64

- §5. Dynamic Behavior of Programs
- 5.1 Creation

In the beginning, we must create two sets \mathbb{Q}_{o} and \mathbb{V}_{o} .

- of normal (as defined in the next paragraph).
- 5.1.2 Let \overline{V}_{O} stand for the set of the all <identifier>'s declared by some standard <declaration>, and let $\alpha(V)$ be <u>able</u>, and Q(V) be an abstract element, different from each other, for each <variable> V in \overline{V}_{O} .
- 5.1.3 Let \mathbb{Q}_{0} stand for the set $\{ \mathcal{G}(V) \mid V \in \mathbb{V} \},$

and let v(Q) be the value of Q for each $Q \in Q_0$.

(If standard (declaration) of a (variable) $V \in \overline{V}_0$ is of the form $"\underline{\text{let}} \ V \ \underline{\text{be}} \ \underline{\text{procedure}} \ (T_1, \ \dots, \ T_n) T \ \underline{\text{by}} \ ((V_1, \ \dots, \ V_n) E)"$

and
$$\mathbf{Q}(V) = Q$$
, then
$$V(Q) \text{ is } (V_1, \dots, V_n) E.$$

- 5.1.4 Let QO stand for an abstract element $\not\in \mathbb{Q}_0$, and let LO stand for a <label>.
- 5.2 Normalization

Let \mathbf{E}_1 stand for a legal program, \mathbf{V}_1 stand for the set of the all (identifier)'s contained in \mathbf{E}_1 , and \mathbf{E}_1 stand for the set of the all (label)'s contained in \mathbf{E}_1 .

- 1) Let V stand for $V_0 \cup V_1$, and let $\alpha(V)$ be <u>inable</u> for $V \in V V_0$.
- 2) Let \mathbb{L} stand for $\mathbb{L}_1 \cup \{\text{LO}\}$.
- 3) Let Q stand for $Q_0 \cup \{Q0\}$, and let v(Q0) be done.
- 4) $\gamma(E_1) \Rightarrow E_2$.
- 5) Let D be a (form declaration) in \mathbf{E}_2 of the form

with a (form) G and an (expression) F.

Dynamic Behavior of Programs-1

$$q(V) \Rightarrow V;$$

Replace in \mathbf{E}_2 D with

"<u>let</u> V <u>be</u> F ;

let G represent V ; ".

6) Let E' be a $\langle \text{form call} \rangle$ in E₂, of the form

where E_1' ,, E_n' be $\langle \text{expression} \rangle$'s and P_i be empty or a sequence of $\langle \text{mark} \rangle$'s for i = 0, 1, ..., n. If the operator form $(P_o t(E_1')P_1 t(E_2')P_2P_{n-1} t(E_n')P_n)$ is declared by a declaration of the form

"let G represent F",

then, replace E' in E_2 with

- 7) When T is a $\langle \text{typifier} \rangle$ in E_2 , replace T in E_2 with t(T).
- 8) Eliminate all \langle form declaration \rangle and \langle mark declaration \rangle in E $_2$, and let E stand for the result.

An (expression) of the form as E is called normal.

3 Elaboration of a Normal Program

if the result is a quantity Q, then the elaboration of E is thus completed, but if the result is a $\langle label \rangle L$, then the elaboration of E is undefined.