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$2. Fundamental equations

The wave propagation on water of uniform depth h, is governed

by the Laplace equation

s o, .
AE S»(%:f'gj;‘?)i’zo) (2.1)

, .
for the velocity potential E(I, 5/7‘,") subject to the boundary conditions

Q# = 0 Lo

(Lt ;:;~'P (2.2)

——

Py =7+ %, 7x

Nl

a 4 =7 {2) (2.3
and

2,+71+ 50" =0 al §=20nt)@.8

or — — 2 / 2 2 ) )
Pu t78yr [52txWP V=0 al [ =70g 2.
-after elimination of 7 (i, t) .

Here, y = 0 is the unperturbed and y ="2 (x,t) the perturbed surface,

g the gravity and the velocity YV is derived from & as
Vv =rvz (2.5)
Let us introduce the operators € ard P;

e=i2  ad p=-iZ (2.6)

Then, the solution of (2.1) satisfying the boundary condition (2.2) is

given in operational form as ¥ollows:

F = coshlif P 4= NIRRT N A.
¢ = izih 5“’70 56(11 f:)]——{iﬁ?’fu# P+ Z b2 P?_fo(g?,)}[fj)(z 7)

where

T'——‘- fﬁ?t‘ ko,}))

(2.8)

>
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and f (x, t) is the value of & at y = 0.
Introducing (2.6) into (2.4a) and (2.4), and retaining quantities
. whieh are

upto the third order terms in % and 527155555;d to be proportianal

to a small parameter§, we have , : ) )
LIf1= (€7-2pD)F] = 7451 - F1LLPA] (2,9)
- +o(e@-2166) T HHo(E%),

where

(2.10)
N = 77’3"57’?7
Q= (';f)a-— (?T)‘)a} ) | . @ay
¢ = (p5) (pzh) ~2(P'TT), (2.12)

H _ Gp){ (b B = (P2 FIEEIf + (F7f)G 219

and

99 =i1€f — '?L(Ef)(éf’ff) e 0(53?, (2.14)

§3. Perturbation scheme
In order to investigate uniformly valid perturbation solutions
of (2.9) and (2.14 it is convenient to introduce variables of

multiple scales

+, t=ct, T=ET, -

X, X,=EX, (3.2)

andtexpand # and 7 in series of the form



(8]
mon
[}

jﬁ. = 2 E’Lfn (7(,75,,‘7‘5,7:// ’D))
=/ , o (3.3)

’2:: g 771 (XI ;. t, f'/ ’C). (3.4)

n=]

Introducing (3.1) - (3.4) into (2,9) and (2.14') and equating like

powers of £ , we find

LTf1=70, (3.5)
LIf]= <L 0AI+ 2, ATHT ¢ ELlpry-( r4)'] ) (3.6)

LIF] = —L, 0£1=LTAI+ LANLAT + AT
o (3.7)

+2, 9, NTfI-22,66p20£7+6Q° .
/

T 20 E[(PF)FR) ~(PEFIPTFIFPEIA ) ~(#2F ) PT) f1]

t /’/ ~;2,,' ?I 667.“} | o

and |
27, =i c—f,) (3.8)
F7,= 1 €f - (”7""(57‘;)/7’27‘/)% ELQ, 3.9)
where |
o 5%" 6,::5’%) P 33?7, (3.10)

. / )
Li=Le €+ LP =266, -(3pr)' 7, G1D

- | . //. 2 /
Ly= e & f:gf/‘ ?séfﬁf :5/'[1 A+ [Jeea’?,‘) 3.12)

hY

= 2¢¢6 + £°— ;’(??I)uﬁ‘/
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and the prime denotes the derivative with respect to ?

