goooboooogn
o900 19700 1-12



A MINIMUM COST CONTROL PROBLEM IN BANACH SPACE
N. MinamiDE AND K. NAKAMURA

1. INTRODUCTION,

In recent years, Porter and Williamd [1] considered the following
abstract version of the minimum effort control problem by function
space methods. Let S be a bounded linear transformation between
Banach spaces X and Z, respectively. With S onto Z and NeZ arbitrafy,
find (if one exists) a preimage of N with minimum norm. It was
shown that for this problem to have a unigue solution it is necessary
and sufficient that X be both reflexive and rotund. Furthermore,
the solution was completely characterized in terms of a hyperplane.
In [2], [3], several extensions and generalizafidhs of the initial
problem were also considered.

In the present paper the following related problem is considered.
Let X,Y and Z be Banach spaces, I a bounded linear transformation
from X into Y, and S a bounded linear transformation from X onto Z.
Let & X be a closed convex body containing the origin in its interior.
Also, let J(+,+) be a continuous convex functional defined on XX7Y

such that

(1.1) J(x,y) =20, for all (x,y)eXx¥,
(1.2) J(0,0)=0,
(1.3) J(x,y)—>+o, as lxh+ 1|yn—>*°°1 .

Problem (P). With &cY and neint(S(R)), the interior of the image
of Q under S, arbitrary, find an element (if one exists) uel satisfy-
ing Su=n which minimizes J(u,&-Tu).

Such an element will be called an optimal solution. Interesting and
important cases may arise when the functional J and the constraint
set  are described in terms of norms, among which are the following:

Problem (P;). min |&-Tul subject to Su=n, (0<p<+®),
llecli=p

Problem (P,). miunfﬂ]u"”+||£-1’ull?} , subject to Su=n, (I<p<te®,0<pg®)
feehs
Our main objectives are to discuss existence and uniqueness of the
‘'solution and to characterize it in terms of a hyperplane. Problem (Py)

has been studied by Porter [5] and Kirillova [6] when g_p=p, while

dThis assumption may be removed if{Q is bounded.
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Problem (P,) was considered by Porter and Williams [2] when p=2 and
p=te,

In the articles [1]-[3], a key role was played by the Minkowski
fuﬁctional associated with S(UX) the image of the unit ball under
S, and by the Hahn-Banach produced hyperplane of support to a-convex
body at each of its boundary points.rln this study we shall define
the extended version of the Minkowski functional. This extended
version and the supporting hyperplane are our principal tools for

characterization of the solution.

2. SOME PRELIMINARIES.
Throghout the paper we shall restrict attention, without loss of

generality, to real spaces. Let B be a real Banach space and B’ the
conjugate of B. The unit ball and unit sphere of B will be denoted
by Up and 9Up, respectively. Let X B be a convex set. For every
¢eB!' let the number <K,¢> be defined by

<K, p>= «fgy}:<1, P>,

and suppose that ¢ attains its supremum <X ,¢> on K at the vector xoek.
Weushall denote by [¢:X] the set of all such vectors and shall refer
to it as an extremal of ¢ with respect to K. Especially, [¢:Up] will
be denoted by ¢, usually called an extremal of ¢ (See [1] or [L4]).
For convenience we shall identify a suitable element xe[¢:X] with
the set [¢p:K] itself. It may be obvious.from the context whether
[¢:X] indicates a member or & set. Let B;xB, be a product Banach
space equipped with the usual product topology. Let XK Bi1XBy be a
convex set. Motivated by the above identification, we shall loosely
set

(L4 KLIA KD2 [ @ k], #hpre®Bxa)=5%8,
In order to discuss uniqueness of the solution, the following
concept is needed. A convex body K in B is called rotund (or strictly
convex) if K contains no straight-line segments in its boundary.
A Banach space B is called rotund if its unit ball is rotund. For
each ¢eB' and a convex body KCB, [$:X] has at most one element if
and only if K is rotund. Moreover, since rotundity of B implies
weak compactness of UB (Milman's Theorem, see [T]), ¢ has exactly

one element if and only if B is rotund.



