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HARMONIC ANALYSIS OF SWITCHING FUNCTIONS

SHuzo YaJIMA AND NorITAKA UJI
(FacuLty oF ENGINEERING, KyoTo UNIVERSITY)

1 INTRODUCTION

This note describes the extension of Harmonic Analysis of .
binary n-variable switching function ([1] ~ [4]) to that of a
function defined on a finite field GF(p), and a trial of its
application to pattern recognition. A 2-variab1e switching
function on GF(p) can be made to correspond to a two dimensional
digital patternlon the pxp meshed plane. In this case, a
pattern 1is not regarded as an input vector like ordinary case,
but 1is regarded as a switching function itseif.A |

Classification of switching functions into equivalence
classes'under the transformation group defined on the domain leads
to the classification to patterns. We discuss mainly Affine-
Transformation Group and its subgroups.

There is a onéfto—one correspondence between switching function
f(x) and its Fourier Transform F(w) and so by the spectrum
invariance and 6ther properties of Fourier Tfansform coeffiéients
we can examine the classification easily. We also describes the
relation between the distances in the space of functionsvand in

the space of their spectra.
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2 FoOURIER TRANSFORM OF SWITCHING FUNCTIONS

2-1 Notation and Definition

In this note GF(p) represents a finite field of integers
mo&ulo p (p; prime). {GF(p)}n represents n-dimensional vector
space over GF(p), and F denotes the set of all n-input, single
output functions:{GF(p)}n -~ GF(q). Let X represent the set of
all p-ary n-tuples x in{GF(p)fﬂthat is, domain for the space F.
\f,g are used as the elements of F, which are called switching
functions. -pn(=N) dimensional output vector

£=(£(x(0)) -+, £(x(P"-1)))= (£, , £y)
is one representation of f. Another representation of f, where
output is binary, is a level set (or on-set) representafion
f'1(1)={x|f(x)=1}. The number of its elements x of £ is called
the weight of the switching function.

At first we define the discrete Fourier Transform (DFT) [11]

by which we will get another representation of switching functions.

Definition 2.1 Multi-dimensional modulo (tl,----,tn) DFT[AS]
of an array [ar] is defined as follows. For the arfay [ar]
composed of real tIX----xtn elements ay's (suffix r is a vector
(rl,-°",rn)), its trénsformed array [As] has complex number
elements As defined by ﬁhe equations;

- TSy, . .wInSn =0 . coee s =1,
Ag Zarw1 W (rj,sj 0, ’tj—l’ j=1, ,n) (2.1)

where Wj=exp(2ni/tj) (j=1,++++,n)

When applying DFT to a p-ary n-variable switching function

according to the definition above, let ty=rcr=t =p, ¥ be input
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vector x; and array [ay] to be the output vector of f.

Let F(w) represent the Fourier Transform of a fuﬂction f(x)
whose domain is another vector space W (p-ary n-tuples)
isomorphic to X.

Definition 2.2 [2] Abstract Fourier Transform F(w) for a

switching function £(x) is defined as follows;

CF(w)= J £(04,(0) we {GF (p) 7, (2.2)
(where ¢W(x)=exp[g%i(xwt)]=exp[£%i(x1w1+-;°-+xnwn)].
Theorem 2.3 There is a unique inverse transform from F(w)
to £(x):
e * '
f£(x)=p "] F(wW)e, (x), (2.3)
w

* .
where ¢w(x) means complex conjugate of ¢w(x).

This shows that there is a one-to-one correspondence between
a switching function f(x) and its Fourier Transform F(w). The
value F(w) for each w is generally a complex number and is called
a coefficient of the spectrum of Fourier Transform. As well
known, for p=2, f(x) is an ordinary'switching function, Eoordinates
F(w) are integers (Lechner [1][2]). For p=2, there is another
coordinates representation N(w) by Ninomiya that has a close
relation to F(w) defined as follows ([11[311[41),

Nw)=2""1s

wo F(¥). : | (2.4)

2-2 Some properties of Fourier Transform

By using previous definitions on Fourier Transform of a p-ary

n-variable switching function, some general important properties
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are obtained. Here, for the convenience, the output range of

the function is restricted to GF(2).

