群の直積とその表現について

東京教育大 大学院 光 道隆

\$0.序

どうかが問題である。宮田氏のうまい方法により cyclicの時は分っているのだから、abelian groupの時の問題が cyclic の時に帰着できればと望むのは自然であるう。その様な事からも、群の直積と表現との関係はどうなっているのか興味がある。今日述べるのは、その関係を調べるほんの半歩で、2上の表現との関係よりずっと以前の問題についてである。つまり、 πを finite group、 K を field、 $G_o(K\pi)$ を $G_o(K\pi)$ を $G_o(K\pi)$ を $G_o(K\pi)$ を $G_o(K\pi)$ を $G_o(K\pi)$ の $G_o(K\pi)$

§ 1.

まず、Fein[2]にしたが、て、 φ をSchur index を用いて捕らえよう。

- (3) M,#M2がirreducible module であるための,必要十分条件は次の3条件である。
 - (a) $m_K(N_1) m_K(N_2) = m_K(N_1 \# N_2)$.
 - (B) G(E/K) = H, H2.
 - (c) $(K(Y_1):K)(K(Y_2):K) = (K(Y_1,Y_2):K)$.
- (4) TI=TZのとき, irreducible KTI-module MIについて、 次は同値である。
 - (a) M1 15 absolutely irreducible KTI, module 7" \$ 3.
 - (b) M#M2 17 irreducible KT-module 7" \$3.

問題はSchur indexに帰着されるのであるが、現在のSchur indexの計算法ではglobalをあっかいは無理である。以下では違った角度から調べてみる。最後に(3)からの簡単な系を書いてかこう。

(1)

Lemma 1. $\pi_i \# abelian group \# 51 \# , Ker <math>\varphi = 0 \# Coker \varphi$ 15 torsion free $\pi \# 3$.

これは、Tiがabelian groupの時Schur index が1である事に注意すれば至1の(2)より Pがaplit mapになることより分る。

 $\operatorname{Ker} \mathcal{G} \longrightarrow G_{0}(K\pi_{1}) \otimes G_{0}(K\pi_{2}) \xrightarrow{\mathcal{G}} G_{0}(K[\pi_{1} \times \pi_{2}]) \longrightarrow \operatorname{Coker} \mathcal{G}$ $\uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \downarrow$ $\operatorname{Ker} \mathcal{V} \longrightarrow G_{0}(K\pi'_{1}) \otimes G_{0}(K\pi'_{2}) \xrightarrow{\mathcal{V}} G_{0}(K[\pi'_{1} \times \pi'_{2}]) \longrightarrow \operatorname{Coker} \mathcal{V}$ -4-

であり、一般に f き調べるのに induction theorem は使用可能である。例えば、Artinの induction theorem を用いれば、次の結果が得られる。

Proposition 2. $\pi_i \in \text{finite group } \times 3 \times \text{Ker } \mathcal{G} = 0 \times 3$.

この Proposition は inductionを用いなくても直接証明できる。

(2) Mormal subgroupからの情報

M & K[T(xT/2] 9 irreducible module & \$ 3 &,

 $M^{E} \cong m_{K}(N_{1} \# N_{2})(N_{1} \# N_{2} \oplus \mathcal{K}(N_{1} \# N_{2}) \oplus \cdots)$ と書ける。 ただし、Eは多1の様にK上 fimite normal separableな $\pi(\times \pi_{2}')$ splitting field、 N_{i} は $E\pi_{i}'$ -irreducible module, N_{i} の characterを状にとすると、 $\mathcal{K} \in \mathcal{G}(E/K)$ $\mathcal{G}(E/K)$ である。 Mormal subgroup からの情報として次のLemmaが

得られる。

ならば、Coker $\mathcal{L}_z = 0$ である。ただし、 $m = |\pi|' \times \pi_z'| \times \tau$ る。 (d) . $\mathcal{L}_3'(\text{IMI}) = 0$, Mo character を X × するとき , X o inertial group $\mathbf{I}(X) = \mathbf{l}g \mid g \in \pi_1 \times \pi_2, X^g = \chi \mathcal{L} = \pi_1 \times \pi_2$ をみたすような irreducible $\mathbf{K}[\pi_1' \times \pi_2'] - module$ M が存在すると仮定し、さら $\mathbf{l}=$. Coker \mathcal{L}_3 は torsion free だと仮定すると . Coker $\mathcal{L}_2 = 0$ である。

(C) $K = Q \times L$, π'_{i} , π'_{i} を $\frac{1}{2}$ $\frac{1}{$

 $5*5*Coker 9_3 = 0 \iff \psi(\pi_{1/2_1} \times \pi_{2/2_2}) \ni^{\exists} (1)$

on order 1tp-1 th3.

(d) Coker 9, +0 75 15" Coker 92+0 7" 53.

