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1. Introduction
The theory of asymptotic distribution modulo one had been in-
vestigated from various interests, the behaviour of the fractional
parts of linear forms with integer variables as roots, on -irrational
numbers by Sierpinski, on probability by Borel and F. Bernstein
and on diophantine approximation and Fourier series by Hardy-
Littlewood. These ideas were concentrated in Weyl’ s work of 19186,
where by a simple definiﬁon, he coined the general notion of uniform
distribution or equidistribution ( mod 1) of a sequence of real num-
bers and as the first gave a necessary and sufficient condition.
Weyl' s treatment of this problem opened the way for numerous
metrical investigations. His method had been refined by Menchoff,

Plancherel, Rademacher, Erdds, a.o., and become the source of



many results in the large domain where measure theory, probability
theory and ergodic theory meet with number theory.

After this tribute to Weyl’ s work, his simple definition was
glightly modified or generalized fromvarious point of view. A mod-
ification is that of complete distribution (mod 1) due to Koroboff[7]
in 1949, Afterwards, Franklin[3] gave the definition of comple'tely
equidistributed sequencenin 1963 independéntly and Knuth[10] gave
an example of completely equidistributed sequence and Haber’s
work[4] was a slight modification. But these two (Iiefinitions‘ are
the same and Koroboff’ s subsequent works [8][9] and Star&enko[12]
contained more general resulis.

In this paper, above definitions and results will be explained”
and several new results will be added from the notion of linear
dependency. Their details and pyroof_s will be remained and some

further new results will be discussed in another journal.



2. Definition and Weyl’ s criterion

Firstly, we give the definition. Consider a sequence(xn) :

(1) X, X

1’ 2,..;

of real numbers and their fractional parts ( residues mod 1 )

{xli,{xzi,..., i.e. xl-[xl],xz—[xz],...

which are all contained in the unit interval I 0L x¢1, and take a

0"
fixed intervall : agx<b ; ICIO.
Let Nn(I) be the number of Xj among the first n numbers

which are situated in I. Then if and only if for each fixed 1C Io s
Nn(I)/n ->b-a as n-yog, the sequence(l) will be called uniformly
distributed(mod 1) ( equidistributed mod 1 ; gleichverteilt mod 1\ ;
‘equirépartie mod 1). The following theorems are well known and
the first one relates to ergodic theory and the other is Weyl’s cri-
terion .

Theorem 1. The necessary and sufficient condition that a sequence

(xn) is uniformly distributed mod 1 is that for any Riemann-inte -



grable function on I,
j§1 f({xj} )/n —> o F(x)dx

Theorem 2. (Weyl’ s criterion) The necessary and sufficient con-

dition that a sequence(xn) igs uniformly distributed mod 1 is that for

n .
Z e J = o(n)

An n-dimensional analogue of this definition and criterion leads

us to the notion of complete digtribution. Take a sequence (z(l)) of

n-dimensional vectors of real numbers

(1) (1) (1), _(2) ) _(2) (2)

(1) _ (A2
(2) z —(yl,yz,...,yn ), z ~(y1,y2,...,yn )

and their fractional parts are denoted by Eh) which all fall in n-

n
(n)_ Ix -+ *I_ and take a fixed interval

dimensional unit cube IO 0 0

1C I(OB), Then if and only if for each fixed 1C I(é’), N_(1)/n = p(1)
as n —yo where [A(‘) is the Lebesgue measure, the sequence (2)

will be called uniformly distributed (mod 1) by n’s. Then n-dimen-

sional corresponding Weyl’ s criterion is the following.
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Theorem 3. The necessary and sufficient condition that a sequence

(Z(i)

)} is uniformly distributed mod 1 by n’s is that for each fixed n-

tuple of integers(m._,..., mn) which are not equal simultaneously

1

to zero,

Now for a given sequence(xn) the derived k-dimensional se-
quence is defined by
6))

Y, ..,z 0 =(x.,

2(2)— X
k 3 k-1

2,...,xk), k—(xz,...,xk+1 ) A

A sequence(xn) is completely uniformly distributed (mod 1),
{or 00 -distributed sequence for abbreviation), if for all k‘ the
derived k-dimensional sequence is uniformly distributed by k’s.
Koroboff’ s definition was stated with the help of Weyl’ s criterion,
Which would lead the misunderstanding by Franklin[ 3 ] and Knp’ch

[10] [11] (I suppose).
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3. Koroboff’s results and relations to other results

The first problem is to determine the class of functions with
uniform‘ly distributed fractional parts and with cqmpletely uniformly
distributed fractional parts. A function f(x) is uniformly distributed
or completely uniformly distributed if the sequence

(1), £(2), ..., f(n), ...
generated by f(-) ig uniformly distributed mod 1 or completely uni-
formly distributed (mod 1) respectively. A basic result was due to
Fejér .
Theorem 4. (Fej.ér) Let g(t)> 0 be a conﬁnuous increasing func-
tion with a continuous derivative g“(t) for 1< t (o0 and satisfying
the following conditions : -

(i) g(t) —> oo , as t — oo |,

(ii)‘ g (t) —> 0 monotonically, as t — ©° ,

(iii) tg’(t) = 0o , as t — o

Then the function g(x) is uniformly distributed.
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But Koroboff gave a new class of functions with uniformly dis-
tributed fractional parts.
Theorem 5. (Koroboff) Let a function f(x) be defined by the series:

% .
F(x) = kZ='o akxk’ lak‘ o @)

if for all sufficiently large k,the following conditions :

(i) w (k) 2 kl for some constant A3,

(i) (1+ 1/k)o>'(k5 £(k+1) £ ka(k),
are satisfied, then the fur;ction f(x) is uniformly distributed.
Corollary. Let a function f(x) be defined in the theorem. If for all
sufficiently large k,the following conditions :

(i) w (k) > K for some constant A>3,

(i) (1+ B /)0 € w(k+1) B kw®

for some constants @1 21 and @2< 1,

are satisfied, then the function f(x) is completely uniformly dis-
tributed.

