goooboooogn
0 660 19690 19-32

on
N
(n
ot
vl
ot
bde
[¢]
n
ot
"3
<
(]
ot
o
]
1]
(7]
Q
k]
o]
3
o]
\W’)
]
oV}
3
mn

We consider a vrooram as an <expressions wnich is a figure cocn-—
sistingof a finite seauence of <hasic symbol>'s, 4 prorram Ig 2ivided
into several number of subsequences called "syll . L osyllavnie is

of the form <identifier>, <number>,<bits>, <string>, <code todv> or
<delimiter>. In a program two syll

be separated by one or more <delimiter>'s, Under these conditions,

ct

the division of a program is unique. In the followine, a sequence of
syllables of the form o is called "to be o in the procram™ or simply
"to be o™, where o is a meta-variable. Each <identifier> in a prooram
is used either as a <variable> or as a <label> or as a part of a

<selectors>.

2.2 Block-Structures and Declarations

L

*

For each <block> and <procedure notation>, we define its proﬁer
<variable>'s, proper <«form>'s, proper <mark>'s, proper <label>'s and
proper4interior:

2.2.1 Let E be a <blocks> of the form

"begin Dy;

>

. Dn;

. I
Ll"""Lil'El’

Lk° 'Lk +E. end"

1 1, k —

1 k
with <declaration>'s Dl,....,Dn,<label>'s L},....,L;l,....,Ll,
k . - : .
.‘..,L,I , <expression>'s F_,....,E , where n is an intezer (>0},
R “k L - A
k is an integer (>1), 1,,....,1 are intesers (>0). Let i be an

integer, and lzi«n.

Static Structures-1

1) IT 2, is a2 Jeclaraticon> 5F the form
1= "1
with a <variable> V_ and an <expression> ¥, then 7, Is 2 vropepr |
<variable> of @, and we sav that "(<declaration> in the prograé))
Z; 1s ac<declaration>for 7.",
i

2) If D, is a <form declaration> of the form

"let %, represent F."
with a <form»> Gi and an <expression»> ?i, then Gi is a propver

"N

<form> of E, and we say that

) If D; is a <mark declaration> of
"let P. operate Z,7.'"

i i¥3
with a <mark> P., a <left prioritys> Z
then P, is a proper <marks> of E, and
ration> for P,".
Furthermore,
3.1) I2 7, is of the form

"before Py',....,P " left",

then we say that "Di is a reverse <declaration> for the ordered
pair <P,',P. >" for j=1,2,....,m. ‘
hd |
3.2} If Z, is of the form |
"before all left", :
i
then "Di is a reverse <declaration> for the pair <P',Pi>" for ;
each <mark> P'. }
3.3) If Z,' is of the form
"after Dl"""”pm" right",
then "D, is a reverse <declaration> for the pair <P;,2,'">" for
I=1,2,. ...,
3.4) If Z. is of the form
ftatic Structures-2

18 2

<declaration> for 5.".

the form

' :
i
is a <decla-

and a <right prioritys> Z

we sav that "D,

2.2.3

\)
[

.
"after gll risht"

then "D, is a reverse <declaraticn> for the nair <P ,ETIST fap
i !
each <mark> Pt*',

1 1 ic ir

4 T - ahal a P
4 Lyseeeesly see-e,Ll,.00.,L, are proper <lahels's of 7,
- iy 1 Ly

Let E be a <procedure notation> of the form
"orocedure (Tl,....,Tn)T J"
with <typifier>'s Tl,....,Tn,T and <procedure donor> J, where n
is an integer (>0).
If J is empty, then F has no proper <variable>'s,
If J is of the form‘
"by (Vi ,....,V) F)"

with <variables>'s Vj,....,Vn and an <expression> F, then v,

30 v e s g

Vn are proper <variable> of E,
A ?procedure-notation> has neither prorver <forms's, nod?roper
<mark>'s, nor = proper <label>'é,

~Let E be a <block> or a <procedure notation> in a nroecran,
and let F be an <expression>, or a <label>, or a <declarations> in
that program. If E is a <block> and ¥ is a subsequence of £, then
we say that "F ;s in the interior of E", If E is a <procedure
notation>-of the form

Wprocedure (Tl"""Tn)T Jv

with <typifiers>'s Tl,.,..,T and T and a <procedure donor> J, and

n

il

F is a. subsequence of J, then we say that "F is in the interior of
E". If ¥ is in the interior of F and there is ne <block>or <pro-

cedure notation> F', such that F' is

=N

n the interior of &, and F
is in the interior of E', then we say that " is in the ororer

interior of F",

Static Structures-3

2.2.4 Let A be a <variable> (or a <form> or a <mark>), and E bhe

a <block> or a <ovrocedure notation> {(in a broqram). And let ¥ be
the minimum <block> or <procedure notation> (in the program),
which contains E‘in its interior and A is its prover <variable>
{or <form> or <mark>), and D be a <declaration> (in the program)
which 1is a <declaration> of & and is in the proper interior of F,
Then we say that "D is a <declaration> of A in the interior of E",
or "A& in the proper interior of E is declared on F". Let L be a
<label>, and E be a <block> or a <procedure notation> (in a pro-

