- 1 -

85

Topological immersions and PL immersions

## By Masahiro Kurata

1. Introduction, definitions and notation

In this paper we compute the homotopy groups  $\Pi_{i}(V^{TOP}_{q,m}, V^{PL}_{q,m})$  where  $V^{TOP}_{q,m}(resp.\ V^{PL}_{q,m})$  is the topological analogue (resp. the PL analogue) of the stiefel manifold, using the result of Kirby-Siebenmann [7]. And we consider the relation between topological immersions and PL immersions of PL manifolds.

Theorem 1.

1) If 
$$q-m > 3$$
,  $\pi_k(v^{TOP}_{q,m}, v^{PL}_{q,m}) = 0$  for  $0 \le k \le m$ .

2) If q-m = 1  $q \ge 1$  or q-m = 2  $q \ge 6$ ,

$$\Pi_{k}(\text{TOP}_{q}, \text{ PL}_{q}) \longrightarrow \Pi_{k}(V^{\text{TOP}}_{q,m}, V^{\text{PL}}_{q,m})$$

is isomorphic for  $0 \le k \le m$ , and

$$\Pi_{m+1}(\text{TOP}_q, \text{PL}_q) \longrightarrow \Pi_{m+1}(V^{\text{TOP}}_{q,m}, V^{\text{PL}}_{q,m})$$

is surjective.

Corollary 2.

If 
$$q-m = 1$$
  $q \ge 5$  or  $q-m = 2$   $q \ge 6$ ,
$$\Pi_{k}(V^{TOP}_{q,m}, V^{PL}_{q,m}) = \begin{cases} 0 & k \ne 3 \\ z_{2} & k = 3 \end{cases}$$

for  $k \leq m+1$ .

Theorem 3.

- 1) Let Q, M be PL manifolds with dim. q and m respectively, and  $f: M \longrightarrow Q$  be a topological immersion. Then, if  $q-m \ge 3$ , there is a topological regular homotopy which takes f to a PL immersion. If q-m=1  $q\ge 5$  or q-m=2  $q\ge 6$ , there is a topological regular homotopy which takes f to a PL immersion if and only if the obstruction  $c(f) \in H^3(M, \mathbb{Z}_2)$  vanishes.
- 2) Suppose that  $f_0, f_1: M \longrightarrow Q$  are PL immersions, there is a topological regular homotopy which takes  $f_0$  to  $f_1$ , and q-m=1,  $q \ge 5$  or q-m=2  $q \ge 6$ . Then there is a PL regular homotopy which takes  $f_0$  to  $f_1$  if the obstruction  $d(f_0, f_1) \in H^2(M, Z_2)$  vanishes.

In this paper, immersions and embeddings are assumed to be locally flat.

Definition.

Topological (resp. PL) stiefel  $V^{TOP}_{\phantom{TOP}q,m}$  (resp.  $V^{PL}_{\phantom{PL}q,m}$ ) is a Kan complex whose k-simplex f is a topological (resp. PL) embedding

$$f : \Delta^k \times R^m \longrightarrow \Delta^k \times R^q$$

such that  $f|(\Delta^k \times 0) = id$ ,  $pr_1 \circ f = pr_1$  and f is locally flat uniformly with respect to  $\Delta^k$  (i.e. for any  $x \in \Delta^k$ , there is a neighbourhood  $U \subset \Delta^k$  of x, and homeomorphisms  $g_1 : U \times R^m \longrightarrow U \times R^m$ ,  $g_2 : U \times R^q \longrightarrow U \times R^q$ , where  $pr_1 g_\alpha = pr_1 (\alpha = 1, 2)$ , such that the diagram

commutes.)

Definition.

