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Pontrjagin classes of rational homology manifold
(Report on work by Don Zagier [3D)

Lecture by F, Hirzebruch, (Notes by S, Morita)

1, L-classes in the equivariant case,

Let X be a compact oriented rational homology manifold and assume
that a compact Lie group G acts on X by orientationApréserving
gimplicial homeomorphisms, Then there is defined the équiﬁariant
signature sign(g, X)EC for any geG as follows (see 1.

(i)  If dim X

1 (mod 2), we put sign(g, X) =0,

(ii) If dim X 4k, then the cup product defines a non-degenerate
quadratic form B on HZk(X; Q). Let
B (x; Q) = v o v

be an equivag}ant decomposition of the G-vector space sz(x; Q) such
that B 1is positive (negative) definite on Vf v, Tﬁen we define

sign (g, X) = Trace (glV+) - Trace (g|V")

Obsérve that if g acts on X trivially, then

sign (g,X) = sign X, where sign X is the‘ordinary signature of X,
(iii) If dim X = 4k + 2, then we can give a cbmplexvvector space

2k+

1 _ :
structure to H (X; R) such that the action of G preserves this

structure, We define
2k+1

~ sign (g, X) = 2iIm (Trace glH (X; R)),.
Now Thom defined the Pontrjagin classes (or equivalently the
L-classes)for any rational homology manifold, Then Milnor simplified

the Thom's definition by using a t-regularity aégument and the

(ordinary)signature,
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Recently Zagier has generalized this procedure to the equivariant case,
Precisely, assume that a finite group G acts on a compact oriented

rational homology manifold X, Then Zagier has defined the "equivariant

L-class" %
L (g, X)eH (X; @)

for any ge€X, This class can be used to calculate the ordinary L-class
of the rationél homology manifold X/G, by virtue of the following
theorem, This theorem is oﬁe of the main remults of Zagier.

Theorem 1, Let G be a finite group and X a compact oriented

rational homology G-manifold, Let
T+ X—X/G

be the natural projection, Then

o TL/E) = L 1 0.
Here degT 1is the degree of the map7 (we do not assume that the
action of G 1is éffective) and L(X/G) is the Thom-Milnor L-class of
the rational homology manifold X/G.

We will sketch the definition of the class L(g, X) for the case
when X 1is a differentiable G-manifold,

The proof of Theorem 1 in the differntiable case then follows
from a calculation depending on Milnor's definition of the L-class
L(X/G) and the Atiyah-Singer G-signature theorem,

The general case (i,e, the case when X 1is dnly a rational homol-
ogy G-manifold) follows from a parallel extension in the equivariant
context of Milnor's argument,

Thus let X Dbe a compact oriented differentiable G-manifold,
where G 1is a finite group, Let Xg=§xeX[gx = x}, the fixed point set
of g. Then by Atiyah-Singer [1],
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Theorem (G-signature theorem)
sign. (g, X) = L'(g, X) [xB]
for a certain class L'(g, X%EH*(Xg; 0), defined below,

Now the right hand side of the above equation depends only on the
top dimensional components of the class L'(g, Xg), However to define
ﬁhe equivariant L-class, lower terms of L'(g, X) are also necessary,
gince the ''correct' class L'(g, X) for our purpose differs from the
original one defined by Atiyah-Singer [1] by powers of two, we define
it explicitely,

Let N° be the normal bundle of X% in X, Then N8 can be

decomposed equivariantly as follows,

N = NB( -1) @ I NBy
g 0<edm
where N ( =-1) 1s a real bundle over X° on which g acts as -1,

" We define

LY

N% is a complex bundle on which g acts as el®

Ly (W(-1)) = e(WB(-1))LE(-1))""
where L(Ng(-l)) is the L-class of the real bundle Ng( 1) and

g

o s We define

e(Ng(;l)) is the Euler class, For the complex part N

g : coth(X,+£§?

Ly(N%) = <coth—~) TT
6 ¢ ie

j coth—f

where q = dich%" and X.j is the usual formal class such that the

Chern classes are the elementary symmetric polynomials in Rj's, Now

we define

L'(g, ®» = LEOLL@ECD) TT Lgg ),
0<e<r
We are now prepared to define the equivariant L-class, L(g, X), Let

j:X&—+X be the inclusion mapr Then we simply‘define

Lg, ¥) = iL'(g, X)

_‘3_



where j! 1is the Gysin homomorphism.