Lemma 2.4 The following special functions have unique Fourier
Transforms.
| £(x)=1  iff F(w)=p"s (2.5)
wo :
f(x)=0 iff F(w)=0 (2.6)
f(x)=6xo iff F(w)=1 : ’ (2.7)
"Lemma 2.5 Sum of spectré over w has the unique value.

I Fw)=0  iff  £(0)=0
w B

n (2.8)
P iff £(0)=1

Lemma 2.6 Fourier Spectrum at w=0 gives the weight of
corresponding function.

F(0)=) f(x)=m (weight) ' (2.9)

- X

Definition 2.7 For two switching functions fl(x) and fz(x)
from the same space F its convolution sum at x, written as
h(x)=f1(x)*f2(x), is defined as follows;

h(x)=§ £ () £y (x-t). (2.10)
Theorem 2.8 -The Fourier Transform H(w) of the convolution

sum h(x)=f1(x)*f2(x) is equal to the componentwise product of

two Fourier Transforms Fl(w) and Fz(wj of each functibn, i.e.,
H(w)=§{f1(t)*f2(x)}¢w(x)=F1(w)-Fz(w), (2.11)

and its inverse relation is true, i.e.,

(=1 (O *E, () =p "TLF W0 F,(0 bk (). (2.12)
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Using above formula for f(x)#f(-x), we find that Parseval

equation holds for a switching function.

Proposition 2.9 2[F(w)|2=pn2{f(x)}2=pnm : (2.13)
w X . '

From (2.13) we can see the relation between spectrum and
function value and conclude that every switching function that

has the same weight has the same P=E|P(w)|2,

5 SPECTRUM INVARIANCE UNDER SOME TRANSFORMATIONS

3-1 Transformation Group on Switching Functions

In this section some transformation groups on the domain of
switching functions and the classification of functions into the

equivalence classes are described ([5]~[9]).

Definition 3.1 Let x be the input row vector over GF(p) of

a p-ary n-variable switching function, so general linear
traﬁsformation TZELGn(GF(p)) (the set of all such transformations)
and affine transfofmation T;EAGn(GF(p)) (the set of all such

transformations) on the domain are

n
n

Tzftx) | f(TZx) £(xA) : (3.1)

£ (xA+b) | (3.2)

il
1

' T £(x) = £(T,X)

where A is a nomsingular matrix over GF(p) and b is a row vector

in vV, (GF(p)).

Definition 3.2 fl(X) and fz(x) are equivalent under the group
G if and only if there exists some element ge€G such that

fl(x)=g-f2(x) for all xe€{GF(p) }".
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In the case of affine group,
fl(x) g—fz(x) under AGn(GF(p))
for Vxe{GF(p)} 3(A and b) s.t. £(x)=f,(xa+b) (33
Similarly we can consider some subgroups of affine
transformation group. The family of functions are partitioned
in various ways according to the equivalence under fespective

transformation groups.

Proposition 3.3 All functions in the same equivalence

class under the transformation group defined on the domain have

the same weight m.

3-2 Spectrum Invariance Property

This section describes several fundamental theorems on
invariance on multivalued switching function. From (3.3), if

two functions f and g are.affine equivalent, then
g(x) = f(xA+b). (3.4)

Consider their Fourier Transforms using (2.2),

2g(x)¢ (x)

G(w)

zf(y)¢ {(y-b)A 1}

-1 t
Ef(y)aYCWA ) w a=exp(2mi/p)

F(wA~ )exp[ ZHI( bA 1wt)]. (3.5)

From this formula we can derive the following useful theorems as

in the Lechner's case of binary functions.

