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LINEAR BOUNDARY PROBLEMS OF THE ELLIPTIC
| AND THE EVOLUTION TYPE

Shin~-ichi QHWAKI = (Fac. Sci., Univ. Tokyo)

§0. Introduction

Let f2 be an open subset of mn and w an open subset of the
boundary. 9S. of L. Ve wrlte S =9VYw. Choose an open subset (2,
| ova?n such thaﬁ it conta:_ns §7 and Qypa(0Q\w)='P: We write
Q,=0\8, and H=0Vw,

Now let H(£2,) be a subspace of B(£,) = H, (V 0-). Then we

define che following two spaces: ' ‘ ﬁ
5(_{{)::{115;3(31); u= V| for some ve 5(520)}, ”

£,
é(ﬁ)={ve%£%);ampvcﬁ}
1’81 @ is smooth, let R: Ti%?%(ﬁ)-—*—-—)}l%?;é\(w) be the trace

n 0
operator, R ..——:_(P ) loc loc 2

Sk q(1)<:z) -—-->H(1/2)(fu) and let 7z be
the inner normal derivative at @ . In the following we fix a

family of Sobolev norms on the n—1 dimensional manifold @.

‘e
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Moreover let Bm('r);—_-('}’
3

)) teC. TFor other notations, see the
i

®

Hérmander's book, "Linear Differential Operators', Springer 1963.
In the following sections we explain some resulis on boundary
problems for general linear differential operators. Details will

appear in the forth-coming papers.

§1. Elliptic operators in non-compact manifolds

e oo
Let 1 be non-comvact, ard @ of C -class. We assume that

for any bounded open subset U of ®® the union of all compact
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nts oi order m, and of transversal order << ii.
J

ficie
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/e can write ( : }: BeR 'eB"(37) for some uncer-determined systen

i % ope A Y
differential operators with ¢ -coefficients B: & (w )" '———E&(w )7,

-ty

o
Now we consider the following boundary problem:

P(x, D)U=F in £

(1.1)
p.U=f. inw, J=1,2,-°°,m.
J J , _
Theorem 1.1. Under the above conditions the following three

statements are equivalent. Here s = .
(1) The root condition and the complementing condition at w
are satisfied (cf. Agmon-Douglis-Nirenberg, Comm. Pure Apnl. Math.

12, 623-727 (1959)). Moreover w is B-convex (with respect to
Fr loc : : .
E 1 e. T 3 102 set KC s

j l-i(s_mj 2/2)(a))), i.e. for every compact set KCw there

m
L

= n('—s-{-ﬁ —]/Z)A 8 ( C{))

exicts a compaclt set X'c w such that L=

R t > . s Tr
and supnp BudX implies supnudi'.
The equation (1.1) has a solution Ue€ £(£Z) for every

)
Fe&(fl) and f.e&lw), j=1,2, " ,a.
v
)

(2) The ecguation (1.1) has a solution UeI’%OC)’(ﬁ) for every
S ,10C .
Fer g (1) and £, eI?S S +1/?)<w)’ j=1,2,--+,m.

The wroof devends on lemmas of the following tyve.

Lemma 1.2. The operator &(&)<niia /s £(&)  is surjective
LCiing x 7, .
—_—— Do
)



if and only if the following corditions (1) and (2) are valid.
oreover (2) and (3) are equivalent.
fa .
(1) Tor every se€® and every compact set X < f2 there cxists

o
. 5 - VN~ e .
a compact set K'<c ) such that U & E’,(Q),u.e&(w), J=1,2,---,

v!

tr: 5 Z: t T °,f~
;("{, D)U+j==1 P-uj eh(s)/\ 8\52), SU.'O'D< P(X D)U+

j pjuj)Cz;

J==1
implies suppU <K' and suppujCK'n w, j==1,2,°"-,n.

