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‘s . . . 2n+1
A classification of simple spinnable structures on § o

By Mitsuyoshi Kato '

§1. Introduction

Thé notion of a spinnable structure on a closed manifold has
been introduced by I. Tamura [5] and independently by Winkelnkémper
[6] (”open books" in his term), who obtained a necessary and suf-
ficient condition for existence of it on at least a simply connected
closed manifold.

The purpose of the paper is to classify "simple' spinnable
structures on an odd dimensional sphere 82n+1> in terms of their
Seifert matrices.

Definition. A closed manifold M is §Q§gggp£g; if there is a
compact manifold F, called generator, a diffeomorphism h : F —
F, called characteristic_diffeomorphism, such that h | 2F = id.,
and a diffeomorphism g : T(F, h) — M, where T(, h) 1is a
closed manifold obtained from- F K [0, 1] by identifying (x, 0)
with (h(x), 1) for all x €F and (x, t). with (x, t') for all
x € 3F and t, t' e [0, 1]. A triple .S ={F, h, g} will be
called a spinnable sfructure on M. A second spinnable structure
KB = {F', h', g'}] on M is isomorphic with .4, if‘ﬁhere is a
diffeomorphism f : M —* M such that f’o g(F %X t) =kg'(F'>< t)
for all te [0, 1]. A spiﬁnable structure 4 ='{F, h, g} on M
is simple if its generator is of the homotopy type of a finitg CW-

complex of dimension $ [QE%J&} .
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. . . . +
We are interested in simple spinnable structures on SZn 1.

In the case, a generator F 1is (n-1)-~connected and a characteristic
diffeomorphism h : F —> F induces an isomorphism h, : Hn(F, Z)
——ﬁ’Hn(F, Z) of the integral n-dimensional homology group of F,
which will be called the monodromy of the spinnable structure. 1In

§ 2, we shall define a Seifert matrix [(8) of a simple spinnable
structure & on S2n+1 so that it is unimodular and determines
the intersection matrik of F and the monodromy.

Theorem A. For a unimodular mXm matrix A, there is a
simple spinnable structure 3 on S2n+1 with [”(xg) = A, provided
that n 2 3.

Theorem B. If 8 and .8 are simple spinnable structures
on sl wien congruent Seifert matrices, then 4 and _&' are
isomorphic, provided that n 2 3.

These theorems imply that there is a one to one correspondence
82n+1

f isomorphism classes of simple spinnable structures on

with congruence classes of unimodular matrices via the Seifert matrix.
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§ 2. Seifert matrices of simple spinnable styuctures on . an Alexander

manifolds,

A ————

First of all we prove:
Proposition 2.1. If 4 =,{F, h, g} is a simple spinnable

structure on a closed orientable (2nt+l)-manifold M, then g ]F X t:

2n+l, then F

F X t —>*M 1is n-<connected, in particular, if M =§
is (n-1)~connected and hence is of the homotopy type of a bouquet of

n-spheres;
m n
Fa \/ S, .
. i
i=1

Egggf.' For the proof, putting Ft = g(FvX t), it suffiges to
show that (M, FO) is n-connected. We put W = g(F.x [0, ¥]) and
W' o= g(F x [%, 1]). Since J  is simple, it follows from the géneral
position that there is a PL embedding £ : K —> Int W' from an
n-dimernsional compact polyhedronf K into Int W' which is a homotopy
equivalence. Since BW"f 2W 1is a deformation fetract of W' -£(XK),
we have that
: 7Ci(M, FO? = Tti(M> W) = 7Ei(M, M-W'")
~ 'Tti(M, M- £(K))
=0 for i <% n,
completing the proof.
We shall call a closed orientable (2n+l§imanifold M is an AleXaAder

- 3’;
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manifold, if Hn(M) = Hn+l(M) = 0. By the Poincaré duality, then
Hn—1<M) is torsion free and hence if 2§ 1is a simple spinnable
structure on ‘M, then Hn-l(F) and Hn(F) are torsion free.
Then a bilinear form

¥ :H (F)®H (F) —2Z
is defined by

F(0® ) = Ligu(oXxt0), galodxt)),

where 0 & tg < y, ¥ < t1<' 1, and L(g , 72 ) stands for the
linking number of cycles § and 72 in M so that L(§ s IZ )
= intersection number < ,% > of chains A and 7} in M

for some A with ak=§ .