Theorem 3.4 (Affine Trans.) Every switchihg function

belonging to the same equivalence class with respect to the affine
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transformation (x»>xA+b) has the same Value’S=Z|F(w)| (the sum of

the absolute values of the Fourier spectrum).

Theorem 3.5 (Linear Trans.) Every function belonging to the.

same equivalence class with respect to the linear transformation
(x »xA) has the same spectrum set {F(w)}, that is, Fourier trans-

form coefficients are the same under permutation of w.

Theorem 3.6 (Translation) Any two functions that are in the

same equivalence class with respect to the translation (x -+ x+b)

have the same absolute value of the spectrum |F(w)| at each w.

F*(w) (* conjugate)

Lemma 3.7 g(x) f(p-x) G(w)

™ G(w)

Lemma 3.8 g(x) pnswofF(w) (Inveréion)
From these theorems we can get the important information
whether two functions are equivalent under such transformations
or not. Unfortunately their converses are not necessarily true.
~In some cases it may happen that two or more equivalence classes

have the same invariant parameters.

Proposition 3.9 The class closed under the same set {|F(w)|}

includes the equivalence class for affine transformation.

3-3 Some Other Properties of Spectrum

So far we have described various kinds of values with
respect to the spectrum such as F(w), |F(w)|, } F(w), Y|F(w)],
ZIF(w)lz, {F(w)}, {|F(w)|}. These values have some important

messages and reflect some properties of original switching
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“function f(x) and their equivalence classes.

Now we introduce some distance in the family of F(w).

Definition 3.10 In the complex vector space VN(C), let F and

G be spectrum vectors for f and g with coordinates,F=(F1,----,FN)

and G=(G1,"",GN) respectively and introduce the inner product:

(F,G) = F G*+-o--+FNG§ , (3.6)

171

where dimension N=pn for p-ary n-variable functions.

Definition 3.11 The norm || F|| for the spectrum vector F is

defined as follows,

1/2 1/2

Hell = (F,F) = (FyFj+:- - +F F}) (3.7)
By using this the relation among norm, spectrum and function

itself is derived.

I E %= JEGIFM) = TIFG) |2 = pPILE() e = mp®  (3.8)

Proposition 3.12  The norm takes the discrete values of (mpn)l/2

depending on the function weight.

Lemma 3.13 I F|l =0 iff £f(x) = 0
| F Il = p™ iff £(x) = 1
o< lE]l <p” (3.9)

We see also functions whose weights are equal have the

same norms of spectrum.

Next we examine the meaning of the inner product of F and G.
JEGET0)
JIE(X) g(y) 6, (x-y)}
W Xy :
TE(x)g(x-c)fo () = p"I£(x)g(x) (3.10)
Xc W X

(F,G)

fl



Proposition 3.14 Inner product (F,G) has the integral value

which is multiples of pn and has the relation (F,G) = (G,F).

The value of (F,G) corresponds to the number of points where

f(x)ﬁg(x)=1 is satisfied, that is, the overlapping of two functions.

Theorem = 3.15 (F,G)=0 iff corresponding patterns are perfectly

separated. (F,G)=|| F H2=IIG H2 iff corresponding patterns

are completely equal.

In the next place, for two spectrum vectors F’and"G, the
distance between thése two vectors is naturally introduced using

the above norm as follows;

ARG | 2= (r-6,F-0)= || B2+l 6 12200 (3.11)
|l -G |!-2=‘;IP(W)-G(W)I2= 1:)“}2({:?(x)—g(x)}2 o (3.12)
Proposition 3.16 0 < |[[F-G||* < [| F 4] ¢ |l? (3.13)

When f(x) and g(x) are two-valued (0,1) functions, (3.12).
shows that the value of || F-G || corréspoﬁds to the Boolean differ-

ence of f(x) and g(x).