3, THE soLuTIioN TO PrOBLEM (P),

To motivate what follows, let us first suppose that ¢ is an
optimal solution with J(uo,&-Tuo)>0. Then, ;
(3.1) o2 T(Uo, B=Tu) < Tu, 5-Tw), ot all e 28 Q)
(3.2) Su.=7. '
where S{(n) denotes the set of all preimages of n for further study.
Let us define the set J(a) by

Jey={Pl T psa, (LYPexxT},
and denote by 3J(a) the boundary of J(a). Clearly, for a>0, J(a) is
a closed convex body and dJ(a)={(x,y)|J(z,y)=a, (é,y)EXXY}. We
consider the mapping T of XxY to YxZ defined by
T o (u,y) —> (Tutd, Bu), (2, )€ X*T.

It then intuitively clear, from (3.1) and (3.2), that 7

(B, 0=(Toty +(E-Ttt), Stto)= T (%o, E-TUIEJT( T A (2XY DN T (TQ@oIn (X YD),
where AXB denotes the rectangular set, i.e., A4xB={(a,b)|acd, beB}.
We shall show this inference in Lemma 3.3 below.

Lemma 3.1. If (E,n)edT(J(a)A(QxY)), with neint(8)), then

J(u,&E-Tu)2o for all ueQns in) .

Proof. Suppose that for some uosﬂnsﬂ(n), J(uo,E-Tuol<a(x0).
By the assumption that neint(S(Q)), there exists an element ueint(Q)
which satisfies Sfi=n. Set u,=Au+(I-X)u, It then follows easily that
for sufficiently small A>0, uaxeint(Q) satisfies Sup=n and J(u,E-T2)<«.
Hence Dby appealing again to the continuity of J, a neighborhood
UXV of the origin in XXY exists such that
(3.3) : (Ua, E-Tuz)+ UTXV TW@), ($2X7).
Operating on (3.3) with P and noting that T is open-mapping, we
have (g,n)eint{T(J(a)p(QxY)), which contradicts our hypothesis.

Corollary. Problem (P) has a soZution for each (E,n)é?7KMDn@UfD
if and only if T(J(a)n(QxY)) is closed in YXZ.

Henceforth, we shall assume that X is a reflexive Banach spacel.
The following lemma may Jjustify this point.

Lemma 3.2. In order for Problem (P) to have a solution for every
bounded linear. transformation, convex continuous functional J and
closed convex body Q, it is necessary and sufficient that X be a
reflexive Banach space.

Proof. The necessity is shown in [4, §L4.3]. Hence we shall show

TThis assumption can be modified as in [L4, §L.3].
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the sufficiency. By the corollary to Lemma 3.1, it suffices to show
that T(J(WA(XY)) is closed in ¥YXZ. Let {(u»,y,)}C d(a)n(0x¥) ve a
sequence such that (Sh,ﬂﬁ)=?(un,yk) converges to (§£o0,N0/). Since, in
view of (1.3), {uz} is bounded, and 'since in a reflexive Banach space
every bounded sequence contains a weakly convergent subsequence, we
may suppose that {u,} itself converges weakly to uosX:ufguo. That
is closed, convex implies Ug€fl. Furthermore, by the weak continuity
of T and S we have

(3.4) Fo=En—Ttln 55 &~ Tete= o€ 7

(3.5) 2= Soy—¥> Su,=7,. . .

Since J(a) is weakly closed, we get (u,,Yy,)—(uo,yol€d(a), which,
combined with (3.4),(3.5), ‘implies (Eo,No)eT(J(aA)a(QXY)). .

