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Introduction

The present work is concerned with some geucral analysis
of type II von Neumann algebras. It 1s Kknown that typc Il
von Ncumann algebras appear in connection with caullibrium
states of statistical mechanics as weill as algebras ol local

o

observables. Type II von Neumann algebras are distinguished
from other types of von Neumann algebras by the property
that it does not have a trace and have becn considered patho-

logical by mathematicians at the beginning.

inds

s

Works in the past year or so indicates that one
something which can replace the role of tracc cven in tvpe
II von Neumann algebras. A very becautiful structure thecorem
for type I algebra was reported on by Takesaki [10), [11].
The thecorem says that any type IOI algebra can be bullt on a
semi-finite algebra which has a trace.

In the present work, you will again scec scme structure

{or a general von Neumann algebra which replaces the role o

2]

trace and as an example of its conscqguence we shall write down

a oaeneralization of some incqualitics in statistical mechanics,

Y
o

I

which contain trace in its ususl form.
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€72, ‘Tomita-Takesaki Theory

For the sake of non-specilalist, we begin with an
introductory account of famous Tomita-Takesaki theory [9]:
It deals with a von Neumann‘algebra M on a Hilbert space
J with a cyclic and separating vector VY. (¥ 1is cyclic
if MY 1s dense in }{ and ¥ 1is separating 1f non-zero
X in M ncever annihilates V¥.) Since any type II von
Neumann algebra on a” separable Hilbert space has (many)
cyclic and scparating vectors in that Hilbert space, this
dcals with quitc a general situation.

Notation: ¢(x) = (¥, x¥) for xeM.

The basic operators in this theory are S, , & and

J? defined in the following manner:

(z.1) Sw(xv) = xX*Y | X € M.

This equation defines an antilinear operator SW , which can
be shown to be closable. The polar decomposition of its
closure S, given by

1/2

(2.2) v

<

= J\I/A

defines A and J, . More explicitly

~
S8]

.3) Ay, =S

(2.4) J.o= (Soatt 2y



where the adjoint  S%  of an antvilincar operator S0 1s

defined in a similar-manner as the casce of lincur operators:

(f, s%g) = (g, S,9).

The positive selfadjoint operator L. 15 called the

modular operator and has tihce following propertics.
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(4) KMS condition.
Conversely, an operator satisfying these conditions is unique
and 1s a modular opcrator. - {The uniguceness of modular
automorphism is in [9], which determines A% up to operators
in M'. (2) then uniquely detecrmined ;; )

Among these 4 properties, the property (3) 1s most

1

e

difficult to prove. It allows onc to definc a onc-paramcter

group of x-automorphisms of M <called modular automorphisms:
2.5 oy it_, -
( ) cz(x) = A, XA

It depends only on the expectétionvfunctional v and not
on how ¢ is represented by a vector V.

The fourth condition, bearing the name of three
physicists Kubo, Martin and Schwinger who found these
properties in connection with equilibrium states ol statistical
mechanics, was first recognized its importance in mathematical

study of statistical mechanics by llaag, Hugenholtz and Winink

[71,[8] just at the time when Tomita has completed his theory.
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It states that two functions

i

FL(E) 2 ulxe¥ (),

Fy(t) = (o} (y)x)

i

arc connected by an analytic continuation:
1 (2.06) Fz(t+1)‘= Fl(t).

This property of modular operators brings statistical
mechanics of equilibrium states and theory of type II von
Neumann algebras close together.

We call the operator J as modular conjugation operator.

be
It has the following 5 properties, which in turn

characterize Jy as in the case of 4 properties for by [2].

2 _
(2) Jy =1
(3) Jy¥ = v
(4) JMIy = M.

(5) (¥, xj(x)y) >0, xeM, j(x) = JwXJ

g
The property (4) is most difficult to prbye. The

property {(5) is an immediate consequence of the proporfy (1)

¥

which replace the role of trace.

for 4a, . Nevertheless, it is crucial in exploring structures

One more important property of A,

Pt

and JW are their

relation given by
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5% Simple exapmle — Finite matrix algebra.

