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Almost complex manifolds and Hirzebruch iavariant

for isolated singularities in complex spaces

By Shigeyuki MORITA

§1. Introduction
In [8], Hirzebruch has defined an invariant ? for normal two-
dimensional singularities and calculated it explicitly for some cases.
In this paper, we generalize his procedure for higher dimensional
isoléted singularities. The definition can be given exactly the same
way following Hirzebruch's idea. However we have to introduce a new
technique to show the well-definedness. For Hirzebruch has used the
existence of minimal-tesolution, but there may not be any minimal
resolution in higher dimensional case.
Roﬁghly speaking, the technique is a method to modify a given
" U-manifold (a smooth manifold with a complex vector bundle structure
on the stable tangent bundle) to obtain an almost complex manifold
without changing some particular invariants.
This technique will be expressed in §2 and by using it we will
show

Theorem 2-4. Any element x 1in the complex bordism group

o3

on (n # 1) can be expressed by a connected almost complex manifold.

In §3, we will define an invariant ? for some kind of iso-
lated singularities in complex spaces, which we may call the
Hirzebruch invariant. Using the technique developed in §2, we will

‘'show that the definition is well-defined.

In §4, we will calculate the invariant ? for quotient
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singularities. (Theorem 4-1)
Finally in §5, we will consider some special cases, e.g. the
Brieskorn singularities and the singularities whose "normal neigh-

borhood manifold" is diffeomorphic to a homotopy sphere.

§2. Almost complex manifolds

Let M2n be a smooth 2n-manifold and 1et T(M) be the
tangent bundle of M. Let BU(ntm) (m : large) be the classifying
space for complex (n+m)-dimensiona1 vectorrbundles and let g(n+m)
be the universal bundle over BU(ntm). A U-structure on M 1is a
real bundle map |

b: oTO) ® e — glm

where _£?m is a trivial real vector bundle of dimension 2m.
Two U-structures |

byt T @ £ — g™ ;Lo 4,

i _
are said to be (stably) equivélent if thgre is a realibundle map

B: (T @ e x 1 — g@m
such that B[M x{i} = b, = 0,1), where (TM) ® &.2‘**) X I
is the induced bundle over M X I.

‘Then as is well-known, theie is a one to one correspondence
between the set of equivalence classes of U—structurés on M and
the homotdby classes of liftings of the map fM': M ——?-BSO. to BU,
where fM is the classifying map for the stable tangeht bundle of
M (cf. [3] §4). "

Similarly,'an almost complex structure on M consists of a

real bundle map
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b Ty — g

where E(n)-is the universal complex bundle over BU(n). Two

almost complex structureé
b, TOD —* §<n) (i1 =0, 1)
are said to be equivalent if there is a bundle map
B: T x 1 —> ¢

such that B | M x{i}= b, (1 =0, 1).

Now we consider the following problem:

Let M2n be a closed U-manifold. Then when does M admit
an almost complex structure?

For this, we introduce an invariant A M) by

AGD = (a0 - (M)

where Y (M) isAthe Euler number of M and cn[M] is the n~th
Chern number of M. Since cn[M] mod 2 = WZn[M] = X(M) mod 2,

A(M) 1is actually an integer.

We will prove
Proposition 2-1. (i) If n =0 (mod 2), then M admits an
almost complex structure, which is stably equivalent to the original

U-structure on M-an if and only if

A(M) =0,

where D2n is a disk in M.

(ii) If n =1 (mod 4), then M admits an almost complex structure,
‘'which i1s stably equivalent to the original U-structure on M-—ﬁzn if
and only if

AM) =0 (mod (n-1)!).

(iii) If n =3 (mod 4), then M admits an almost complex structure,
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which is stably equivalent té the original U-structure on M - D20
if and only if
AQD =0 (moa {831y

(iv) 1In any case, if AXM) = 0, then M édmits an almosf compiex
structure which is stably equivalent to the original U-structure.

Remark. Massey [10] has considered a more general problem.
In fact our Prop. 1-1, (i) for n = 2 (mod 4) can be found in his
Theorem II.

Before proving Proposition 2-1, we prepare the following well
- known lemma.
Lemma 2-2. (i) Homofopy groups 7t2n_1(50(2n)/U(n)) are

given as follows.

