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Indices of Function Spaces

Tetsuya Shimogaki
Tokyo Institute of Technology

& 1. Symmetric Banach function spaces.

The theory of symmetric function spaces which are natural generalizationg
of the familiar Lebesgue spaces LP (1 £ p <00 ) and of the Orlicz spaces
LM has their roots in the papers L 5,6] by G. G. Lorentz and L 41by
I. Halperin. Since then, the literature on this subject has been grown,
and the importance of such spaces in analysis was shown in several papers,
for instance, in [ 1-3,5-7, 12—15,17—213 . In a symmetric functlon space
several indices, which characterize some intrinsic properties of the space,
can be defined. In the present paper we introduce three kind of indices
on such spaces, and show their applications together with some new results.
In this section we give an introduction to symmetric Banach function spaces.
For details, seeL9, 10 1.

Let (E, 7 ,}) be a O-finite measure space. For each real measurable
function f on E the function df(t)= }l{x : £(x) > t}, te (-o0 ,00) is

called the distribution function of f. Let (Ei,mi, M i), i=1,2

be § -finite measure spaces, and let fi y 1 = 1,2 e TTLi-measurable. f1 and

f2 are called spectrally equivalent and denoted by f1’\'f2, if df = df
1 2

holds., Clearly f1'\1f2 is equivalent to the fact that the spectral measures
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of f., i = 1,2 coincide. M (") denotes the set of all real (resp.
non—-negative) measurable functions on E,. A mapping § from M+ into RY is

called a function norm , if it satisfies

ii)  ©(f+g) = Of) + £(g), £, geM
iii)  e(af) = af(f), a€R" , fEN ;
iv) e(f) = f(g), if f =g

If © satisfies the following condition:

( i) £(f) = 0 if and only if f = 0 M-a.e.;

(1.1)

(1.2) 0 < fn*f‘ f implies $(f) = sup 9(fn),
1n
€ is called semi-continuous. For each function norm $ we denote by X = XP

the set of all measurable functions such that $(1fl)< ©o0 . Equipped with
thevnorm £ = $(If1), X is then a normed linear space, if M -almost
equal functions are identified in the usual way. It is known that if & is
semi-continuous (X,W Il ) is a Banach space, which we shall call a Banach

function space determined by § in the sequel. For each $, §'(g) =

sup \ f g dm, g€M+ ‘is called the conjugate function norm of ¢ , which in

PO =4 .
fact satisfies the condition (1.1) under a certain assumption on ® . The

conjugate space of X = X_ is the Banach function space X' = X_, determined by

¥y s’

the conjugate function norm f’ of § . For function norms the following
theorem is essentially of importance[ 9, 10] H

(1.3) Theorem (Lorentz-Luxemburg). § is reflexive, i.e. § = € if

and only if ¢ is semi-continuous.

Hence, » holds whenever § is semi-continuous. A function norm

X_ =X
[ ‘
*§ is called symmetric (or rearrangement jnvariant), if f1~ f2 implies

p(f,) = 9(&‘2), and X = Xg is then called a symmetric Banach function space.
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For each f€ X such that df(a)< oo for all ap O, 'Sf denotes the
decreasing rearrangement of f, which is the right continuous inverse of
) *
the function d.. Then &~ f holds. For any f€M, f denotes 5" oy i

it has a sense. A measure space (E, R, }L) is called adegq ate, if for any

+
f, g€M
2
(1.4) sup \ £ g' dp = S 3. &, at,
g ~g'"E K 0] %
where 9, = r,a.(E) Non-atomic measure spaces and discrete measure spaces

having the atoms of equal measure are adequate, as is easily seen. For an

adequate measure space E and a semi~continuous symmetric function norm ¢

over E we have

s
(1.5) S(f) = sup \F.d. dt, fen',
ﬂ@gifg

Let A. be a symmetric function norm on the interval (0, 4 ). Then it is
clear that the functional P(£) = X &}), f€N'(E, M, K) is a symmetric
function norm on M'. Conversely, on account of (1.3) and (1.5), it is shown

that all symmetric function norms are represented in this way [ 10 ; (12.2)].

