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1. Square Lattice with the Nearest and the kext Nearest

Neighbor Interactions

We first consider the square lattice with the
nearest and the next nearest neighbor interactions.
The lattice Green's function G(t;m,n;7¥,28) for this case
is defined as the solution éf the difference equation

with the &-function type inhomogeneous part:
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The boundary value is zero at m?+n2> oo . The solution

is given by
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from the several symmetry properties which are satisfied
by (1.2), we restrict ourselves in the following to the
case:

mzO, nz0, 7Y=20, @;O
without loss of generality.

If n=0, the integration of (1.2) over z gives
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When t is real and larger than 2’7’+2F , G(t;m,n;’}',?.f})
is real. We first investigate this case and give a
useful procedure of calculating G(t;m,n;'7{2p ). Then
the expressions occured are analytically continued, so
that the obtained procedure becomes useful also for the
cases of an arbitrarv complex value of % and t<(27+2f.

The lattice Green's function G(t;m,O;'Y,Zp) given

by (1.%) is expressed as follows:
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When 7p>7’7o, 3> 1>-1>Z and the negative sign in
the squére root must be used in (1.5), whereas, if
O(?/B<7 {>%>1>-1 and the positive sign i3 usec.
We can easily show. that G(t;m,0; 7,28 ) satisfies

the following recurrence formula;
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Now the parameters 7 and B in G(t;m,0; 7,2p ) are not
written explicitly for brevity. This recurrence formula
shows that one can calculate all the values along the
axis from the knowledge of G(t;m,O;‘V,ZP ) for m=0,1
and 2.

For both cases 2p>')’>0 and 7y2B>7, G(t;m,0; 7,2/5 )

for m=0,1 and 2 are as follows:
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Now one can calculate G(t;m,O;‘V,ZP ) for an arbitrary
m with the aid of the recurrence formula (1.6) by
starting with (1.7), (1.8) and (1.9) for both cases
2F> Y>0 and > 2,3 70. In order to pbtain the value
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G(ts;m,n;Y ,2p) at an arbitrary site (m,n), the difference

equation (1.1) is used.

when t is a complex value, we have only to use the
complete elliptic integrals with the complex modulus in
(1.7), (1.8) and (1.9). If t=s-ig¢ where ¢ is an
infinitesimal positive number and s«§2742ﬁ, one uses

the following analytic continuations:
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Tor 9<k«1 on the sheeéVWhich is reached through the branch

cut connecting +1 and +#ty encircling around the poin k=)

anticlockwise,
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for & which is on the negative imaginary axis on the sheet(m).
Ffor all the ranges of s, we have the following

cases and the ranges of ‘f(which correspond to each case,

(1) 2p>7 20

28427 < S < 00 o<k <)
—27 < S <2p+27 [<k< oo
_’Y%_P< S < 2p-2Y o<k<l (M)
—2p  §< ~77%p h=-{ kr (1)
—0 < & <-23 =4k

(I1) 772570

zF,fz’)’ Ls < 20 o< f <\
—~2p <8 < 2pt2Y 1< fe < o0
2p—2Y <SS < —2p -9 < k<~
-VZF <sK< 2.;3-27/ “1<k <o
-0 <S< *’YZP 4= ke
where
‘kI = ZJ"lES-‘/z
S+ (29
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In each case, the corresponding expressions for
G(t;0,057,2p ), G(t;1,0;7,2p ‘) and G(t;2,0; 7,2p )
are obtained from (1.7), (1.8) and (1.9) using (1.12)-
(1.24).

Now we can obtain the value G(s-ig ,mﬂigv’,Zﬁ ) at
an arbitrary lattice point for all the ranges of s

from (1.6)and (1.1).

2. 8.C. and Tetragonal Lattices

The lattice Green's function for the tetragonal

lattice is given by
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Comparison of (2.1) with (1.2) shows that
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Thus we can obtain the value of the lattice Green's

function for the tetragonal lattice at an arbitrary
point for all the ranges of s by the numerical integration.

Putting 7=1. we also obtain théxglggfor the s.c. lattice.

3. B.C.C. Lattice

The lattice Green's function for the b.c.c. lattice

is given by
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Comparison of (3.1) with (1.2) shows that
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Thus we can obtain the value of the lattice Green's
function for the b.c.c. lattice. However the more
convenient method for calculating the lattice Green's

LAY

function for the b.c.c. lattice was studied by  Morita.

4, F.C.C. Lattice

The lattice Green's function for the f.c.c. lattice
is given by
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Comparison of (4.1) with (1.2) shows that
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This value is obtained by the numerical integration.
5. S.C. Lattice with the Nearest, the Next Nearest
and the Third Nearest Neighbor Interactions

The lattice Green's function for the s.c. lattice

with the nearest. the next nearest and the third nearest
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neighbor interactions is given by
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Comparison of (5.1) with (1.2) shows that
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Thus we can obtain this value by a numerical integratiocn.

6. B.C.C. Lattice with the Nearest and the Next KNearest
Neighbor Interzctions
The lattice Green's tunction 1t»or the sguare lattice
with the nearest and the next nearest neighbor interactions
is given by ann~ther Torm as fnllows:
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In the other hand, the lattice Green's function tnr the
b.c.c. lattice with the nearest and the next nearest

neighbor interactions is given by

‘ ! O < (oS W&
e “o ‘o k—dcosx o wSB — B (B4 o5yt (o522 )




Comparison of (6.2) with (6.1) shows that
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Thus we can obtain this value by a nu~erical integration.

7. Concluding Remarks

The fornuias useful for the calculatisn ~f the lattice
Green's functions at the arbtrary lattice pnint tor the
square iattlée w1th the nearest and the next nearest
neighbor interactions, the s.c., tetragonal, b.c.c.ana
f.c.c. lattices with the nearest neighbor interaction,
the s.c. lattice with the nearest, the next neurest and
tne thira nearest neighbor interactions and the b.c.c.
lattice with the nearest ana the next nearest neighpnr
interactinns are drived for the whnle range,-x < < 0
We confirm that these forrulas provide the useful subroutines
frr the numerical calculations. Details will be repnrteo

in the near future.:



