Bordism Algebra of Involutions

阪大 理 内田伏一

§ 1. 序

 \mathcal{N}_{*} を unoriented Thom bordism ring, $\mathcal{N}_{*}(\mathbb{Z}_{2})$ を fixed point free smooth involutions の作る unoriented bordism 群とする。 $[S^{n},a]$ を n 次元球面上の antipodal involution の bordism類とするとき、 $\mathcal{N}_{*}(\mathbb{Z}_{2})$ は $\{[S^{n},a]\}_{n\geq 0}$ を基とする \mathcal{N}_{*} 上の自由加鮮であることが知られている([2],定理 23.2)。

 $T_1. M_1 \rightarrow M_1$ 及び $T_2: M_2 \rightarrow M_2$ を fixed point free smooth involutions $E \neq 3 E \neq 1$, $T_1 \times T_2$, $T_1 \times 1$, $T_2 \neq 3 \subseteq N$ に可模な $M_1 \times M_2 \perp 0$ fixed point free smooth involutions であり、 $T_1 \times T_2 \times T_3 \times T_4 \times T_4 \times T_5 \times$

 $[M_1,T_1][M_2,T_2] = [M_1 \times M_2/T_1 \times T_2, T_1 \times T_1]$ によって定義すれず、 $\mathcal{N}_*(Z_2)$ は \mathcal{N}_* -algebra になる。 本稿 では \mathcal{N}_* -algebra $\mathcal{N}_*(Z_2)$ の構造について解説する。 J.C. Su[6] は Gradian特性数の考察によって、幸運にも次の定理を得ることが出来た。

定理 I (J (Su). $\mathcal{R}_{*}(Z_{2})$ if \mathcal{R}_{*} -algebra として exterior algebra になる。 即ち、 $\chi_{n} = [S^{2^{n}}, a] + [P^{2^{n}}][S^{c}, a]$ として $\mathcal{R}_{*}(Z_{2}) \cong \bigwedge_{n=0}^{\infty} (\chi_{n})_{n=0}^{\infty}$

しかし、22-moduleとしての基{[stal] kooを個々に {xn}を用いて表現することには成功していない。 従って Smith 準同型字像等と積の関係については不明のままであった。 そこで我々は 22-moduleとしての基{[skal] kooの向の積を、この基を用いて表小すことを対かる。 鎌田氏[3] がこ((Bith)) の積構造を考察した際に Mischenco 引を用いた方法を Boardman [1]による 24(BC(v)) における primitive なえ Pw を用いて再現することによって次の定理を得る。

定理2 $\chi_{k}(m,n) \in \mathcal{H}_{k}$ を次式で与える。 $[S^{m},a][S^{n},a] = \sum_{k \in \mathcal{K}_{k}} \chi_{k}(m,n)[S^{k}a]$

このとき,

(a) $\exists Z_i \in \mathcal{R}_i : Z_i = 1 , Z_i = C (if i+1 = 2 + 8.16.42.) s.t.$ $\sum_{i \geqslant 1} Z_{i-1} \lambda_{k+i} (m,n) = \sum_{i \geqslant 1} Z_{i-1} (\lambda_k(m-i,n) + \lambda_k(m,n-i)) \text{ for } \forall k,m,n$

(b)
$$d_{m+n}(m,n) = \binom{m+n}{m} \mod 2$$

(c)
$$\mathcal{L}_{c}(\mathbf{m},\mathbf{n}) = [P^{\mathbf{m}}][P^{\mathbf{n}}] + \sum_{k \geq 1} \mathcal{L}_{k}(\mathbf{m},\mathbf{n}) \cdot [P^{k}].$$

(d)
$$[H_{M,N}] = \sum_{k \geq 1} \chi_k(M,n) [P^{k-1}]$$

ここん、p=min(m,n)とおくとき

等式(a) は次のよう K行列表示出来る。

$$Z_{0} Z_{1} Z_{2} - Z_{m+n-2}$$

$$Z_{0} Z_{1} - Z_{m+n-2}$$

$$Z_{0} - Z_{m+n-k}$$

$$Z_{0} - Z_{0} - Z_{m+n-k}$$

$$Z_{0} - Z_{0} -$$

従って、m,n Kついての帰納法Kより、各 &(m,n) は み 及び[Pi] Kよって決定出来るが、更K差 (m+n) Zm+n-i - [Hm,n]

