Sélivanowski の定理について

法政大工 田中尚夫

§1.序論

筆者は [6] において、 Π' Let Eに対しその組成分を E_{ν} ($\nu < \Omega$) とするとき 1/ (1) μ (E) = μ (U{ E_{ν} | $\nu < \omega_1$ }) が成り立つことを示し、補解析集合に関する Sélivanowski の定理 [4] の精密化を与えたが、当時 Σ' Let の場合にも 上の (1) に対応する形が成立するものと予想した為議論が うまく展開できず Σ' の場合は未解決であった。 所が最近 Martin-Löf の Nandom Aquencesの概念の拡張を取扱って いる際、遇然 Σ' の場合は否定的であることが判明したので、これを報告する。 すみわち:

^{1/} $\mu(E)$ is E o Lebesgue measure ξ , ω_1 is the first non-constructive ordinal $\xi \xi h \xi$.

定理. Ξ ! set A で, $\mu(A) \neq \mu(U \{A_{\nu} \mid \nu < \omega_{\nu}\})$ なるものがなたする. ここに A_{ν} は A を篩う recursive sieve に関する A の組成分である.

** ここでは Baile's seno-space において議論を展開するが本稿のすでての結果は 2^Nにおいても成立する。説明なしの Notation や用語については、例えば"[5],[6]を参照されたい。

§ 2. Constituents.

 $E \in N^N$ の一つの \prod set とし、A をその補集合とする: A = CE. E に対し

 $A \in E \iff (\forall \beta)(\exists x)R(\alpha, \overline{\beta}(\alpha))$

なる recursive predicate $R(\alpha, u)$ がな在する。また U を sequence numbers の集合とし、 \prec は U 上の いわゆる Kleene-Browner ordering とする.

Sieve S ⊆ NN× U E

 $(\alpha, \overline{\beta}(x)) \in S \iff (\forall y)_{y < x} \overline{R}(\alpha, \overline{\beta}(y))$ によって定義し、 $S^{(\alpha)} = \{u \mid (\alpha, u > \in S\} \}$ とがく、 よく知られているように

が成り立つ.

 $I^{(\alpha)}$ を $S^{(\alpha)}$ の well-ordered to maximal initial segment とする. 高マヤ2級の順序数 ν (すなおち $\nu < \Omega$) に対し E_{ν} , A_{ν} を次式で進載し、それぞれ E, A の S に関する組成分(constituent)という: $\alpha \in E_{\nu} \iff \alpha \in E$ & $\tau(I^{(\alpha)}) = \nu = \tau(S^{(\alpha)})$, $\alpha \in A_{\nu} \iff \alpha \in A$ & $\tau(I^{(\alpha)}) = \nu$, ここに $\tau(*)$ は * の order-type を表わす.

§ 3. <u>Derived sieves</u>. 各 a ∈ O に対し Transfinite derived sieves ヒザは"れる S(a) を定義・ する。

- $(1) \quad \alpha = 1 . \qquad S(a) = S , \qquad \text{where } a = 1 .$
- (2) $a = 2^{b} \neq 1$. $S(a) = \{\langle \alpha, u \rangle \mid \langle \alpha, u \rangle \in S(a) \}$.
- (3) $a = 3.5^{6}$. $S(a) = \bigcap_{m=0}^{\infty} S(\{l\}(m_{0}))$.

<u>Lemma</u> 1. a, le € 0 1= 3‡ L,

 $(4) \qquad |\alpha| \leq |\mathcal{L}| \qquad \Rightarrow \quad S(\alpha) \supseteq S(\mathcal{L}),$

2/ O かよが下に現われる H については、Rogers [2; §11.7, §16.8] も参照せよ $(5) \quad |a| = |a| \Rightarrow S(a) = S(a).$

証明。 (5) は (4) の 直接結果。 (4) は し に) は は に j する induction に よる。

Lemma 2. a + 0 = \$\frac{1}{2} \tag{2} \tag{3}.

証明. Recursion theorem 1: \$37次9\$374 partial recursive functions $f, g \in 1 \times 33$: $a \in 0$ 74 3 1 f(a, u), g(a) 11 defined τ "

 $\langle \alpha, u \rangle \in S(a) \iff f(a,u) \in H^{\alpha}(g(a)).$

a = 1. S(1) = S $\tau \cdot \delta 3 r \cdot \delta$ $S(a) = \{ (\alpha, u) \mid \mathcal{G}(u) \in H^{\alpha}(2) \}$

\$3 recursive function 4 5 5.3.

 $\langle \alpha, u \rangle \in S(a) \Leftrightarrow \langle \alpha, u \rangle \in S(b) \ \& (\exists v) [v < u & \langle \alpha, v \rangle \in S(a)]$ $\Leftrightarrow \{f\}(g, b, u) \in H^{d}(\{g\}(f, b)) \ \&$

 $(\exists v)[v \prec u & \{t\}(g, L, v) \in H^{\alpha}(\{g\}(f, L))]$ であるから、適当な partial recursive functions φ_1, ψ_1 に対し

 $\Leftrightarrow \mathcal{Y}_{1}(f,g,\ell,u) \in H^{\alpha}(\mathcal{Y}_{1}(f,g,\ell))$

が成り立つ.

(7)
$$\{f\}(g,a,u) = \mathcal{G}_1(f,g,(a)_0,u)$$

 $\{g\}(f,a) = \mathcal{V}_1(f,g,(a)_0)$

 $\alpha = 3.5^{\ell}. \qquad S(a) = \bigcap_{n=0}^{\infty} S(\{\ell\}(m_0)) \quad \forall \ \mathcal{B} \ \exists \ \mathcal$

であるから、適当な partial secursive functions 42, 421:

 $\Leftrightarrow \mathcal{Y}_2(f, \vartheta, \varrho, u) \in H^{\alpha}(\psi_2(f, \vartheta, \varrho))$ $\forall \chi \xi \delta, \quad \xi \gamma \zeta$

(8) $\{f\}(g,a,u) = \mathcal{G}_{2}(f,g,(a),u)$ $\}$ $\xi \notin \mathcal{L}.$

Lemma 3. 各レくWIに対しEv, Avは共にHA sets である。

^{3/} Rogers [2; P. 190]

註明. $\nu = |a|$ $\alpha \in O$ 放3 a to to 3. 1311之以, Ljapunow et al [1; p.51] in R 以过"

 $\alpha \in E_{\nu} \iff (\forall \ell) [\ell <_{0} \alpha \implies (\exists u) (\langle \alpha, u \rangle \in S(\ell))]$ $\delta \neg (\exists u) [\langle \alpha, u \rangle \in S(\alpha)].$

Corollary 4. 各 V < W1 に対し U Eo と
U Ao は HA sets である。更に U Ex おらない
O < V
U Av は TT, sets である。

§4. Main Theorem.

Theorem 5. Σ_1^1 set A $\tau^{"}$, $\mu(A) \neq \mu(UA_{\nu})$ なるものが存在する。

証明. A (CNN) を

 $\alpha \in A \iff \alpha \text{ is mot a HA function}$ によって定義する。 $\sharp (知られているように A は \Xi'_{l} set$ であり、かつ 当然 $\mu(A)=1$.

 $A \qquad \mu(A) = \mu(\bigcup_{\nu < \omega_1} A_{\nu})$

と仮定せよ。 そのとき

$$\mu\left(\bigcup_{\nu \in \omega_{1}} A_{\nu}\right) = 1.$$

Corollary 4 によって UA, は II, であるから、Sacks VKW, - Tanaka の結果 [3; Theorem 3.9], [6; Theorem C] によって UA, は HA function を含まなければなら VKW, Tanaka Aの定転と矛盾する。 〇

h to it is to a ordinal or 1: 3+ L

$$\mu(A) = \mu\left(\bigcup_{\nu < \sigma} A_{\nu}\right)$$

が成立するであるるか?

 $\beta \in N^N$ と $a \in O^\beta$ とに対し $S(a, \beta)$ を §3 のように定義すると $S(a,\beta)$ は $HA-in-\beta$ となり、従って $U\{A_{\nu}\mid \nu<|a|^\beta\}$ ($a \in O^\beta$) も $HA-in-\beta$ である。 FT で Sélivanowski [4; $\rho.24$] に $L H (I^*)$ ($\exists \beta$) ($\exists a$) [$a \in O^\beta$ & $\mu(A-U\{A_{\nu}\mid \nu<|a|^\beta\})=0$]

が成り立つ。 この Aquare bracket 内の条件は Π_1^1 である [5; Theorem 8] から、 Kondô-Addison の定理 によって この条件をみたす Δ_2^1 function β が 存在する。 かくて

Theorem 6. & Σ ! set A = 371 $\mu(A) = \mu(\bigcup_{\nu < \sigma} A_{\nu})$

to 3 1/2 ordinal o がなななる.

§ 5. Remark.

