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ON THE TOTAL CURVATURE OF A LINK
,2%a¢ﬁlﬁp/4ﬁzwéxzﬁ_
INTRODUCTION .
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For a smooth 1link tvype ¥ we have that

vihyz2z (ul-13,

where u(l) is the crookedness of Jand v({) is

[a N

the minimal number of crossing points of vrojections

of L.

For the proof of this, we make use. of the graph
representation of a link [5] and prove a certain basic

. . . ’

property of a planar graph which generalizes I.Fary's

result [1] in some context.

An implication of this is as follows;

Corollary.

For a smooth Iink typeAQ, there is a 1link Lel such

that  «(L) = ( v(Q)+2 )m.
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Proposition 1. (Fary ) iﬁ}.

A linear graph G is congruent to a straight graph.

For our purﬁose, we define the notion of normal
positidn of a graph as follows;. |

Let G be a graph in a plane R?*( (k,y)~p1ané ).
Let m: R?-> x-axis be the orthogonal projection
'ﬂ(§y3= # for (x,y) € RZ%.

A graph G is in normal position with respect to the

x-axis, if the following conditions are satisfied,

(1) ( vertices are in general position with respect to
the x-axis );v for distinct vertices v and v’j,
FCV)%:W(V’), ind

(2) ( edges are monotone with respect to the x-axis);
'for each edge e with endpoints'v and v~ such that

m(v) < (v") thefe is a smooth function

£f: [ ﬁ(v), m(v’) ]—R such thatve is a grapk of f;

e={ (x, £(x) ye R* | xe [n(v), n(v") 11}

Theorem 1

Any planar graph G with no loop is congruent to a

graph in normal position.
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First of all Qe define a notion of multiplicity of
a graph. Let G be a graph. Recall that we restricted
ourselves to a planar graph with no loop. Picking up
two vertices v and v” of G, we define a multipiicity
m ( v,v® ) of an unordered pair (v, v7 ) (= (v, v7 ) )
by m (v, v7 ) = ( the number of edges with common

endpoints v and v7 ) — 1.

Thus there is no edge with endpoints v and v~ if
and only if m ( v, v7 ) = -1, and there is exactly
one edge with endpoints v and v~ if and only if
m (v, v° )fO. The multiplicity m( G ) of G is
defined by .

m(G)=zm (Vv v),

where ( v, v° ) ranges over all unordered pairs of
vertices of G with m ( v, v’-}z'o.
It foliows from the definition that m { G ) = 0 if and
only if G has no multiple edges; namely G is linear.

We shall prove Theorem 1 by induction on the
multiplicity m=m ( G ) of a graph G.
[01]. Suppose that the multiplicity m=m ( G )
is equal to zero. Then G 1s linear. t follows
from Proposition 1 ( Fary ) that G is congruent to a
straight graph. Hence we may regard G as a simplicial
complex of dimension 1 in a plane. }

o.

By the general position arguments, without less of
generality, we may assume that all the vertices of the
o > N "

graph are in general position with respect to the x-axis;
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\ - . .
namely w { v) i (v® 3, if v and v~ are distinct
vertices. Since each edge e is linear, this implies that
mle : e—>the x-axis is injective. Therefore, G is in

normal position, completing the proof.

[k I=[ k+1 ]. Assuming inductively that Theorem 1
holds for a graph with multiplicity m (:G )< k, we
shall prove that Theorem 1 holds -for a graph with

k*1 ( k >0 ). Let G be a graph with

m (G )

i

m(G) k+1. If e and e” are multiple edges with

common endpoints v and v” , then e {Je” is a loop,

which will be called avloop with two vertices of G.

A loop with two vertices is inner most, if the closed

region bounded by the loop contains no loop with two
vertices of G except for the loop. Let e\/e” be an.
inner most loop with two vertices v and v° of G.'>'BY'

[ e, e ] we shall denote a subgraphiOfic on the closed
region bounded by the.loop. e \Je”, = Then ["e; e’ ]:is
‘planar and the multiplicity m ( [ e, e ] ) = 1. We
take a point v” in the interior of the edge e”. Tihis
point V¥ divides e” into two edges e gnd ezf | Lét H
- be a new graph obtained from [ e, e” ] by'femoving'the
edge e” and adding a new vertex v and new edges e, and PR
‘Then H is planar and of the multiplicity m ( H ) = o.

Hence H is congruent to a straight graph. Since three

edges e, e, and e2 bound a closed region on which H

~lies, it follows that the straight graph is on a triangle.
Let h: R*-»R? be a homeomorphism such that hi( § ) = H*

is the straight graph. Up to a furtler transformation of

R? we may assume that h ( e ) is the closed interval
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[ 0, 2 ] on the x-axis, h ( v" ) = (1, 1) & R* . and
H” is a straight graph in normal position. Let F be
graph obtained from G by removing the subgraph H and
adding an edge ¢ and vertices v and v~. Then F is still

planar and of the multiplicity m { F ) = m ( G ) - 1=Kk,
since an edge e” which is one of multiple edges of G has

been removed, Then by the induction hypothesis F is

"congruent to a graph in normal position. So we may
assume that F itself is a graph in normal position.

We may also assum that edges are smooth arcs and intersect
at vertices transversalily each other. In particular,
since F 1s in norymal position, we may assume that

w'( e ) = [ 0, 2 ] and e is a graph of a smooth function

0, 2. ]—R. Note that e separates locally the

.
—~

plane into two parts ; above and below. W& .may assume

-
s

that the subgvaph [ e, e 1 of G is located above e.

