A classification of simple spinnable structures on s^{2n+1}

By Mitsuyoshi Kato

§1. Introduction

The notion of a spinnable structure on a closed manifold has been introduced by I. Tamura [5] and independently by Winkelnkemper [6] ("open books" in his term), who obtained a necessary and sufficient condition for existence of it on at least a simply connected closed manifold.

The purpose of the paper is to classify "simple" spinnable structures on an odd dimensional sphere \mbox{S}^{2n+1} in terms of their Seifert matrices.

<u>Definition</u>. A closed manifold M is spinnable, if there is a compact manifold F, called generator, a diffeomorphism $h: F \longrightarrow F$, called characteristic diffeomorphism, such that $h \upharpoonright \partial F = \mathrm{id.}$, and a diffeomorphism $g: T(F, h) \longrightarrow M$, where T(F, h) is a closed manifold obtained from $F \times [0, 1]$ by identifying (x, 0) with (h(x), 1) for all $x \in F$ and (x, t) with (x, t') for all $x \in \partial F$ and $t, t' \in [0, 1]$. A triple $\mathscr{L} = \{F, h, g\}$ will be called a spinnable structure on M. A second spinnable structure $\mathscr{L}' = \{F', h', g'\}$ on M is isomorphic with \mathscr{L} , if there is a diffeomorphism $f: M \longrightarrow M$ such that $f \circ g(F \times t) = g'(F' \times t)$ for all $t \in [0, 1]$. A spinnable structure $\mathscr{L} = \{F, h, g\}$ on M is simple if its generator is of the homotopy type of a finite CW-complex of dimension $\subseteq \left\{\frac{\dim M}{2}\right\}$.

We are interested in simple spinnable structures on S^{2n+1} . In the case, a generator F is (n-1)-connected and a characteristic diffeomorphism $h: F \longrightarrow F$ induces an isomorphism $h_{*}: H_{n}(F, \mathbb{Z}) \longrightarrow H_{n}(F, \mathbb{Z})$ of the integral n-dimensional homology group of F, which will be called the monodromy of the spinnable structure. In § 2, we shall define a Seifert matrix $\Gamma(\mathcal{S})$ of a simple spinnable structure \mathcal{S} on S^{2n+1} so that it is unimodular and determines the intersection matrix of F and the monodromy.

Theorem A. For a unimodular mxm matrix A, there is a simple spinnable structure $\mathcal S$ on S^{2n+1} with $\Gamma(\mathcal S)=A$, provided that $n\geq 3$.

Theorem B. If $\mathscr S$ and $\mathscr S'$ are simple spinnable structures on S^{2n+1} with congruent Seifert matrices, then $\mathscr S$ and $\mathscr S'$ are isomorphic, provided that $n \ge 3$.

These theorems imply that there is a one to one correspondence of isomorphism classes of simple spinnable structures on S^{2n+1} with congruence classes of unimodular matrices via the Seifert matrix.

§ 2. Seifert matrices of simple spinnable structures on an Alexander manifolds.

First of all we prove:

Proposition 2.1. If $\mathcal{S} = \{F, h, g\}$ is a simple spinnable structure on a closed orientable (2n+1)-manifold M, then $g \mid F \times t$: $F \times t \longrightarrow M$ is n-connected, in particular, if $M = S^{2n+1}$, then F is (n-1)-connected and hence is of the homotopy type of a bouquet of n-spheres;

$$F \simeq \bigvee_{i=1}^{m} S_{i}^{n}$$
.

<u>Proof.</u> For the proof, putting $F_t = g(F \times t)$, it suffices to show that (M, F_0) is n-connected. We put $W = g(F \times [0, \frac{1}{2}])$ and $W' = g(F \times [\frac{1}{2}, 1])$. Since \mathcal{S} is simple, it follows from the general position that there is a PL embedding $f: K \longrightarrow Int W'$ from an n-dimensional compact polyhedron K into Int W' which is a homotopy equivalence. Since $\partial W' = \partial W$ is a deformation retract of W' - f(K), we have that

$$\pi_i(M, F_0) \cong \pi_i(M, W) = \pi_i(M, M-W')$$

$$\cong \pi_i(M, M-f(K))$$

$$= 0 for i \leq n,$$

completing the proof.