(2) For every Fe&(LL), fye E(w), j'.—.=1,2,-'-,m.and for
every compact set K <£Z there exists U« &(SI) such that P(x, D)U=T
in X and ij=fj in Kaw, j=1,2,""°,n

(3) For every s<R and every compact set K< £ there exists

te€Rand C >0 such that U« &(5), ujea/(w), j==1,2, 1,

e, Dy B,
supp U <K, SUPP U 4 CKpw, E (X,D)U—[-j:__] pJuJGH( )/\@(Q) implies

m

HUU(t)""‘Ellluj”(t)"‘c | tp(x, D)U+ 1 PJ 3!(5)

r—d
i

Remark 1.3. Let bjks E(w), j=1,2,""",n; k—-] ,2,
and B =(bjk). If at every x € w the rank of the matrix B(x) is m,

then w is B-convex. For example the Dirichlet condition satisfies

this.

o~

Remark 1.4. If w is convex flat and B is with constant

coefficients of rank m, then w is B-convex.

§2. Strictly hyverbolic over *or“

In this section we assume that @ is of C *-class and P(x, D)
. . ¥ oo
1s stirictly hyperbolic with respect to £l and of order m with C -

ccefficients.



Theoren 2.1. The followias four conditions are equivalent.
e 1 .
(1) For every s&€IR and every compact set K< £ there exists

s + /, A
a compact set K'< §2 such that ue 6/(.5), “P(x, D)u GH(S)/\ E (LL),

supp t.’E’(X, D)u T AK implies suppu CQ/\K' .
(2) The following eguation (2.1) has a solution Ue £(I) for
every F e &(5).
' P(x, D)U=F in 52, ‘ (2.1)
(3) If Fe £(8,), U€£&(fl), and P(x,D)U=TF in £y, then there
exists V& E(_Qo) such that V[_Q’--: U and P(x, D)V'=F in .SZO.
"(4) The following equation (2.2) has a solution Ue (L) for

every Fea(ﬁ) and fje e(w), j==1,2,-*-,n.

P(x,D)U=7F in L2
{, (2.2)

R°('§%)J—1U=f3 in w, j=1,2,",n.

The essential part of the proof depends on the following lemna.

Lemna 2.2. The operator P(x, D): é(.ﬁ.’)———-—-} é(ﬁ) is surjective
iannd only if the condition (1) of Theorem 2.1. and the following
eguivalent conditions hold. )

(i) For every Fe é(ﬁ) and evéry compéct sét KCﬁ there exists
U € &(F) such that P(x, D)U=TF in K.

(ii) TFor every se€®R and every compact set Kc:fz’ thetre exist
teRand C>0 such that Ue (&), suppUCQE, “Plx, D eHy, R
implies

inf{nvﬂ(t); VEH y and Vig =70}
= ¢ inf{]w) gy WeH 5y and Vg ="p(x, DUl

Theorem 2.3. If 1€R, the following conditions (1') to (3')
are equivalent. If 1'is a nutural number, then all four conditions

are equivalent.
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5
(14’) For every compact set K Cﬁ there exists a compact set
K'<fl such that weH 5 gy, E (&) and supp “Pu QK implies
suppu CQAK' .
‘ (2') The eq_uaﬁion (2.1) has a solution Ué’%gim)(ﬁ) for
every Teﬂ%giT )(S?.)

(31) 1f FeB$Y,(R,), V(T (L), and P(x, DU =F in Q,,

loc '
then there ex1sts VGH(l-;.m)(ﬂ'o) ‘such that V[Q'::.-.U and P(x, D)V=
in L2,

(4') The equation (2.2) has a solution UéH%gim)(.&z) for
loc loc . :
every Fed(lﬂ)(.&?.) and f, ep(lww-;]ﬂ/a)( ao) 3 -—-- 1 ,2,...

Definition 2.1. The set S is called P(x, D)-proper iff for

every compact sét K<£I there exists a compact set'K"cfz' such that

ue £(&) and supp tP(x, D)u<f2nK implies suppucﬂ,/\K' .

