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The notion of near-complex subvariety

by H. Hironaka B
(Note by S. Nakano. Nakano is responsible for possible_errors,%

§1. Introduction Let X be a compact complex analytic
manifold and suppose X is diffeomorphic to the complex
projective space Pn(C). Is, then, X analytically
isomorphic to Pn(C)? |

F.Hirzebruch and K.Kodaira [1] solved this problem
affirmatively under the condition that X carries a Kahler’
metric (and an additional condition when 0 = dimE(X) is
even). In this lecture we discuss this problem without
Kahler condition, but in the case when X is a member of
a smooth family of complex analytic manifolds, other members

being isomorphic to Pn(C). The conclusion is:

Main Theorem. Let w:¥X — D be a smooth proper

morphism from a complex analytic manifold X onto the unit
disc D = {x e €| |x| <1}, so that n_l(x) is a compact |
complex analytic manifold of dimension n (independent of

x ) for every x € D. Suppose ﬂ_l(X) is analytically
isomorﬁhic to P"(C) except for wnl(O) = X;, then X,

is also isomorphic to Pn(C).

In §2 we shall indicate how Kahler condition was made
use of in the proof of Hirzebruch-Kodaira and give an example.
In §3 we shall discuss the detour by which we arrive at our
aim without Kdhler condition, namely the notion of near-

complex subvarieties.



§2. Let us consider our family

[

mX —> D,
We can set up a diffeomorphism £

f

X _— X, x D
T l /ZQ\X L proj
id
D —_— D

so that qu(XO,Z) v qu(Pn(C),Z) = Z gq, where g 1is the
generator of HZ(Pn(C),Z) dual to the hyperplane. (In

reality, £ can be taken to be a real analytic homeomorphism.

This will be used in §3.) Hence we can speak of positive
or negative cohomology classes.
Now theorem 6 im Herzebruch-Kodaira [1] can be modified

to

Theorem 1 Let X be an n-dimensional compact complex
analytic manifold and let a complex line bundle (invertible
sheaf) L on X be given. Denote by g (¢ HZ(X,Z))the
Chern class of L. Assume |

¢y dimC H° (X,L) 2n + 1,

@) w9,z =z.g% vz (for 0<d<m),

(3) X 1is a Moishezon space, (i.e. there exist 'n
algebraically independent global meromorphic functions on
X,)

(4) any complex analytic subvariety of X determines
a non-negative cohomology class.

Then we can conclude that X is analytically isomor-

phic to Pn(C)f
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In case of Hirzébruch-Kodaira, Kahler condition was
made use of in order to establish (4) as well as (1) and
(3). In our case of a smooth family, it is not teo hard
to establish (1)----(3) without Kahler condition, while
for (4) we need the analysis we develop in §3.

Here is an example of a manifold which satisfies
(1) --- (3) but not (4):

Take a non-singular curve T in the product

L Pl = S, with the property that r.(u x Pl) consists  °©

P
of three points and r-UPl x v) - of 5 points for generic
u and v. Embed S into PS as a quadratic surface,
and blow up P3 with T as the center. We obtain a
projective threefold X' and X' contains the subvariety
S', the proper transform of S. S' is isomorphic to S:
St '~ S ;;Pl « P!, It can be seen that S' can be blown
down, i.e. there exist a comﬂact complex manifold X and
a morphism p:X'—> X, so that pIX'—S' is an isomorphism
and on S' 2=P1 x Pl, p is nothing but the projection to
the first factor.

It can be shown that X .satisfies (1)---(3) but not

(4). ( p(S') gives a negative class.) Thus we see the

condition (4) is essential in the theorem.