For a basis O(l, Ty,

a square matrix ( T( O(i ® 0<j)) = ( Uij) will be called a Seifert

o(m of a free abelian group Hn(F)’

matrix of .8 and denoted by 768D . It is a routine work to
make sure that the congruence class of [ () is invariant under
the isomorphism class of (M, .3 ).

We have an alternative expression of [ (,8) in terms of an
isomorphism

%, 1 ~ n 1 P N— '
B 04, W) & H (W, 0W) o2 B (W) == H (")

(e

a—l -1 Poincare dual dual space

a : Hn(w)

which will be called the Alexander isdmorphism.

We have homomorphisms

3" -1
P in s, 00

n
Pl
0

R

\ >
Ho.q W', 9W) =3 Hn(aw)

and
‘7°: Hn(W')_—’\z’ Hn+l(M’ W'y= Hn+l(w, oW) ——%HH(BW)

so that i,.‘,o‘]D =id. and ij e ¥} = id. and the following
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sequences are exact:

0 —>n (") Fou (3W) —BH_ ) —0 ,

0 — u (1) —rH (3W) —Bu W) —> 0,

where 1, Hn(aw) -—>Hn(w) and 1i! Hn(aw) ——~>Hn(W') are

%

homomorphisms induced from the inclusion maps. Let dl’ Tty
be a basis of Hn(W). Then, putting /3]._ = a(di), i=1, ¢+, m,
we have a basis ﬁl’ AR ﬂm of Hn(W'). By the definition of the

Alexander isomorphism, if we 'put ;i = ?(oLi) and P—i = 6}:'({5 ¥
i=1, ***, m, then we have that the intersection number in 3 W
_ | 0 for 1 # j,
<y Pj>=gij={1 for i = j.
Lvet & : F—>M be an embedding defined by ;
'gt(x) = g(x, t) for all x €F, t ¢ [0, 1].
' For a subspace X of M with g.(F) € X, we denote the range
restriction of g to X by X !gt : F —>X;
Xi gt(x) = gt(x) for all x g F.
We identify a basis oLy U7 o(m of Hn(W) with that of Hn(F)
via (W | g,’/s)* and a basis @1, --;, @m of Hn(w) with that of
Hn(F) via (W [ g%)*.
Again by the definition of the Alexander isomorphism, we have

that
L(di’ ﬁj)=gij for l,j=13 ...’m'

Since W ! 8, and W lgl =1°c(3aW ] g, ) are homotopic in W and

3 3 ) B .
W' g, and W'lg, =i'e (3W|g) are homotopic in W', it follows

3 2 2

that '(aW!gl)*(o(.) is of a form

2 1

m
oW = o. + S
e
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m m '
and hence that Ing &,) = 2. a,, B. = 2. a..a(k,).
Therefore, we have that Kij = L((g%)# di’ (g%)# dj) =
L( o s L,ajkﬁ3k) = aji for i, j =1, -+, m. Thus we conclude
as follows: .
(Wigé)*
Proposition 2.2. For a basis oGy T (xm of Hn(F) = Hn(W),

the following (1), (2) and (3) are equivalent.

m
(1) (W | g (e) = &+ L a,

e

B. ,

j=1 3
-1 m
@ a7 @' gpioy) - ERLS

and

(3 [F = (ay))

In particular, the Seifert matrix [  is unimodular.

Now we determine algebraic structures of simple spinnable struc-
tures on an Alexander manifold.

Theorem 2.3. Let 2 = {F, h, g} be a simple spinnable structure
on an Alexander manifold M2n+l.