ZQ z/2 n =0 (mod &)

Z/(n-1)! n=1 (mod &)
T, 1 (50(20)/U(n)) = |

z n=2 (mod 4)

Z/KLE%%lL n =3 (mod 4)

where the summand Z for the case n = 0 (mod 4) is
Rer(iy : 70, _1(80(20)/U(n)) —> 7T, _,(S0/U)).
(ii) There is a short exact sequence ‘
L1y
0 —»Ker i, —> TCZH(BSO\Zn)) —_— TCzn(BSO) —>0

and Ker iy, 1is isomorphic to Z generated by the tangent bundle

of S2n ‘and detected by %X, where X is the Euler class.

(iii) ZLet 2 : 7:2n(Bso<2n>) — TC (50(2n)/U(n)) be the

2n-1
boundary homomorphism associated with the following fibration
S0(2n)/U(n) —> BU(n) —% BSO(2n).

Then @ 1is an epimorphism and o carries.the summand

N -
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(n-1)!

Ker i, C thn(BSO(Zn)) onto the summands Z, Z/(n-1)! or Z// 5
according as n =0 or 2 (mod 4), n =1 (mod 4) or n =3 (mod 4)

respectively.
Proof of Proposition 2-1. Let M2n be a connected U-manifold.
From homotopy theoretical point of view this means the following.

Let £, : M —> BSO(2n) be the classifying map for the tangent

M
bundle of M and let i*(BU) be the bundle over BSO(2n) induced

by the natural map 1 : BSO(2n) —> BSO ;

i*(BU) —— BU

| |
W oM, BSO(2n) —= BSO .
Then there is given a lifting %& : M ——f*igﬁﬂn of fy. Now since
(SO/U,‘SO(Zn)/U(n)) is (2n-1)-connected, the lifting E& is homotopic
(through fibre) to a map %& such that E& QM-—BZH factors through
BU(n) C i*(BU). This means the following.
There is real vector bundle isomorphisms
b: T § £ — g
b' T [M-D —> g(“)
making the following diagram commutative,
T |u-b @ et B8E, () g (W

l bn,n+m
b{y-D g (om)

where & and bn are natural bundle maps. Moreover b is

, htm
equivalent to the original U-structure on M.

=(n)

Thus there is a complex vector bundles ‘7§n+m) over M, ¥

©
over M-D, real bundle isomorphisms
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a A A
dZ : j<n)

and a complex vector bundle isomorphism

—> ) | M-D
— { +
making the following diagram commutative,

TMe ¢ & oy 3

\126 £ / d,|M-D
canju-Bo £°™
(m) 2m . . .
where e: & —> £ is a canonical real bundle isomorphism.
Now choose a framing
2
p: oTan |0 —r™ .

This gives a framing

\PlSZn-l . T M) &SZn-l IR.'Zn .
2n-1 2n . . '
where S = 9D . On the other hand, there is given a complex
vector space structure 3,-(n) ‘SZn-l T(M) l'Szn-l. Thus we
have obtained a 'S0(2n)/U(n)-bundle" & over ‘SZn-l;
« & T, ,(50(2n)/U(n))
()

and it is clear that the: almost complex structure ¥
extends to whole of M 1if and only if o = 0. Now since
2 : ’thn(BSO(Zn)) —_> TCzn_l(SO(Zn)/U(n)) .is epimorphic, we can
choose an element Yy in ’ftzn(BSO(Zn)) such that 2(y) =« .
We choose such an element ¥ as follows.
Since “i‘czn_l(BU(n)) = 0, the complex vector bundle i(n)lsh‘x
is trivial. Let

_'2 : g(n+m) l DZm —_— Cn-i-m

be a framing. By restricting, we obtain a framing
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2n-1 : j(n+m) l SZn-l ‘En-l-m.

nls

But since 73<n+m> | g2n-l ~ Fm) f g2n-l g (M) g4

T, W) ST, (Ukm),

there is a framing
')"1 : 5({1) iSZn-l —_ C(n)

such that —?i@ ¢ 1s homotopic to lezn-l, where £: £<m) — "

is the natural framing. ©Now the framin n ields a complex vector
&g v p

2n-1

bundle j(n)_/i over M-D/S and a real vector bundle

T (M) !Dzn/;z. over DZn/SZn-l = Szn. We set T(M) }Dzn/'af =Y . |

 Then it is clear that 3(y) = & . Moreover since the framing i
stably extends to a framing over Dzn, it is clear that
Y € Ker 1,
. —
where 1, : KZH(BSO(Zn)) nZn(BSO)'-
Thus by Lemma 2-2 (ii), ¥ 1is detected by the Euler class X .