(1.6) Theorem. Let (E,qT, rt) be a2 ¢ -finite measure space which is

adequate. Suppose that € is semi-continuous and $(f) < oo

implies df(a)< oo for all a>0., Then, ¢ is symmetric if and

only if there exists a symmeiric function norm A on M+(O,.!«)

such that §(f) = X(J7), £¢ ¥ (e, , M.
1
If f, gel (E, r\'), then we shall write g-4f (the Hardy-Littlewood-
‘ b'd x
Pc{lya's preorder relation), wheneverS g* dt = S f* dt for all x €(0,4)

0 0
An important property of a symmetric Banach function space is the following:

(1.7) f€X, g< 1 implies g€X and Y g || = |If ||, if (8, M, M) is adequate.

This proposition is an immediate consequence of (1.3) and (1.5).
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The Lebesgue spaces L}5 (1 = p < oo ) and the Orlicz space LM are
symmeiric Banach function spaces. The Lorentz spaces A(?)[ 5, 6 Jare also
symmetric and play‘a special role in the class of the symmetric Banach
function spaces. It follows from (1.3), (1.6) and (1.7) that, for evéry
symmetric Banach function space X, there exists a set C of positive decreasing

functions such that

(1.8)  x =.?QC'.A(?) and £ 1 - ;:pc.“ £ "A(?)’ fex.

&2. The indicesy and y.

I:hat follows—,—-l_et X be a symmetric Banach function sgée determined
by a semi-continuous function norm 9 over I = (O,.ﬂ Y, ,ﬁ( o0 or = OO .,
The function Y(x) = Yx(x) = ux(o’ x)“ , xeI is called the fundamental
function of (X,W:J]). If e € I and mes{e) = x, then [ x| - v(x).

We have on account of (1.3) and (1.7)
(2.1) i) Yx(x) YX'(X) = x, x€I.

ii) Y(x)/ X 1is a continuous decreasing function of x, x €I.

iii) There exists a norm . eguivalent to |||l such that
a8 o Squivalent to |}. |} such that

the fundamental function v  of the space (W -“0) is concave

Q.

and v(x) = v (x) = 2y(x), x€I.

The proposition iii) above is stated without proof inL11]3. Here we give

a sketch of a simple proof based on the representation theorem (1.8). The

fundamental function Y of (A(®), 1\ “( ) is concave for every positive
7 AP

decreasing function 9 . Hence Yy =YX is the supremum of positive concave

functions. It is also easy to see that there exists a concave function

majorizing all Y, , $€C by virtue of ii) of (2.1). Therefore, the proof of

g
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the proposition iii) can be reduced to the following elementary fact 1

(2.2) If C is a family of positive increasing concave functions on I

with a concave majorant function co satisfying the condition ii)

of (2.1), there exists the least concave function co majorizing

all functions of C and sup c(t) < (b(t)ﬁ 2 sup c(t) holds for
ceC ceC
all t€l.

If we take the least concave majorant y for the family { Yo i $€C } in

(1.8), it is then easy %o verify that the functional ] “o = Max{lif !,

1 . } . 4
sup ( s S £ dt) Yo(x) , T€ X satisfies the required conditions. An
x?0 [4
alternative proof of this is given in[ 21J.

Now we put for s2>0

(2.3) 8(s) = &(s ;X = sup y(st)/v(t) .

t €], stel

Since J'(s152) = é"(s1) J'(s2), s,» 5,>0, putting Y = ¥y =
inf{log 3(s) /log s} and Y = Y, = sup{log J'(s)/log s}, we obtain
— -X
s>1 Des<l
Y = lim logd(s) /1og S
(2.4) s ~» oo
Y = 1lim 1log &8(s) /log s .
= )

‘The indices ¥ and Y are defined in this way in[21]. Since 1 = g(s) £ s,
s >l and s =9(s) =1, 0<s<1, and 87(s) .?.3'(s—1)'1, s>1 hold, we can
prove easily
(2.5) i) Osys ¥4 1.
ii) Vg + Ygo =Xy + Ygu = 1e
Now we present two applications of the y-indices. First of them concerns with the
Lebesgue-Orlicz points of functions of symmetric spaces, and the results are

obtained by D. V. Salehov in[-157]. Let I, be the interval (0, 1), and
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let X be a symmetric Banach  function space over 11. A point to€ I1 is
called a Lebesgue-Orlicz point of a function f of X, whenever