We shall call a closed orientable (2n+1)-manifold M is an Alexander

manifold, if $H_n(M) = H_{n+1}(M) = 0$. By the Poincaré duality, then $H_{n-1}(M)$ is torsion free and hence if $\mathscr L$ is a simple spinnable structure on M, then $H_{n-1}(F)$ and $H_n(F)$ are torsion free. Then a bilinear form

$$\Upsilon: H_p(F) \otimes H_p(F) \longrightarrow Z$$

is defined by

$$\delta(\alpha \otimes \beta) = L(g_{\#}(\alpha \times t_{0}), g_{\#}(\alpha \times t_{1})),$$

where $0 \le t_0 < \frac{1}{2}$, $\frac{1}{2} \le t_1 < 1$, and $L(\xi, 7)$ stands for the linking number of cycles ξ and η in M so that $L(\xi, 7)$ = intersection number $<\lambda, \gamma>$ of chains λ and η in M for some λ with $\partial \lambda = \xi$.

For a basis α_1 , ..., α_m of a free abelian group $H_n(F)$, a square matrix $(\Im(\alpha_i \otimes \alpha_j)) = (\Im_{ij})$ will be called a Seifert matrix of $\mathcal S$ and denoted by $\Gamma(\mathcal S)$. It is a routine work to make sure that the congruence class of $\Gamma(\mathcal S)$ is invariant under the isomorphism class of $(M,\mathcal S)$.

We have an alternative expression of $\Gamma(\mathcal{S})$ in terms of an isomorphism

$$a: H_n(W) \overset{\begin{subarray}{c} -1 \\ \cong \\ H_{n+1}(M, W) & \overset{\begin{subarray}{c} -1 \\ \cong \\ \end{array}} H_{n+1}(W', \partial W') \overset{\begin{subarray}{c} -1 \\ \cong \\ \end{array}} H_n(W') \overset{\begin{subarray}{c} -1 \\ \cong \\ \end{array}} H_n(W')$$
 which will be called the Alexander isomorphism.

We have homomorphisms

$$\varphi: H_n(W) \stackrel{\partial^{-1}}{\cong} H_{n+1}(M, W) \stackrel{\text{exc}}{\cong} ^{-1} H_{n+1}(W', \partial W) \xrightarrow{\partial} H_n(\partial W)$$
 and

$$\begin{split} & \not f \colon \operatorname{H}_n(\operatorname{W}') \cong \operatorname{H}_{n+1}(\operatorname{M}, \operatorname{W}') \cong \operatorname{H}_{n+1}(\operatorname{W}, \ \partial \operatorname{W}) \xrightarrow{\quad } \operatorname{H}_n(\partial \operatorname{W}) \\ & \text{so that } i_* \circ \not f = \operatorname{id}. \ \text{and} \ i_*' \circ \not f_*' = \operatorname{id}. \ \text{and the following} \end{split}$$

_ /. _

sequences are exact:

$$0 \longrightarrow H_{n}(W') \xrightarrow{\varphi'} H_{n}(\partial W) \xrightarrow{i'} H_{n}(W') \longrightarrow 0,$$

$$0 \longrightarrow H_{n}(W) \xrightarrow{\varphi'} H_{n}(\partial W) \xrightarrow{i'} H_{n}(W') \longrightarrow 0,$$

where $i_*: H_n(\partial W) \longrightarrow H_n(W)$ and $i_*': H_n(\partial W) \longrightarrow H_n(W')$ are homomorphisms induced from the inclusion maps. Let $\alpha_1, \dots, \alpha_m$ be a basis of $H_n(W)$. Then, putting $\beta_i = a(\alpha_i)$, $i = 1, \dots, m$, we have a basis β_1, \dots, β_m of $H_n(W')$. By the definition of the Alexander isomorphism, if we put $\overline{\alpha}_i = \varphi(\alpha_i)$ and $\overline{\beta}_i = \varphi'(\beta_i)$, $i = 1, \dots, m$, then we have that the intersection number in ∂W

$$\langle \vec{\alpha}_{i}, \beta_{j} \rangle = \delta_{ij} = \begin{cases} 0 & \text{for } i \neq j, \\ 1 & \text{for } i = j. \end{cases}$$

Let $g_t : F \longrightarrow M$ be an embedding defined by

$$g_t(x) = g(x, t)$$
 for all $x \in F$, $t \in [0, 1]$.