If we let Z and Z denote
Z = QXP[ (’ﬁol"‘ “_)ot) ’ (3.13)
and its complex conjugate ( C. C. ), we have

P(6,p)I2™] = P(nwe,nfs)Z", (3.14)

and

Ple,7) [Z"] = Plnwe,-nk)Z (3.15)

Then, the solution of (3.5) for a progressive wave is given by

f,= Yz +¥21t P, (3.16)
provided that the dispersion felation
. -1
Ll(wo,‘%o) = 0 , 2. €. wa(£0)= ?fc 0\.«) (3.17)

with ) :
o~ =Tank £, %, (3.18)

J ,
is satisfied, where Vand Sﬂare functions of slow variables X, , T,
and T , - Jand #o and @, are respectively the wave number and
the frequency of infinitesimal wave.

From (3116) and (3.8) we have

¢, = (o (¥z~ ¢.C.),

(3.19)

Introduction of (3.16) and (3.19) into (3.6) gives

LTHI=-2L.0AT T 5iah) (1= 0 )(FZ00X3.20



which yields a uniformly valid solution

. ¢ : )
: 3:.“-«0») 12 _ 2

£, = ) By zte 0 C (3.21)
provided that the secular term

’? .
- : kit 3.22
L, [¥z]= bel2] (at, t 7‘32')99 3.22)
. 5 5
=2 Wo Z (gﬁfVﬁ)yj
and its C. C. vanish everywhere, where

‘V'( 16,):: -‘Aﬁo[w« BoYf Lol B)= @) e) (3.23)
=z Co{dt (1m0 £, Ko/},

and
' 4 (3.24)

are respectively the group and phase velocity'for infinitesimal wave,
and the secular term [/, rel 1s found to be zero. This condition
gives
)p(;i z) (3.25)
P .
where the variable
£ =x,-7¥%,

shows that the slow modulation of ‘the wave due to weak non—llnearity

(3.26)

is propagated approximately with- the group velocity V.

Introduc1ng (3. 16), (3. 21) and (3 17) w1th (3.28) into (3.9) we have

JI[/Z + 'V}/’;Z, rec (3.27)
— (= e?) BYF - 28l |

where ‘ .
L = __;aL(oé—j')ﬁ:/a;‘, (3.28)

X)

The choice of the order of the coordinate stretchlng such as . (3, 25),

also ,
and (3 26) ) is uniquely determined L by taking intc account the balance

between the dlqpersion and nonlinear effect”4o
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$ b, Non-linear Schrodinger equation
In order to find the equation governing ¥’( £, T Yy in § 3
we must proceed to the third order equation (3.7) and impose the conditiop
that the right hand side contains no secular terms zZ Z° and é; .
After straightforward aigebra and making use of the fofmulae‘ |

: /4 - ’
GrT)rze = {olE L, = 20h,,
| | L)

T Low,t Vhwnioy ¥ 2Tl + Lt =0 .

J

we have from the coefficient of >°

P 52 ‘; _ aype -
- Az [?] = g}—;“ - Z{o 'a;;l) 90 - {za)”"ﬁ"f(" m)épvf([//ﬁél‘-z)‘

and from that of Z  {and z )

~z7 L. [Y¥z] :.: -2")0(;%(? t ;’ 7‘77&;5)

;pwoﬁa? G, —(—0 DB} ot ] P (4.3)

2 2 - »_;:41_‘
+ -0 + ;—;’;: (?f/oaf + 90 ] ’*"roy%.

Equation . (4.2) is integrated on the assumption that fb is
' : horizontal
a function of f and 7 and yieldsthe induced current due to’ nonlinear

interaction :

. 2 ’ S 2 ‘
?; = [2w,B.+ (1—2) ﬁ:?] %%/ (V’f{o,).(4.4)

Introducing'(4.4) into (4.3) and rearranging we obtain

A I ; s

o
2 2T -
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where

p Z - _o Py 2 £ R (1-0Y]
= LT = LWl (B = - i te #4091 5 ’

'and

—bs 1
l)=?“—%olyf;‘¢7'£a

f4c +4(2-5) &V +1£.0~0Tf
(4.7)

o (1= rootr 700 ],

As is seen from (4.6), M takes always'negativé sign, whereasﬁ}’changes
its sign from negative to positive across 4%,=/763 as 4L, decreases. -
It should be noted that - )/ is essentially identical with X(k) defined.
bi the equation (30) in Benjamin's pape;r) . An equation of this type,
which may be called a nonlinear Schrddinger equation, has already been

' g—13)

obtained for various problemsi. .f A generalized equation, in

which. . both /AL and ')» are complex, has also been obtained by Stewértsén

18)

and Stuart in the study of the nonlinear instability of plane
Poiseuille flow.