We will give two applications ofi Theorem 1 in §§2, 3.
One is the case of linear actions of complex projective space PnC
( §2) and the other is the action of the symmetric group of degree n,

S, on
n

st =xx - xX (§3)
—
n times
‘2. Complex projective space
Let an = {[zo, Zis T zn] ]zi € C} be n-dimensional complex
projective space. We define a finite group Ga by
G, = GaOXGalx e X Gan
a:
= J =
Ga, IxX | A9 1}.
Then G, acts on an by
(Xo’ )\'1’ .”’)\n)[zO’z]."”" zn] = [XOZO’ Alzl’ '.'s *nzn]
(/\Oa )\1’.“’)\n) € Ga: {Zoa zl’ ot ’Zn] € PHCW
Let T : PnC -——>PnC/Ga be the natural projection. Then Bott has

calculated

Theorem 2 (Bott)

n a.x
. 1 < 1
L ¢/G.) = 2>, T -
n'"a d Oskcrn =0 tanh(aj(x4-1§))
where d 1is the greatest common divisor of the natural numbers ag> 2;,
oa and x & Hz(PnC) is the standard generator.
The sum on the right hand side is taken over all real numbers

n ajx
g € [0,7C). However the product ;E% tanh(aj(xﬁ-ig)) is equal to
zero, unless there is at least one aj such that aj§ is a multiple
of TC (because xn+1 = 0). Therefore the sum is well-defined.

Now this theorem can be obtained from Theorem 1 as follows.

Proof of Theorem 2 using Theorem 1. By Theorem 1, we have

% _ degTb <~
(1) TC L(PnC/Ga) = —-—D—-——}Ga\ g_z_é L(g, an).
a
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put it is easy to see that

@:i . Hence we have only to show that

A
_[I__ll_ a_.lX
(2) gEéGa L(e, an;) = 0<kr j=0 tanh '(aj (x+i%)) °
Let g = (Soa gl: co-’sn)’ §J eGaj' Then

g
) P,C =1 [ZO’ 2, eees z ] \szj =%z

some Sest} =1/ X(%¥)
gest .
where X (S) = { [ZO’ Zis eees Zn]ePr'lG: \szj =3zj for all J} .
Clearly if S¢{§0, Sls «eos 5 ) . Then X(35) = &, while X(?;J.),
Ais isomorphic to _PSC, where s+l 1is the number of indices i with
Si =§j .

Now by the definition of the equivariant L-class, we have

for 3 =0, 1, ...,

j

— %1 ] s e o . .

L(g, Pnﬁl) = j. L (g,‘ PnC) where j: Pn(C&—;PnC is the inclusion,

Thus we must calculate the class
' ‘ * g

L' (g, PnC)GH (Pn‘E‘; C). |

Let L'(g, Pnc); be the component of L'(g, Pnﬂl) corresponding
to the connected component X(§ )CPn(Eg,

As mentioned earlier, X(S) is isomorphic to PSC and it is

easy to check that, to calculate L(g, PnCE); , we may assume that

X(§) = P,CCP C, where

PSC ={[zo, Zis wees 2 O""’OJePnC}'

S’
Now let j: Psﬂl-—)PnC be the inclusion and let N be the normal
%*
bundle of PSC in PnC, Then clearly y = j x 1s a generator of
2
P
H (2 O),

We study the action of g on N, Since

g[ZO’ zl""’zs’ Zotlreee> zn] = [JSOZO’ Slzl"°"Sszs’§s+1,zs+l’“"';nzn]

‘ =[§zo, gzl’..',;ZS,;S"'].ZS‘FI..'%ZHJ
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LZO) zl)nctjvzsﬂslgs.*_lzs_{_l,ooo
we have
= 3 Ny,

where Ng = 0 unless © =§;l§j for some j=s+l, ,,.n and

N?‘IS- is a complex line bundle over P €, We obtain

s+l ;‘1;.e2y+l
(4 L ,pC_L(PC)TTL(\T)— ’
(4) (g X 6 (tanh y ) _TT— §_l§.e2y~1
j=s+l J -
Therefore
s+1 n 5"1§ e2x+1 A

(5) L(g: P C)S" J' L (g; P C)S (m G-U —‘T—-j—-—zr N jsh-s

J .
n 5lz 2%y J

= 11 (x——1~—_l %
3=0 §‘5je -1 -

Observe that the right hand side of (5) is equal to zeroc unless

35{509 31: ey 51‘1} .