Now let p, @ R*>R® be a map defined by py (x, v)

= ( x, —}y e Taking sufficiently large positive
m .
- ' -~ _,__ . L d . 3
number m, each edge d of a straight graph p, ( H" ) 1is
fa

almost parallel to the x-axis and is a graph o

on a closed subinterval [ u, u” ]

[a B}

e

ct

inear map g restric

[

of [ 0, 2 ] such that £ (t )+ g ( t ) is contained in

the region above e for all t e [ u, u” 1. The resulting
graph of £+ g on [ u, u” ] is denoted by e + d.

in the region above e of the graph F. This sradh e + p {(H”]
o . O Y i & \
m
is congruent to¢ H) and hence if we forget the vert®X v”,
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Since e and Py ( H® ) are in normal position, it follows

that e+ p (H" ) is so. By moving some vertices of
m -

Hhy

F, 1f necessary, we may assume that FU ( e + Pr{HT) )
is in normal position. This implies that G is congruent
to a graph F U (e + pm(H’) ) in normal position,

completing the proof.
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Let % be a regular normal projection of a link L
A mlans D2 ~ "o SR ERU e e e
on a plane R°. £ 7 has v double points D, ’Dv’

We can separate these regions into twb classes,
say white and black, in such a way that each segment
of the graph ™, i.e. an arc from a double point to the
next one, is always the common boundary of white and
black regiomns. Then a graph of L with respect to
is obtained as follows:

Let Ay, "' """ ,Ay, be, for example, black regions

on R*.  Take points P e A; (1 =1,-----,a) and

connected these points by Vv non-intersecting arcs

&

-,d in such a way that each dy corresponds
v

et e




We shall call a graph thus obtained a black graph
of L with respect to 7. In the same way we obtain a

As»is immediately seen, the black and white gravhs
are dualy related each other.
Converseig given a graph, then we have 2 link
by reversing the process abovewso that the‘given graph
is a graph of a normal projection of the link. Fdr
this; first, we take a disk sufficiently small radius
centered at each verfex. Then along each edge we
connect two disks centered at endpoints of the .edge by
pastihg-g half twisted band along arcs on their boundaries.
Thus we have a surface with,boundary,'whose boundary

is a link required. Note that the result is not unique.

=
€ 8D
(&)
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In orde
it 1s only necessary to give signs on each edge which
assign-under or over crossing at double ( crossing )
points.  Such a graph will be calied an oriented graph.

-FWO oriented graphs are congruent, if they are congruent

proserving orientations of edges.  Thus a congruence.

class of oriented graph determine unique link type.
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§4, Croockedness o+ a link and proof of tiie main theorenm.

For each closed connected curve C parametrized
by a vector function & ( t), t & R, and each unite
vector b, we define u ( €, b ) to be the number of
maxima of the function b-Z ('t ) ( i.e. the number
of parameter values ty' for which b-£ ( ty )2 bk (t)
for t within some neighborhood of t ) in a fundamental

period. We define uw (C) =min {p (C, b)) }&
b e

For a link L with m components Kq, ,Kﬁ we
define uw (L, b) =%y (xi,d)
Cdi=1. 4
and u (L) =min{n(Ll, b)Y} ,We~5hali call u (L)
‘to be the cfoéﬁé&hess of L. Hence the crookdness of 4
link is always positive integers. Let {-be a link
type ( the ambient‘isotopy class of a 1ink ). Then

the crookedness (’iL) of the type 1 is defined by

W () =min u (L).
- Lel_

The following was essentially proved by Milnor.

Proposition 2 ( Milnor ).

Let £ be a link type. Then the total curvatures

kK (L) = I |[g " (s ) | ds of a link L of the type R_

_and the.: crookedness of L are related in a formula:

2 mu (L) = %{él?. k (L).

where g.l.b. stands for the greatest lower bound of

k ( L ) when L ranges over all links of type JX
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hand side of v. This impiies‘that each hand starts 183
froﬁ' the right hand side of a stretched disk anéd ends

at the left hand side of a stretched disk. Those
bands should be half twisted according to the éign of

the corresponding edges. Thus we obtain from an oriented
Agraph G a link L”. We may @assume that the corners of

bands are smoothed and the edges of bands are monotone along

the y-axis.

This implies that if a component K of L~ is
parametrized by a vector function g (t), then the
function b+& ( t) attains maxima only at the tops of
strefched disks, where b is the unit positive vector
on the y-axiéf

This implies that u ( L°, b ) = n, and thefefore

p (@ ) <€ n. This completes the proof of Theorem 2.

Let L be a link. We define the number of crossing
points of L to be the minimum number of double points of
regular normal projection of L into planes in the space.
For a link type &, we define v ( & ) by'

v (4 ) = Ein&,v (L3,
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Now we are ready to prove the

.
Main Theorem

For a 1link type i, we have that

v(a)=2 (w(4)—1).

Proof.

. Let L be a link of type 1 with a regular normal
projection 1 into a plane having v =V (4) double
points. Note that the number of regions on the plane
separated by the gfaph is equal to v T 2. bBY o and f
we denote the numbers of black-and whité regions, respectively,
so that o + 3 = v + 2. We may assume that d:g 8.
lence the number of vertices of the black graph of L
‘with resﬁect to I is equal to a.

It.follows from Theoreﬁ 2 that ﬁ (L)< o
Since o < B, we have that 2a <v (2 )+ 2, and
hence that 2 (u (L )—1 yEv (L),

| This CompieteS'the proof of the Theorem.
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