はる、ス、---、Zm+n-2及が[p²],---、[p*****]に関する多項式として表わし得ることが分る。 即ち、各及は[p²],[Hm,n] によって表わし得る。 これに関して、例えば

$$Z_{2k} = [p^{2k}], k = 1,2,3,4,...$$

であることが示されている[7]。

§2. 周辺の状況

- (i) $\mathcal{H}_{\star}(\mathcal{Z}_{2}) \cong \bigwedge_{\mathcal{H}_{\star}}(\chi_{n})_{n=0}^{\infty}$, $\chi_{n} = [S^{2^{N}}, a] + [p^{2^{N}}][S^{c}, a]$, $[S^{c}, a] = 1$.
- (ii) $\mathcal{N}_{\star}(Z_{k}) \cong \mathcal{N}_{\star}$ (k: odd), $[Z_{k}, Z_{k}] = 1$.
- (iii) $\mathcal{R}_{*}(S^{1}) \cong \bigwedge_{\mathcal{R}_{*}} (y_{m})_{n=0}^{\infty}, y_{m} = [S^{2^{m+1}}, \mu] + [CP^{2^{m}}] [S^{1}, \mu] = [S^{1}, \mu] = [S^{1}, \mu] = [S^{2^{m+1}}, \mu] + [CP^{2^{m}}] [S^{1}, \mu] = [S^{1$
- (iv) 以(Zh),(先自然教): Lix-module with generators
 [Zh,Zh]=1,[S',Th],[S3,Th],...,[S2H+,Th]=0.
 但し、Th(Zo,...,Zh)=(从Zo,...,从Zh), 人=e^{2T/-1}
- (v) $L_*(S')$: free L_* -module with basis [S', M] = 1, $[S^3, M]$, ..., $[S^{2n+1}, M]$, ...
- (a)素数p K対LZ, Lfx(S')&Zp のLfx&Zp-algebra ELZg simple system of generators to 成为分析Z113[3].
 - (6) $L_{*}(S') \otimes Q \cong L_{*} \otimes Q[x], x = [S^{3}, \mu].$

ここに、(ii)(iv)は bordism spectral 31 Kより積の自明が分り、以-

moduleの構造は[4],[5] Kよって研究されている。 (ii) は, (i) を求めた J.C. Su の方法, 即す bordism 特性数による。 (v)の (a),(b) ij tに Mischenko 31 を用(1 灰鎌田氏の方法[3] Kよる。 更に (iv),(v)に当る Ω*(G) Kついては, 生成元が 仏(G) の場合と同じであることによって, ひ*(G) より 直接 K 求められる。

§ 3. Bordism algebra N+ (BO(1))

を得ることが出来て、[SM, a] KI $P^m = S^m/a$ 上の canonical line bundle \dot{S}_m の類 [\dot{S}_m] が対応している。 更K, line bundles の bordism 群 $\Omega_*(BO(1))$ は external tensor 積 によって、 Ω_* -algebra となるが、上の対応は Ω_* -algebra として9同型を 与えてガリ、[S^m , a]·[S^m , a] Kは [\dot{S}_m \hat{a} \dot{S}_m] が対応している。

從って、今 $d_i(m,n) \in \mathcal{R}_i$ を [SM, Q][SN, Q] = $\sum_{i=0}^{m+n} \mathcal{L}_i(m,n) \cdot [S^i, Q]$

によって与えると、次式が成り立つ.