(3).

group TIに対してそのexponentをe(Ti)と書くことにする。 -6Lemma 4 死をadelian group とし、 $G.C.D.(e(\pi),e(\pi))$ = Π P^{hp} と素元分解でき、K に含まれる 1 の原始 P^{S} 乗根のうちの最大値をそれぞれ S_{p} とする。もし、 h_{p} $> S_{p}$ なる P^{X} 存在すれば、 \mathcal{C} : $G.(K\pi)\otimes G.(K\pi_{2}) \xrightarrow{+} G.(K\pi_{1}\times\pi_{2}\mathbb{I})$ 。 § 3. 応用

多2でそ3えた道具をエイヤッと振回してみると,次の事が出てくる。

(1). abelian groupの時. $K = Q, \pi_1 = (p^{n_1}, p^{n_2}, \dots, p^{n_\ell}) 型, \pi_2 = (p^{n_{\ell+1}}, \dots, p^{n_{\ell+k}}) 型$ o abelian group ξ す $\mathbf{3}$ ξ , Coker $\mathcal G$ or rank

= $\sum_{0 \le t \le n} \int \varphi(p^{t}) \times x \times \varphi(p^{t}) \times [\varphi(p^{t}) \times [\varphi(p^{t})] + \varphi(p^{t}) \times [\varphi(p^{t})] + \varphi(p^{t}) \times [\varphi(p^{t})] \times$

(2), 任意のgroup 15717.

group π o center $\epsilon Z(\pi) \epsilon = <.$ 今. L. C. M. $(e(Z(\pi/\pi)))$ $\pi(n\pi)$ $\pi(n\pi)$

(3) L.C.M($e(Z(T/\pi))$) = $h \times f3 \times , \pi o splitting field$ -7はQ(VI)を含む。

(4) Titodd order の group とし、3P (ITII, ITII), 2 (KISp):K)
P it odd prime, 3p it 1の原始P乗根と仮定すると,
Go(KTI)のGo(KTE) + Go(KETIXTEI)である。

Remark

特にK=Qとすれば、2十四間ならば

 $(|\pi_1|,|\pi_2|) = 1 \iff G_o(\Theta\pi_1) \otimes G_o(Q\pi_2) \Longrightarrow G_o(Q[\pi_1 \times \pi_2]).$

(5) M=mpc と素元分解でき、任意のi,jについて Pctp-1 と仮定するとての splitting field は Q(3pmpn) を含む。 ただし、3pmpn は1の原始 Pro無根である。

Solomon の結果とあわせれば、このようなtype の group の splitting field はきまったことになる。 Remark

(6) 2-groupの時は、index 2のcyclic subgroupをもつようなgroupについて考えてみる事が重要である。それは、任意の2-groupのcharacterがある意味でその様なgroupのcharacterによって表わされるからである。(Feit L37 P.73,

(14,3)参照)。

 $\chi = 3\tau$, index 2 of cyclic subgroup $\xi \neq 0$ group 13χ of type $1 \Rightarrow 51$. $|\pi| = 2^{n+1} \times 53$.

- I. $\pi = \langle s | s^{2^{n+1}} = 1 \rangle$.
- I. $\pi = \langle s, t \mid s^{2^n} = 1, t^2 = 1, tst^2 = s \rangle$
- II. $\pi = \langle S, t \mid S^{2^n} = 1, t^2 = S^{2^{n-1}}, tst^{-1} = S^{-1} \rangle$ $n \ge 2$
- \overline{V} . $T = \langle S, t | S^{2^n} = 1, t^2 = 1, tSt^{-1} = S^{-1} \rangle$ M > 2
- $\nabla \pi = \langle s, t | s^{2^n} = 1, t^2 = 1, tst^2 = s^{1+2^{n-1}} \rangle n > 3$
- $II \quad \pi = \langle s, t \mid S^{2^n} = 1, t^2 = 1, tst^{-1} = S^{-1+2^{n-1}} \rangle n \geqslant 3,$ $G_o(Q\pi_i) \otimes G_o(Q\pi_2) \xrightarrow{} G_o(Q[\pi_i \times \pi_2]) \times \not \Leftrightarrow 3 o it$
- ① π_1 が π_2 π_2 π_3 π_4 π_4 π_5 π_5 π_5 π_6 π_6
- ② π_1 が type (I, n=1), (I, n=2), (I, n=2), (V, n=3) 又は (I, n=3) で, π_2 が type IV の時,
- ③ π_1 が $type(I,n=1),(II,n=2),又は(<math>\nabla,n=3$)で、 π_2 が type Ψ の時だけである。

文献

[I] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, 1962. [2] . B. Fein; Representations of direct products of finite groups, Pacific. J. Math., 20. (1967) [3] W. Feit; Characters of Finite Groups, Benjamin 1967. [4] W. Feit and J. G. Thempson; Solvability of mounts

[4] W. Feit and J. G. Thompson; Solvability of groups of odd order, Pacific, J. Math., 13 (1963)

[5] L. Solomon: The representation of finite groups in algebraic number fields, J. Math, Soc. Japan 13, (1961). [6] M. Hikani; 準備中