If, instead of the complex amplitude 9” (#,T) , we use the pair

of real functions A4 and J& defined by :
Y= Aerp 35 fnds] @

then we obtain the following set of equations :

2A° 5 0y — o0 (4.9)
2z 1 ET] (A ) 9

2L 2R A 2D 124 4.10
= TR WS 2 5}(/4 T 50)( 0)
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which reduces, in the limit of £, fo — oo , to the set of -
equations of the form adopted by Chu and Meiv).

The elevation 7 1is determined in terms of y’ from.(3.19) s

(3.27) and (4.4) as

P =i Y2 +e* (VB Z+ LY 2 wan
+ e*ry ?7, |

"~ where (4.12)
/ { P e yaa ‘
;= 2B, + (1~ o) JA. 4 f
VN‘?ﬁD -
§5. Several solutions of the nonlinear Schrodinger equation ° (4.§)

5 - 1 Nonlinear plane wave solution

It is known that (4.5) has the following solution representing a

nonlinear plane wave :

¥= % ‘€X/° {2(xT ~x;)j) | (5.1)

where

Let us now consider the meaning of this solution in the original
physical var%les. In particular, if we set 3¢ =0 and %'5;-a¢;wg»

@ being a real constant, then the perturbed surface given by (4.11)

takes the following form : ' ' *

/0




bt
LA ]
. 3

7=¢cacoss + L(ea/ohe) (F-1s co:zg))(s.B)

here - .
i ;- 2.7 - (CUa - E\;o,(o) t ,.""';ﬁ.';"(b: ,4’.- y}‘a}/a)::(S.‘l)
‘This is nothing but the Stokes wave train to the second order approxi-
pation. Here, it skuld be noted that @ = W, — £ &, is the
nonlinear dispersion relation for Stokes wave including the effect of
the mean horizontal current. It is-also to be noted that the dispersion
term in (4.5) plays no essential role in thi; solufion because ¥ = 0.
5 - 2 Equilibrium solution

In addition to the plane wave solution described above, eq. (4.5)

has aégthef type of solution in terms of the Jacobian elliptig funciiag,
exhibiting the‘dynamical balance between nonlinéar and dispersioh'effeCts,

which we call equilibrium solution :

y/ = A(£) e,xlb({o( ’C')) (5.5)

where

*) (5.6)
ol is constant and A s vedl

a) In the case of /(I/7O .

A5 = Ao dn At E, A} (5.7)
’ J
with the modulus . )

< .
A =2 —zx/(vA), (5.8)

t_:o be /‘
In the special case of 4 =7 we have eq. (6.8) mentioned in § 6.

b) In the case of AP <o |

74
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AlE) = o s (=Fyfu) S As¥fd, A} (5.9)

with the modulus ‘
2 2y

AT = A°/(Z“/V - #o), (5.10)

In. the special case of 2! =47 , we have
4, ,lp,[( Jo(/)-’ti} (5.11)
As) =(otfp)” Tamn | (- zetx) " = ) :

&hich describes the propagation ofaphase jump.
%) If a complex form of ,4 is-permitted, we obtain an

equilibrium solution of slightly generalized type. For the aim of

later discussions, however, this simple choice may be sufficient,

[2
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f6. Stability of the Stokes wave (5.3)
The stability of the Stokes wave has been investigated

=3) both analytically and experimentally. We

by sereral authors1
shall show that the time evolution of the unstable modes may be
regarded as a special case of the general modulation‘processeé des~
cribed by .5