Let M', Q be topological (resp. PL) manifolds,  $N \subset M \subset M'$  be locally flat proper submanifolds,  $Q: N \longrightarrow Q$  be a topological (resp. PL) immersion.  $I^{TOP}_{M',\theta}(M,Q)$  (resp.  $I^{PL}_{M',\theta}(M,Q)$ ) is a Kan complex of topological (resp. PL) M'-immersions of M in Q whose restrictions on N in  $\theta$ .  $R^{TOP}_{M',\theta}(M,Q)$  (resp.  $R^{PL}_{M',\theta}(M,Q)$ ) is a complex of its representations. When  $N = \phi$ , we omit the subscript  $\theta$ .

 $B^n$  denotes n-dim. ball.  $\mathring{B}^n$  and  $\partial B^n$  denote the interior of  $B^n$  and boundary of  $B^n$  respectively.

Definition.

 $\widetilde{I}_{B^k \times R^{m-k}}(B^k, R^q)$  is a complex of topological  $B^k \times R^{m-k}$ -immersions of  $B^k$  in  $R^q$  which is PL on a neighbourhood of  $\partial B^k \times R^{m-k}$  in  $B^k \times R^{m-k}$ .  $\widetilde{R}_{B^k \times R^{m-k}}(B^k \times R^q)$  is a complex of its representations.

§2. Prelimilarly results

Lemma 5.

1) 
$$\Pi_0(\widetilde{\mathbb{I}}_{B^k \times R^{m-k}}(B^k, R^q)) \cong \Pi_0(\widetilde{R}_{B^k \times R^{m-k}}(B^k, R^q))$$

$$\cong \Pi_k(V^{TOP}_{q,m}, V^{PL}_{q,m})$$

for  $0 \le k \le m$ .

2) 
$$\pi_{\mathbf{i}}(\tilde{\mathbf{I}}_{\mathbf{B}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{m}-\mathbf{k}}}(\mathbf{B}^{\mathbf{k}}, \mathbf{R}^{\mathbf{q}}), \mathbf{I}^{\mathbf{PL}}_{\mathbf{B}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{m}-\mathbf{k}}}(\mathbf{B}^{\mathbf{k}}, \mathbf{R}^{\mathbf{q}}))$$

$$\cong \pi_{\mathbf{i}}(\tilde{\mathbf{R}}_{\mathbf{B}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{m}-\mathbf{k}}}(\mathbf{B}^{\mathbf{k}}, \mathbf{R}^{\mathbf{q}}), \mathbf{R}^{\mathbf{PL}}_{\mathbf{B}^{\mathbf{k}} \times \mathbf{R}^{\mathbf{m}-\mathbf{k}}}(\mathbf{B}^{\mathbf{k}}, \mathbf{R}^{\mathbf{q}}))$$

$$\cong \pi_{\mathbf{i}+\mathbf{k}}(\mathbf{V}^{\mathbf{TOP}}_{\mathbf{q},\mathbf{m}}, \mathbf{V}^{\mathbf{PL}}_{\mathbf{q},\mathbf{m}})$$

for  $0 \le k \le m$ ,  $1 \le i$ , m < q.

Proof.

1) is obtained from Kirby [7] and Kurata [10].

Proof of 2) is as follows. An isomorphism  $I_{i}(\hat{R}_{B^{k}\times R^{m-k}}(B^{k}, R^{q}),$ 

The differential

$$d : I_{B^k \times R^{m-k}}^{PL}(B^k, R^q) \longrightarrow R_{B^k \times R^{m-k}}^{PL}(B^k, R^q)$$

is homotopy equivalent, therefore it is sufficient to prove the homotopy equivalence of

$$d : \tilde{I}_{R^k \times R^{m-k}}(B^k, R^q) \longrightarrow \tilde{R}_{R^k \times R^{m-k}}(B^k, R^q).$$

