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Optimum State—-Regulator of Time-Lag System
by
Takumi Nomura and Kahei Nakamura

Faculty of Eng., Nagoya Univ.

The optimum solution of the following problem will be studied:

Time—~Lag System;

%&@ = Ax@)+Bxt-0) ~Cuw) | M
6 = (O'J 92; o 6#1. )/

Performance Index;

-+
Jw) =§LS uxet-,ur‘ob\w Sl\utt)u"ou- (2)
1-b
This is usually called as the state—regulator problem.
At first, for the state vector QEft)T))
£t,T) = A(t+TB) | -1<T <o (3)

the system (1) will be transformed into the following equivalent

partial differential equation:

3&(1:
QX T) ®93E(t-r) L © =Gu€% _93_ '
12

9*£°:~| = Al o) +BX (£~ + Cutt)

)

and the input-state relation will be written explicitly by the semi-
group. Furthermore the performance index (2) will be written equi-

valently as follows:

N
Joo = -0 kol + 2L huwdat )

2



Then the optimum input for the system (4) is obtained uniquely in
terms of its initial value and time-derivative by Functional Analysis
approach.

The results obtained in this paper are different from Pontriyagin's
one which depends on X(‘é), X(t- g ) and Maximum Principle.

Ref.{4] is the extension of this paper.
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1. Introduction

In this paper the state-regulator problem of the linear
time-lag system is studied. Since the §tate—space of the time
~lag system is the infinite-dimensional space, the problem
considered in this paper is different from the usual output
~regulator problem, and by Functional Analysis approach the
solution of it will be obtained very clearly.

In Sec. 2 the time-lag system will be transformed into its
equivalent partial differential system in or&er to show explicit-
1y that the state-space of the time-lag system in the function
space, that is, the infinite-dimensional space., This partial
differential equation is the first—-order hyperbolic one, After
this transformation is done, the input-function becomes the so
~called boundary input function which exists in the boundary
condition of the partial differential equation.

The input-state relation of this partial differential system
with boundary input has not yet been described with the semi
-group which characterizes the free mation of the system.
Therefore the boundary input function will be transformed into
its equivalent spatially distributed input function, and then the
input-state relation can be described in the convolution form of
the semi-group and input-function. Since it is necessary to

differentiate the input function when the boundary input function
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is transformed into its equivalent spatially distributed input
function, the family of input functiondwill be restricted to
differentiable functions,

In Sec. 3 the optimum regulator input will be obtained. The.
representation of optimum input is obtained in termskbf its

initial value and its time derivative.

2. System and Input—State Relation

The systems are described by the following linear differential

~difference equations:

-ﬁ— = Ax® +Bx(Et-gr+Cuk) BN

XW 3 mxA, Wk ret ,
. ) R
A -6) =[-8, A(k-6,) - A, th-0,)] 620 |

A, mxm, B3 axn, & axy” . J

These are called commonly time-lag systems in control engineer-
ing, x(t~-8 ) are the outputs of time-lag elements and u(t) is
the control vector,

Generally not the all €. , izl2, - are positive.
Therefore it is supposed that if Op =() , the: &kt row of
B is put into O. and b, into MMAX . .

P R 121 a _

The following system can be given as an example,

The actual system;

1,&)\ Ak P
= + wit? '
6&{ 1,8 X \ { 1) | (2)

k- 2)



32
'X‘(-t—z)

2 4 0 o 09
The transformed system; 0{‘)\%& ; K = [ 0 )\:7( (‘j*{o 1)[)(!&_2)}-»
2 2

In the following of this section, the input-state relation

1

of the system (1) will be derived. This is the preparation for the
optimization of the system (1).
The solution of Eq. (1) is assured to exist uniquely in

+ € (to 90 ) for the forcing function U and the
. Pl [}

043

initial function X, (¢)

o)

'101(9(1:) , ’Cé(—‘\)o} A

L = %f(gm» Tel,0] “)

Ly (B T) T 0]
so the state of the system (1) at 'to which parametrizes the

bejavio;s\&ft in (to, 50 ) can be taken as the vector function
(4) defined on (—\;g}

From this view point, the Eq. (1) is considered as the
mapping on the function space X (-\1 0) to itself, and can be
changed to the more convinient one, that is, partial differential

equation, for control problem.