(1) The intersection matrix I = I(F) of F and the Seifert
matrix f”=l—’(xg) of i are related in a formula:

1=+ (-1,

where [7§ is the transposed matrix of [_7.

(2) ‘The n-th monodromy h, : Hn(F) -——?HH(F) is given by a
formula:

h, = (_1)n+1[~t-fw~1 ,

or

Rroof. For the proof of (1), we follow Levine [3], p.542. We
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take chains d = gu( Oy X {%—, %—]), e and e, in M such that
- 2y 1y . -
?d = g.( o % 3) g4 o X 3) = (ggz_)# ( O‘i) (gé)# ( o(i),

and

9e, = (g%)ﬁ(ai)-
Since d%—e1+-e2 is a cycle, we have that
o =<d+el+ezy (g’%_)#(O(J)')
=<d, (g%z* ( o(j)>' +<eq, (g%)#’( dj)> +<ey, (g%)#. ( o<j)>
= <oy 2 2H (DL (gg)p (), (gl i)+ Ll(agy()s (g )px,)
Since

+1, ‘ '
L((ag) Cop)s (g, (8 = (DT LU (o), (2 ( &)

_ ,_y0Fl :
= (-1) b‘(o(j@)o(i)
and
v (g A =

L(la (aip)s (8 () = TCoy @ oty

we have that
- 1= P+ (_1)nrt s

completing the proof of (1). To prove (2), we take chains d =
g%( o X [0, D), e, and e in M so that 3d =»gl#(o<'i) -8l )
deq = go#(o(i) and e, = -gl#(o(i) = -go#(h*(o(i)). Since
d%—eoﬁ-el is an (nt+l)-cycle in M, we have that

0 = <dteyte,, (g%)#(o(j»

- Cdy (g (ot * Cegy (g, (X +<Cepy () Cat))>

Il

<Ay oZJ;> + L(ggaloty), (g;,é)#(ozj))% (-l)L(gO#(h*(O(i)),(g%)#(o(j] .
Colps otyy* TCEA-RY(X) o)

[}

-

and hence that
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-1 =(-h)[,
where E 1is the identity matrix (gij)' Therefore, by making use

of (1), we have that

1- 7t
-F + (_l)rﬂ'lrtr‘l ,

it

(hv‘: - E)

or
.h* - (_1)n+11_,tr-1 ’ '

completing the proof.

§ 3. Proof of Theorem A.

Suppose that we are given an m X m unimodular matrix A = (aij).
~ , ' m
Let K denote a bouquet of m n-dimensional spheres; K = \/ sl.
i=1 *
. 2ntl

We have a PL embedding £ : K — S . Let W be a smooth regular
neighborhood of £(K) in S 1 =S and W' =8 -Int W. We denote
the Alexander isomorphism

B_W) ¥H'(S-Int W) = H (W') = Hom(H (W')) ¥ H (W')
by a : Hn(W‘) ';Hn(w‘). Thus we have that W, W' and 9W are
(n-1) -connected, and there are splittings

Y H, W)

«7o' © H_(W) TH (G, Ww') xH_ W, W) — H_(oW)

n

. N el _ ' _
of i, : Hn(aW)k Hn(W) and i : Hn(aW) Hn(W ),’ respec
tively. Note that the following sequences are exact.
il
0o —H W) Lou_(aw) —HH M) — 0

and

0 —H_(") i-mn'(aw) — H_(W) = 0.
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. o« s 4 2 ~ . '
If Oy » X is a basis of Hn(K) = Hn(W) and we put a'(x i)
= ﬁi’ (70(0(1> = O(i, and Y( ﬂi) = /@i’ i = vl’ s+, m, theﬂ we
have that the intersection numbers in OW o, K> =0,

</31’ f”j7=o and <di’ ﬁj)= ‘Sij forvl’j"’ls ‘v, m, and

the linking numbers in S L(&,, ﬁj) = 513" ‘,i, jo=1, "°°,
A splitting s : Hn(W) -———->Hn( OW) of i, : Hn(aW) —9Hn(w)

will be called a non-singular section, if ijeos : Hn(W) ——?HH(W‘)

is an isomorphism. Indeed, a section s : Hn(w) —-—)Hn(SW) has

to be of a form
m

= -+ Ie)
s(ofy) = o % 315 Bj
j=1
m .