Consider the homotopy equivalence between fibrations

$$I^{TOP} \xrightarrow{2B^{k} \times R^{m-k}, i} (B^{k}, R^{q}) \longrightarrow R^{TOP} \xrightarrow{2B^{k} \times R^{m-k}, i} (B^{k}, R^{q})$$

$$I^{TOP} \xrightarrow{2B^{k} \times R^{m-k}} (B^{k}, R^{q}) \longrightarrow R^{TOP} \xrightarrow{2B^{k} \times R^{m-k}} (B^{k}, R^{q})$$

$$\downarrow i_{*} \qquad \qquad \downarrow i_{*}$$

$$I^{TOP} \xrightarrow{2B^{k} \times R^{m-k}} (2B^{k} - \frac{1}{2}B^{k}, R^{q}) \longrightarrow R^{TOP} \xrightarrow{2B^{k} \times R^{m-k}} (2B^{k} - \frac{1}{2}B^{k}, R^{q}),$$

where i\* is induced by the inclusion i:  $(2B^k - \frac{1}{2}\mathring{B}^k) \times R^{m-k} \longrightarrow 2B^k \times R^{m-k} \subset R^q$ . Note that  $I^{PL}_{2B^k \times R^{m-k}} (2B^k - \frac{1}{2}\mathring{B}^k)$ ,  $R^q$ ) and

 $R^{PL}_{2B^k \times R^{m-k}} (2B^k - \frac{1}{2}B^k, R^q)$  are subcomplexes of  $I^{TOP}_{2B^k \times R^{m-k}} (2B^k - \frac{1}{2}B^k, R^q)$ 

and  $R^{TOP}_{2B^k \times R^{m-k}} (2B^k - \frac{1}{2}B^k, R^q)$  respectively. The restrictions

$$\mathtt{i}_{*}: \ \widetilde{\mathtt{I}}_{2B^{k}\times R^{m-k}}(\mathtt{B}^{k}, \ \mathtt{R}^{q}) \longrightarrow \mathtt{I}^{PL}_{2B^{k}\times R^{m-k}}(\mathtt{2B}^{k}-\tfrac{1}{2}\overset{\circ}{\mathtt{B}}{}^{k}, \ \mathtt{R}^{q}), \ \text{and}$$

 $i_{*}: \overset{\sim}{R}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q}) \longrightarrow R^{PL}_{2B^{k}\times R^{m-k}}(2B^{k}-\frac{1}{2}B^{k}, R^{q}) \text{ are fibrations}$ 

with fibres being  $I^{TOP}$   $2B^k \times R^{m-k}$ ,  $I^{RQ}$  and  $R^{TOP}$   $2B^k \times R^{m-k}$ ,  $I^{RQ}$ 

respectively, because

$$i_*^{-1}(I^{PL}_{2B^k \times R^{m-k}}(2B^k - \frac{1}{2}B^k, R^q)) = \widetilde{I}_{2B^k \times R^{m-k}}(B^k, R^q)$$
 and

$$i_*^{-1}(R^{PL}_{2B^k \times R^{m-k}}(2B^k - \frac{1}{2}B^k, R^q)) = \widetilde{R}_{2B^k \times R^{m-k}}(B^k, R^q).$$
 By homotopy

equivalences of d : 
$$I^{TOP}_{2B^k \times R^{m-k}, i}(B^k, R^q) \longrightarrow R^{TOP}_{2B^k \times R^{m-k}, i}(B^k, R^q)$$

and d: 
$$I^{PL}_{2B^k \times R^{m-k}} (2B^k - \frac{1}{2}\mathring{B}^k, R^q) \longrightarrow R^{PL}_{2B^k \times R^{m-k}} (2B^k - \frac{1}{2}\mathring{B}^k, R^q),$$

it follows that d : 
$$\widetilde{I}_{B^k \times R^{m-k}}(B^k, R^q) \longrightarrow \widetilde{R}_{B^k \times R^{m-k}}(B^k, R^q)$$
 is a

homotopy equivalence.

Lemma 6.