For each (&,n)e¥Yxint(S(R)), we consider the set C(E,n) defined by
ClE,7) =[xl (£,7)€ T (T (22X}
Obviously C(&,n) is non-void. We then define
P((E.7);R)= sinflx|oleClE D}
~Lemma 3.3. With o, defined by oo=p((&,n);Q) and 0o>0, then
(E,m)edT(J(Co)n(QxY)InT(J(ao)n(QxY)).
Proof. Let {(un,y,)} and a monotone decreasing sequence {axn},
with o Y0y, be such that
&, 7)=T Uz, H), (Un, %) €T@IA (527D, (7=1,2, =)
Then, arguing just as in the proof of the previous lemma, we see
that there exists a subsequence {(ui,yﬂ)} which cdhvefges weakly
to (uo,yo)eQXY, so that (E,n)=T(uo,yo). Since a convex continuous
functional ¢J is weakly lower semi-continuous, we have
Tee, g1 5 S inf Tlee, Je)=d. . |
Thus, (E,N)eT(J(0o)N(OXY)), To see (E,MIEBT(J(0o)n(2%Y)), suppose
that (E,ﬂ)kBT(J(ao)n(QXY)). T(J(ao)A(02%XY)) being a closed convex
body, there exists a neighborhood W of the origin in YXZ such that
{(E,N)+WYC TF(d(0y)n(9xY)). Since for sufficiently small A>0,
it follows - that

(£,7)€ /f; FT)n (2X7) € T (Tes) f1#20) n (S2XTD),

which contradicts definition of ag.

We now state the main result in this section.
Proposition 3.1. Let X be a reflexive Banach space. Then there

exists a solution of (P). If p((&,n);0)>0, then the necessary condition
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for ug to be optimal is that uo takes the following form

(3.6) Ue= [T’ 4 5% : Tty (22xY)]

where oo (=p((E,n);Q)) and (¢1,¢2) of norm 1 satisfy any of the

following equivalent conditions:

) GBS == < TLT@AIALRY), (Fy 80>,
(8, 7)€ T (T(a)n (Lx7),
a) %‘—’7‘[7%¢S% Y T(@s) (2xy)1=CF Tl Dm (2XY) T,
SLTP, 1 8 ! To)q(pxy)T= 7’
(3) MIRLLEN > H T > + mim e (T, 3) =< U T+ > =< 7, A D)

=545+, Bt W?M”‘”f% TV T g ) =< U, TS B 45)= Ao
Conversely, suppose that {uou,7¢f,¢2)} satisfies any of conditions
(1)-(3). Then the suitable version uo=[T'¢1+S'¢p:J(0o) (QxY)] is
optimal. Moreover, if J(ao)A(QXY) is rotund, the solution is unique.

Proof. We first show the necessity. Let uo be an optimal solution.

Then, by the preceding lemma we have J(ug,&-Tug)=p((&,n);0)=00,
Sug=n and (E£,n)edT(J(0o)NQxY)). Since T(J(aoIn(QxY)) is a convex
body, there exists a hyperplane (¢1,¢2)%0 which supports T (T (257
at (&,n):
(3.7) <(E7),(2,8)> = LT (T@n (LX) (F,55=X et n (20, (THFS'h , F> >
On the other hand, we have
(3.8)  <(&,2),(%.%)5=<(Tuot(§-Tto), Stts) , (, %)

=< (U, E-Teto), (T4 8P, 40> S < T@o)r LRXY), (T, 459, ,8,) >
Hence combining (3.7) with (3.8) yields
(3.9) (e, 8-Tu=L[(T%7 5%, #) " T (22X

Z2([T,7SP " Tlo)o (RX)T, [P} T(Xe) A (L X7 ),

from which Eq.(3.6) and (2) follow. To see (3), note that (g,n)e
T(J(0g)n(9xY)) implies and is implied by
(3.10) O, (H K)> ZELT @) p (S, (THTS2, Y7
| Sor all (A EYYZ]
where equality holds if and only if (Y1,Y2)%0 supports 7(T@,(RXY))
at (&,n). Now, by the Kuhn-Tucker Theorem in a locally convex linear

topological space [8] we have

(3.11)  <T@o) p (07, (TH 155 Y2 > = AU < (U 2), (TYT SY, %>
ey, Jlet, 7)o

= {<teuyy), (T 4%, %2> AT J)=ad)?
for some A>0. Substituting (3.11) into (3.10), deviding by X both
sides of the resulting equation and setting W(Y1,¥2)/Al=1 for



normalization, we obtain (3).