Definition 2.2. The set £ is called strongly P(x, D)-proper

12f 1 is P(x, D)-proper and for every compact set K<y there exists
" a compact set K'<{J such that ue &(&), -tP(x, D)uel(fZ\K) implies
uve EE\K')

_ These conditions can be characterized geometrically by.the
relation between the boundary 9L\w and the bicharécteristics.
When w 1is void, these conditions reduce to the well-known the P-

convexity ahd the strong.P-convexity ‘conditions respectively.

‘Theorem 2.4. If £I is strongly P(x, D)L proper, then the followim
‘two statements are valid. -

(1'*) The equation (2.1) has a solution Ve é/(f?:) for every
Feé’(fi).

(2'') If Ue.S(.Q), Fe-%(ﬂ.), P(x, D)U=F in Q, then there
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: ] / 1, < 5 -7 e
exists Ve d(£,) such that V}SL = U and P(x, D)V=T7 in £2,.
|

§3. Fvolution onerators with constant coefficients

Let P{(D) be a linear differential operator with constant
coefficients. In this section we assume the exis*cnce of a closed
cone |7 with its vertex at the origin, which satisfies the following
conditions. Tor every xe¢ there exists a neighbourhood U of x
such that fL+/7 and U\Q do not meet. Moreover there exists a

°loc

fundamental solution E€ B P,(/") of P(D), i.e. P(D)E=§. Let

1= p<oo and keX(RM.

Theoren 3.1. ‘Under the above conditions, the following six

statements are equivalent.
" (1) The set £Z is P(D)-proper.

(2) The following equation (3.1) has a solution Ue& é(fi)

for every Fe ET). .
. P(D)U=7F in £2, (3.1),

(3) 1fUve &), Fe E(Q,), and P(D)U=TF in £, then there
exists Ve £(R,) such that V|g = U and P(D)V=F in 2.

(4)Y The equation (3.1) has a solution Ue &%%\o}i@(fi) for every
- 2loc, e o
re s D,I‘Z(Q ) .

= . loc , & -~ _ .. loc . : oo

(3) 1IfUveRn (£2,), T €237, 1{(320) and P(D)U==F in R, then

.
L . N _LOC_ - 3 3 nt 1 —_— 7 D/ — 3
there exists Ve@p’kp(_\zo) such that ”XP_, = U and P(D)V==F in {2,
’ 0
1 = 2 - /
(6) The equation (3.1) has a solution Ued (£L) for every

re &(5).

~~

Definition 3.1. A smooth surface w is called regular with

respect to P(D) of degree m iff for every normal & to w, the

following relations hold: P () == 0 ~nd P,(o()(,&- )==0, k==m and
m 53

k—[{|=wm. Eere P, is the homogeneous part of P of degree & and
7 \ °< b

S (%K) —_ (=2

(%) (£) = %S P, (8) .

s
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Theorem 5.2. If w is of C ®_clase and i

n

regular with rcsupect
to P(D) of degree m, then the six statements (1) to (/) in Theoren
3.1 and the following statement are ecauivalent.

(7) The following equation (3.2) has a solution Ue E(£Z)

for every F e&(&z) and IJé E(w), j=1,2,"-,n.

P(D)U=F in L2
iy (3.2)
Re (52 ) 3" U=1f; in w, j=1,2,"",n.
Theorem 3.3. If w is smooth we can write :
- o (3.3)
RoP(D) = E}O A oRe (3% ) .

for some differential operators A : &(w)——>&(w), k=0,1,---,m.
We consider the; case when Am is not zero everywhere in w. If we
zssume that ﬁ is P(D)-proper, then the following two statements
are eguivalent.

(1) The eq_uatibn (3.2) has a solution Ue &(SZ) for every
Fe (&) and fi€ &(w), j=1,2,""",n

(ii) The equation |

Au=f in @ | (3.4)

has a solution u e E(w) for every 7€ E(w).