II! set $E = \hat{x} + 1$, $x \in E = x + 3 = 1$ $T(I^{(\alpha)}) = T(S^{(\alpha)})$ it recursive - in - x = 0 ordinal $x \in B = 3$ $y \in X$; $X \in E$ set $X \in Y = 0$ $X \in E$ $X \in X \in X$ $X \in X \in X$ $X \in X$ X $X \in X$ $X \in X$ X $X \in X$ X

Theorem 7. 次のような 豆! set A が なな する:

(1) $(\exists \alpha) [\alpha \in A \& \{\tau(I^{(\alpha)}) \text{ is not a vecursive-} \\ in-\alpha \text{ ordinal }]$

証用. A L l T Theorem 5 の証明にかける Z; set A をとれ、これに対し (1) が成立しないと仮 定すれば: (2) $(\forall x) [x \in A \Rightarrow \{ \tau(I^{(x)}) \text{ is a vecursive-in-} x \text{ ordinal } \}]$

E 74 3.

$$A' = \bigcup_{\nu \ge \omega_1} A_{\nu}$$

とおくと

 $\alpha \in A' \Rightarrow \tau(I^{(\alpha)})$ is not a recursive ordinal, $\Rightarrow \omega^{\alpha} \neq \omega$

kts. Sacks [3; Corollary 3.10] is finit" $\mu(\{\alpha \mid \omega_i^{\alpha} \neq \omega_i\}) = 0$

であるから $\mu(A')=0$ が得られ、従って $\mu(A)=\mu(\bigcup_{\nu<\omega_1}A_{\nu})$

となってしまう。 これは Theorem 5の証明に反す。 2

主主 せし $\omega_1^{\alpha} = \omega_1$ なら " $\tau(I^{(\alpha)})$ is not a rec.-in-d ordinal" から " $\tau(I^{(\alpha)})$ is not a rec.-in-d ordinal" が生 τ 3 から、(2) と 矛盾 する.

第6. Baire category case. Theorems 5,6 は measure のけりに Baire category を用いても成立する.

先が Thomason [8] と Nimman [7] がら次の定理を引用する:

[TH] $K = \{ \alpha \mid \omega_1^{\alpha} \neq \omega_1 \}$ it first category (meager) 7^{**} \$3.

Corollary 8. Π_i' set E = 27 L, $\bigcup E_{\nu}$ is first $\nu \geq \omega_i$ category τ'' ある. (成 は 上記 Theorem 7 の それ), (証 日 日) [6] の Theorem B の 証 明) と全〈平行 τ る. $E' = \bigcup E_{\nu}$ $\nu \geq \omega_i$ と π ・ π ・

 $\alpha \in E' \Rightarrow \tau(S^{(\alpha)})$ is not a recursive ordinal $\Rightarrow \omega_1^{\alpha} \neq \omega_1$ (" $\tau(S^{(\alpha)})$ if recursive-in- α ordinal τ " to 3.)

[HI] E # TI! z", second category to 3 は", E は HA-function を含む.

証明. Sélivanowski [4] によれば.

(日月) (日a) $[a \in O^{\beta} \& \{ \bigcup_{\nu \geq |a|^{\beta}} \text{ is of first category }]$ が成り立つ。 Corollary 4 の相対化によれば、 $a \in O^{\beta}$ の下で $\bigcup_{\nu \geq |a|^{\beta}} A_{\nu}$ は a 、月に |a| に |a| を |a| に |a| を |a|

注5) P(M): "M is first category z"ある."
M が 豆! ならは P(M) は 豆! である."
(証明)

 $P(M) \Leftrightarrow \{M \text{ is } \bigcup S_m \text{ or } S_m \text{ for } S_m \text{ or } S_m \text{$

文 献

- [1] Ljapunow et al., Arbeiten zur deskriptiven Mengenlehre, Berlin (1955).
- [2] H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw Will, (1964).
- [3] G.E. Sacks, Measure-theoretic uniformity in vecursion theory and set theory, to appear.
- [4] E. Sélivanowski, Sur les propriétés des constituantes des ensemble analytiques, F. M. 21 (1933), 20-28.
- [5] H. Tanaka, Some results in the effective descriptive set theory, Publ. RIMS, Kyoto Univ. Ser. A vol 3 (1967), 11-52
- [6] H. Tanaka, A lasis result for Π'_1 -sets of positive measure, Comment. Math. Univ. St. Paul. 16 (1968), 115-127.

- [7] P.G. Hinman, Some applications of forcing to hierarchy problems in arithmetic, to appear
- [8] S.K. Thomason, The forcing method and the upper semilattice of hyperdegrees, Trans. A.M.S., 129 (1967), 38-57.

追記

G. E. Sachs は、Theorem 6 を最良の形で、次のように改良した:

王 set A E到L

 $\mu(A) = \mu(U\{Av \mid v < \omega_i + 2\}).$

Theorem 10 に対しても同様のことが言えるようである。