For a subspace X of M with $g_t(F) \subset X$, we denote the range restriction of g_t to X by $X \mid g_t : F \longrightarrow X$;

$$X \mid g_t(x) = g_t(x)$$
 for all $x \in F$.

We identify a basis α_1 , ..., α_m of $H_n(W)$ with that of $H_n(F)$ via $(W \mid g_{1/3})_*$ and a basis β_1 , ..., β_m of $H_n(W)$ with that of $H_n(F)$ via $(W \mid g_{2/3})_*$.

Again by the definition of the Alexander isomorphism, we have that

$$L(\alpha_i, \beta_j) = \delta_{ij}$$
 for i, $j = 1, \dots, m$.

Since $W \mid g_{\frac{1}{2}}$ and $W \mid g_{\frac{1}{2}} = i \cdot (\partial W \mid g_{\frac{1}{2}})$ are homotopic in W and $W' \mid g_{\frac{1}{2}}$ and $W' \mid g_{\frac{1}{2}} = i' \cdot (\partial W \mid g_{\frac{1}{2}})$ are homotopic in W', it follows that $(\partial W \mid g_{\frac{1}{2}})_{*}(\alpha_{i})$ is of a form

$$(\partial W | g_{i})_*(\alpha_i) = \overline{\alpha}_i + \sum_{j=1}^m a_{ij} \overline{\beta}_j$$

and hence that $(W' \mid g_{\frac{2}{3}})_*(\alpha_i) = \sum_{j=1}^m a_{ij} \beta_j = \sum_{j=1}^m a_{ij} a_{ij}(\alpha_j).$

Therefore, we have that $\begin{cases} i_j = L((g_1)_{\#} \alpha_i, (g_2)_{\#} \alpha_j) = 0 \end{cases}$

 $L(\alpha_i, \sum a_{jk}\beta_k) = a_{ji}$ for $i, j = 1, \dots, m$. Thus we conclude as follows:

Proposition 2.2. For a basis α_1 , ..., α_m of $H_n(F) \stackrel{(W | g_1) *}{==} H_n(W)$, the following (1), (2) and (3) are equivalent.

(1)
$$(\partial W \mid g_{\underline{j}})_*(\alpha_{\underline{i}}) = \overline{\alpha}_{\underline{i}} + \sum_{\underline{j}=1}^m a_{\underline{i}\underline{j}} \overline{\beta}_{\underline{j}}$$
,

(2)
$$a^{-1} \cdot (W' \mid g_{\frac{2}{3}})_* (\alpha_i) = \sum_{j=1}^m a_{ij} \alpha_j$$

and

(3)
$$\int^{t} = (a_{ij}).$$

In particular, the Seifert matrix Γ is unimodular.

Now we determine algebraic structures of simple spinnable structures on an Alexander manifold.

Theorem 2.3. Let $\mathscr{L} = \{F, h, g\}$ be a simple spinnable structure on an Alexander manifold M^{2n+1} .

(1) The intersection matrix I = I(F) of F and the Seifert matrix $\Gamma = \Gamma$ (%) of \mathcal{S} are related in a formula:

$$-I = \int^7 + (-1)^n \int^t,$$

where $\int_{-\infty}^{\infty} t^{-1} t^{-1} t^{-1} dt^{-1} dt^{-1$

(2) The n-th monodromy $h_*: H_n(F) \longrightarrow H_n(F)$ is given by a formula:

$$h_* = (-1)^{n+1} \int_{-1}^{-1} f(x) dx$$

or

$$h_{*} - E = I \cdot \int_{-1}^{-1} .$$

<u>Proof</u>. For the proof of (1), we follow Levine [3], p.542. We

take chains $d = g_{\#}(\alpha_{i} \times [\frac{1}{3}, \frac{2}{3}])$, e_{1} and e_{2} in M such that $\partial d = g_{\#}(\alpha_{i} \times \frac{2}{3}) - g_{\#}(\alpha_{i} \times \frac{1}{3}) = (g_{\frac{2}{3}})_{\#}(\alpha_{i}) - (g_{\frac{1}{3}})_{\#}(\alpha_{i})$, $\partial e_{1} = -(g_{\frac{2}{3}})_{\#}(\alpha_{i})$

and

$$\partial e_2 = (g_{\frac{1}{3}})_{\sharp} (\alpha_i).$$

Since $d+e_1+e_2$ is a cycle, we have that

$$\begin{split} &0 = \langle d + e_1 + e_2, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle \\ &= \langle d, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle + \langle e_1, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle + \langle e_2, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle \\ &= \langle \alpha_i, \alpha_j \rangle + (-1) L((g_{\frac{2}{3}})_{\#} (\alpha_i), (g_{\frac{1}{2}})_{\#} \alpha_j) + L((g_{\frac{1}{3}})_{\#} (\alpha_i), (g_{\frac{1}{2}})_{\#} \alpha_j) \end{split}$$

Since

$$L((g_{\frac{3}{3}})_{\#}(\alpha_{i}), (g_{\frac{1}{2}})_{\#}(\alpha_{j})) = (-1)^{n+1}L((g_{\frac{1}{2}})_{\#}(\alpha_{j}), (g_{\frac{3}{3}})_{\#}(\alpha_{i}))$$

$$= (-1)^{n+1} \gamma(\alpha_{j} \otimes \alpha_{i})$$

and

$$L((g_{\frac{1}{3}})_{\#}(\alpha_{i}), (g_{\frac{1}{2}})_{\#}(\alpha_{j})) = \mathcal{J}(\alpha_{i} \otimes \alpha_{j}),$$

we have that

$$-I = \int + (-1)^n \int^t,$$

completing the proof of (1). To prove (2), we take chains $d=g_{\sharp}(\alpha_i\times[0,1])$, e_0 and e_1 in M so that $\partial d=g_{1\sharp}(\alpha_i)-g_{0\sharp}(\alpha_i)$, $\partial e_0=g_{0\sharp}(\alpha_i)$ and $\partial e_1=-g_{1\sharp}(\alpha_i)=-g_{0\sharp}(h_{\star}(\alpha_i))$. Since $d+e_0+e_1$ is an (n+1)-cycle in M, we have that

$$\begin{split} 0 &= \langle d + e_0 + e_1, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle \\ &= \langle d, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle + \langle e_0, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle + \langle e_1, \ (g_{\frac{1}{2}})_{\#} (\alpha_j) \rangle \\ &= \langle \alpha_i, \alpha_j \rangle + L(g_{0\#} (\alpha_i), \ (g_{\frac{1}{2}})_{\#} (\alpha_j)) + (-1)L(g_{0\#} (h_* (\alpha_i)), (g_{\frac{1}{2}})_{\#} (\alpha_j)) \\ &= \langle \alpha_i, \alpha_j \rangle + \lambda(\alpha_i \otimes \alpha_j) - \lambda(h_* (\alpha_i) \otimes \alpha_j) \\ &= \langle \alpha_i, \alpha_j \rangle + \lambda((id - h_*) (\alpha_i) \otimes \alpha_j) \end{split}$$

and hence that

$$-I = (E - h_*) \cdot \Gamma ,$$

where E is the identity matrix (δ_{ij}). Therefore, by making use of (1), we have that

$$(h_x - E) = I \cdot \Gamma^{-1}$$

= $-E + (-1)^{n+1} \Gamma^{-1}$,

or

$$h_* = (-1)^{n+1} f^{-1}$$
,

completing the proof.

§ 3. Proof of Theorem A.