2.6 lim Il (£ - £(x )% ! 2n) =0

(2:6)  dim Il - £(3,)) (to;m/*() :

where ’X(to ‘n) T 'x(to_h’ to+h). This is a generalizarion of the

notion of the usual Lebesgue point or that of the Lebesgue point of the order
p, 14p<o0o. For every f€X let &(f) denote the totality of the Lebesgue-
Orlicz points of £, I1 being a finite interval, it 1s easy to see that
0y is equivalent to the fact that Y(ta(t))/ Y(t) >0 as t=> 0 for any
function a(t)->0. Thus, Salehov's results are stated as follows :
(2.7)  If Y>0, then mes(ﬁ(xe)) = 1 for any measurable set ecl,.
In fact, the union of the set of all accumulation points of e and the set
of those points of e coincides with the set &( Xe). Furthermore, the
following characterivzation’for 1)0 in terms of Lebesgue- Orlicz points is
given

(2.8) Theorem (Salehov). Y >0 if and only if mes(&(f)) = 1 for

every bounded function £ of X.

The necessity follows from (2.7) and the Lusin's theorem. The proof of the
converse part is established by a construction of measurable setis e ey CI1

such that mes(e1) = 3 and each point of e, is not a Lebesgue-Orlicz point

1
of the function 'xe2 , provided that y(ta(t)) /v(t)4>0 as t =30 for
a function a(t)~> 0L 141
Another application of thé Y-indices concerns with interpolation
theorems of the Marcinkiewicz type, and is discussed by E. M. Semenov L12, 137

and by M. Zippin[ 217J. In the remainder of this section we assume that

2 , the set of all simple functions on I = (O, 00), is dense in X, For
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any a,B with O<a £ B < 1, we define .(Z(a,ﬁ) to be the set of all measurable
,B wii =

functions f integrable on every finite interval and satisfying the inequality,
st S, a P
*
(2.9) mnfet e $ow o /fw menarie®, 1, o0,
. 0 o

The following theorem is due to Semenov (c.f. (1.8)):

(2.10)  Theorem[ 127. If0<a<y<Y<B<1, then there exists an k>0
such that || £} = K- sup 1Fs ll *) for all f€X.
T l\{;, =1, gela, BS

For symmetric Banach function spaces X,' and X2, a linear operator T,
which maps 3 into M, is oalled of weak type{ X,,X,}, if there exists an
K>0 such that, for every f €5 ,

(2.11)  (1£)" (1) Yxét) < KS (t) dv, (t)

holds a.e. t €I, The least number atl.:fylng (2.11) is denoted by il T&X“)X'
K

The usual norm of the operator T is written as " T “ For given

X"X?

two pairs A\ = ({X1,Y 1, {XZ,Y } ) of symmetric spaces with concave

fundamental functions such that Yy > YX , the Calderdn's operator S(4A),
=™ 2

which play a fundemental role in I3 1, can be also defined, and holds the

following proposition which is a general version of a result in T 3 3:

(2.12)  The Calderon's operator S(&) is of weak type {Xi, Yi} for i = 1,2,
ify, S Y .
J ?

Cn the basis of (2.10) and (2.12) the following theorem 1z proved 03, 211

(2.1:)  Theorem(s Semenov-Zippin). Let X,, X, and X be symmetric Banack

Functiion snaces over (0,00). if . <Y, £ Y, <Y , then

X=X
1 .
inear operator T of weak type { Xi’ Xi} i

there exists an K >0 such that T 4

n

K holds for every

1,2 with I T '.'a{x _’X}gl.
~— ;25

i



§3. The indices & and & .

For every a»0Q, let G'a denote the compression operator on X :

¢, f = f, f€X, where f is given by fa(x) = f(ex), if ax €I, and
fa(x) = 0, otherwise. O'a is then a bounded linear operator on X and
(3.1)  Min(a™', 1) = Wo W =Max(a’', 1), a>o0.