. And let ¥ be the minimum <block> or <procedure notatlion>
{(in the program), which contains E in its interior and L is its

proper <label>. Then we say that "L in the proper interior of E

[

s declared on F".

t“‘

et P, P*' be <mark>'s, and ¥ be a <block> or a <procedure notatiom

(in a prosram). Anc let ¥ be the minimum <bloek> or <procedure

notation> (in the proesram), on which P or P' in the proper interior
T N D |

of E 1s declared. Furthermore D be a <declaration> of either P or
P' and is in the proper interior of P. Then we say that "D is a
<declaration> of the pair <P,P'> in the proper interior of E™, If
there is a reverse <declaration> of <P,P'>, which is a <declaration
of <P,P'> in the proper interior of E, then we say that "<P,P'> is
reverse in the interior of E", and in other cases "<P,P'> is natu-

ral in the proper interior of E".

Static Structures-=4

\
1
|

)y

P

2.3 Parsing of Expressins
The parsing of an<expression>is syntacticelly unique except for constructions
of <form call>'§. To oB%in the complete uniqueness, we restrict <mark declaration>'s
and the construction of <form call>'s as follows
{R1) 1In the proper interior of each <block>, there must be at most one <declaration>
for each <mark>.
(R2) TFor each <mark> P in a program, there must be a <declaration> (in the
program) by which P is declared or P is declared by a standard <declaration>.
Therefore each <mark> P in a program has just one (standard or not standard)
<declaration> D by which P is declared.
Let D be of the form
"let P éperate zz'"
where Z is a <left prierity> and Z' is a <right prierity>. If both Z and Z' are
not empty, then P is called 'tobeindependent". If Z is not empty and Z' is empty,
-then P is called "sbeinitial". If Z iS empty and Z' is not eﬁpty, then P is called
"obeterminal™. If both Z and Z' are empty, then P is called "lebeconnecting”.
Lét an <expression> in a program be a <form call> of the form

" 1"
EOPlElPZEZ.....En_anEn

where n is an integer (2 1), Pi is a <mark> for i =1, 2, ..., n, and Ei is empty

or an <expression) for i 0, 1, ..., n.

(R3.1) If n =1 then Pl must be independent.

(R3.2) If n > 1 then Pl must be initial, and Pn must be terminal, and Pi must be

connecting for 1 =2, 3, ..., n-1.
(R&.1) If E0 is a <form call> of the form

"E 'P 'P

' ' ' (X
o F1 El E , P ,'E_,

2'E2""" n'-1 n'
where n' is an integer (2'1),

Pi' is a <mark> for i =1, 2, ..., n',

Ei' is empty or an <expressiow) for i =0, 1, ..., n',
then <Pn,', P1> must be natural.

Static Structures-5

24

(R4.2) 1If E1 is a <form call>» of the form

(52) HP Hp ”P,’”E 1"

. T p "y "y
MO l -—l 2 2 nu_l nlv '!l“

where n' is an integer (= 1),

P." is a¢mark »for i = 1, 2, ..., n",

i

Ei” is empty or an <expressin> for i = 0, 1, ..., n",

then <P _, P1”>-must be reverse.
Those restrictions (R3.1), (R3.2), (R4.1) and (R4.2) are also applied for every

{typifier?'s and {form>'s as <expression>'s.

~a

2.4 Direct Constituents of Expressions
Let E and E' be {expressiony's.
E is said to embrace E' if and only if E is of the form
HAEIB”
where A and B arz figures and at 1&sas

one

£ them is non-empty. E' is called a

s

e

direct constituent of E if and only if the following three conditions are

satisfied.
1) E embraces E' :
2) E embraces no <{expression) which embraces E' ;

3) E' is used neither as a <{typifier’ nor as a Lprimary typifier? in the construction

of E.

Static Structures-6

2.5 Types
2.5.1 Tvpes are defined recursively as follows
1) effect is a type.
2) real is a tyve.
3) bits is a type.
4) string is a type.
5) reference is a type.
6) Let T be a type, then array T is a type, and called array ityle.
7) Let n be an integer (=z 0); Si be a {selector> different from each other,
fori=1, 2, ..., n, and Ti be a type for i =1, 2, ..., n; then structure
—SlTl’ , Snfﬂz is a type, and called structure style.
8) Let n be an integer (= 0);
Tn be a type for i =1, 2, ..., n;-
and T be a type; then
precedure (Tl’ Tn)T is a type, and called procedure style.