The natural inclusion  $i:B^k\times R^{n-k} \longleftrightarrow B^k\times R^{m-k}$  (n<m) induces the following commutative diagrams.

$$\Pi_{0}(\widetilde{I}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q})) \xrightarrow{\underline{i}^{*}} \Pi_{0}(\widetilde{I}_{2B^{k}\times R^{n-k}}(B^{k}, R^{q})) \\
\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \\
\Pi_{0}(\widetilde{R}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q})) \xrightarrow{\underline{i}^{*}} \Pi_{0}(\widetilde{R}_{2B^{k}\times R^{n-k}}(B^{k}, R^{q})) \\
\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong \\
\Pi_{k}(V^{TOP}_{q,m}, V^{PL}_{q,m}) \xrightarrow{\underline{i}^{*}} \Pi_{k}(V^{TOP}_{q,n}, V^{PL}_{q,n}),$$

$$\Pi_{i}(\widetilde{I}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q}), I^{PL}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q}))$$

$$\stackrel{=}{=} \Pi_{i}(\widetilde{I}_{2B^{k}\times R^{n-k}}(B^{k}\times R^{q}), I^{PL}_{2B^{k}\times R^{n-k}}(B^{k}, R^{q}))$$

$$\Pi_{i}(\widetilde{R}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q}), R^{PL}_{2B^{k}\times R^{m-k}}(B^{k}, R^{q}))$$

$$\stackrel{=}{=} \Pi_{i}(\widetilde{R}_{2B^{k}\times R^{n-k}}(B^{k}\times R^{q}), R^{PL}_{2B^{k}\times R^{n-k}}(B^{k}, R^{q}))$$

$$\stackrel{=}{=} \Pi_{i}(\widetilde{R}_{2B^{k}\times R^{n-k}}(B^{k}\times R^{q}), R^{pL}_{2B^{k}\times R^{n-k}}(B^{k}, R^{q}))$$

$$\stackrel{=}{=} \Pi_{i+k}(V^{TOP}_{q,m}, V^{PL}_{q,m}) \xrightarrow{\underline{i*}} \Pi_{i}(V^{TOP}_{q,n}, V^{PL}_{q,n})$$

Lemma 7.

Suppose q-m = 1, or q-m = 2  $q \ge 6$ . Then

$$\text{1)} \quad \text{i*} \; : \; \Pi_0(\widetilde{\textbf{I}}_{2B^k \times R^{q-k}}(\textbf{B}^k, \ \textbf{R}^q)) \; \longrightarrow \; \Pi_0(\widetilde{\textbf{I}}_{2B^k \times R^{m-k}}(\textbf{B}^k, \ \textbf{R}^q))$$

is an isomorphism for  $0 \le k \le m$ .

2) i\* : 
$$\Pi_1(\widetilde{I}_{2B^k \times R^{q-k}}(B^k, R^q), I^{PL}_{2B^k \times R^{q-k}}(B^k, R^q)) \longrightarrow$$

$$\Pi_1(\widetilde{I}_{2B^k \times R^{m-k}}(B^k, R^q), I^{PL}_{2B^k \times R^{m-k}}(B^k, R^q))$$

is a surjection for  $0 \le k \le m$ .

Proof of 1). Suppose that  $f: 2B^k \times 2B^{m-k} \longrightarrow \mathbb{R}^q$  represent a vertex of  $\widetilde{I}_{2B^k \times \mathbb{R}^{m-k}}(B^k, \mathbb{R}^q)$ . Let  $(\widetilde{f}, V^q, \psi)$  be an induced neighbourhood of  $2B^k \times 2B^{m-k}$  by f. (cf. [10]).



We may assume that  $V^q$  is a q-dim. PL manifold with PL structure induced by  $\psi$ ,  $\psi$  is PL immersion and  $\widetilde{f}$  is an embedding.

We show that  $\widetilde{f}$  can be extended to an embedding  $\widetilde{F}$ :  $2B^k \times 2B^{q-k} \longrightarrow V^q$  such that  $\widetilde{F}|((2B^k - \frac{1}{2}\mathring{B}^k) \times 2B^{q-k})$  is PL, moreover such extension is unique up to isotopy. An extension  $\widetilde{F}$  of  $\widetilde{f}$  can be constructed as follows.