The values of || s, I play an important role to determine the majorants for

interpolation theorems [7,18,19] . The following definition of the & -indices

is due to D. W. Boyd L1,2. If we put & = ‘O:X = inf{logno’a—ﬂ\/log a}
ad>i
and § = g, = sup {log “O’a—-ﬂi/log a }, we obtain in the same way
- 0< <
as (2.4)
(3.2) ¢ & = lim {mg Wo - W,/ 10ga},
a = Mo
o = lim {log “ra—-ﬂ\/loga}.
- a-0 )

: ' -1
Since d{ a ;X) = || o -1 W, a>0 ana Il 6, “X: a ||0"a—1 “x,,
a »0, the following relations hold :
(3.3) i) 0zG=y=Y=6 =1,
1) 0, + &, = Sy + &, =1

Two indices, vy and & , do not coincide in general. In fact, we can prove

3.4 For a a, 0< a< 1, there exists a symmetric Banach function
2or any a, &

space X such that Y = Y = a but =0 (or & = 1).

—-—

For a = & , a symmetric Banach function space Y is constructed inL 203, for

00

which v(x) = YY(X} = x?, x>0, hence y =7 =}, but @ =0 (or T =1)

holds. If 0< a< 3, then Consider1a linear space Ya , the set of all

measurable functions such that | f1> €Y, with tpe norm Mg |} -
1 20 a

" :
Nt I y fGYa . It is easy to see that Y, is then a symmetric



5 7
Banach function space with TY = YY = a. On the other ha.nd,G’Y(l =0
a a

=Oor-0'- =1, For awith%<a<1
'

Y Y

it suffices to consider the conjugate space of Y1 constructed above.

or 6’— = 1 holds according as @~
Y =

Using a similar argument as in[20], we can also construct, for any a,

—

0 <a €1, a symmetric space such that Y =y =a, but both §:= 0 and
o - 1 hold.

In terms of the & -indices we can characterize many interesting
properties of symmetric spaces, Now we 1ntroduce two theorems concerning
with the Hardy-Littlewood maximal functions and the Hilbert transform.

For any real measurable function f on the interval I = (0, [} ) let

@ f denote the Hardy-Littlewood maximal function of f : @f(x) =

J
supg £(t) / (y-x) dt, x eI . If X has the property that f €X implies
ye€ I x

@ f € X, then we write X€ HLP. The property X€HLP 1is characterized by
3“ as follows
(3.5) Theorem L 173, X€ HLP if and only it & < 1.

Let f be a locally integrable function on R = (- o0, o0), and let H

1 Xx— & . 00
denote the Hibert transform : (Hf)(x) = lim—( +§ ) f(t)/(x - t) d
d.e. E50 J _4s Jxig

oo
-_%E(P) S f(t)/(x - t) dt. Let X€[H]denote the statement that

- o0
H is a2 bounded linear operator acting on X. It is known that L°¢ [ HJfor

1< p< 0o. Generalizing this fact to an arbitrary symmetric Banach function

space, Boyd showed the following theorem :

(3.6) Theorem [ 1] . X¢[H ] if and only if 0 < § =¥« or
equivalently, both 6 ,< 1 and ?X,<1 hold.

Another necessary and sufficient conditions for i)O or 6 <1 are
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given in [18, 19 Jin terms of the complete continuity of operators or
of the continuity of operators of a weak type.

For familiar symmetric function spaces such as the Lebesgue
spaces LY, 1 ¢ p < o, the Orlicz spaces Ly, Lorents spaces A (P) and
M($), voth Yy =6 andY =6 hold. For the Orlicz spaces Ly» these
equalitis are derived from the inequality "G’a—‘l I =2 d(a), a0, which
is a direct consequence of Theorem 6 in L 7J.

Here we remark that although we have defined indices y and § for a
symmetric Banach function space over I, these indices can be also defined
for symmetric spaces over any (adequate) measure space (E, M, M ), and

their meanings are described in terms of distribution functions.

§4. The indices ¥ and € ..

T_}:;_indices discu-sz;d in this section are defined by the author in[16].
Being different from tﬁe indices vy and & defined in the preceding sections,
the indices % and < can be defined on an arbitrary (not necessary
symmetric) Banach function space over any § -finite measure space(E, M, ["‘ ).