We shall use the following notations

T array : The set {T I T is a type of array stylel.

T structure : The set {T § T is a type of structure stylel.

T procedure : The set {T i T is a type of procedure style}.

Let T stand for an arbitrary type, then T is of the form {evpificer.

We shall denote this <(typifier) simply by T. In a legal program, each <(expressiomn>

and each <(formyhas its type. And some semantical notion (quantity, value and

mode) has its type.

Let A be an {expression}, {form), quantity, value or mode, then we shall

denote itstype by t(A).

Types-1

2.5.2 To define the -tvpe-'s of ‘expressiony's, we introduce some restrictions:

(R5.1) 1In the proper interior of each {block? in a program, there must be at most
one {declaration) for each ivariable,.

{R5.2) TFor each <{procedure donory in a program of the form

"by (Vs vees TOE)

with {variable)'s Vis wees Vo and an {expression) E, Vi, +v.» V must
be different from each other.

(R6) Each {variable) in a program, must be declared by a {declaration? in the
program, or by a standard <declaration’.

Further restrictions on types are introduced recursively with the definition
of the types of <{expression)>'s.

The type of an {expressiony E in a program is abstracted by the form of E
and types of <{expression)'s contained in E. Those types of sub(expression}'s are
abstracted from left to right in the contexual order.

(R7) By this process, the type of each {expression) must be able to be defined.
1) In the beginning of the type abstraction of a <block)> (in a program) E, each
<variable declaration) and {form declarationy are processed from left to right.
1.1) Let a (variable declaration) be of the form
" let Ve F "
with a {variable? V and an {expression) F.
Then the type of F (t(F)) is abstracted, and t(F) is represent the type of

a Jvariable, (in the program) of the form V and declared on E.

-

1.2) Let a < form declaration) D be of the form

let G represent F "

g

with a {form) G and an<expression) F, and let G be of the form

Types=2

where n is an integer (> 1),
Pi is'a {mark’ for i =1, 2, ..., n,
Ei is empty or an <expression> for i =0, 1. ..., n.
Let Ti stand for t(Ei) if Ei is an (expressiqn},
empty if Ei is empty, for i =0, 1, ..., n.
Then the figure

' (TOP1T1P2T2 T P T)

is called the operator form of G, and we say that "D is a {declaration> for
this operator form'". And the figure, which is made from the operator form of

1"

G eliminating all {marky's and insert a comma , " between each succession
of two types, is called the argument-types of G.
(R8) In this case, t(F) must be procedure style, and if t(F) is of the form

procedure (Tl’ P Tn)T

"~ with types Tl’ ey Tn’ T, then the argument-types of G must be (Tl, ey Tn).
And we say that in this {declaration} the result type of G is T.
2) In the case of a {procedure notation> (in a program) of the form
"' procedure (Tl, ey Tn)T Ez_((Vl, ey Vm)E) "
with {expressiony's le ..;, Tn’ T, E and {variable)'s Vl’ cees Vm.
(R9) In this case, m must be n, andkt(E) must be t(T).
t(Ti) represents the type of a {variabley (in the program) of the form Vi
and declared on E, for i =1, 2, ..., n.
2.5.3 Let E be a (block) or (procédure notation) (in a program) and U be

an operator form.

If F is the minimum <block) (in a program) which contains E (or is E), and

Types-3

25

0 is declared by a <{declaration D in its proper interior, then we say that "0 ip
the proper interior of E is declared on F" or "0 in the proper interior of E is
declared by D".
(R10) In the proper interior of each <{block; (in a program) there must be at moslﬂ
one “declaration, for each overator-form.
2.5.4 1) Let F be a ¢variable» V in a program. The type of V (t(V)) is
defined as above.
2) Let E be a ¢go to statement’ or {dummy statementy. Then t(E) is effect.
3) Let E be a {code call) of the form
"code (S,E;, ..., S_E)T by (A) ‘
- B T, and <code body)Af

with <{selector)’s S N Sn, {expressiony's E

1 1’
Then, t(E) is t(T).
(R11) In this case, Sl’ IR Sn must be different from each other.
4) Let E be a {closed expression’> of the form
"eEy "

with an <expression> F. Then t(E) is t(F).