Suppose that we are given an m \times m unimodular matrix $A = (a_{ij})$. Let K denote a bouquet of m n-dimensional spheres; $K = \bigvee_{i=1}^{m} S_i^n$. We have a PL embedding $f: K \longrightarrow S^{2n+1}$. Let W be a smooth regular neighborhood of f(K) in $S^{2n+1} = S$ and W' = S-Int W. We denote the Alexander isomorphism

 $H_n(W) \cong H^n(S-Int\ W) = H^n(W') = Hom(H_n(W')) \cong H_n(W')$ by a : $H_n(W) \cong H_n(W')$. Thus we have that W, W' and ∂W are (n-1)-connected, and there are splittings

of $i_*: H_n(\partial W) \longrightarrow H_n(W)$ and $i_*': H_n(\partial W) \longrightarrow H_n(W')$, respectively. Note that the following sequences are exact.

$$0 \longrightarrow H_{n}(W) \xrightarrow{\mathscr{G}} H_{n}(\partial W) \xrightarrow{i'_{*}} H_{n}(W') \longrightarrow 0$$

and

$$0 \longrightarrow H_{n}(W') \xrightarrow{\varphi} H_{n}(\partial W) \longrightarrow H_{n}(W) \longrightarrow 0.$$

If α_1 , ..., α_m is a basis of $H_n(K) \cong H_n(W)$ and we put $a'(\alpha_i) = \beta_i$, $\varphi(\alpha_i) = \overline{\alpha}_i$, and $\varphi(\beta_i) = \overline{\beta}_i$, $i = 1, \dots, m$, then we have that the intersection numbers in $\partial W < \alpha_i, \overline{\alpha}_j > = 0$, $<\overline{\beta}_i, \overline{\beta}_j > = 0$ and $<\overline{\alpha}_i, \overline{\beta}_j > = \delta_{ij}$ for $i, j = 1, \dots, m$, and the linking numbers in S $L(\alpha_i, \beta_i) = \delta_{ij}$, $i, j = 1, \dots, m$.

A splitting $s: H_n(W) \longrightarrow H_n(\partial W)$ of $i_*: H_n(\partial W) \longrightarrow H_n(W)$ will be called a <u>non-singular section</u>, if $i_*' \circ s: H_n(W) \longrightarrow H_n(W')$ is an isomorphism. Indeed, a section $s: H_n(W) \longrightarrow H_n(\partial W)$ has to be of a form

$$s(\alpha_i) = \overline{\alpha}_i + \sum_{j=1}^m a_{ij} \overline{\beta}_j$$

and hence $i'_* \circ s(\alpha_i) = \sum_{j=1}^m a_{ij} \beta_j$. Thus the correspondence $s \longmapsto (a_{ij})$ gives rise to a one to one correspondence of non-singular sections $H_n(W) \longrightarrow H_n(\partial W)$ with unimodular $m \times m$ matrices (a_{ij}) . As is found by Winkelnkemper [6] and also Tamura [4] for a non-singular section $s: H_n(W) \longrightarrow H_n(\partial W)$, there is a PL embedding $f': K^n \longrightarrow \partial W$, provided that $n \ge 3$, which is homotopic to $f: K \longrightarrow W$ and $f'_*(\alpha_i) = s(\alpha_i)$ in ∂W . Moreover, if F is a regular neighborhood of f'(K) in ∂W and $F' = \partial W$ -Int F, then (W; F, F') and (W'; F', F) are relative h-cobordisms, since $s(\alpha_1), \dots, s(\alpha_m)$ is a basis of $H_n(F)$ as a subgroup of $H_n(\partial W)$ and the inclusion maps induce isomorphisms

$$j_* : H_n(F) \cong H_n(W) ; j_*(s(\alpha_i)) = \alpha_i$$

and

$$j_*: H_n(F) \cong H_n(W'); \quad j_*'(s(\alpha_i)) = i_*' \circ s(\alpha_i) = \sum_{j=1}^m a_{ij} \beta_j$$
 and W, W', F, F' are 1-connected.