. 3 ! - . 5 B
and hence i} s( oli) .Z__flaij Bj' Thus the correspondence s +— (aij)
gives rise to a one to one correspondence of non-singular sections
Hn(W) — Hn( oW) with unimodular m X m matrices <aij) . As is
found by Winkelnkemper [6] and also Tamura [4] for a non-singular
section s : Hn(W) ——?Hn(aw), there is a PL embedding f£'

K — 3 W, provided that n 2 3, which is homotopic to £ :
K—W ahd f;c(O(i) = s(o(i) in® 9W. Moreover, if F is a
regular neighborhood of £'(K) in OW and F' = 2W-Int F, then
W; F, F') and (W'; F', F) are relative h-cobordisms, since
s(o(l), LN s(o(m) is a basis of Hn(F) as a subgroup of Hn(aW)

and the inclusion maps induce isomorphisms

Je 2 HyF) TH W) 5 Gy (s(ex)) = o4

and
; o
. . —“~ ry ., P = 41! . =
Jy P B E) TH W5 3 (s(X))) = djes(a,) ji as; B
and W, W', F, F' are l-connected. l
- . ' 2n+1l .
It follows that by the h-cobordism theorem, § admits a

-9 -



152

spinnable structure M= {F, h, g} for a given unimodular matrix

A
A = (a,.) such that

1]
g(F X [0, %¥]) =W,
g(F X [%, 1]) =W’
and ' g(x, %) for all x & F.

We would like to show that ['()XA) = At. We have seen that

m

(W] 815)*(0(]-_) = s( O(i) = O(i + ; It follows from Prop-

laij»‘gj'

osition 2.2 that fﬁ(JJA) = AC. Therefore, for a given unimodular
matrix A, gy c is the required spinnable structure on 52n+1,

‘ A
completing the proof.

§ 4. Proof of Theorem B.

The crux of the proof of Theorem B is due to J. Levine [2], who
proved essentially the following:

Proposition 4.1 (Levine). Let BL=1F, h, g} and g o=

{F', n', g'l Dbe spinnable strcutures on Szn+l. Suppose that n 2 3.

S2n+2

Then two generators FO and Fé are ambient isotopic in

[T(8) and r% 8') are congruent.

if

Proof. By a suitable change of bases, we may assume that
["()3) = [‘(*5'). The rest of the proof is what Levine has done in
his classification of simple knots (Lemma 3, [2], §14- §16, pp.191-

192). His arguments work equally well in our case, completing the

proof.
Thus we have a diffeomorphism £ : 82n+1 — S2n+l such that
(FO) = Fd , and £ 1is diffeotopic to the identity. By opening
out

- 1C -
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the spinnable structure, we have a diffeomorphism H : F X [0, 1] —>

F'X [0, 1]  such that

H(x, 0) = (k(x), t) for all (x, t) € 3F x [0, 1]
H(x, 0) = (k(x), 0) for all x€ F énd
H(x, 1) = (8' % keh(x), 1) for all x& F,
where -
(k(x), 0) = (g% Eog(x, 0) for all xe F .
Thié implies that (k-1>< idj H:FXJ[0, 1] —FX [0, 1] 1is an

pseudo-diffeotopy from id to k-lo j'-} ke h keeping ©oF f£fixed.

Since n 23, F and OF are l;connected,'it follows from Cerf [1]
that the pseudo-diffeotopy is diffeotopic to a diffeotbpy G‘: FXI
—> F X I keeping 3(F X I) fixed. This implies that £ is dif-
fgotopic to an isomorphism (82n+1’ L)y — (82n+1, 8') keeping Fb
“fixed. Therefore, & and &' are isomorphic,‘completing the
proof.

Remark. As is known from the proof, 8§ and ' are iso-

morphic by an ambient diffeotopy.
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