/

G-VECTOR BUNDLES OVER G-MANIFOLDS

OSAKA CITY UNIVERSITY HIROMICHI MATSUNAGA

At first I want to talk about some of my works, which I have stated in other seminar, but it is my starting point, so let me do that.

Definition. Let G be a compact Lie group. A real or complex vector bundle $E \longrightarrow X$ is a G-vector bundle if and only if

- (1) E and X are G-spaces,
- (2) the projection p is an equivariant map,
- (3) for each $x \in X$ and $g \in G$, the action $g: E_{X} \longrightarrow E_{gX}$ is linear.

Let M be a compact G-manifold with orbit type ((H),(K)), where H,K are closed subgroups of G with $H \subset K$.

Definition (K.Jänich). A G-manifold M is special if and only if, denoting by V_X the normal space to the orbit through x for each $x \in M$, the slice representation $G_X \longrightarrow \operatorname{Aut} (V_X)$ admits a decomposition $V_X = F_X \oplus W_X$ such that $G_X \mid F_X =$ the identity of F_X and $G_X \mid S(W_X)$ (the unit sphere in W_X) is transitive.

We use some notations. $M_{(K)}$: the union of all singular orbits, which is a closed submanifold of M. $M_1 = \overline{M-N(M_{(K)})}$: the closure of an invariant tublar neighborhood of $M_{(K)}$. Vect_K: the family of all K-vector bundles.

The projection $p: \partial N(M_{(K)}) \longrightarrow M_{(K)}$ induces a diffeomorphism $p': \partial \pi(M_1) \longrightarrow \pi(M_{(K)}), \text{ where } \pi \text{ is the projection } M \longrightarrow M/G. \text{ For a}$ $\text{pair } (F,E) \in \widehat{\text{Vect}}_K(\pi(M_{(K)}) \times \widehat{\text{Vect}}_H(\pi(M_1)), \text{let } \alpha_H: p'*r*F \longrightarrow E \mid \partial \pi(M_1)$ be an isomorphism of H-vector bundles, where we denote by r^* the restriction $\widehat{\text{Vect}}_K \longrightarrow \widehat{\text{Vect}}_H.$

Definition 1. Two triples (F,E, α_H) and (\overline{F} , \overline{E} , $\overline{\alpha}_H$) is equivalent if and only if there exists a commutative diagram

where $f_K(\mathcal{G}_H)$ is an isomorphism of K(H)-vector bundles, and $\mathcal{G}_{H,K}$, ∂f_H are restrictions of them.

Theorem. Under the condition

(C) N(H) = H $\times \Gamma(H)$, $\Gamma(H) = N(H)/H$, N(K) = K $\times \Gamma(K)$, $\Gamma(K) = N(K)/K$, $\Gamma(K) \subset \Gamma(H) \subset G$, we have an isomorphism of semi-groups $\text{Vect}_{G}(M) \approx \left\{ (E,F,\alpha_{H}) \right\} / (\sim),$

where we mean by $/(\sim)$ the classification due to Definition 1.

By the theorem and an analogy of the Atiyah-Bott's proof of Bott periodicity, and using H. Minami's result about R(O(n)), I have obtained $K_{O(n)}(W^{2n-1}(d)) \cong R(O(n-1))$. These results are to be appeared in Osaka Journal of Mathematics. ([1])

In the determination of the K_G -group, I have essentially used the splitting of the normalizer $N(I_r \times O(n-r)) = O(r) \times O(n-r)$, r = 1,2. The condition (C) is too restrictive for applications, so I want to improve it.

By a technical reason I take right actions. Let M be a compact right G-manifold with just one orbit type (H). Denote by Γ the factor group $H \setminus N(H)$, then we have a differentiable principal bundle

$$(1) \quad \Gamma \longrightarrow M_{H} \longrightarrow M_{H}/\Gamma \quad ,$$

where $M_H = \{ x \in M : G_x = H \}$ and the G-manifold M is the total space of the associated fiber bundle, that is $M \cong M_H \times_{\Gamma}(H \setminus G)$ as a G-manifold. By G.Segal