Let

2n-1 2n-1

,g:M——>M-B/S \/Dzn/s

be the natural map. Then clearly

g (57 V).

|

T M)

Therefore

x(Tan) = x @ T V.

We evaluate this class on the fundamental class [M].
<x(Tan), D> = <K (FD g vyn, >
(T VY, g
- (F®y, me-B /P
% 40 o T Gl P

But clearly



Xz ), MI>= x ().
Since the framing 7 |5"" stably extends o the framing » | p2°
we have
F™rgy, m-8 sy,
=<e (T3, e-B sty
=<, (7)) >
= c_[M]. |

Thus we have obtained

<xCy), 1827y

It

X (M) =c [M]
2A(M).

]

We first consider the case (i).

(1) n =0 (mod 2). In this case, since 3 : Ker 1y —>

‘n:zn_l(.SO(Zn)/U(n')) is injective, o = Q in. and only if y = 0,

But since Ker i, 1is detected by %Y, Y =0 if and only if
Xy, 181> = o |

(i) n=1 (mod 4). By Lemma 2-2, & =0 if and -oﬁly if

A = 5<XCY), 151320 (mod (a-1)1).

L]

0.

(1ii) n = 3 (mod 4). Slmllarly we have,
& =0 1if and only if AM) = 0 (mod L—L)

(iv) 1is clear from the above argument.

known the orem.

Theorem 2-3 (Borel, Serre [2]). Let ZZn be a homotopy

Sphere. Then zz_n

admits an almost complex structure if and only
if n=1 or 3,
- . 2n . .
Proof. Since > 18 @ TC-manifold, it has a trivial
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U-structure. With this structure,our invariant X 1is

. <2n
» Alz ) = 1.
, . <=2n  °2n e . 2n
Now since 2>~ ~-D is diffeomorphic to D", any two almost complex
structures on j;zn —D2n are equivalent. Thus by Proposition 2-1,
§£2n admits an almost complex structure if and only if
‘n=1(mod 4) and 1 =0 (mod (n-1)!)
-1)!

or n =3 (mod 4) and 1 = 0 (mod £37%440.

But this holds only for n =1 or 3. (Q.E.D.)

Now we prove the following theorem, which is the main result
of this section. -

Theorem 2-4. Let ‘Q'gn be the complex bordism group. If
n # 1, then any element x in Q.;; can be represented by a con-
nected almost complex manifold. If n = 1, then an element }{é,ﬂg
can be represented by a connected almost complex manifold if and only
if the first Chern number Cl(x) < 2.

Proof. The latter part is clear. Thus let x be any element
in XL;; (n # 1). We first remark that the connected sum operation
works also well in weakly almost coﬁplex context. If n # 0 (mod &),
then this is clear, for ’mzn_l(SO/U) = 0. But if n = 0 (mod &),
then ’Kﬁn_l(SO/U) = Z/2. However it can be easily checked that the
connected sum is well defined. Thus we may assume that x is
represented by a connected U-manifold M. Now if AM) = 0, then
by Proposition 2-1, (iv), M admits an almost complex structure,
which is stably equivalent to the given U-structure. Therefore x

satisfies the required condition. Thus we have only to modify M to

kill our invariant A (M) without changing the Chern numbers.
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Now 1~t N be a connected T-manifold. We give a trivial

U-structure.on N. Then clearly
(M# N] = [M].
We check how our invariant A varies under the connected sum
operation,
AM#N) = A +A @) - 1.

Therefore we have only to prove the following lemma.

Lemma 2-5. Assume n # 1. Then for any integer m € Z, there
is a connected 7w-manifold NZn with  A(N) = m.

Proof. Let TZn be the 2n-dimensional torus. Then clearl&

ATy = 0,

By induction, we obtain

AT H o #1?®y 2,
(mt1l) -times
Clearly
_)\<52n) -1
and »
,X(Sz X SZn-Z) =92,

(Here we use the fact n # 1.) By induction, we obtain

. N,

(m-1) times | _ (Q;E.ﬁ.)

>\(S2 X S

Thus there are enough Tt -manifolds to kill our invariant AM).
This prgvés Theorem 2-4. (Q.-E.D.)

Finally we prove the following proposition for later use.