To show the converse part, note that conditions (1)-(3) are
equivalent to\dne another, as will be seen by following the above
argument in reverse order. Hence, if {ao,(¢1,92)} satisfies any of
conditions (1)-{3), we see that in any case, (g,n)eaf(J(uo)n(QxY)) and
(¢1,02) supports T(J(ap)n(QXY)) at (E,h). Let (u;,yo)EJ(QO)A(QXY)
be any preimage of (£,n). It then follows from (3.9) and Lemma 3.1
that uOE[T’¢1+S’¢2:J(QO)A(QXY)] is an optimal solution. Finally,
it remains to prove the last assertion. This is easily done as
follows. Let uj,u2e8 be two solutions and (¢;.,¢92)5%0 a hyperplane
of support to ?(J(ao)A(QxY)) at (g£,n). In view of (3.7), we have
(3.12) <U, E=Tud, (T4 S%, P> Z<T@on (XD, (TH15%,4)>, 1=/ 2.
Eqg.(3.12) tells us that (T'¢p;+S'dp,01)%0 supports J(ap)A(RxY) at
(uy ,E-Tuy ) and at (u,,E-Tu,) as well. By rotundity of J(a,)A(RXY),
this implies (u1,&-Tui)=(u2,8-Tu). Consequently, the solution is

unique.

Remark. Thé simplest problem in the calculus of variations is
that-of finding, in a class of arcs
X)), AT ESIY
jolning two fixed points x(t¢)=x¢ and xz(ti1)=x1, one which minimizes

t) .
an integral of the form 772,7)=>/'f/iM%5Nﬁ,j)07> (2f)= 6 )/ dT)
Zs

Problem (P) may be interpreted as the function space versibn of

this problem, if we set 1,
ﬂ(f):i(X)) 5/7(»):2’01 7:1,—2’,’ /S‘L(':A urS)c{S,

x
(“fa)(x)-——/n UsIAY | (ToXT=T,).
Suppose that the solution u, lies in the interior of Q and J(u,y)

is Gateaux differentiable. Then, it turns out from Proposition 3.1
that J(u,y) 1is Fréchet differentiable at (uy,&-Tuo), and we have
(3.13) A=V T(u, 5-Tu,),

(3.28) 779, T ate, §-Tto)# S'H = Vu T( 1t , B-Ttko),

(3.15) T, §-Teho)= Tt they &= Teho) =< tU-the, Ty T [E-Trup> 20, Fa2all wel,
Eq.(3.14) and Eq.(3.15) are the versions of Euler equation and of

Weierstrass condtion, respectively.

4, MINIMIZATION PROBLEMS WITH NORM CRITERIA.

In the previous section, a function space minimum cost control

problem with convex functional criteria was considered. If the



functional J and the constraint set Q@ are specified in terms of
norms, more explicit characterization of the solution is possible.

We shall now treat these cases below.

4.1. The solution to Problem (P;).
As an important special case of Problem (P), we set
T, E=T)= 1E-Tu, JQ:/W///a//;/a, Uex} (o<p<re)
We shall make the following definition.
Definition. We shall say that the pair (E,n), with neint(S(QJ)),

is regular if

, min i €~ Tw) = im{ P E=Tull
holds. ?&?? Sué?

Note that if the mapping S:u—>(Tu,Su), has dense range and if
p((E,n);R) is positdive, then the pair (&,n), with neint(S(Q)), is
regular. ' ; _

Theorem 4.1. Let X be a reflexive Banach space, T an into-mapp-
ing and S an onto-mapping. Then Problem (P1) has a solution. Suppose
that the pair (E,n) is regular. In this case, uo€dplUy is optimal
if and only if

(4.1) uo=pT '¢p1+S "¢3, ,

where (¢1,0,) of norm 1 may be determined by either of the following
(4.2) { E-pPT(TE,F8%)- (& 4>4<7, ﬂ;;f//7=ﬁf§7;//> G

: @) !