In the case where q-m = 1. By existance of codimension 1 topological normal bundle, there is a topological embedding  $g: 2B^k \times 2B^{m-k} \times R \longrightarrow V^q$  such that  $\widehat{f} \cdot pr_1 = g$ , where  $pr_1: 2B^k \times 2B^{m-k} \times R \longrightarrow 2B^k \times 2B^{m-k}$  is the projection on  $2B^k \times 2B^{m-k}$ . By the existance of codimension 1 PL normal bundle, there is a PL bundle  $p: E \longrightarrow (2B^k - \frac{1}{2}B^k) \times 2B^{m-k}$  with fibre being R, and PL embedding  $g': E \longrightarrow V^q$  such that  $(\widehat{f} \mid ((2B^k - \frac{1}{2}B^k)) \times 2B^{m-k}) \cdot p = g'$ . Because codimension 1 topological normal bundle is unique up to isotopy (cf. Brown [2]), g can be chosen such that  $p: g'^{-1} \cdot g = pr_1$ . Therefore  $p: E \longrightarrow (2B^k - \frac{1}{2}B^k) \times 2B^{m-k}$  is topological trivial bundle. The homotopy equivalence between  $TOP_1$  and  $PL_1$  implies that  $p: E \longrightarrow (2B^k - \frac{1}{2}B^k) \times 2B^{m-k}$ 

is PL trivial bundle. Then we may assume that  $E = (2B^k - \frac{1}{2}\hat{B}^k) \times 2B^{m-k} \times R$ .  $p = pr_1$ . By the argument of Brown [2], PL embedding  $g' : (2B^k - \frac{1}{2}\hat{B}^k) \times 2B^{m-k} \times R \longrightarrow V^q$  can be extended to a topological embedding  $\widetilde{F} : 2B^k \times 2B^{m-k} \times R \longrightarrow V^q$ .

Let  $\widetilde{F}_{\alpha}$ :  $2B^k \times 2B^{m-k} \times R \longrightarrow V^q$  ( $\alpha$ =0,1) be extensions of  $\widetilde{f}$ such that  $\widetilde{F}_{\alpha} | ((2B^k - \frac{1}{2} \mathring{B}^k) \times 2B^{m-k} \times R)$  is PL. By the uniqueness up to isotopy of codimension 1 PL normal bundle and the isotopy extension theorem of topological manifolds (Edward-Kirby [3]), there is a topological isotopy  $H_t: 2B^k \times 2B^{m-k} \times R \longrightarrow 2B^k \times 2B^{m-k} \times R$  $(0 \le t \le 1)$  fixing  $2B^k \times 2B^{m-k} \times 0$ , such that  $H_0 = id$ .  $H_t | ((2B^k - \frac{1}{2}\mathring{B}^k) \times 2B^{m-k} \times R)$  is PL, and  $H_1 \circ \widetilde{F}_1^{-1} \circ \widetilde{F}_0 | ((2B^k - \frac{1}{2}\mathring{B}^k) \times R)$  $2B^{m-k} \times R$ ) commutes with the projection on  $(2B^k - \frac{1}{2}B^k) \times 2B^{m-k}$ . By the uniqueness up to isotopy of codimension 1 topological normal bundle, there is a topological isotopy  $H_{+}(1 \le t \le 2)$  fixing  $((2B^{k}-\frac{1}{2}B^{k}) \times 2B^{m-k} \times R) \cup (2B^{k}\times 2B^{m-k}\times 0)$  such that  $H_{2} \cdot \widetilde{F}_{1}^{-1} \cdot \widetilde{F}_{0}$ commutes with the projection on  $2B^k \times 2B^{m-k}$ . Because  $\Pi_{i}(TOP_{i}, PL_{i}) = 0$  for  $i \geq 0$ , there is a topological isotopy  $H_t(2 \le t \le 3)$  such that  $H_t((2B^k - \frac{1}{2}B^k) \times 2B^{m-k} \times R)$   $(2 \le t \le 3)$  is PL,  $H_{t}, \widetilde{F}_{1}^{-1}, \widetilde{F}_{0}$  (2\leq t\leq 3) commutes with the projection on  $2B^{k} \times 2B^{m-k}$ ,  $H_3 \circ \widetilde{F}_1^{-1} \circ \widetilde{F}_0$  is PL. The contractibility of  $2B^k \times 2B^{m-k}$ implies that there is a PL isotopy  $H_t(3\leq t\leq 4)$  which commutes with the projection on the  $2B^k \times 2B^{m-k}$  such that  $H_4 \circ \widetilde{F}_1^{-1} \circ \widetilde{F}_0 = id$ .  $\widetilde{F}_1 \cdot H_t^{-1}$  (0 $\leq t \leq 4$ ) is the required isotopy from  $\widetilde{F}_1$  to  $\widetilde{F}_0$ .