$$\operatorname{Vect}_{G}(M) \approx \operatorname{Vect}_{N(H)}(M_{H}).$$

(Under the condition (C), $\operatorname{Vect}_{\mathbb{N}(\mathbb{H})}(\mathbb{N}_{\mathbb{H}}) \approx \operatorname{Vect}_{\mathbb{H}}(\mathbb{N}_{\mathbb{H}}/\Gamma)$.) Since $\mathbb{N}_{\mathbb{H}}$ is a compact differentiable manifold, there exists an open covering $\{\mathbb{U}_i\}$ of $\mathbb{N}_{\mathbb{H}}/\Gamma$ such that \mathbb{U}_i is deformable to a point \mathbb{X}_i of \mathbb{U}_i and a Γ -equivalence $\mathcal{Y}_i: \mathbb{U}_i \times \Gamma \longrightarrow \mathbb{M}_{\mathbb{H}}/\mathbb{U}_i$ for each i. For any $\mathbb{N}(\mathbb{H})$ -vector bundle $\mathbb{E} \longrightarrow \mathbb{M}_{\mathbb{H}}$, there are \mathbb{N} -vector bundles $\mathbb{E}_i \longrightarrow \mathbb{U}_i$ with $\mathcal{Y}_i = \mathbb{E}_i$ and $\mathbb{E}_i = \mathbb{E}$

which is an H-module. Thus we have an isomorphism of N-vector bundles,

Denote the N-equivalence $\Psi_{\mathbf{j}}^{-1}\Psi_{\mathbf{i}}:(U_{\mathbf{i}}\cap U_{\mathbf{j}})\times V_{\mathbf{i}}X_{\mathbf{H}}N\longrightarrow (U_{\mathbf{i}}\cap U_{\mathbf{j}})\times V_{\mathbf{j}}X_{\mathbf{H}}N$ by $\Psi_{\mathbf{j}}^{-1}\Psi_{\mathbf{i}}(\mathbf{x},[\mathbf{v},\mathbf{n}])=(\mathbf{x},G_{\mathbf{j}\mathbf{i}}(\mathbf{x})[\mathbf{v},\mathbf{n}]), \text{ then with respect to the CO-topology of } \mathrm{Iso}_{\mathbf{N}}(V_{\mathbf{i}}X_{\mathbf{H}}N,V_{\mathbf{j}}X_{\mathbf{H}}N), G_{\mathbf{j}\mathbf{i}}$ is a continuous map for each \mathbf{i},\mathbf{j} . By the usual verification (Part 1.[3]), we get the next propositions.

Proposition 1. For any N-vector bundle E \longrightarrow M_H ,

$$\mathbf{E} \stackrel{\mathbf{N}}{=} \left[\bigcup_{\mathbf{i}} \mathbf{v}_{\mathbf{i}} \times \mathbf{v}_{\mathbf{i}} \times \mathbf{m} \right] / (\mathbf{G}_{\mathbf{j}\mathbf{i}}).$$

Proposition 2. Two N-vector bundles (E,G_{ji}) and (E',G_{lk}) are equivalent if and only if there exist continuous maps $\bar{G}_{ki}:U_k^*\cap U_i\longrightarrow Iso_N(V_iX_H^N,V_k^*X_H^N)$ with the property

$$\overline{\mathbf{G}}_{\mathbf{k}\mathbf{j}}\mathbf{G}_{\mathbf{j}\mathbf{i}} = \overline{\mathbf{G}}_{\mathbf{k}\mathbf{i}} \quad \text{on } \overline{\mathbf{U}}_{\mathbf{k}}^{\bullet} \cap \overline{\mathbf{U}}_{\mathbf{j}} \cap \overline{\mathbf{U}}_{\mathbf{i}} \ , \quad \mathbf{G}_{\mathbf{l}\mathbf{k}}^{\bullet} \overline{\mathbf{G}}_{\mathbf{k}\mathbf{j}} = \overline{\mathbf{G}}_{\mathbf{l}\mathbf{j}} \quad \text{on } \overline{\mathbf{U}}_{\mathbf{l}}^{\bullet} \cap \overline{\mathbf{U}}_{\mathbf{k}}^{\bullet} \cap \overline{\mathbf{U}}_{\mathbf{j}}^{\bullet}$$

Now to proceed much more, we consider the case which satisfies the condition

(
$$\delta$$
) N(H) = H. Γ s semi-direct product.

For example, take SO(n) as G and $I_r \times SO(n-r)$ as H, then $N(I_r \times SO(n-r)) = SO(n-r).O(r)$. In fact the section $O(r) \longrightarrow N(I_r \times SO(n-r))$ is given by

The same property can be verified for G = SU(n) and $H = I \times SU(n-r)$, these cases happen actually (Chap. 4, [2]).