Theorem 3.4. TLet w be smooth, M the order of P(D), and let
N .
the relation (3.3) be satisfied. Let Ye &, m s = n+Y, M-n=<
=V(M—m—g), and write 1 = (¥—1)(M—n)-Y(1—4). For some positive
constant C, Sy

(+g?) 2 =cbE), sei

\ 1 favd . ‘ 3
e assume that L2 is P(D)-proper, and for evelry t= H -=1/2 and

fe”zoc/_()(w) the eoguation (3.L) has a solution ueP%Oc):\a))
Then the equation (3.2) has a solution Uengc):(fi) for every

o~ -,+oc P~ _loc o .

—_—



Theorem 3.5. Let w be the disjoint union of w,, w,, W,,
W, < Qal,ﬂaa)z_, and let wj, J=1,2 ve smooth open in w and regular
with respect to P(D) of degrée m. Yrite 6?}.:: wjnwm, j=1,2.
Moreover let a?,’ and 132 be regularly situated, i.e. for every comnact
sets Kj < CUJ., j==1,2 there exist. constants C > 0 and £>0 such
that  d(x, KZ) = C-d(x, a)m)o(, XEK, .

Then the eqguation

P(D)U=F in S2

Ro(—a—)‘]_]U———-fJ in W,, j=1,2,"",n

‘l,
Re(2) 9 Ty = g, in W, j=1,2," ",m

has a solution Ue& E(SZ) if and only if Fe &(L), fje 6(6271),

g.e&(a}:), j=1,2,"+-,m satisfy the following compatibility condition:j

J
/]1(F, (fj))(x)=/]2(F,(gj))(x), Xxew ,.
Here /,(F, (£,))(x) is the ¢*Zjet defined by
hj={fj+1’ j:.—-_O,‘I,'n'q:.l,mﬂ
-1 J-n
| (Re(E) TP —y Ak )
where ReP(D)== a-Re (g.n) —{-}g:OAk-R o (S )k a=0.

j:"mam—] )""3

Theorem 3.6. If L. is strongly P(D)-proper, then the following
two statements hold.

(1) The equation (3.1) has a solution eréz(fi) for every
Fe.é/(fi).

(2) 1If Fe.@/(.Q), Ue.ﬁ‘/(ﬁ, and P(D)U==TF in _Q), then there
exist VE-?J(:ZO) such that V|, =U and P(D)V=F in Q,

§4. The case when @ is flat

Let H be a closed half space with the normal 4% such that
ﬁCH and W< 9H. Let P(D) be a linear differential operator with

constant coefficients.
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Theorem 4.1. The following condition and the five conditions

(2) to (6) in Theorem 3.1 are eguivalent.

(1') There exists a fundamental solution of P(D) with its

support'in H and §3 is P(D)-proper.

Theorem 4.2. We consider the equation
{P(D)U =F in £
ROBj(D)U=fj in w, j=1,2,"-,1,

(4.1)

where Bj’ j==1,2,"-",1 are linear differential operators with
constant coefficients in R% If £Z is P-proper and &« is convex,
then the be»quation (L.1) has a solution U e é‘.(ﬁ) if and only if
1*;.6 E(SL) and ﬁjz;e(gf"; 1,2,7°°,1 satisfy the following condition.
Let Q(E), Qj(fﬁ)/, j=1,2,--+,1 be polynomials in FeR" ’_s_uch that
Qj(‘;'-}—'r-.ﬂ) are independent of '%'eﬁ and

QUEIP(E)+ Z20,(5)B () =0.
Then ; 1 ' :
ROQ(D)F+§QJ(D)fj=O in @.

Theorem 4.3. If P(D) is hyperbolic with respect to H, then
the following statements hold.

(1) TFor every Fe’é(f\z’) there exists Ue #B(LL) such that
P(D)U=F in £2,. ‘ '

(2) If Fem(Q,), Ues () and P(D)U=TF in £, then there
exists Ve (£, such that V]n"-—-:U and P(D)V==F in L.

In this case we need no condition on the boundary. -