 $[\xi_m \delta \xi_n] = \sum_{i=0}^{m+n} \lambda_i(m,n) [\xi_i].$

さて、 M^n 上の line bundle $\stackrel{\cdot}{S}$ K 対して、 $\stackrel{\cdot}{b}$ or dism 特性数 $\left(W_{i,l}(M) \cdot W_{i,r}(M) W_{i}(\stackrel{\cdot}{S})^{k}, \sigma_{M}\right)$, $i, + \dots + i_{r} + k = n$ を考える。 ここ K. $W_{i}(M)$ は M の $i \cdot \chi$ Stiefel · Whitney 類, $W_{i}(\stackrel{\cdot}{S})$ は $\stackrel{\cdot}{S}$ の $\stackrel{\cdot}{S}$ に $\stackrel{\cdot}{S}$ は $\stackrel{\cdot}{S}$ が $\stackrel{\cdot}{S}$ に \stackrel{S} に $\stackrel{\cdot}{S}$ に

(i) $\langle W_i(\hat{s}_n\hat{s}_n)^{M+N}, \nabla_{p^{nl}} \rangle = \binom{m+N}{m} \mod 2 \pm 1 \pmod {M+N} = \binom{m+N}{m}$.

(ii) $P^n \times P^n \pm 0$ line bundle $\hat{s}_n\hat{s}_n \times \hat{s}_n \times$

84. 72*(BO(1))の primitive element Pw Kon?

MO={MO(k)}を unoriented Thom spectrum と まる。
任意の finite CW-complex X と その subcomplex 4の紅
K対して

$$\mathcal{R}^{k}(X,A) = \underline{\lim}_{q} \left[S^{2}(X/A), MO(q+k) \right]$$

$$\mathcal{H}^*(X,A) = \sum_{k} \mathcal{H}^k(X,A)$$

と置くことにより、 $\mathcal{D}^* = \mathcal{D}^*(\mathcal{X}, A)$ 上の環 $\mathcal{D}^*(X, A)$ が与えられる。 更以 (X, A), (Y, B) を finite CU-complexes の組とするとき、 cross 種によって

 $\mathcal{N}(XA)\otimes_{\mathcal{D}^*}\mathcal{N}(Y,B) \cong \mathcal{N}^*(X_{\times}Y,A_{\times}Y \cup X_{\times}B)$ 水成り立つ。

A, $X \in \text{compact smooth } n\text{-manifold } \in \mathcal{F}3 \in \mathbb{Z}$, $t\text{-regularity theorem } \in \mathcal{F}_3 \subset \mathcal{F}_3$, Atiyah-Poincaré of duality $D_X: \mathcal{H}^k(X) \stackrel{\sim}{\longrightarrow} \mathcal{H}_{n-k}(X, \partial X)$

が与えられ、次の二つの国式は可換となる。

$$\begin{array}{ccc}
\mathcal{D}_{*}(x) & \xrightarrow{D_{X}} & \mathcal{D}_{*}(x,\partial X) \\
\downarrow i^{*} & & \downarrow \partial \\
\mathcal{D}_{*}(\partial X) & \xrightarrow{D_{\partial X}} & \mathcal{D}_{*}(\partial X)
\end{array},$$

ニンド、 $i: \partial X \longrightarrow X$ 、 $\partial Y = \emptyset$ 、 K は cross 積である。 特に n次元実射影空间 P^n の cobordism 環 光(P^n) 及び Atuyah-Poincaré duality Kついて 考えて みよう。 inclusion $P^m \longrightarrow P^\infty = BO(1) \longrightarrow MO(1)$ の表わす た(pm)の元を W.(sm)と書く (この元はsmのcobordiem Stiefel-Whitney 類と呼ばれる元である)。 このとき、次の事実が示される。

補題 1. $\mathcal{N}^{*}(P^{n}) \cong \mathcal{N}^{*} \otimes (\mathbb{Z}[W_{i}(\hat{s}_{n})]/W_{i}(\hat{s}_{n})^{n+1})$ $\mathsf{Dp^{n}}(W_{i}(\hat{s}_{n})^{k}) = [\mathsf{p^{n-k}} \hookrightarrow \mathsf{P^{n}}] \in \mathcal{N}_{n-k}(\mathsf{P^{n}})$

えてBO(1) 上の universal line bundle $\xi \ \xi' \ \xi \ T \ h \ J'$. $f_n^*(\xi') \cong \hat{f}_n \ \tau' \ b' \)$, BO(1) \times BO(1) \times BO(1) \times BO(1) \times external tensor 種による line bundle $\xi' \hat{g} \ \xi' \ | \subset I \ | \ I \ | \ J \ |$

