of hg(l) is. the characteristic equation

and h%(O) is not zero, the constant oy is determined by

n

o n-2 '

(26) o g;l 3 201 Ak / F'( Ak ) .
Here, if we integrate the function
n .
n-2 :
>7 a 1A / F(X)
=1 .-l .

along the sufficiently large circle with its center at origin

- 12 -



in the complex A- plane,

we have the following relations from the calculation of residues,

n
(27) > o = a
ey k 11
Lastly, in order to determine the constant By, we shall put
s = 2 . Again from the recurrence and representation formulas,
‘we have

3 k I - .k
27 @y g by (2) + 27 a5y ) b (1)

k
28 h(2)
(28) n =1 =1

n X ’
* gz% 3y 20-2 Pp-p (0D

(29) h;(Z) P a2+ Pt o nE) + B nE(0)

k

where

-1 -2 2 - P .
H(p) =f2£%——l Xﬁ ay * Ai 1 %Z% (up*tl-2+3)

Substituting (29), (25) and (22) into (28), we have

n n
= 3 : } n-2
(30)- H(n) = g;i 3 20 H(n-2) +£Zl ag’zﬁ_l(n 2) Ao 9

£ *,2e-2 Mk

because the coefficients of hg(Z} and hg(l) are equal to zero
from the relations determining the constants Ags O

Now, the constant u can be determined by the relation

- 13 -
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(31 F () wy

_ n(n-1) ;.n-1_.n-2 2, < (n-2) (n-2¢-1) , . n-2-1, .n-2~2 2
=M ogteg W+ 2T Ay g O N o)
n n
n-2~-1 n-4
) %;i 22018 A O ¥ 5;& 20,202 'k

By the similar calculations of residues described above, the sum
' .. n-1
of the constants y, will be equal to the coefficient of )

in the right hand side of (31).
Hence we. have

n

(32) DI

n{n-1)
—z T%,0 -

On the other hand, from the characteristic equation for a

regular singular point

N

e I, - 3y o lo T = (P-0)(P-P,) ... (p-p ) =0,

L=1
we have one more relation as follows,

\ < _ n(n-1)
(33) ﬁzﬁ Pk =219 tTg— -

After all, from (32) and (33), we obtain an important "invariant

identity"

n
(39 27 o= 27w, +a-1) .
k=1 k=1
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