5) Let E bé a (block) of the form

1t $. . .
begin Dl P Dn :

L 1 : ... ¢ L. t c:E, ¢+ ... L k : ... @ L, k : Ek end "
1 i 1 1 i _—
1 k
with {declaration's D,, ..., Dn’
L
{labely’s L Y, ..., L. .o, LS L K,
1 i, 1 i
1 k

{expression)'s Eis vens Epe

Then t(E) is t(Ek)'
6) Let E be an {array element> of the form j
"F[E"]

o1t

with {expression>'s F and E

Types~4

(R12) In this case, t(F) must be array style, and t(E') must be real.
Let t(F) be of the form
array T
with a type T. Then t(E) is T.

7) Let E be a {structure element) of the form

" "
with an (expressigné % and a <selector) S.
(R13) In this case, t(F) must be structure style, and when t(F) is of the form
‘structure LSITI’ ae ey SnTnl
with {selector)'s Sl’ cees Sn gnd types Tl’ cens Tn 5 n must be >1,
and S must be one of Sl’ ey Sn'
If S is Si (1< i< n), then t(E) is Ti.
'8) Let E be a {procedure call) of the form
| " F(Ep, -.., E) "
with {expression?'s F, El’ cees En'
(R14) . In this case, t(F) must be procedure style, and when t(F) is of the form

procedure (Il, cviy gn)T
with types Tl, cevs Ty T, and m must be n, and t(Ei) must be Ti for i =
1, 2, veu, n. ;
Then t(E) is T.
9) Let E be a {form call? of the form

(1 "
E P E\P)E,...E P E

where n is‘an iﬁteger (zL),
P is a {mark) for i =1, 2, ..., n,
Ei is empty or an<expressiony for 1 =0, 1, ..., n.
and be in the proper interior of a {block) or {procedure notation) E'.

Types-5

30

-Let Ti stand for t(Ei) if Ei is an Cexpression), empty if Ei is empty,
for i=1, 2, ..., n, and let 0 stand for the operator form
" (TOPlTlPZTz...Tn_anTn) Tl
(R15) In this case, O in the proper interior of E' must be decla?ed by a
{declaration) in the program or by a standard {declaratiomny.
Let D be the <{declaration) for 0 in the proper interior of E: of the form
"'let G represent F "
with a {form) G and an (éxpressiod} F, and let T be the result type of G.
Then t(E) is T.
10) The type of a {effect motation) is effect.

11) The type of a {real notation) is real.

(R16) In a {real modifiery of the form
’ " L_El P B, E3 1™ or ™[precision E4 ",
if Ei is an {expression, , then t(Ei) must be real
for i =1, 2, 3, 4.
12) The type of a ¢bits notation) is bits.
(R17) In a <{bits modifier,; of the form
" £.§§§EE.E1 1" or " [varying El 1",

if El is an{bxpression> then t(El) must be real.
13) The type of a {string notation> is string.

(R18) In a {string modifiery of the form

1"

" [exact El J#" or " [varying El 1",

if El is an {expression) then t(El) must be real.

14) Thé type of a {reference notation’ is reference.
15) Let E be a.<array notation of the form
"

array HJ "

Types-6

31

with an <array modifier- H and an .expression: J.
Then t(E) is array t(J).
(R19) In a {array modifier; of the form

" - 1"
LE :E]

with <{expression)'s, t(El) and t(Ez) must be real.

16) Let E be a {array notation> of the form

" "
array S-El’ ey En)

1> ees B

(R20) _ In this case, t(El), t(Ez), cees t(En) must be equal.

with <expressiony's E

Then t(E) is array t(El).

17) Let E be a {structure notation) of the form

"t
. structure i-lel’ cies SnEn)
with {selector)'s Sl’ cees Sn’ and <expressiony's Eps vees En'
(R21) In this case, S,, ..., S must be different from each other.
1 n

Then t(E)vlS structure £_Slt(El), ey Snt(En)l_.
18)- Let E be a {procedure notation) of the form
" "
procedure (Tl, ey Tn)TJ

with (typifier)'s T., ..., T » T, and {procedure donor> J.

1°
Then t(E) is Eroce?uré (t(Tl), cees t(Tn))t(T).
2.6 Legal Progréms
A program is called legal, if it suffices the restrictions (R1) - (Rél) and
the following (R22) and (R23).
(R22) " For each {blocky in the program of the form

1"

begin Dl tee. 3 Dn ;

Lll el Li L : E1 S oeee 3 le oee. 8 Li k Ek end "
1 k
with {declaration>'s Dl’ ey Dn ;
{abeld's L 1, veey L, 1, veey, L k, eeey L, k;
1 i 1 i
1 k
and <{expressiond>'s El’ e, Ek :
Lll, ey Li 1, cee, le, evey L, k must be different from each other.
1

Types-7

32

(R23) For each ‘block »or <procedure notation’ E in the program, and for each
{label> L in the proper interior of E, there must be a <{block> or <procedure

notation> in the program, which contains E and on which L declared.

Types=8