In the case where q-m=2,  $q\geq 6$ . There is a topological extension  $F:2B^k\times 2B^{m-k}\times R^2\longrightarrow V^q$  os f. By Kirby-Siebenmann [8],  $F|((2B^k-\frac{1}{2}B^k)\times 2B^{m-k}\times R^2)$  is isotopic to a PL embedding.

Extending this isotopy by isotopy extension theorem ([3]), we obtain the required embedding  $\tilde{\mathbf{F}}$ . Similar argument to the proof in the case where q-m=1 implies the uniqueness of the extension of  $\hat{\mathbf{f}}$ , by the existance and uniqueness of codimension 2 PL normal bundle ([12]) and the homotopy equivalence between TOP<sub>2</sub> and PL<sub>2</sub> (Akiba [1], Kneser [9]).

Proof of 2). Let  $f: 2B^k \times 2B^{m-k} \times I \longrightarrow R^q \times I$  be an 1-simplex of  $\widetilde{I}_{2B}^k \times_{R}m^{-k}(B^k, R^q)$ , such that  $f|(2B^k \times 2B^{m-k} \times \mathring{I})$  is a PL immersion. There is a topological immersion  $g: 2B^k \times 2B^{m-k} \times_R q^{-m} \times I \longrightarrow R^q \times I$  such that g is an extension of f, g commutes with the projection on I and  $g|((2B^k - \frac{1}{2}\mathring{B}^k) \times 2B^{m-k} \times R^{q-m} \times I)$  is PL. Similarly to the proof of 1), there is regular homotopies rel.  $2B^k \times 2B^{m-k} \times \{\alpha\} \ g_t : 2B^k \times 2B^{m-k} \times R^{q-m} \times \{\alpha\} \longrightarrow R^q \times \{\alpha\} \ (\alpha=0,1)$ , keeping PL on  $(2B^k - \frac{1}{2}\mathring{B}^k) \times 2B^{m-k} \times R^{q-m} \times \{\alpha\}$ , which take  $g|(2B^k \times 2B^{m-k} \times R^{q-m} \times \{\alpha\})$  to PL immersions. Extending  $g_t$  to a regular homotopy over  $2B^k \times 2B^{m-k} \times R^{q-m} \times I$ . We obtain an immersion  $g': 2B^k \times 2B^{m-k} \times R^{q-m} \times I \longrightarrow R^q \times I$ , which satisfies the following. g' is an 1-simplix of  $\widetilde{I}_{2B}^k \times R^{q-k}(B^k, R^q)$ , an extension of  $\widetilde{f}$  and  $g'|(2B^k \times 2B^{m-k} \times R^{q-m} \times \widetilde{I})$  is PL immersion. This shows that  $i^*: \Pi_1(\widetilde{I}_{2B}^k \times R^{q-k}(B^k, R^q), I^{PL}_{2B}^k \times R^{q-k}(B^k, R^q))$ 

is surjective. The proof is complete.

Lemma 8.