It follows that by the h-cobordism theorem, S^{2n+1} admits a

spinnable structure $\mathcal{J}_A = \{F, h, g\}$ for a given unimodular matrix $A = (a_{ij})$ such that

$$g(F \times [0, \frac{1}{2}]) = W$$
,
 $g(F \times [\frac{1}{2}, 1]) = W'$

and

$$g(x, \frac{1}{2})$$
 for all $x \in F$.

We would like to show that $\Gamma(\mathcal{S}_A) = A^t$. We have seen that $(\partial W \mid g_1)_*(\alpha_1) = s(\alpha_1) = \overline{\alpha}_1 + \sum_{j=1}^m a_{ij} \beta_j$. It follows from Proposition 2.2 that $\Gamma(\mathcal{S}_A) = A^t$. Therefore, for a given unimodular matrix A, \mathcal{S}_A is the required spinnable structure on S^{2n+1} , completing the proof.

§ 4. Proof of Theorem B.

The crux of the proof of Theorem B is due to J. Levine [2], who proved essentially the following:

<u>Proposition</u> 4.1 (Levine). Let $\mathcal{L} = \{ F, h, g \}$ and $\mathcal{L}' = \{ F', h', g' \}$ be spinnable structures on S^{2n+1} . Suppose that $n \ge 3$. Then two generators F_0 and F'_0 are ambient isotopic in S^{2n+2} if $\Gamma(\mathcal{L})$ and $\Gamma'(\mathcal{L}')$ are congruent.

<u>Proof.</u> By a suitable change of bases, we may assume that $\Gamma(\mathring{\mathcal{S}}) = \Gamma(\mathring{\mathcal{S}}')$. The rest of the proof is what Levine has done in his classification of simple knots (Lemma 3, [2], §14-§16, pp.191-192). His arguments work equally well in our case, completing the proof.

Thus we have a diffeomorphism $f: S^{2n+1} \longrightarrow S^{2n+1}$ such that $f(F_0) = F_0^1$, and f is diffeotopic to the identity. By opening out

the spinnable structure, we have a diffeomorphism $H: F \times [0, 1] \longrightarrow F' \times [0, 1]$ such that

H(x, 0) = (k(x), t) for all $(x, t) \in \partial F \times [0, 1]$

H(x, 0) = (k(x), 0) for all $x \in F$ and

 $H(x, 1) = (h'^{-1} \circ k \circ h(x), 1)$ for all $x \in F$,

where

 $(k(x), 0) = (g')^{-1}$, $f \circ g(x, 0)$ for all $x \in F$. This implies that $(k^{-1} \times id)$ $H : F \times [0, 1] \longrightarrow F \times [0, 1]$ is an pseudo-diffeotopy from id to $k^{-1} \circ j'^{-1}$ $k \circ h$ keeping ∂F fixed. Since $n \ge 3$, F and ∂F are 1-connected, it follows from Cerf [1] that the pseudo-diffeotopy is diffeotopic to a diffeotopy $G : F \times I \longrightarrow F \times I$ keeping $\partial (F \times I)$ fixed. This implies that f is diffeotopic to an isomorphism $(S^{2n+1}, \mathcal{S}) \longrightarrow (S^{2n+1}, \mathcal{S}')$ keeping F_0 fixed. Therefore, \mathcal{S} and \mathcal{S}' are isomorphic, completing the proof.

Remark. As is known from the proof, \mathcal{S} and \mathcal{S}' are isomorphic by an ambient diffeotopy.

References.

- [1] J. Cerf, La stratification naturelle des espaces de fonction différentiables réelles et théorème de la pseudo-isotopie (mimeographed).
- [2] J. Levine, An algebraic classification of some knots of codimension two, Comm. Math. Helv., 45 (1970), 185-198.
- [3] J. Levine, Polynomial invariants of knots of codimension two,
 Ann. of Math., <u>84</u> (1966), 537-554.

- [4] I. Tamura, Every odd dimensional homotopy sphere has a foliation of codimension one, Comm. Math. Helv., <u>47</u> (1972), 73-79.
- [5] I. Tamura, Spinnable structures on differentiable manifolds (to appear in Proc. Japan Acad.).
- [6] H. E. Winkelnkemper, Manifolds as open books (to appear).