 $\mathcal{H}: BO(i) \times BO(i) \longrightarrow BO(i)$

とすれば、素が多素が以対する classifying map は、合成'
PM×PM fm×fm BO(1)×BO(1) — M BO(1)

で与えられる。 写像 ル を用いて、 12*(BO(1)) is graded
Hopf algebraになるが、Boardmani/フバよって 次9ような primitive element Pw の存在が知られている。

 $\mathcal{N}'(BO(n)) \ni P_W = W_1 + \overline{Z}_1 W_1^2 + \overline{Z}_2 W_1^3 + \dots + \overline{Z}_{n-1} W_1^n + \dots + \overline{Z}_$

但L. D.
$$\mathcal{R}^{-n}(pl) \cong \mathcal{R}_m$$
, P_w to primitive $\varepsilon \cdot J$

$$\mathcal{U}^*(P_w) = I \times P_w + P_w \times I$$

なること。

この Pro が U*(BLS(1)) & Q Kおける Mischence 31 K 当る。 そこで Mischence 31 を用いて degree -2の Lxmodule homomorphism L*(BLS(1)) → L*(BLS(1)) & Q を 構成した鎌田氏の方法[3]にならって、degree -1の Nx-module homomorphism

$$\mathcal{N}'(BO(1)) \xrightarrow{f^*} \mathcal{N}'(M^n)$$

$$\stackrel{\square}{\mathbb{R}_{N^-}} \mathcal{D}_{M}$$

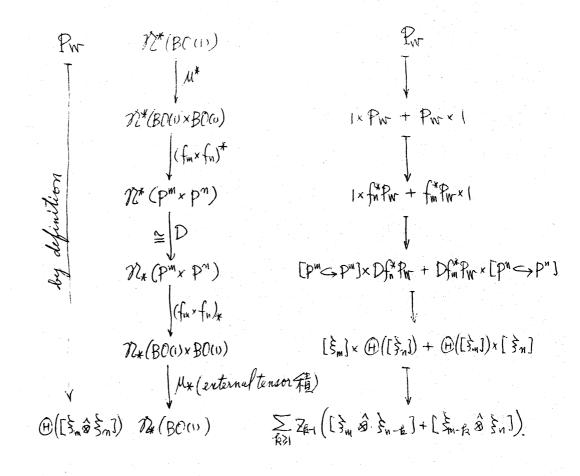
$$\mathcal{N}_{N-1}(M^n) \xrightarrow{f_*} \mathcal{N}_{N-1}(BO(1))$$

Atiyah-Poincaré に関する前述の二つの可模図式 Kよって、 この 田 が well-defined な れ-module homomorphism であることを証明出来る。 ここで特化、田([弘])、田([弘章弘]) を 補題 | を用りて計算してみると、

補題2.
$$\Theta([\hat{s}_n]) = \sum_{R \mid l} Z_{R \mid l} [\hat{s}_{n-R}].$$
 $\Theta([\hat{s}_m \hat{\otimes} \hat{s}_n]) = \sum_{R \mid l} Z_{R \mid l} ([\hat{s}_m \hat{\otimes} \hat{s}_{n-R}] + [\hat{s}_{m-R} \hat{\otimes} \hat{s}_n]).$

証明。

$$\begin{split} (\widehat{H})([\widehat{\xi}_n]) &= \sum_{k \geq 1} f_{n*} \mathcal{D} f_n^* \left(\widehat{\Xi}_{k+1} W_i^k \right) = \sum_{k \geq 1} f_{n*} \mathcal{D}(\widehat{\Xi}_{k+1} W_i(\widehat{\xi}_n)^k) \\ &= \sum_{k \geq 1} f_{n*} \left(\widehat{\Xi}_{k+1} [\widehat{p}^{n-k} : \widehat{p}^n] \right) = \sum_{k \geq 1} \widehat{\Xi}_{k+1} [\widehat{\xi}_{n-k}]. \end{split}$$



85 定理2の証明

ム(m,n)∈ Ne E次式で与える.