In order to reproduce the Stokes wave, let us set o=, kK= 0

and ¥, =;€Z/{z£wa)in . . (571). Then we consider a disturbed Stokes wave

given by
A D ERE A A
Y= (tEF)expi(tT+E8), (6.1)

A

where }9 and 4 are assumed to be real functions representing the
. A 2 . A

disturbance, ' § being a small parameter. Substituting the above

expression into (4.5} and linearizing'it with respect to 2? ,, we have
A : A
Po +p 18]l 64y =0, 6.2

~ : . A YN N
Oc —22IHlY - p Fry =0. (6.3)
Since these equations form a set of linear differential equations

with constant coefficients, we can assume a solution of the form :

-~
/\ R
A)= A )€ + C. C. (6.4)
v &, y
- Pl

where ¥, and £, are constant, From the condition that (6.2) have a

non-trivial solution, we obtain the dispersion relation :

2 PN A Az
) = pE (# "“"/%I//‘), (6.5)

/3
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~ .
which shows that , if /az/<fo s t 1s always real for arbitrary
~

values of £  so that the Stokes wave given by (5.3) is neutrally
stable., On the other hand, if MYZD ,23 becomes imaginary for

A A ,

2 < Vargx | b (6.6)

<

Hence the disturbance will grow ékponentially. In this sense, the
Stokes wave given by (5.3) is unstable against the above modulational

disturbance, and the maximum growth rate, say Smzr, is givén by
. R . . A
Jmee = 1V E| g " B SN0 (6.7)

Remembering the discussion concerning the signs of A and v
~given in § 4, we may conclude that these results reproduce those
3)

obtained by BenjaminS) and Whitham . In the present theory, returning

to the original nonlinear Schrddinger equation (4.5), we can inves-

tigéte‘ further time evplution of such unstablé modes even to the stage’
when the linear theory fails to be valid. For example, when 4 = 1
the equilibrium solution (5.7) degenerates into a solitary modulational

wave 'propagating with the group velocity :
Az =(2ew)® sech{(«f)> S 6B

v RS .
which has the width [{(/xZ). This width, when « = X; , agrees
with the wave length of the unstable mode with maximum growth rate,

fact ,
This leads us to a conjecture that the modulation of the Stokes wave is

eventually deformed into the solitary wave described by (6.8). Imn fact,
the numerical calculations carried out by Chu and Mei7) Karpman and

9) .. 16) ;
Kruskhal and by Yajima and Outi ', strongly support this conjecture.

/4
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§7, The nonlinear Schrodinger equation (4.5) in the shallow-
water limit
In order to show a wide applicability of eq. (4.5), we shall
discuss the equationm in the shallow-water limit. In the 1imit’ of
’ﬁ,ﬁc -» 0 with ﬁo kept to be of the order of unity, the coefficients

/a and ) in eq. (4.5) become, respectively, as follows :

L 2

Lo,z 9 p -2
Ha=m - £ T RRS v 22 CTRET, gy

wheve
3 (7.2)
Co = (ﬁ{o),
' J
whence the nonlinear plane wave given by (5.3) assumes the following
’fo‘rm ;-or ’ €<;('£,ﬁu)’<< 1
B 3 3,2 —.!{-J . f7'3) -
V= &aqcosly—5 EAE o (_1_-C0,$2§A)ﬂ;{53)
where
A’- ; (704)
(f= RoX - (Wor X)L |

On the other hand, as is well known, the shallow-water waves

are governed by the Korteweg~de Vries equation n :

27 27 3 Lo, 31  f. 21 _, )
%’E’TC@;;“';LU?I+‘ ox? T 7 (7.3)

which has the steady periodic solution called cnoidal wave :°

Ay

9 = ¢aff, + 247 dn (e T H1.6)
. L . s

where

TV =C 1+t 25171 33/;*:—;)}]) (7.7)

and the meah depth, say" ;Z » 1is given by

7 = gcz["z.,+.z,d":‘3/ﬁf]’ @

I5
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where ,ﬁ( , E 2 - and,d are respectively, the first and the second

kind of complete iptegralsand their modulus. pytting
-— 3 2z 2p 2
pr= 2éan (s RK)ama T =- Ferallhs ﬁg)) (7.9)
o N .