The function & T) is defined on ’[(—(-1}()] as

follows:
%, &+ 6,T)

x(tT) = '11L+‘+ 6,1 , Te-10) , )
Z«n(.t-»a,;t)

ahere ( FHe8D), %lestD) - < o, Anl+6,)) is the solution

of the vector differential equation (1).

Then from Eq. (5), the partial differential equation

[O)W‘t)) )



oxtm _ o [ M€
ot ot HLlt46,7)
Dfm(t+9m1),
@b D = Ao, A -
@ % T N (6-1)
can be obtained.
Futhermore since L) = 76{-6}0) , Ale—g) = (¢ -1)
da)  XET) 936(1:1
ma T ol O

then the boundary condition

@9%%93 = A % (5, 00+ B (£,-1) » EUk) (b-2)

)
is derived.

The dynamical system (6) is the one which has the so-called
boundary control.

The linear operator o4 is defined as follows:

APy = Yo, —<eEto) (1)

implies that
o -@*"(‘” , Teto) ®)
QR = Ablr+BtE) (1)

1
and the domain &}(O() of O(C is the subset of C,C-ﬂ,o‘)

whose functions satisfy Eq. (9). The domain 33(0() is dense

o)



in L,:"(—'\) 0) (the n product of Lz(~1lo) ).

The zero-input response %‘f &,0) of
Eq. (1) for any initial state %'0( )E L"; (-4,0) can be
assured to exist. Evidently 3%_(1&1-) belongs to L;r_z'(—'\)O)
Then the operator S(t) which corresponds %O(v) to 3.‘_; (t;')
can be defined, and is linear bounded operator on L'g"_ (-'1)0)
into \MJV

m
z§<«e,=>as’fe)?eé(.) , X () €L (0D, Qo)
The following semi-group property of {s&)\lt—ko can be

easily seen.

(M Jy=1 G1-4)
Gy S&+s) 'S&-)S'(,O) , t,p 20 , (M-2)
Since the x{_('t)(?) is the solution of Eq. (1) for the

zero forcing term and the initial condition 366(.) , then

- 4 _ ) . = d . n -
A _%n&\). S X(#) .&;’,ﬂ%&&' )= L) fovamy e ly(1,0), (12)

This Eq. (12) implies that {5'&?}-&20 . is the strongly con-
tinuous semi-group.
It is supposed that ’36(0")6 ﬁ(ﬂ) and X(a ,‘) , 420

is defined as follows:

%(a,) =d(a)*(0,*) |

that is,

£0,4+T) -{¢1<-4 (13-4)
%(A/t)': ! ’

4A+1) arl A
¢ Ai‘(b)o)*go T B (o, 0~1)dr -45T<0 =2-2)
If A is very small, Eq(13.2) can be rewritten as follows:

(I+ &TA) *(D’o) + Ay B '3(:(0,._1)



Then
K S(“’ Loy = OU% (0, 0%

ALO

This concludes that the operator Ol is the infinitesimal
generator of the semi-group }(g\tﬁ}fzo

In order to obtain the input-state relation of Eq. (6) in
the convolution integral form of forcing function in u(+) and
the semi-group {9 G”}{J—O , the system (6) will be transformed
into the equivalent system which has the spatially distributed
control. TFor this purpose the following dummy vector € T

is introduced:

% (t,T) = T@-‘C W) ‘a

(s
The variable F(t,T) which is equivalent to *ET)  is
defined as follows:
~ ab)
Xl T)= %, D - X&)
By making use of Eqs. (15) and (16), Eq. (6) can be

transformed into the following equation of %(—t',-)

PXLT) @aXWD .ty - (& VR G ED

@ > A%(t)o)*'b%(-t)-ﬁ> > (“7"2)

where it is supposed that u(es) is differentiable.
If the linear bounded operators (3 and C from EY‘

into L/Y;(—Q)D) are defined as follows:

(*1) It is assumed that LA.(O) =0 ,since W(y is defined on (o) 00)
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ab<r) uw = Guw *’CQ—‘C%‘F , (18

Louw = 16 ¢ uw L d§)

then Eq. (6) will be transformed into the following abstract

dynamical system in Lg‘@ﬁ}o) :

ﬁ% ) = ozi({;wpu(k) , (20-1)
% (0) = (o), (20~2)
X = L)+ Luiy (20=3)

By integrating the Eq. (20-1) under the initial condition

(20-2), the following relation holds.

+
%@ = Sy #(o) + So Se-op w(e)elo (21)

With Egqs. (20-3) and (21), the input-state relation of the

system (6) can be written in the form of Eq. (22).