Let M be a matrix algebra acting on a finite dimensional
space ¢ with a cyclic and scparating normalized vector @ .

Then & = {xQ; xe&M} and

(3.1) (xQ,yR) = tr(x¥®y)
(We usc physicist's convention for inner - product.)

Any state ¥ of M can bec written as

(3.2) U(x) = tr(p.x)

in terms of the density matrix c.&M , p. 20 . W is

faithful if and only if p, > 0 (strictly positive). We
- -H,,

can then write pw = e where i, = -log », 1s the

v

Hamiltonian and ¢ 1is the Gibtbs state for this lamiltonian

(with the inverse temperaturc & = 1) . If we sct
- i 1 2
(3.3) y = p\y/ Q

then we have vx) = (¥,x¥) .

The modular conjugation opcrator J, in this example

is common for all ¥ of the {orm (3.3) and is given by
(3.4) T J X0 = xX*FQ

The modular operator is given by
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(3.5) by = expU-HAI (L)Y (= 0yl (oy™)

where j(x) = JyxJy . The modular automorphism is given. by -

(3.6) c%(x) = o itHy  itHy
is called the time translation automorphism in physics
except for an unfortunate discrepancy in the sign (i.e. -t
is the time). |

In this example, it is natural to define the relat;ve
Hamiltonian h(%¥/y) of y> and ¢ as the difference of

the Hamiltonian:
(3.7) h( @/y) z Hy-Hy

Using the following definition of the right expansional

(time-antiordered product)

v t _ (t
(3.8) Expr(Jo; h(s)ds) (= Tfexpjoh(s)ds)

ne-1 8

t Sn-l
. dsln-JO dsnh(sn)"°h(sl) R

n 0

and the following convenient formula (for example, see [3])

rt | .
= Expr(JO ; ef\Spe AS

(3.9) oT(A*B) Bt as)
we can find the following properties of h(¢/v) in this

example:



(1) The Radon-Nikodym derivative satisfying chain rule

(2]:
 -Hg/2 Hy/2 €ty
(3.10) ¢ = (e e ¥y - Exprijo; o¥ . (-h(P/¥)))Y
(2) The intertwining operator for modular automorphisms
(5]
sy Py = WPV ) 0PV
(3.11) : ct(x) ul ot(x)(ut )* o,
, -itH, itH, it
(5.12) uf¥ = e e 7= Ep () 5 OLCRIF))
(3) - Chain rule:
(5.13) h(P/Py)+h (P /P5) = D (P /5)

For a general von Neumann algebra M , Hamiltonians
Hg can not necessarily be found and qg (at least for
some t) 1s an outer automorphism for type III M .
However our result shows that we can introduce the nétion

of the relative Hamiltonian for a gencral M
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§4 The canonical cone.

" We denotc the weak closure of

{Ai/4xv; xeM , x > 0}

by Vv, [2]. ( &f7in the notation of A. Connes [6].) In the
Aéxﬁmplc of §3, VW = {xQ; xeM, x > 0} ., as is easily verified.
It plays the role of trace for type III M. The following is
a partial list of important properties of VW

(1) Vw is independent of V¥ in the sense that’for all

cyclic and separating @é&VW , we have V¢ = VW

(2) All cyclic and separating QEEVW has the common

modular conjugation operator Jo = Jy

(3) All normal states has a unique represenfative‘in
Vy , i.e. for each SﬁéM: there exists a unique gfoev\y’
such that (F,sp, XEep ) = P(x) for xé€éM . The mapping
9’+ €¢ is bicontinuous.

(4) Vy, is selfdual. Namely f,g@ng implies"

(f,g) 20 and (f,g) > 0 for all g ve implies f’evw
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§5 Multiple IS property and basic cstimate.

. .