Let X be a Banach function space over (E, MM, rt). For each € , 0<g < 1

let N( €) denote the least natural number, if it exists, satisfying the

condition s
(4.1) W W2e, £,le 0, 1434, 5=1,2,..00 and Ng) =n
n
imply “;s:fi N >,

o=

where £ | g means that £(x) g(x) = 0 Ma.e.. If there is no such natural
number let N(£) = o0. Putting p(g) = log N(£) / -loge ,0<E<T,
and T®- inf p(€), we obtain T%-= lim p(E&). <z Y is called

0<€<1 E->0
the upper exponent of (X,ll-l), and we put

(4.1) = Ty = 1T,
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Also, for each g€ , 0 < €< 1, let N'( €) be the greatest natural numbe,

( or oo ) satisfying the condition 3

(4.3) el =g, fi.ij, i 4 j,1i, j=142,e..ynand n =N' (£)
M

imply I} Z£ N < 1.
=
3 1 '2 1)
Putting P'(E) = log N (E)/-logi. , 0< E<1 and 7T =sup p'(€) ,

¢ O<E<
we obtain ,?Q= lim p'(E&). T~ is called the lower exponent of (X,II'|),
E=>0
and we put
(4.4) T, -1/t

Then the following propositions hold L16 J:
(4.5) i) 0= T =T <.
.. — - T - .
ii) Ty + Ty L, + T 1
The indices Y and ¢ have no relation to the reflexivity of the Banach

space concerned. For the ¢ -indices, the following proposition holds.

N
NI
A
I&
=
©
=
—
>
p—
-
2]
H
®
)
—
®
]
.
<
®
g
w
w
[os)
Q
]
[
o
=
4]
[
o
®

(4.6) If 0< T = is as a
The converse of (4.6) is not true in general. If X is a symmetric Banach
function space over I, we can prove without difficulty that the following
inequalities hold :

(4.7) 05‘;59‘_’51575?5%'51.

The values of the “C -indices and those of @ -indices do not coincide in
general as will be shown below. Even for symmetric spaces, the converse of

(4.6) is not valid. In fact, we have

(4.8) There exists a reflexive symmetric Banach function space for which

Yy = O (hence = = 0) holds.
To show (4.8) we consider the space /A (@;p) over the interval I, = (0, 1),

1
*
the set of all measurable functions f for which ( g Pt P4t )P< oo,
0
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where % is positive and decréas»ing on I1, -and 1 <p<L ©0. We assume

also that the function P(u) = SZ P(t) dt,- u€I, satisfies the condition
lim (2u)/§(u) = 1. It is known[6 7 that the space A(9>, p) is
:eflexlve as a Banach space, if 1< p< Co. On the other hand,it is shown
in 118 Jthat -Y-A(?) = 0 holds under the additiona‘l assumption above., This,
however, implies also lA(?’;p) = 0.

As an application of the T ~indices we have [ 16 7]

(4.9) Let X,, i = 1, 2 be Banach function spaces over measure spaces

(Ei'mi’ r"-l) Then every integral operator T from X1 into X2

is compact, if%, < Ty .
1 2

For the Lebesgue spaces Lp, 1 < p€ooall the indices coincide and
equal to p_1. For the Orlicz spaces LM over a finite measure space B

it is known L16 Jthat tu= < -1 and 'ZQ= T al coincide with the exponents

O"M and SM of the convex function M respectively, where O"M and SM

are defined by W. Matsuzewska and W. Orlicz L8 las follows :

lim. [logg Tim M("\l) } /log?\]

¥

( M N> 00 u=>00 M(y)
4.10) M(Au)
S = lim logd lim logn
. 7\-900[ {u-aooM(u) }/ ¢ ]

Recently the author was informed of a result of Boyd[Indices for the Orlicz

-1 = -1
spaces, Preprint_]that shows that g_‘ = O“M and 6§ = SM . Therefore,
-1
for the Orlicz space over a finite masurespace we have O‘M = Z = o
=y and § -1 T =§=y . For the Lorentz spaces A (%) and

- M

M(P) the §-indices and T-indices are not the same in general, as is easily
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verified. For the further results or applications for the indices, which

could not be refered to here, seel 2, 13, 14 3.
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