(4.3) PS(TE TR =7

e B2 B FUT At S
($0.9, ) S
Moreover, if X is rotund, the solution is unique.
Proof. Let us first note that a hyperplane (¢1,d2) with ¢1x0

(4.4) (2)

supports T(pUyxxaglUy) at (&,n): A

(4.5)  <E0,08,405 240, TH+5'%> +<A Ty, % 5= PITHTSH I Kol 1,

vhere ao=p((&,n);8). In fact, suppose contrary that ¢1=0. Then ¢2%0
and by (4.5) we have ‘

<7’7@>:; fﬂ§ﬁéﬂ
which contradicts the assumption neint(S(Q)). We shall next show
that if (g,n) is a fegular pair, then T'¢1+5"9o%0, whence uoedply
If T'¢1+S"'$po=0 is true, then by (4.5) we have, for all uegd(n),
SEPSF L ES=AETUATU f >+ € QU B S=< T, 45 = deth
Hence

NE-Tuwiign = < §=Tu, $> 2 dollpp | ﬁz all ue ,g"-’(7),
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which, by regularity of the pair (&,n), is impossible. Now, by virtue
of Proposition 3.1 the proof of this theorem may be completed if it
is shown that the solution is unique under the hypothesis in the

theorem. Let ug be any solution of (P;). Then, in view of (L4.5) we

have
(4.6) KUy T4 7 S'P,>= PHT &, w5 =< T, Ty S,
(L.7) SE-Teto, > =de = < ATy, />

Eq.(4.6) shows that if (¢1,d2) supports T(pUxxaclUy) at (E,n), then
" T'$1+S"'¢2(%0) necessarily defines the supporting hyperplane of pUx

at #g. Hence if X is rotund, then uo=p7'¢:1+S'¢2 is unique.

Remark 1. It is interesting to observe that Eq. (4.3) coincides
with the formol) Aifferential of the dual problem (L.L).

Remark 2. Eq.(L4.2) can be replaced by
RE LS Y KD - CFNTY, S A
Iz

(4.8) 1= pTITT T ET N

This follows from the fact that
VE<PTTR TSI Z PIIE D820 2 (<EH >0, b0 = L1747 52,00 /70
holds for all (¢1,¢2) satisfying pT(T'¢1+S'd,)=n.

Corollary. Suppose that (&,n) is a regular pair. Then the unique
solution of the Hilbert space version of Problem (Pi1) is given by

wo=(ANI+I* T 0¥ (AT+T*T )8 * S (AI+T 1) S Y (S (AT+T*T )7 T¥E-n},
where A 18 a constant uniquely determined by |uoll=p.

Proef. In a Hilbert space the extremal of ¥ takes the form
T=x/txl . Hence by (4.1), (L.2) and (4.3) we have

(b1 “o= POT/ 1% 4.0,
(k.2v) PT(T it S ot A= F
(3.3") L PS(TH 4 S p=7)

Here, we put (¢1',¢2')=(¢1,¢2)/ﬂT*¢1+S*¢2H and a=”T*¢1+S“¢2Up((£,n);Q).
Operate on (L4.2') with 7% and solve for T*¢;' to obtain ‘

(4.9) 77, '=/a(]'+7*7)_'(7"€—("7"7\5"‘91')_

By substituting (4.9) into (4.3') and making use of the relation

that i )

S8 pS T+ T TT e A T p 7T 1S

¢," is found » _

(4.10) B= () 1S QTAT TS - St 7 TE L,

where {S(aI+pT*T)ﬁS*fj’exists and defines a continuous linear oprator

as will be seen easily. This corollary follows from (4.1'), (L4.9)
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and (4.10).