Remark. Let f(x) be the function considered in the theorem.
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(1/2)-¢

(log x)

Then fhe function f(x) increases faster than x for

1/2
any €30, but £(x) =o(x\P€ X ),

Indeed, if we select the function of the form

faid A

= 2o 2, x=1v2/-8) (o< E<),

and take

1/(x-1)

k = k,=[(log x/ A) 1,

then

1+1/(x-1) (1/2)-€

—k)é +ksplog Xy ecl(h)(log x) > X(log X)

f(x)p e

Then f(x)-» @ , as x5 0 (if f,(x) exists) i.e. f(x) does not
satisfy the condition(ii) in the theorem 4.

As a consequence of theorem 5, we get the following theorem.
Theorem 6. Let a function f(x) be defined by the everywhere con-

vergent series :

0o

f(x) = 2

k -
e L ’ak( =e w(k).

If there exist constants G)»g»2 such that
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g wik ¢ w(k+1) < Gw(k)
for all sufficiently large integer k, then the function f(x) is com- '
pletely uniformly distributed.
Remark. The growth of function f(x) considered in theorem 6 sat-
isfies the ‘following conditions :

Ap loglog Xy

£(x) = o(x for all A, > 1/logg ,

and
flx) = Q) (x 2 loglog %y oo A, < 1/logG

An example of a completely uniformly distributed sequence was
given by Star&enko. Put nk=[ 1+ exp(k3)] (k=1,2,... ) ; also de-
note by p1=2, p2=3, ... the successive primes. Then the sequence
{log 2}, {2log 2}, e {nllog 27y ;‘

{1og 2}, {1og 3}, {2log 23, e {nzlog 2][, inzlog 3‘; ;

Zlog pl’] , ilog Pol, - - ,{1log Py, {2log p.} {21og Pot. ... ,{21ogpr}, e
{nrlog p]} H inrlog pz}; o .0y {nrlog pr}: - s

is completely uniformly distributed.
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Another example was given by Knuth, which was copstmcted
only by dyadic rational numbers.

The definition that a function f(x) is completely uniformly dis-
tributed is also stated as the following : for each fixed integers
EFLY #0,...,0, the sequence of numbers
g(n)=alf(n) + e+ asf(n+s-1) (n=1,2,...)

is uniformly distributed (mod 1). For s=h, a

=-1, a =+1, a.=0
1 s ]

(2€ j£s-1),we have the special sequence considered in van der
Corput’ s difference theorem.
Theorem 7. '( van der Corput) Let gh(x) =g{xt+h)-g(x) (h=1,2,...).
If the function gh(x) is uniformly distributed for any h, then the
function g(x) is uniformly distributed.

The inverse of this theorem is not true, for g(x) =dx where o
is an irrational number. Put g(x) = ol xz. Then the function g(x)
satisfies the condition of theorem 7, but g(x) is not uniformly dis-

tributed by 3’s.

10
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4. From the scope of linear dependency

If we consider random sequences, a completely uniformly dis-
tributed sequence is supposed to have two propertieé of randomness,
uniformity ( identically distributed) and independency. But the prop-
erty of independency is too strong condition, then correlation coef-
ficients ( serial correlation coefficients, in this case) are used as
a weaker condition of linear independency from some statistical
view poin-ts.l-r

For each h=1, 2’, ..., a function 'T,'h(tl)) is defined for a s‘.equen‘ce

(w ., which denotes the sequence( 1), in the following way :
T @l E (b 12 172,
if the indicated limit exists.
A sequeﬁée  is called white if ’Ch(w)=0'fo;‘ any h.
Then every completely uniformly distributed sequence is white.
More precisely, if for any h=1, 2,... the derived two-dimensional

sequence

11



(xx) (g%, 4ot
is uniformly distributed mod 1 by 2’s, then the s€quence is white.

The function @x, where of is an irrational number, is uni-
formly distributed, but not white. But the function dxz satisfying
the condition of van der Corput difference theorem is white, but not
uniformly distributed by 3’s and not white of order three.

The function x* (0¢ ¢¢ 1) satisfying the conditions of Fejér’s
theorem is not white.

But the notion of uniformity differs from that of independency.
Since the function 1/x is not uniformly distributed but white ( of
course,the function ’L'h(' ) is slightly modified but well-defined ).

The function T h(- ) was named autocorrelation function by
Jagerman|[ 5] which is not the same as in the works of Cigler[ 2]
and Bertrandias| 1].

These further results or details will be discussed in another

journal.
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