§3 Given a complex analytic manifold YO’ we denote by

STYO:Y and TYO,Y the complex tangent space and real
tangent space respectively, to the manifold Y0 at a point
the bundles \J TI

Yo | yer 'Y, v
respectively. We have & canonical isomorphism

y on it. We denote by STY and T
0

U Ty

erO 0 4



T, <~ Re(< @7, ).
Y, < Sy, JYO

Now let a compact complex analytic manifold X be
given. A mear-complex subvariety %{ of X 1is a quadruple
(Y,Yy> En’po)’ where

Y 1is a closed subset of X,

Y is a connected dense open subset of Y and has

0
- - - oo
a structure of even dimensional oriented C -

manifold, (a submanifold of X with induced

topology,)
81) is a complex subbundle of ffle ,
0
pg 1is a real bundle isomorphism Re(2_0<$ ;EO)-g Ty &
a 0

and maps the natural orientation on Re(80 @ -go)
to the given orientation of YO'
In reality, we add further conditions of technical character,
e.g. Y can be triangulated so that Y-YO be a subcomplex
of dimension éﬁimRYO—Z. In this way, Y determines a
homology class in H,(X,Z) and, if we go o?er to ratiomnal
coefficients, determines a cohomology class in H*(X,Q).
An example of a near-complex subvariety is given by
an analytic subvariety Y of X. We take YO to be the
set of the simple points of Y and E-O = irYO’ |
T Re(EO @ EO) > TYO, is the canonical one.
Another example will appear in connection with a smooth
family of compact complex analytic manifolds: Let
m 3%+ D be a smooth family over the disc D = {x € C|[x|<1}.

We take a differentiable trivialization of % :



f
X - — XO x D
. 1 S X = = (0)
id
D —_— D ,

If Y is an analytic subvariety of XO, then it determines
a near-complex subvariety in X0 as in the preceeding
example. We put this in XO x x on the right hand side
of the above diagram and pull back everything onto
Xx = w_l(x) by £f. Then a near-complex subvariety on
X, is obtained.

If we restrict ourselves to the family in the main
theorem, all XX are isomorphic to wn(m) extept x =0,

and we shall have a family of near-complex subvarieties

(%) {%fxlxeD-{O}}

of Pn(C). These can be and will be taken to be real analytic

near-complex subvarieties, by choosing a real analytic

trivialization f£.
For a near-complex subvariety % = (Y,YO, 20,p0) in
X = Pn(C) with din}lRYO = 2(n-d), and for a point Yy € YO’

we consider the set

0’

P(y) = {L = GrassC(‘jX,y,d)|Land Ty y intersect
properly with multiplicity +1),

where Grassc(v,d) denotes the complex Grassmann variety of

d-dimensional vector subspaces of the given vector space

V. Since L and T are oriented, we can speak of

Y
0,
positivity -of the intersection. P(y) 1is an open set of
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GrassC(Tx,y,d) and . B = \J P(y) is an open set of
yeYy

A= U Grass.( id)
yE.YO ¢ ?X,y

Making use of a suitable metric, we estimate volumes
of A and B, and define the positivity rate r(lé) of
T

r(y) = vol(B)/vol(A).

On the other hand, we define the absolute degree

§(Y) of Y. ‘This is the maximal number of intersection
points of Y "and the variable linear subvariety L&u of
P"(€), each intersection point being céuﬁt’e-dﬁ;;Gne‘e”sr-i‘r:‘respécti%
of orientation, and maximum being taken for L€ Graés (IPn(C),d)
-(a set of measure 0). This number is well defined because
we have a rearahaly’tic 'near-‘éémplex subvariety.

Going Back to our family 7w:%—> D, ﬁ'l(x) gan(C)
for x # 0, we can derive the non-negati\}ity of the _cla}s:s_ﬁ

-1 o

of an analytic subvarietyiof XO = ~(0) from the folloﬁring

facts:

Theorem 2 If '?é is a real analytic near-complex sub-

variety of 2 (€C) with the p’ropéifty_

5(y)A - T(y)) <1,

then 74 determines a non-negative homology class.

Proposition For the near-cdmpléx subvarieties 76

, x

of an(C) described in (%), 6(%}() remains bounded and
r("é J 1 for x—30. (Hermitean metrics on’ theflbers

P"(€) are induced by a fixed one on the total space ¥ .)
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