Now we can show (2) by using the trigonometric identity

2;_‘ }\Z+1=aza+l
}\=1Az-l za~1
Thus
~1 .
6) =, L(g, 2.C) = >-‘-“<39'e "y
g? = ? o o3
geGa ' n 50 n Zes! _;[% ; 1§J e2 -1
= 1 . X -
eSSt j=0 SJ j=1 l§ e2x_1.
2a.x
i"n
b I 5 e +
Z Boys )
5e = : 2
ST j=0\"3 a3, ajx_)
n a.x '

T o8 <zch=To tan%(aj‘(x+i§)) . (Q.E.D.)

Now suppose a a are mutually relatively prime numbers,

O’ al’ © 009
Then by Theroem 2, we have

7 ﬂfL(P C/G ) Tﬁ)———J—;——-mod xn_
- h|

R glénzn]’



Therefore, in terms of the total Pntrjagin class p, we have
n
* , 22
(8) Tt p(P €C/G) =T (1l+a, x )mod X0
n ' a . j ,
3=0
Suppose n 1is even, say n=2k, then there arises a natural

questlon;

Question, Are there values of a, a such that (8)

ls e o5 B a2k
holds also in the highest term?
‘Now suppose {ao, 15 eees aZk} satisfies the requirement of the

Question, Then

.2 D14 oa, 20
(9 WTP(PHC/Ga) = 5&5 jovo
Since the action of Ga extends to an action of the torus Tn+l,we have

% % k3

(10) T = H (P C/G_; @==H (P C; Q).
Hence
(11) sign PnC/Ga =1,
On the other hand, PnC/Ga is a rational homology manifold, Therefore
its signature is equal to the L-genus, From (9) and (11), we obtain
(12> Lk(plsoao:pk) = aoal @ e o a2k
where P; is the j-th elementary symmetric polynomial in ajz‘s,
Conversély assume that (12) holds, Then it is easy to see that
{ao, al, RN aZk} satisfies the requirement of the Question. Thus
we have obtained

Proposition 3. Let ags a1 Tt Agp be mutually relatively
prime natural numbers 2 1. Then

% | " 22
wp(P €/G) = Tl (L+a/x")
t e J
j=0
if and only if {aj} satisfies the Diophantine equation
Lk(pl’ ..., pk) = aoal'..aZk'
For k =1, the equation (12) is
2 2 2

ao-kal-kaz = 3a0a1a2
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and all solutions are known (see [2]). For k=2, the equation is
2 2 2 2 2 2 2

7(aO a; + ay 2y +“°+a3 a, ) - (aO

Are there infinitely many solutions?

2,2
+-oo+ 34 ) =4Saoaltooa4 ®
It is easy to check that (1, 1, 1, 1, 1) and (2, 1, 1, 1, 1)
are solutions, Recently Zagier has found a solutipn (2, 7, 19, 47, 59)
using a computer, Up to permutation, these are the only solutions in

mutually relatively prime natural numbers & 100,

3. L-classes of symmetric products,

Let X be a closed oriented differentiable manifold and let
X" be the n-th Cartesian product of X, Then the symmetric group of
degree n, Sn’ acts on Xn by permuting tﬁe factors,

Now if dim X 1is even, say 2s, then this action is orientation
preserving, Thus we can apply the result of §l,

Let X(n) = Xn/Sn be the n-th symmetric product of X, If we
chobse a fixed point xO€=X, we have natural inclusions

X = X(1)CX(2)C, . CX(»)

where X(o) = 313 X(n), We will write j for any inclusion map
j: X(n)—X(m), :o; m =2 n,

Now if we use Q for the coefficient of the cohomology,we have
(13)  H (X)) z 5
where the right hand side is the Sn-invariant subgroup of H*(Xn),
Henceforth we will identify these two groups by the above isomorphism,

It is rather easy to calcuiatg H*(X(n))_ Let {fo, fl’ ceos fb}

% .
be a homogeneous basis for H (X) with f =zeH28(X), the cohomology .