Proposition 2-6. Let M2n be a connected U-manifold with

non-empty boundary 2 M. Assume that there is given an almost complex

- 10 -
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¥
P

structure on a neighborhood of 9M, which is-sﬁably equivalent to
the given U-structure. Then there is a closed U-manifold N . such that
M# N admits an almost complex structure which is equivalent to the
given one on a neighborhood of o M.
Moreover we may assume the following. Let
P :M#N—>M
be the natural collapsing map. Then
Py ° 7t1(Mf# N) = 7t1(M).

Proof. The proof is similar to those of Proposition 2-1 and
Theorem 2-4. Here we only check the last condition. Now if we use
TZn for Nzn, then the fundamental group T, may change. So we
cannot use this. Instead we use the Riemann sphere CPl. Our

invariant of CPl. with the natural complex structure is

acely = 0.

Therefore, by induction

APY# - #CPY) = -m.
(m+1l) ~times

(Compare with Lemma 2-5.) Thus there are enough closed U-manifolds
whose fundamental group are zero. Therefore we can modify M to
obtain an almost complex manifold M # N without changing the

fundamental group. (Q.E.D.)

é 3. Hirzebruch invariant for isolated singularities in complex
spaces.

Let Ln<pl’ Pys ' pn) € Q[pl, P> 7% pn] be the Hirzebruch

L-polynomial of degree n and let Mém be a closed oriented smooth

- 11 -
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manifold. Then Hirzebruch's signature theorem [6] states that
o

sign M = L[M]

where sign M 1is the signature of M and L[M] 1is the L—genus of M
Now assume qu is a U-manifold of real dimension 4n. Then the-
Pontrjagin classes of M

can be expressed in terms of the Chern
classes of M. Thus let
LG(clz Cz’ .'., czn) é‘ Q[cl, cz’

. ’ c
be the polynomial obtained from Ln(pl’ Pys

Zn}

* pn) by substituting

k i ‘

P = (-1 2, ('l)lcic.
it+j<k J

Then

sign M = L[M] .

Now recall, for almost complex manifold M4n, we have

e, M = X Q0.
Let MAn be an almost complex manifold of real dimension -4n

with possibly non-empty boundary JM. Now assume that for any

0< i < n, the rational Chern class

Cos restricted to the boundary
@M vanishes. Then we can define the ”f-genus” of M, 'f[M},' as
follows. First we recall

Loneys €

, CZn) = /3nc2n + decomposable terms
where 2n+ -
RS RS -
p_= (D

Let xy € HAH(BU; Q) be a decomposable factor that appears in

L

2n°
By the hypothesis, we have i x(M) = 0,
where |

Thus 0 < deg x = 2i < 4n.

i*wtog @ — wt o, Q.

- 12 -
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Therefore x(M) = ;*xM) for some XM) € HZi(M, oM; Q). Now
we define the Chern number xy[M] by
xy[M] =<EM)y (D, [M, oaM]> .
It is easy to verify that this does not depend on the choice of
X(M). Then we define the L-genus of M by
EEM] = Pn X (M) + decomposable Chern numbers of M.
Clearly if 2M = @, then

e

L[M] = sign M.
Now let (V<2n), P) Dbe a germ of complex analytic space at P
of complex dimension 2n and assume that P 1s an isolated singular
point of V. Fix a Lojasiewicz triangulation [9] K of V. Let
M be the link of P in K. It is a closed PL-manifold of dimension
4n-1. Moreover a punctured neighborhood of P is PL-homeomorphic
to MX IR. Since V-{P} is a complex manifold, M xR has a
smooth structure zf . Therefore by Cairns-Hirsch theory, we can
uniquely smooth M so that M xﬁR is diffeomorphic to (M le);f.

Now we choose V so that V 1s homeomorphic to the cone over

2V ¢ M. We make the following definition.
diffeo .

Definition 3-1. An isolated singular point P € V 1is said to
be rationally parallelizable if all the rational Chern classes of
a punctured neighborhood ofv V  vanish. |

Now we define the Hirzebfuch invariant ?

Definition 3-2. Let (V(Z“)

, P) Dbe a rationally parallelizable
isolated singularity. Let T : V—>V be a resolution ([51).
By the definition of rational-parallelizability, we can define the

~/ - ~s ~/ ~/
L-genus of V, L[V], and we put

- 13 -
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v

& (?) = (V] - siga V.