$$[S^m, a][S^n, a] = \sum_{k \geq 0} \langle k(m, n) | S^k a \rangle$$

このとき、多るで汚染したように、次式が成り立つ。

$$[\widehat{S}_m \widehat{\mathfrak{S}} \widehat{S}_m] = \sum_{k \geq 0} \mathcal{A}_k(m, n) [\widehat{S}_k]$$

この等式の両辺の田による像を比ぐると、補題でによって、

$$\sum_{k \geqslant i} Z_{k+1} \left(\sum_{i \geqslant c} \left(\mathcal{A}_{i}(m,n-k) + \mathcal{A}_{i}(m-k,n) \right) \left[\frac{s}{s} \right] \right) \\
= \sum_{k \geqslant c} \mathcal{A}_{k}(m,n) \left(\sum_{i \geqslant i} Z_{i-i} \left[\frac{s}{s} \right]_{k-i} \right).$$

さて、な(BO(1))は[系], i=0,1.2... も基とする fee 24-moduleであるから、両辺の[系]の係数を比較すること以よって、全理 えの等式(a) を得る。 等式(b) は、(a)より

Xm+n (M,n) = xm+n-1 (m-1,n) + dm+n-1 (m,n-1)

が示されるので、 m,れについての帰納法で記明される。

最後以, 等式 (C), (d) E示すため, 二つのか-module homo-morphisms

 $S = \mathcal{N}_{\bullet}(Z_1) \longrightarrow \mathcal{N}_{\bullet}$, $\Delta : \mathcal{N}_{\bullet}(Z_2) \longrightarrow \mathcal{N}_{\bullet}(Z_2)$

を定義しよう。 ここ K、をは augmentation homomorphism と呼ばれ、を(EM,T]) = EM/T] Kよって与えられ、ムは Smith homomorphism と呼ばれる degree -1 a homomorphism であり、次々ようK生義される。

, う、 $T: M^n \longrightarrow M^n$ を fixed point free smooth involution とし、 $f: M^n \longrightarrow S^k$ を smooth map であり、 S^{k-1} 上 t-1regular であって、更以 $f\circ T=a\cdot f$ を満なまものとする。 ここと a $S^k \longrightarrow S^k$ は antipodel involution き表わる。 このとき、 $V^{k-1}=f^+(S^{k-1})$ は M^n or closed submanifold で $J(V^{n-1}) = V^{n-1} \in T_0 \subset T_0$ $\Delta(IM^n, T_1) = [V^{n-1}, T_0]$

Kよって、A E定義する。 この A が well-defined To Nx-module homomorphism であることは容易 K示される ([2]、定理 26.1)。

定義より次式が成り立つ。

 $\mathcal{E}([S^n,a]) = [P^n]$. $\mathcal{E}\Delta([S^m,a][S^n,a]) = [H_m,n]$.

從,了, $d_{\mathbf{A}}(\mathbf{m},\mathbf{n}) \in \mathcal{N}_{\mathbf{A}}$ の定義式 $[S^{\mathbf{m}},a][S^{\mathbf{n}},a] = \sum_{\mathbf{a} \geq \mathbf{0}} d_{\mathbf{A}}(\mathbf{m},\mathbf{n}) [S^{\mathbf{h}},a]$

の両辺K, 夫々 E, $E\Delta$ E 作用すせ大像 E 芳之れず,それ が 等式 (c), (d) E 与 2 2 3 。 (記明終)

参考文献

- [1] J. M. Boardman: Unoriented bordism and cobordism, Univ. of Warwick (1966).
- [2] P.E. Conner E.E. Floyd: Differentiable Periodic Maps, Sgringer-Verlag (1964).
- [3] M. Kamata: On the ring structure of L4 (BLS (1)), Osaka J. Math. 7(1970), 417-422.

- (4) M. Kamata: The structure of the bordism group L4(BZp), Osaka J. Math. 7 (1970). 409-416
- [5] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps, (to appear)
- 163 J.C. Su: a note on the bordism algebra of involutions, Michigan Math. J. 12 (1965), 25-31
- [7] F. Uchida: Bordism algebra of involutions, Proc. Japan Acad., 46 (1970), 615-619.