0

fundamental class and f.D = 1, Let D5 eees O be non-negative

integers with n0+ n1+;,,+ nb= n, We define an element



<nof0...nbfb>€Hx(X(n)) as follows, 9

Let O‘GSn, Then O acts on - by
Cr(xl’o.., Xn) = (ngl)"°" Xc(n)).
We define an element -

* %
Uy, Upyen., U 7€H (X(n)) for uy EH (X)

b * .n.S *
by <ty 9= 25T (upk L) () TR B (X(R))
and we put | .
<n0fo...nbfb>= <£Q—’~;;—'~’—/f°’°“" floeees 50
n
0 b

Then it can be shown that

00" b
¥
and ny € 1 if degree fi is odd, form a basis for H (X(n)).

LProbdsition 4, The elements < n.f _n0f0> with n.+/,.+.n0,'=n

!

%
Now we define an element [nof‘ - nb-lfb—l]neH (X(n)) by

[nOfO:::nb'lfb“lj = 0 if n(ﬂ0+..,+nbnl
] -l X . o 2 )
(nb,) (nofO""nbfb) if n, = n-(n0+,°-,@b_1)=o
Then it can be seen that -
. %
(14) J [n0f0'°'nb-1fb«l]n+l= [“ofo-°-nb-1fb-13n

Thus the elements [nOfO“’nb-lfb-—l] (n=1, 2, ,.,.) defines an

n
%
element [nofo..,nb_lfb_ljeﬁ (X(e?)) so that
*
1 f f = f = .
(ls> J [no Oo-onb-l n_l] [no oocgnb_lj [nofoaounb-lfbpl]n
where j: X(n)——X@), We write % for the element [Ifokﬁzs(x(w))_
Then 711 = [1fo]n= i ni*ﬁ; where 7Ci§Xn—-——-;‘fX is the projection on
i=1 ' ‘
the i-th factor, Then it can be shown that
n
‘ _n 0
(16) [nofooo.nb_lfb_l] bl 7 [nlfl,..nb_lfb_l]v
and
Proposition 5, The elements
ng %*
7 [nlfl,,,nb_lfb_l] form a basis for H (X(e)) and
n; _

J*(’Z 0[n,1f1. . -nb-lfb-ljl = 7nn0{

-9 -
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%here j: X(n) — X@°) .
In terms of these elements of H*(Xéw)), we can write the second
main result of Zagier,
Theorem 6, Let X Dbe a connected closed oriented differentiable
manifold of dimension 2s, Let j: X(n)—> X(9) be the inclusion,

Yok
Then there is a class G&H (H(wo)) such that

¥ n+1l . . .
LEM@)) = j (QS(7) G) where Qs(t) is a power series defined
b Q(£) = =
y = T ey o
A s fs(t)

- 3 5 .7
£(r) =g "h(E), g(o) mt+tosoifoy
s s s 35 55 48

Equivalently, let j: X(n)-—>X( n + 1 ) be the inclusion, Then
%
J LX) = Q (7 ) LE®)),

The proof consists of a rather long and complicated calculation
. 2
applying Theorem 1, Here we concentrate on the cases when X = § S

and S = 1 and make some remarks,

%
Thus assume first that X = SZS, Then the basis for H (X) is

just {z, l} and the class G that appeared in Theorem 6 can be

simply expressed and the result is

2
Proposition 7, Let X =S S_ Then

£ '(7) n-+1
S ‘ ?
LEXMm)) = 1 - fs</?)£ ( tanh 7)

where f' denotes the derivative of £,
x

. p< v
Now if S =1, then X(n) can,naturally identified with PnC

/N

2
and 7n€SH (X(n)) is the standard generator, In this case Prop, 7

simply says the well-known result

: n+1
LELD = (“t%;;g)

Next assume that S =1, Thus let X be a Riemann surface of
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genus g, We choose a basis foﬁ’--., ag,_oq',..., O%'} fqr H' (X)

. 1 ¥
=O( =
such that  0; 0% 3 og 0 (Vi,j)

O<io§ = 04 Q‘J‘ 1% 3
Aoy ==C O =z,

171
We define elements 6; (i=1,..., g)by,
! 2
zfi = [10y 10<i] EH (X(0)) .
Then we can show

Theorem (Macdonald)

Let X be a Riemann surface of genus g, Then
f—2g+l g {1

Tl tanh 0.
i=1 i

This theorem had been proved by Macdonald by a different method,

L&) =ty
Finally we mention that Zagier has also calculated thé equvariant

L-classes L(g, X(n)) for the actions on X(n) which are induced

from actions on X,
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