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ISOLATED ENDS OF OPEN LEAVES OF CODIMENSION-ONE FOLIATIONS

By Toshiyuki Nishimori

"80. Introduction
The purpose of this paper is to invesgtigate the behaviour of
open leaves of codimension-one foliations, We‘definefthe 1imit
gsets of leaves and of ends of leaves on the analogy of to;mlogicall
dynamics. The main theorem describes how an end of an open leaf
approaches to a closed leaf in the simplest case and shows the
periodicity of the end in that case.

We work in the differentiable category throughout this paper.

51. Ends of open manifolds

We recall the definition of ends in the case we concern.
Those who are interested in ends can find the general theory .in
Siebenmann (3] .

Definition 1,1 (Intrinsic definition) Let F be an open

manifold without boundary. A family & of non-empty connected open
subsets of F is called an end of F if & satisfies the following:
(1) U - U is compact for all U €& .

(2) If U, U' e€, , there is U¥WeE with "< U n U,
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(3) N{Tlvee} =g,

(4) € is a maximal family with respect to (1), (2) and (3).
To clarify the concept "ends", we give an intuitive definition,
At first we can find a covering {K; } ;j.:l of F such that

(1) K, is a compact submanifold of F with boundary.

(2) K;c< Int K, ., for all i.

(3) F - Int Ki does not contain compact connected components.
Then an end of F is a sequence {Vi} 3=1 Such that

(1) Vi is a connected component of F - K, for all i.

If such a sequence {v;} :TD.-:l is given, {Vi};‘f__l satisfies
(1), (2) and (3) of Definition 1.1 and there is an end g of the
intrinsic definition which contains {V; ¥, ,. We can identify
these definitions by this correspondence,

Definition 1.2 An end € is isolated if € has a member U

which does not belceng to the other ends.
Now we give two simple examples.

Example 1,3 Let F be the real line IR . There are just two

ends w = {(x,oa) l xem} and o = { (~00,x%) I xem}.

Example 1.4 Let F = { (x,¥) €-IR2' (x - 12 + y2 <1,
(x-1/m)2+ 32 >1/9m%(m + 1)2 for all n = 1, 2, 3, *°* }.

F has countable isolated ends which correspond to the circles

2
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{ (x,y)e®? | (x - /n)? + v° = 1/9n°(m + 12, n = 1, 2, 3, }’

and just one non-isolated end which corresponds to the circle

2

{ENer2 | (x-12+y5 =11,

Definition 1;5 An end €vis‘periodic‘if there are a member

Ue& , a compact connected manifold P whose boundary consists
of two connected components By and ]32s and a diffeomorphism f:
B,—>B, such that T is diffeomorphic to Py P 5 P ¢ -+ (
countable union ). We call P a period.

We give an easy proposition and omit the proof.

Proposition 1.6 (1) Every open manifold has at least

one end. (2) Every periodic end is isolated.

§2, Limit sets of open leaves
Let M® be a connected orientable closed manifold of dimension
n, 5 a transversely orientable foliation of codimension one on

M2, and Fn"l an open leaf of 3. We fix them from now to the end

of §L§-o

: . =l
. [~
Definition 2.1 Let L(F) = [} (F - K;)® where {K;} 5

is a covering of F such that Ki is compact and Ki(: Ki+1 for a1l
i and ( )2 means_the closure in M". We can easily show that
L(F) is well-definedvahd omit the proof., We call L(F) the limit

set of F.
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Definition 2,2 Let & be an end of F. Let Lg(F) = n { 02|

U<t} where ( )® means again the closure in M". We call Lg(F)

€ =1limit set of ¥,

Now we write down the fundamental properties of the limit

sets. The proof is left to the reader.

Proposition 2.3 (1) L(F)> ké}La(F)° If the number of ends
of F is finite, L(F) = | Le(F).
(2) L(F) and Lg(F) are non-empty cempac£ invariant subsets of
M? where "™invariant" means that to contain xkimplies to contain
the leaf which contains x.. |

(3) Lg(F) is connected (not necessarily path—-connected').

B3, Statement of the result
We are in the situation of the first paragraph of §2.

The main theorem of this paper is the following

Theoren 5ﬂ.l Let € be an isolated end of F, If Lg(F)AF
= and L = Lg(F) consists of just one leaf of F, & is a
periodic end with a period P = L - (bicollar of N) for some
n=-2 ¢ 121,

connected submanifold N

Definition 3.2 In the above case we will see, in the. pi‘oof,

that the behaviour of & is very simple and we say that &

approaches tamely to L.
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It seems to us that the condition of Theorem 3.1 is

re dundant °

Conjecture 3.2 Let € be an isolated end of F, If Lg(F)NF

= @, Lg(F) consists of just one leaf of F.
If the conjecture is true, Theorem 3.1 gives a complete
description of the behaviour of isolated ends of proper open

leaves,

B4, Proof of Theorem 3.1

Let Xy € L. Since L is a compact leaf we can find a small
segment s such that s is transverse to F and snlL ={x,j. }«fo
separates s into two parts s, and s_. Since E is isolated there
is Ue € which does not belong to the other ends. Then Uns, or
Uns_ contains countable poits, say A = Ur\s+ does so0.

Lemma 4.1 We can number the elements of A so that x, is
near to fo than %, if 1<J.