From the XIS condition (2.0}, onc can derive the following
multiple XMS properties [1], [4]:

For any xx,n-,xqe M, there exists a function
A i

F(z -++z.) which is analytic in the tube domain

Y
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continuous and bounded in tie closure of T, and its value

on Silov boundaries of T are given by

n
(5.2) F((tl+i),"';(tj+i))tj+l:'°',tn)
oY oy eyl
= V(o (X:,q) ol (X Jol (Xi)-+e0l (x.))
t]+1 J‘*’l tn n 1 “ LJ J

wiere ty,0re,t,  are real and j=0,1,+++,n-1. (This property
rcduces to the KMS condition when n=2.)

Using this multiple KMS property and a multi-variable
version of the three line theorcm, we obtain the following

estimates:

!
If n*=heM, t; >0,--+,t >0 and 1/2 » 7§ t

. ) 1 n =1 J
then AwnhAvn_l---Ayth is meaningful and
th 51 n
(5.3) HAW heeedy W< [ af@vl.



§6 Relative ifamiltonian

Duc to the estimate (5.3), the following expression is
absolutely and uniformly (for h in a bounded set) convergent
in norm:

6.1 v [ ‘f51d~ [ 7 Tas_a
(6.1) , g(n):ngojo d.sIJO 52...}0 5,0
In the example of §3, (6.1) reduces to (3.10), where h=-h(¥/vy).
llence we call a sclfadjoint element h of M as a relative
hamiltonian of ¢ and y 1f @ =¢&, and V¥ = Ew( are
rclated by ¢ = ¥(-h) and denote it by L = h(¥/y). We
also define (in view of (3.11) and (3.12))

t

(6.2) u%w z Expr(f s oi(h)ds) CGIM)

0

if ¢ = ¥(h).
Our main results on relative hamiltonian are as follows
[4]:

(1) PFor all h* = h € M, there exist ¥ and ¥ in

M; such that h(¥/v) h. (We have seen this abeove as a
consequence of (5.3).)

(2) PFor given % and Y, the relative Hamiltonian
n(¥/v) 1is unique if it exists.

¢ ol -
(3) If ¢ = ¥Y(h), then uf“e.m is an intertwining

operator for modular automorphisms:

(6.3) o?(x) = Vel (x) (wf¥)x,
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(6.4) A A LN A K ASE I
(6.5) (ufp)* = uéy.

(4) If v = ¥(h), then

(6.6) log

O
1}

log Dy * h - j(h)

where j(a) = JUth. (C£. (3.5) and (3.7).)

(53) Chain rule holdsﬁ
(6.7) W@/ P,) + B(PyFy) = B P /s)
vhere if two of h(?i/93) exist , then the third also cxists

and satisfies (6.7). Since na(®P/¥) = 0, a special casc of

(6.7) yields
(6.8) INCAAD I -h(w/?)-}

(6) 1If xlw(x) > P(x) > zzw(x) for all x e M, x > 0,

then there exists h(®/y) and
(6.9) log 2, 2 -n(#/¥) > log 12.

(7) The relative modular operator [6] can be expressed as

U it i . . _ s Uy it
uifAy = exp (-it{log Ay - h}) = j(gif)A@ .
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57  Goiden-Thompson and Peicerls-Bogolubov Inequalities

Although there is no trace for type III M, we can still
find incqualitics which reduces to Golden-Thompson and Peierls-

Bogolubov ineqdalitiesrfor finite matrix algebra. M. Namely
' h 2 N
(7.1) ple™) 2 J¥(m)[" 2 exp y(h)

where h* = heM, ¥(x) = (¥, x¥) and the second inequality
holds when |Y¥| = 1.

For finite matrix. algebra M, we have

p(x) = triex),
v(e™) = tr(eHeh),

H+h e(H+h)/2

ey ? = eeee™), v - 2),

and hence the first inequality reduces to the Golden-Thompson
inequality

tr(eHeh) > tr(eH+h).

eH/ZQ/(treH)l/z'.

Siﬁilarly, we have for Y =
v(x) = tr(ex)/tr(eh,
ey ]2 = er(e™®y/er e,

exp w(h)»=‘exp{tr(eHh)/tr(eH)},

and hence the second inequality reduces to the Peierls-Bogolubov

inequality

tr(c“+bytr(eH) > exp{tr(eHh}/tr(eH)}.

- 12 -
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