and expanding - (7.8) for small values of 4 , we have - . (7.3).
Thus we find that the nonliﬁear piane wave solution corresponds to”
the weak cnoidal wavé in the shallow-water limit. We note here that
we can obtain the nonlinear Schrodinger equation (4.5) with & =44
and ) =), directly from the Korteweg-de Vries equation (7.5) by
the same procedure adopted in "pgeQious sections. Similar pro-

12)

" cedure was also adopted by Tappert and Varma ° in the study of heat ‘b

pulses in solids.iAccording to the criterion of the stability dis-

cussed in § 6 , we may conclude that the weak enoidal wave is modula- ’:3
tas shown numerically by Zgbusky and Kruskal>

tionally stable against the small disturbance, betause i, ;;,Afa

For the complementary case to the weak cnoidal wave considered here ,

Jeffrey and Kakutaniw) showed, by the conventionalAstability theory,

that the solitary wave solution of the Korteweg~de Vries equation is

neutarlly stable, Berezin and Karpmaﬁﬂa also investigated an asymptotic'

behaviour of the cnoidal wave for arbitrary values of the modulus _J

by starting from a formulation due to Whitham who did not take a disr'

persion term ( the last term in eq. (A.lOX)into account as was remarked

in §1,
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Appendix A, Fourier series expansion

By use of the stretched coordinates £ = ¢ (x-¥%¢)and T = &*¢
19

ot

introduced by Taniuti and Yajima ~, we expand & and ’z into series

of the form

Fnye)= 53 ¢V (232 z™ .
nzy M=-7n

v 2, m mn ~

7(7/t) = ,%’"Z_:_”7( )(f Z)Z . (4.2)

where
<o (n, M) (#,%) (A.3)
¢("Z ) %(ﬂ,»m) and 7 7
since £ and 7 are real.
a
Substituting (A.2) (A.3) into (2.1) - (Z.Xand separating
different order of § and harmonics, we have a set of ordinary linear

differential equations for @r™>  and VA

¢7{” »t) ;ﬁa ?{ﬂl (75/7"/(; y L) on - s}gb(A.lﬁ)

4,;(7,,,.‘) — 0 it - f, a5

sb#{n,w)_ri'mwo oz(ﬂ,:n}: B(n w)(f, f) at 7; c (A.6)
and '
‘_‘,mwa(P[’)t%).‘. ?Z(«m)__ C(x,on)(;q;) at Z‘_D (A.7)
o kuZ/L JVTMM&’W/‘}( 1 ’ )
3 ¢(1l ‘k) 1 (F"l:’m) }8(1' z”t_ a) é"' a‘r g:o (A 8)

(7, %) n -2
B and ¢ (™)

- o " n/
"2 contain the lower order. :qé?f{ities

where A (™ ,
with respect to n, (their explicit forms are given in Appendix B) and
we have replaced the boundary conditions (2.3) and (2.4) at

4= 7(xt) by those at 74 =© Dby use of powers series in 7 :

/8
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_ o N PME 275 '
- ?t_—__- —IVZ:/’V <57-;;7 - ?!m_/azayl'&) (2.34)

and .
(2.44)

- ~ L4 I4 _ » M- ?ﬂ'ﬁf 2 Mt 5 ;v»»wh-
§tt‘f‘??} ::—ﬁ% %[%(%tt+7£;)-;/%o{(z,)(%ffﬁ PLAL S st 1 f]