Proof, If it is impossible, we can show that snL - {x,}"
is non-empty, which is a contradiction. '

Let G be the group of the germs of dif‘feomorphisms £ (_Uf,
xo)—a(vf,xo) at X, where Ue and V. are connected open subsets
of s which contain Xye Let H be the group of the germs of g =

f I Ufr\A : Ufn Ae—evf(‘\A at X where‘ f is_ as above and in
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additicn f(Uan) - meA. Let @ 'rcl(L,xO)—-—>G be the holonomy
homomorphism of the leaf L. There is the natural homomorphism
Yo Im  =—> H which maps the germ of f to the germ of f ﬁ Uan.
Lemma 4,2 Im WY& is noﬁ-trivial.
Proof. If Im ¥ & is trivial, we can .show that Lg(F)AL =
g, which is a contradiction.
Lemma 4.3 For all a € TCl(L,xo) there are positive integers
Nl’ NZ and an integer p such that W& (a) is the germ of g: {xi[
i 2N p—>{x | 12N,} at x, where g(x;) = Xy, for all i.
P_rggzg. Let W® (a) be the germ of gV: {xil izN}—s

{ xi[ iz N?_} . Let g(x;) = X3 vp for some i Z N;. Then g(x, 1) =

< i+l

X for some j € i + p + 1. Suppose jJ >i + p + 1l.and let

g~ (x,

1+p+1) = x.. Then i<k <i+ 1, which is a contradiction.

Let H' be the group of the gei‘mys of g: {xi] ig Nl}—.-__>
{*]izX +p} where g(x;) = ¥;4p fOr some p and for all i.

Then H!' is an infinite cyclic group. Since Im ¥ 3 is a non-
trivial subgroup of HY, Im ¥®P is so. Since Im P is abelian,
there is a homomorphism u: Hl(L)—am W3 such that ¥ = uh

where h: 7 (L,xy)—=H,(L) is the Hurewicz homomorphism.

7 (Lyxy) ' > InPcG
1 ks Xg Fy 2
ST

v . u k
Hl(L)—-——-—-——————> In¥PHc Urcy
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Since Im u = Im ¢P 1is free abelian, the exact sequence

0 —s Ker u'-—-——->H1(L)—-—‘i-> Im u —30
splits and there is a homomorphism v: Im u-——aHl(L) with uv = 1,
Then’Hl(L) = Ker u + Im v. Let a, be a generater of Im v. By
Poincaré duality, there is a homology class b‘sHh_a(Ln—l) such
that ao-’o = 1 and a*b = O for all a €¢Ker u. By Nakatsuka's
representation theorem {2], there is a connected oriented two-
sided submanifold N* 2 of L®1 such that (N] = b and Xy € N

Lemma 4.4 The images of hoi*: 7Ty (N, x5) — 753 (L, %) —
Hy(L) and hejy: T (L-N,x5)——T (L,y%Xy)——H; (L) are contained
in Ker u where i: N L and j: L - N L.

Proof. Let a;€Im hei, and a,&Im hej,. Consider their
intersection numbers with b. We see that a b = aa'b = O,
Therefore a,s &, € Ker u, which completes the proof.

By Lemma 4.4, there is an imbedding f: N X [0,11—=M
which is transverse to F and satisfies the following conditions:

(1) £(x,0) = x for all xeN and f(xo,l) = X, for some q.

(2) For each i 2 q, f(xo,ti) = x5 for some tier(o,l] .

(3) f(x[0,1]1) AU = F(N x {ti] iz q} ) where U' € g
such that U'< U and §1 - U' = F(NX1).

Let L” be the compact connected manifold with boundary

obtained from L-N by attaching two covies Nys N5 of N as boundary.
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By Lemma 4.4, there is an immersion g: L¥x [ 0,11 —— M
such that
(1) g]1nt 1*><[0,1]  , & | Ny>x [0,1] and g Ny;x [0,1]
are imbeddings. ‘
(2) &| Ny x[0,1] = £ where we identify N, and N.

(3) 8lx,ty) = f(x,t;,,) for all x¢N; = N and all i 2 g

i+k
and for some positive integer k. g(le [O,l])cf(Nx‘[O,ll).
(4) 8(L*% t,) C T for all 1 2 q.
Then we can identify U! and L*¥“YL*~1*“eee¢, Therefore &
is a periodic end with a period L*. This completes the proof of
Theorem 3.1,

Remark 4.5 Consequently we see that Uns_ is a finite set

and Im WY = H! and k = 1.

§5. An example

We construct a foliation on Slx slx Sl. Let D be a 2-disk

in Sl>< Sl which does not intersect 8§ = Slx Xgye At first we

. [®)
consider a foliation on (Slx Sl --31))><S:L whose leaves are Dxx
1. .1 ol . . 1
and (S"x S - D)xx, x €8 . By making a whirlpool at 3DxS",
1.1 1 1

we obtain 'a foliation on 8 x8 xS with a compact leaf 3DxS,

We cut slx slx sl by .S><Sl and we glue there by the diffeo-

1

morphism f: Sx8 ——>st1 such that f(x,y) = (x, g(y)) where
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1. . . i 1t5 .
g: Sl~——>S” is a diffeomorphism such that g(etl) = g2t for all

te [0,7]. Let F be the obtained foliation. Let F be the compact

leaf ®DxST, F, the leaf containing Sx1, F; the leal containing

1. 1

Sx(=1), Then F, is diffeomorphic to §°x §° - D and F, has just

one end 80. LEb(FO) = L(FO) = F, Fl has at least one non-isolated
end €; and countable isolated ends aj. Lgl(Fl) = FYFq. LEj(Fl)

= F.
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