POLAR DECOMPOSITION FOR ISOMORPHISMS OF C*-ALGEBRAS

Takateru Okayasu (Col. Gen. Educ., Tohoku Univ.)

We say that an automorphism ρ of a C*-algebra is positive if it is self-adjoint, that is, ρ * = ρ and its spectrum is contained in the positive half axis, where the adjoint isomorphism ρ * of an isomorphism ρ of a C*-algebra A onto another B means an isomorphism of B onto A defined by the relation

$$\rho (y)^* = \rho^{-1}(y^*)$$

for y \in B. Several facts which assure the propriety of these terms we are met by are referred to [2].

It was proved in [2] (See also [1]) that if A and B are C*-algebras, the former has property (D) and if [] is an isomorphism of A onto B, then there are a *-isomorphism [] of A onto B and a positive automorphism [] of A, in the unique way, which satisfy the relation

topology, where that a C*-algebra A has property (D) means that any derivation of A is inner.

The main purpose of this note is to report that in the above statement a part of the assumption "A has property (D)" can be taken off, leaving the conclusion invariant:

Polar decomposition theorem for isomorphisms of C*-algebras. Let A and B be C*-algebras, ρ an isomorphism of A onto B. Then, there are a *-isomorphism () of A onto B and a positive automorphism () of A, in the unique way, which satisfy the relation

We will only point out here a key to reduce this theorem to the preceding statement. It is so simple and fundamental.

Lemma. If the spectrum of a bounded linear operator ζ on a Banach space X is simply connected and if a closed subspace Y of X is invariant under ζ , then the spectrum of the restriction of ζ on Y is contained in the spectrum of ζ .

Thus, we know that if the restriction of a positive automorphism of a C*-algebra B on a sub-C*-algebra A of B becomes an automorphism of A, then it is also positive.

Positive automorphisms are so significant that we can prove the following theorems on them.

Theorem. Let A be a sub-C*-algebra which has property (D) of a C*-algebra B with identity. An automorphism $\[\]$ of A is positive if and only if there is a regular positive element h in B such that $\[\]$ is the restriction on A of the automorphism Adh of B defined by the formula

$$Adh(x) = hxh^{-1}$$

for x (B.

Theorem. Let A be a C*-algebra, $\overline{\Phi}$ a faithful *-representation of A. An automorphism ρ of A is positive if and only if there is a positive automorphism $\overline{\rho}$ of the von Neumann algebra $\overline{\Phi}(A)$ generated by $\overline{\Phi}(A)$ which satisfies the relation

Detailed arguments on this subject shall be published somewhere.

REFERENCES

- [1]. T. Okayasu, A structure theorem of automorphisms of von Neumann algebras, Tôhoku Math. Journ. 20(1968), 199-206.
- [2]. 图本隆照,C*-代教9同型字图(1-7117),教研講究 第166(1972), 8-17.