Proposition 3-3. The above definition is well-defined, i.e.
it does not depend on the choice of resolution V.

Proof. Consider the manifold 2V = 3V. It isla closed
smooth (4n-1)-manifold with a U-structure induced from the complex
manifold structure on V. Since Q_4§_1 =0, there is a U-manifold
W4n such that

QW = 3V "from outside".

Now there is an almost complex structure on a neighborhood of

oW compatible with the U-structure of W, Therefore by Proposition

2-6, we can modify W 1in the interior to obtain an almost complex

manifold W. Now let M=V \JLY’F It is an almost complex manifold.
oV ,

s

Therefore we have
(1) sign M = T[M].

By the Novikov lemma on the additivity of the signature,
(2) _ sign M = sign vV + sign W .
On the other hand, it is not difficult to verify
(3) - T = TIV] + T
Combining (1)ﬁv(3), we obtain

$(P) = siga W - T(W],

But the right hand side does not depend on the resolution V. There-
fore ?(P)‘ is well-defined. " Q.E.D.

Now let V(Zn) be a compact complex analytic variety of complex
dimension 2n. Then by Borel-Haefliger [1], it has a fundamental

class

[V] & H4n<V; z).

- 14 -
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cr

Therefore we can define

for the smooth oriented manifold. Now assume V has only rationally

parallelizable isolated singular points. Then we have

Proposition 3-4.

sign V =?:[V] + 2 Cf(P),
PelV

where /EEV] is the L-genus of (V - cone neighborhood of > V).

Proof. Easy from the definition of ?(P) and left to the

reader.

§4. ? of the quotient singularities.

Let G be a finite subgroup of U(2n) such that, G  acts on

Shn-l = {z € @2nl lz| = 1} freely. Then €2n/G is a complex space

with one isolated singular point at the origin. Clearly this is a

rationally parallelizable singularity. Therefore we have the

Hirzebruch invariant ? for this singularity, which we write

?(G). Thev® we have

Theorem 4-1.
def G + o
VALY
where [G\ is the order of G and
L mem W60
def G = 2 (-1)  cot 5 --cot T3
geG-{e?
wheré

expimb_(1), """, exp iTteg(Zn)
o

are the eigen values of g € U{(2n).

Remark. This theorem has been first obtained by Hirzebruch

for n =1 [8].

- 15 -
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Proof. Let Sém_l = {z & C

2 1- ,
¢! l1z| = l}. Then s*M71 has a”-
U-structure induced from the complex structure on Czn. Clearly the
4n-1

action of G preserves this structure. Thus (S , G) is an
element of 5l4z_l(G)5 the bordism group df free G U-manifolds.
By a similar argument to Conner-Floyd [4], we can show that’
SLAE-I(G>. is a torsion grgup. Thus there is a positive integer m
and a free G U-manifold W such that

S, 6) = m(s™ L, ¢).
Now.consider the manifold W/G. Siﬁce the action of G preserves
the U-structure of W, W/G is also a U-manifold. Let <7t be the
subgroup Im(?tl(W) —_— Ttl(W/G)) of 1t1(W/G). Now a neighborhood

of 2W/G) = m(S4n-l

/G) has an almost complex structure induced
from the complex structure on Czn<-{®}/G. By Proposition 2-6, we |
S
can modify W/G to obtain an almost complex manifold W/G such that
(i) the almost complex structure on a néighborhood of 2 (W/G)
= J(W/G) coincides with the given one.
(ii) there is a map
—~~— '
p =WG — W/G
such that
PNt —
Py : T (W/G) —> TT,(W/G).
Let W be the covering space of ﬁ76 corresponding to the subgroup

'p;l(vc) G;Trl(W/G). Then there is a free G-action on 'ﬁf such that

~ o~
W/G = W/G .
Now let
A /
M=WU ™"
oW

Then M is an almost complex manifold, on which G acts and

- 16 -
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M/G = W/G U cones over each connected component of the boundary.
Now since M is an alimost complex manifold, we have
(1) sign M = L[M].

By the Atiyah-Singer G-signature theorem and the argument of Hirzebruch

in [7],

(2) iGi sign M/G = sign M + m def G.

.
5

On the other hand, by the definition of ?(G)
(3) sign M/G = LW/G] + m cf(G)-
(cf. Proposition 3-4). Since T :3?-——*3@%3 is a |Gl-fold cover

of almost complex manifolds,

(4) lc) T/l = TW).
Finally we have
(5) Tog =T +mf
Combining (1) ~(5), we obtain the theorem. Q.E.D.