Define an H-action over $V_i \times \Gamma$ by $(v, \gamma)h = (v \cdot h^{\gamma}, \gamma)$, where $h^{\gamma} = \gamma h \gamma^{-1}$, then under the condition (δ) , we have

Then we can represent G as follows:

$$\Psi_{\mathbf{j}}^{-1}\Psi_{\mathbf{i}}(\mathbf{x},\mathbf{v},\gamma) = (\mathbf{x}, g_{\mathbf{j}\mathbf{i}}(\mathbf{x})(\mathbf{v}), \gamma_{\mathbf{j}\mathbf{i}}(\mathbf{x})\gamma),$$

where V_{ji} is the transition function of the principal bundle (1). We can prove that $g_{ji}: U_{i} \cap U_{j} \longrightarrow Iso(V_{i}, V_{j})$ is continuous and $(*) \quad g_{ji}(x)(vh) = \left[g_{ji}(x)(v)\right]h^{\gamma ji(x)}.$

Thus in the semi-direct product case, Proposition 2 can be stated as

Proposition 2. &. (E, g_{ji} , f_{ji}) is N-equivalent to (E', g_{lk} , f_{lk}) if and only if there exist continuous maps $g_{ki}: U_{i} \cap U_{k} \longrightarrow Iso(V_{i}, V_{k})$ with the property

$$\bar{g}_{ki}(x)(vh) = \left[\bar{g}_{ki}(x)(v)\right]h^{\bar{k}_{ki}(x)},$$

$$\bar{g}_{kj}(x)g_{ji}(x) = \bar{g}_{ki}(x), \quad g'_{1k}(x)g_{kj}(x) = \bar{g}_{1j}(x),$$

where $\bar{\gamma}_{ki}$ is the equivalence between γ_{ji} and γ_{lk} .

By Proposition 2.8, we define an equivalence relation of coordinate vector bundles $[UU_i \times V_i] / (g_{ji}, \gamma_{ji})$ over M_H/Γ with the property (*). We will call these bundles <u>local H-vector bundles</u>. Denote by $Vect_H/M_H/\Gamma$) the semi-group of equivalence classes. Then we have

Theorem. Let M be a G-manifold with just one orbit type (H), then under the condition (&),

$$\operatorname{Vect}_{\mathbf{G}}(\mathtt{M}) \approx \operatorname{Vect}_{\mathtt{N}(\mathtt{H})}(\mathtt{M}_{\mathtt{H}}) \approx \operatorname{Vect}_{\mathtt{H}} \gamma(\mathtt{M}_{\mathtt{H}} / \Gamma).$$

Examples.

Consider the standard m-sphere $S^m = D_1^m \cup D_2^m$ (the union of the upper and lower hemi-spheres. Let $V_{ji}: D_1^m \cap D_3^m \longrightarrow \Gamma$ be transition functions of a principal bundle $\Gamma \longrightarrow P \longrightarrow S^m$. For any local H-vector bundle E_i , $D_1^m \times V_i \approx E | D_1^m$, where V_i is an H-module for i=1,2. We fix a point X_0 in $S^{m-1} = D_1^m \cap D_2^m$. By an appropriate choice of $(\overline{V}_{ki}, \overline{V}_{ki})$, we can get a local H-vector bundle $(\overline{V}_{ji}, \overline{V}_{ji}, D_i^m \times V_i)$ which is equivalent to $E = (\overline{V}_{ji}, \overline{V}_{ji}, D_i^m \times V_i)$, and $\overline{V}_{12}(X_0) = 1$ the identity of $V_1 = V_2$ as a vector space and $\overline{V}_{12}(X_0) = 1$ the unite of Γ . This is a usual normal form of a vector bundle over S^m (Part \overline{T}_i , $[\mathcal{F}_i]$). For each $\mathbf{v} \in V_1$,

 $\mathbf{v} \cdot_{1} \mathbf{h} = \mathbf{g}_{12}^{\prime}(\mathbf{x}_{0})(\mathbf{v} \cdot_{1} \mathbf{h}) = \left[\mathbf{g}_{12}^{\prime}(\mathbf{x}_{0})(\mathbf{v})\right] \cdot_{2} \mathbf{h}^{\prime 12}(\mathbf{x}_{0}) = \mathbf{v} \cdot_{2} \mathbf{h},$ where we denote by \mathbf{h} the action in \mathbf{v}_{1} . Thus we have $\mathbf{v}_{1} = \mathbf{v}_{2}$ as an H-module. Now we investigate the case $\mathbf{G} = \mathbf{SO}(\mathbf{n})$, $\mathbf{H} = \mathbf{I} \times \mathbf{SO}(\mathbf{n} - \mathbf{r})$.