4.2. The solution for Problem (P,).
Another interesting case follows if we specify
TCet, 8= T )= ntthT+ nE-Taa )" ([<psto, 2=1u] puIs P, uUex) (0<pSree),
where we have made the obvious convention for fE¢w, Consider a
product Banach space XxY equipped with the norm
Mw = ( nulPr1gity?r  wex , yey (/1pitee)
We then observe that for each (%.J)EX¥Y and (9,,9%)€¢X%Y , 1
[ <Cacg).(t,, ?.>>/s/<u:7%>+<;.77>/ = (Chanten gyt (//?,//’-?”7’»”’/5
from which the extremal of /7“7a)ex€<7’ , 1f one exists, takes the
form
(k.11) (?1. %)= ([ h#20%+ //%I_/"")'//M?.u}z”_,, [(,,7,/,/zﬂ%//i)r/',//%”}r—r772))
where }érty%:;z (See [1] or [Lk]).
Theorem 4.2. Let X be a reflexive Banach space, T an into-mapp-
ing, and S an onto-mapping. Then there exists an element ueply
satisfying Su=n which minimizes Juy? +W&-Tu)f (I<p<re). In order for

uy to be optimal, it is necessary and sufficient that uo <s of the

form: K?? d g/
P, ﬁm))//T‘f" Tf?’z// ——— .
(4.12) u .:{ )I’T%,#S’fmll"fﬂ?,l/,g T‘f/'f\??; 3 A/ /o°:< )
(4.13) P77 154 , : A F>P.
The functional (¢1,$2) of norm 1 may be computed be either of the
following
— M)TH T, +87°P, )= 7— )
(4.14) j}/;, ____,__L,_'___f) /2 P i s
72 TSy ’
(4.15) , S-PTITY 1SP)= AP, .
CSUT?,+oh)= ' : 4 >0,
(4. 16) .{}‘?>+(7 ;
)77 , L1 1%%
(4.17) (f,,% TRy U ) E) Y R
' iy LB II=pITH A5 Rl .
where (ti¥e ) APl 4 (0‘>f

s = (REF D NT S4B 0Tt R ) 10 I E),
A= 43 ¢,>'+<7.¢9,>) 0, Z"’/( NTHtSBYI+10 0,
Me = (2G+)00 — P17 Y NI

and po 18 the norm of the solutiom for p=jew. Moreover, if X is

rotund, the solution is unique.
Proof. Let us note that for u;, #26X and 0<A<I,
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where equality holds if and only if Juif=juzy and (I-A)/Jurjp+/A\uql=
N(I1-X)ui+Auz). Thus, if u1 and u2 are distinct solutions for p=+®,
then Jui)=juz) , and hence po=)uil =)uzll is uniquely determined.
Furthermore, we notice from (4.18) that rotundity of X guarantees
uniqueness of the solution for Problem (P,) (See [L4, §4.2] concern-
ing the equivalent properties for rotundity). This proves the last
statement. To complete the proof it suffices to show that the solution
of (P2) is given by (L4.12) of (4.13) in accordance with pPo<pP or Po>p
Now, if pof£p, the result follows easily from Proposition 3.1 and
Eq.(4.11). Hence suppose that Po>p. We observe, in this case, that
(E,m)eT(p((E,n);X)Uxxy Nn(pUx*xY)), whence p((&,n);pUx)>p((E,n);X),
and so (E,n)eint{T(p((E,n);0Ux)Uyxy) }=T(int{p((E,n);0Ux)Uxxy}).
But obviously we have

(3,7) € 2T/ U275 €T ) Dy CT&*Y) < T (31 p1 05905 T Doy 0 (€BDP

ETlaApesy); ("Zk)'@yyfuaf(o&%ﬂ)

We thus see that (£,n)eT(dpUxxd{(p((E,n);pUx)~ p?)ny}) The rest of
the argument may be carried out just as in the proof of the previous

theorem.

Remark. If po>p holds, then (§,n) is necessarily a regular pair.
To see this, let U be a solution of (Pz) for p=+4+*°. It then follows

that pion $HUNTIETulP)= Py Tiies p5-Tull” 2 mm f”“’””f'f“”f/’//w//’ﬂfﬁf//
/< .
L sy
Hence

g 11Tt =0 TEIB AT f’> 0
Corollary. The unzque solution of the Hilbert space version of
Problem (P2) is given by
m:{ (T TP 5 - (T2 THT $* € (24 775 }’f&/z17"‘7}7’9—7} if AEL
DT+ INTHPTIS ISHETTEY Doy ey tf e,
where po 18 the norm of the solution for p=t®, and X is a constant

uniquely determined by fuol =
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