Example 4-2. Let ; = exp 2251 and let 91> 9p>» s 9y be
. 2

natural numbers such that (qj, p) = 1 for all j. Let

q q q. s
- 1 2 .. Ayl n
c=§CC ¢ e, Ui ezjctt C un).

Then clearly G acts on Slm—l freely and SQn"l/G is the lens
space of type (p; qQy> Gps T %n>' Then by Theorem 4-1, we have
def(p; g7, 99> "5 Q) Tt

P
where def(p; q,, dps> "7 %m) is the number defined in [7].

§ 5. Some special cases.

(2n)

Let (V , P) be a germ of complex analytic space at P and

assume that the "boundary'" of V, 9V, 1is diffeomorphic to a homotopy

sphere za&n—l, which bounds a parallelizable manifold. Then the

- 171_
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values of our invariant ?(P) are restricted as the following

proposition states.

(Zn)’ P) be a germ of'complex analytic

Proposition 5-1. Let (V
variety at P and assume

(1) P 1is an isolated singular point.

—4n-1

(ii) 2V is diffeomérphic to a homotopy sphere 2. , which
bounds a parallelizable manifold with signature m.

(iii) n =1 (mod 2).
Then

?(P) = Zfin-a - (Sn+m

for some a € 2.

Proof. First assume that §;4n-l is a natural sphere S&n-l'
Let ~T:V —>V. be a resolution. Then since 2V = Slm-l’

M = V \ cone over 93( admits a smooth structure. Moreover since
7t4n_1(SO/U) = 0, ‘M admits a U-structure which is stably'equivalent
to the complex structure on V. Now by definition,
§(P) = TIV] - sign V.
Clearly
sign4§/= sign M.
Since M 1is a U-manifold, we have
sign M = L[M].
Hence
¢(®) = L[V] - Lly]
Now since all the decomposable Chern numbers of Q/ and M coincide,

we have
G(®) = B, x(¥) - poe M)

- 18 -
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B (XGD 1) - B _c_[m]
Zﬁn A - ﬁn'

Since )\(M)' is an integer, we have proved the proposition for the

case 241‘1-1 - S@n-l'

Next we consider the general case. Thus let 7U: V —>V be
a resolution with oV = Zlm-l, which bounds a parallelizable
‘manifold W with sign W = m. Consider the manifold -W (orientation
reversed). Since -W is paw_:allelizable, it has a trivial almost
complex structure. Now consider the manifold v B(&-w) (4 dénotes
the boundary connected sum). ‘It admits an almost complex structure
compatible with the original structures on V and -W. Now
2@ ) =S #-Z

M=V 4 (-W) Ucone over the boundary.

= Szmm1 . Let

Then as before M admits a U-structure which is stably equivalent

to the almost complex structure on V Y (-W). Now

et

¢ (P) =T[V] - sign V.

On the other hand, we have

A

LIV i (0] =TV + B XD - B

and

sign M = sign V + sign (-W)

~

sign V - m.

Therefore we have

C)O(P)

TIV g (-w)] + B, - sigaM - B XMW +m
TM] - sign M - P K@) +m
2 Fn)\(M) - ﬁnx(w) + m .

Now consider W = W \J cone over 2W. Then sign W= m, which is

i
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divisible by 8. Since sign i

i

X (mod 2), we have X = 0
(mod 2).  But ,X<ﬁ)-= X{W) + 1. Hence X W) ? 1 (mod 2). Theré;
fore
¢®) =282 g +n

for some a € Z, which completes the proof. o Q; E. D.

Remark 5-2. In case n = 0 (mod 2), I do not know whether
Proposition 5-1 holds or not. In this case: 7t4n_l(SO/U) = Z/2. It
is easy to define an invariant «(P) € 2/2 to detect this group.
However, in general, it is difficult to calculate & (P). But if
(V, P) is a hypersurface isolated singularity, then &A(P) = 0 and
Proposition 5-1 holds.

Remark 5-3. Let ~(V(2n), P) be the Brieskorn singularity
defined by

a
z, 7+ Zy e 42,7 =0,
Then
So(P) = -(3“(/&\+1) - signV,

where AL is the middle Betti number of the non-singular hyper-

a a
_ 1 R 2n -
surface Vaz— {214 + + Zy0 ;}.
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