XH) = S %(o)+SjS(Jc~0‘)a’bu(r)a\G‘+£Wb) (22)
Since u(t) can be written as follows:
Uity = Ulo+) + S: e Aa (=23-1)
W = Aule (23~2)

G

then Eq. (22) can be rewritten by Eq. (23).



#*t) =) 36(0)-*[ Q_/u(oﬂ + S:S('t— o dulo+)de)

+
fso{ﬂ W) = Stt-m W) + Jt- v)CS:CL(/M)A/M } do~, %)

If the second term of Eq. (24) will be simply represented by

Lt U (o+) and the third one by L"t \:{(') , then the Eq.

can be rewritten by

E) = Y #*(0)+ Lyulor) + C.-\:-\'A .

3. Optimum Regulator Input

The performance index J(u) is defined by

© .
Jwy -4 S_« 1o 2 Tae Pk

2. >
=41 %GOV +§‘—\\ PNOR
where 7Y, §o are positive constants.

The .state ‘3(;(1') is written by

ET) = ) *(o)+ LUlo+)+F O

where f = L_‘,’ Ji"-.-‘\'
L EY—’ LZ\("&)")

L o,m—=1T (e,

]

]

The pewformance index J(u) is rewritten by

FCu(on, 1) =50 O Loy wony « JU*

.t
where %}&’So (A,

(24)

(28)

(20)

7
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- (9)

o)

- If, the Eq. (27) is substituted into Eq. (29), the latter

becomes
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J(uow, i)
- i. - 2 ‘R‘ . 2
71 360) %0+ L, u (o )+ L W= L= fu(on+ T iy , (24>
where jﬂ,(t-)=1 , t € (O)'T] . (32)

Then the optimum regulator input can be calculated by the
Frechet derivative of  J(ufo+) \:A.) with u(o+) and (L .
7

These Frechet derivatives are

B = LlemEe+ LU RS TWen - TR, G

L o Luon- LW+ £ T o TL), G

where * denotes the normed conjugate operators.

The optimum input LLO(O-}) and L.A,o must satisfy the
equations

<3 \

<ulon =0 (36)

ll(_0+)-=\.ko(o*)}\:z_=\.kb '

3

rm—

: =0
VS o) = (o0, fL =Ll . (36)

Then uo(o-q-) and \.)‘0 are the solutions of the following syste;ﬁ

of integral equatiomns.

L' g+ R uen) « (P L+ AT TI0 = - LI (o) } :
3

[ £+ 7L IWon) +[ £+ o T V10 =~ 60 (o)

where J7; L?(-\,O)""E.YL , I‘,*,‘ LQZL(—&)D)-—-P L:(O)T) ,
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£5 Lm—E, .

The operator k is defined by

W(5+) [ L2+ T won+ [ 2+ AT TIL o
R[ . }-—-K . . - -, (3%)
- [ L2+ R T 1 o0+ £+ R T T
Take any  y(o+) » W(o+) € E, and \..)\){l./ éLZ(D,T) .
Then
W0+ r Wiow
<k
{ U } ’ k o } g

= <[ £ RIAJUON (L ERTTIN, Wen >
S FFLr R TAIUOn [ £ L+ RTTIU, W >
= < ulow, [ L+ g DU o0+ L L+ RLTIN>
AL, | P FRTWon)+ (B EART TN
- W) rWies) ,
: ({, Lrls] o
W JKLLL/ ’ | (37)

Therfore the operator J( is self adjoint.

Futhermore

<k [ \{(0*)1 ) Lu.to\»)] >

W WU

=< IM(O+)+iCL , L (o +,,>f, 0w ( _ﬁ_l,{(()-\-)-\.:(\i) Q}[ﬂ_u(g-»)-yj\j_] S

7 < Qulon)+ T, B Iulon)+T i) 1)
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and [ { U (o+)+ 17&3* = UL(0+)+S: W e = ey ) &2)

Since h is a positive constant,
<Auen)«T0, Bl ulen Tl > > ©
when () ¥°0
So the null space (K ) of the operator K is the only zero

function in L;(D'T) .. That is
2

MK) =0 “3 )

It is concluded that the bounded inverse }(f! of }Q
exists, and the optimum input can be calculated from Eq. (37)

as follows:

LFSt%(e)

(\D.LQKH)B ==K & . 4%)
U FaiEo T -
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