Suppose  $q-m \ge 3$ ,  $f : 2B^k \times 2B^{m-k} \longrightarrow R^q$  be a vertex of

 $\widetilde{I}_{2B^k \times 2B^{m-k}}(B^k, R^q)$ . Then there is a regular homotopy  $g_t$  which takes f to a PL immersion with  $g_t \in \widetilde{I}_{2B^k \times 2B^{m-k}}(B^k, R^q)$ .

Proof.

Let  $(\hat{\mathbf{f}}, V^q, \psi)$  be an induced neighbourhood by  $\mathbf{f}$  of  $2B^k \times 2B^{m-k}$ , where  $\psi$  is PL immersion,  $V^q$  is PL manifold and  $\hat{\mathbf{f}}$  is embedding with  $\hat{\mathbf{f}} \mid ((2B^k - \frac{1}{2}\mathring{\mathbf{B}}^k) \times 2B^{m-k})$  being PL. By Kirby-Siebenmann [8] and Miller [11], there is an isotopy  $\hat{\mathbf{f}}_t$  which takes  $\hat{\mathbf{f}}$  to a PL embedding keeping PL on  $(2B^k - \frac{1}{2}\mathring{\mathbf{B}}^k) \times 2B^{m-k}$ .  $g_t = \psi \circ \hat{\mathbf{f}}_t$  is a required regular homotopy.

## §3. Proof of theorems.

Theorem 1 is obtained by lemma 5~8.

Corollary 2 follows immediately from Theorem 1 by Kirby-Siebenmann

[7].

Proof of Theorem 3.

Let  $f: M^m \longrightarrow Q^q$  be a topological immersion.  $df: TM \longrightarrow TQ$  is its differential. There is a homotopy  $f_t: M \longrightarrow Q$  which takes f to a PL map  $f_1$ . There is a homotopy of locally flat bundle monomorphism  $\psi_t: TM \longrightarrow TQ$  such that  $\psi_0 = df$  and  $\psi_t$  covers  $f_t$ . When q-m > 3,  $\psi_1$  can deform to a PL bundle map and when q-m = 1  $q \ge 5$  or q-m = 2  $q \ge 6$  the abstruction to deform  $\psi_1$  to a PL bundle map lies in  $H^3(M, Z_2)$  by Corollary 2. By topological and PL immersion theorems ([5], [10]), it follows from theorem 3.1). Proof of 2) is similar to those of 1).

## References

- [1] Akiba, T.: Filling in cross sections of Piecewise linear bundles, to appear.
- [2] Brown, M.: Locally flat imbeddings of topological manifolds, Ann of Math., 75 (1962), 331-341.
- [3] Edward, R. and Kirby, R.: Deformations of spaces of imbeddings, Ann of Math., 93 (1971), 63-88.
- [4] Gauld, D.: Mersions of topological manifolds, Trans. of Amer. Math. Soc., 149 (1970), 539-560.
- [5] Haefliger, A. and Poenaru, V.: Classification des immersion combinatoire, Publs. Math. I.H.E.S. 23 (1964), 75-91.
- [6] Haefliger, A. and Wall, C. T. C.: Piecewise linear bundles in the stable range, Topology, 4 (1965), 209-214.
- [7] Kirby, R.: Lectures on triangulations of manifolds, UCLA notes (1969).
- [8] Kirby, R. and Siebenmann, L. C.: A straightening theorem and a Hauptvermutung for pairs, Notices of Amer. Math. Soc., 16 (1969), 582.
- [9] Kneser, H.: Die Deformationassätze der einfach zusammenhängenden Flachen, Math. Z. 25 (1926), 362-372.
- [10] Kurata, M.: Immersions of topological manifolds,
  J. Fac. Sci. Hokkaido Univ., 21 (1971) 238-247.
- [11] Miller, R. T.: Approximating codimension 3 embeddings, to appear.
- [12] Wall, C. T. C.: Locally flat PL submanifolds with codimension two, Proc. Camb. Phil. Soc. 63 (1967), 5-8.