;}Hﬂ 3} N‘-M{-[

We can integrate the above system of equation (A.4) - (A.7) with
respect to ; and obtain the following integrals ;

fo.r m=0A:

o 3 for -h, < y=o0 (A.9)
= [ AT dy e /
vz(x,o):: __3/_, C(ﬂ;’) a't y =\0) (A.].O)
and o .
B(n 1) ‘P (""’)_._‘)f A(ﬂ")dg = 0‘) » » (A.11)
~Ko
for m ¥ 0 : b
4 ("”., o d -— C»vn A (‘n,'/ﬂ)’g”‘ d .
¢('n,m)= C," 1//(4!;‘”‘) __.,? (S’"‘j C f [{0 - ;{)
, : for _;h < v = O} (A.12)
(12 (™ : :
?qzlzm):;fm WY + C , at y=0, (A.13)
and ‘
('ﬁo Some — Mo sz./?){ v,l’hh) _._.f (‘n,'m\ cl;)‘f’ (_ﬁ Cmn 77w7 Swa/f)"“jA(m rv(;l
‘{c
(’":7")
= B(ﬂ,w)_;m!b’o /;‘ at ¥ = 0} (A.l4)‘ ‘
where

C'm (7): (osl’m‘ﬁo(yfﬁc)) 5«:((7)‘ S/'”;V’ﬂﬁf' {yfgp)}

Como = c,,,,,[D) ) ,S..,,,Q = 54,,(6) C
’ 7 (A.15)

#?
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and \/J(%’m" is a function of £ and T alone, Thus we can express
CP(?‘)"") and 7”””) in terms of Z/“ﬂ')s’f for (n, m) = (1,0),

1,1), (2,00, (2, l) and (2,2) :

P = cos kB LIF 20/c, P07 = ,5,14/1
.4){;,0 =0, 4; (2,;');_ ) ﬂz 9@ , 7;(1 Q—,l}/cosklﬁ (1+E S (A.16)

742=0, ?’Z""}=i‘¢’o‘ﬁ gH=? =y "p/ ?7""’—7% ?7” v_ ,/,z _

/ B

Tk il

with L :
8, = 7‘(a~~l)£:~——2wo£o .
!

Fro-V 7

_ ,3,,_ '{’ﬁo (?‘f“f,)'[}zﬂ[iﬁo ;fﬁo) 'ﬁ /ho“} (A 17)

,—u————""’_"—_

- Jﬁf ~Cao sp50-0)
bs= T 5 AW &

where o = tanh’ $.%o »C= cosh /ﬁo_f,’, , S = sinh ’EQ'A’,,

C., = cosh zﬁo’ﬁo , and ) and f,' are respectively given by (4.12) -

and (3.28).

These results are found to be in accordance with (4.11), (3.16),

(3.21) and (4.4).

On the other hand, the consistency condition (A.8) for (n, m) =

(3.1) gives the same -equation for }P as (4.5)

'ali +/‘~l + oI =0, a)

fL

20



_Appendix B. Explicit forms of A[R"m}, B™*™and Cm"’m’)
- Explicit forms of /f?”’ e R 5{""’”} and C(ﬂ’ ™) appeared in Appen:'
dix ‘A are cbtain_ed' from (2.1) - (2.4a) and (A.1) - (2.4A) as follows :

A(mw}_ o) m,;, <74("7-/,%1 Q}g;(w-zﬂ”? B .1

(B(M/ 3‘1) (’)7—'2,411) 7 (M~1,m

S e
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where the bracket < D m denotes the coefficient of the m-th

harmonics with n-th order with respect to £ , e.g.,

2

<4¢1” ﬁ (n:bm’)gg\(z:m) =5 >, "Sb” ”j)?SM/ m")

RERER W
The consistency conditions (A.ll) and (A.14) for (n, m) = (1,0)
and (2,0) are trivially satisfied as easilly seen from ( B » 1)
\(B e 3) . Those for (n, m) = (1,1) and (2,1) lead to dispersion relatj_on
(3.17) and the reasonable foundation to take e ‘, as the group veloclty,
Whereas those for (n, m) = (3,0) and (2,2) determine fi‘:’”and 75[2’2) in
terms of ’/’ « The condition for (n, m) = (3,1) requires that 171/

is governed by the nonlinear Schrédinger equation (ad9).
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