(I) Case m ≥ 2.

Since S^{m-1} is connected, then $g'_{12}(S^{m-1}) \subset SO(r) \subset O(r)$ and $SO(n-r).SO(r) = SO(n-r)\chi SO(r)$ direct product, further $SO(r)\chi I_{n-r}$ -action on $I_{\chi}SO(n-r)$ by the conjugacy is trivial. Thus we have

$$\operatorname{Vect}_{H} \gamma (S^{m}) \cong \operatorname{Vect}_{H} (S^{m}).$$

(II) Case m = 1.

We can prove the next lemma by the normal form technique.

Lemma $\operatorname{Vect}_{H}^{\mathbb{C}}(S^1) \approx \hat{H},$ the semi-group of isomorphism classes of ℓ -invariant complex H-modules.

Suppose to be
$$\gamma_{12}(\pm 1) = \begin{pmatrix} \pm 1 \\ 1 \\ \vdots \end{pmatrix}$$
. Set n-r = 2s or 2s+1.

We need a well known formula for the complex representation rings. Let T be the standard maximal torus of SO(n-r), then R(T) = $\mathbb{Z}[\alpha_1, \alpha_1^{-1}, \ldots, \alpha_s, \alpha_s^{-1}]$, where α_k is the representation

$$\operatorname{Diag} \left\{ \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ & & \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix} \cdots \begin{pmatrix} \cos \theta_s & -\sin \theta_s \\ & & \\ \sin \theta_s & \cos \theta_s \end{pmatrix} \right\} \xrightarrow{2 \pi i \theta_k} ,$$

for k = 1,2, ...,s. Then we have $\mathbb{R}(SO(2s)) = \mathbb{Z}[\lambda^1, \dots, \lambda_+^s, \lambda_-^s]$ with a relation $(\lambda_+^s + \lambda^{s-2} + \dots)(\lambda_-^s + \lambda^{s-2} + \dots) = (\lambda^{s-1} + \lambda^{s-3} + \dots)^2$, where $\lambda^k = \sigma^k[\alpha_1, \alpha_1^{-1}, \dots, \alpha_s, \alpha_s^{-1}]$ k-th elementary symmetric function and $\lambda_+^s = \sum_{1 \le i_1} \sum_{\ell_1 = i_2} \sum_{1 \le i_3} \sum_{1 \le i_1} \sum_{1 \le i_3} \sum$

By the relation

we have

we have
$$(\alpha_1)^{\gamma_{12}(-1)} = \alpha_1^{-1} ; (\alpha_k)^{\gamma_{12}(-1)} = \alpha_k, k = 2,3, \dots, s$$

$$(\lambda_1^k)^{\gamma_{12}(-1)} = \lambda^k, k = 1,2, \dots, s ; (\lambda_{\pm}^s)^{\gamma_{12}(-1)} \neq \lambda_{\pm}^s,$$

and so

$$K(Vect_H^C \gamma(S^1) = Z[\lambda^1, ..., \lambda^S] \stackrel{\subseteq}{\neq} R(SO(n-r)).$$

When we treat the manifold $W^{2n-1}(d)$ as an SO(n)-manifold, $W^{2n-1}(d)_{SO(n-1)} = S^1 = \left\{ (z_0, z_1) : z_0^d + z_1^2 = 0, |z_0| = |z_1| = 1 \right\}.$ If d is odd, then the double covering $S^1 \longrightarrow S^1/O(1)$ is non trivial, and so $V_{12}: S^0 \longrightarrow O(1)$ is surjective. Hence if n,d odd together, then $K_{SO(n)}(W^{2n-1}(d)_{(SO(n-1))}) \cong Z[\lambda^1, \dots, \lambda^S] \neq R(SO(n-1)).$

References

[1] H.Matsunaga: K_{G} -groups and invariant vector fields on special G-manifolds, to appear in Osaka Journal of Mathematics.

:9

- [2] Wu-chung Hsiang and Wu-yi Hsiang: Differentiable actions of compact connected classical groups I, Amer. J. of Math. 139 (3), 1967.
- [3] N.E.Steenrod: The topology of fiber bundles, 1951, Princeton.