Proposition 3.17 Let <d>=){f(x)®g(x)} be the Boolean differ-

ence of f(x) and g(x), then <d>= 5%” F-G[|2. ‘ (3.14)

In 4this consideration the norm of spectrum has ‘a close
connection with the weight of corresponding function . It does
not however show directly the functional equivalence under
transformation groups. Lastly we will discuss something about

the absolute value of spectrum.
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Definition 3.18 For the spectrum vectors F and G, we define

<DF> and <DFA> as
YUFM)[-]6(w) |} (3.15)
<DFA>= J||F(w)|-|G(w)|]. (3.16)

<DF>

For two functions f(x) and g(x), Boolean differehce <Gd>
under transformation group G is defined as the minimal value
among all the Boolean differences of f(x) and any transformed

functions g(tx) (teG) from g(x).

Definition 3.19  <Gd>=minJ{f(x)®g(tx)} (3.17)
t€G

For example we can write,

<Affine d>=min) {f(x)®g(xA+b)}. - (3.18)
. YAYb

Lemma 3.20 <Gd>=0 iff two functions are equivalent under

that transformation group.

Theorem 3.21 If two functions are equivalent under affine trans-

formation, namely <Affine d>=0, then <DF>=){|F(w)|-|G(w)|}=0.
This is of course true for all subgroups of affine group.

Theorem 3.22 If two functions are equivalent under translation,

namely <Trans d>=0, then <DFA>=}||F(w)|-|G(w)|]|=0.

L SwitcHING FuncTions oF Two-VArRiaBLES DEFINED oN GF(P) AND ITS
RELATION TO PATTERN

4-1 Two-Variable Switching Functions and Pattern

In this last chapter a switching function is restricted to
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two variables, that is, f(x;,Xx,):{GF(p)}® » GF(2) is considered.
We regard a two-dimensional digital pattern not as one input
vector of ordinary switching function but as one function itself.
There is a one-to-one correspondenceramong f(xl,xz), two-
valued pattern on a pxp meshed plane and a pxp matrix over GF(2).

In this case two variables x, and X, may have p integral

1
values (0,1, ++,p-1) and the function output vector of pz-dimension

is defined as

(fOO’fﬂl’...’fOP-l’....’fp-lp-l)’

where the element fij corresponds to the output of switching
function f(x1=i,x2=j). This vector
h’xz
is made to correspond to the digital

two-dimensional pattern on the pxp p-

plane as Fig.4.1. By using DFT(2.2)

we obtain the Fourier spectrum vector,

= N e e o pd

X1
(FOO’FOI’.'.’FOP'].’..'.’Fp"lp'l)’ 0 1 2 .. -p-l agn
where Fij=F(w1=i,w2=j), which is usually
a complex number. Fig.4.1
For example in the case of p=3,
(FoosF01:""sF22) = (f00;f01""':f22)(T): (4.1)
where (T) is a anpn(=QXQ) transformation matrix as below. In

the matrix o means , a=exp(2mi/3), the 3rd root of unity of this

field.

A basis function fpyx, (x), or a weight 1 function, where
fbxo(x)=1 only at a point xy in the pattern and fbxo(x)=0 other-
wise, has the spectrum which is indicated as the row vector of

the matrix (T) corresponding to the point fxo.'

- 11 -
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For example, one of the basis 00 0102 10 11 12 20 21 22

0(111111111)

functions, 0|1 ol a ol o d
2|1 2ol ol da

fr02 (0010000 0 0) 0|1 110 aadcd

(T) = 1|1 acfa ol 1l a

> F=(1 fal fal ?a). 21 aol ol
201111 dfFa aa

The spectrum of any switching alloofdflaadl
ﬂklo?ocvonzonlulo?/

function (m>2) can be obtained

[ Transformation Matrix ]
as the sum of the spectra of
corresponding basis functions

using the linearity property.

Example (£f=g) f(x)=1 g(x)=1
*2 ] %2 - ool[11)_Joo
= Fiﬁ. 01}tlo1 01
— — 2 110 11](4.2)
! 1 11 12
(a) £(x) (b) g(x)
£=(110110000) F=(4,-2¢,-20,-2d,0, 1,-20, 1,d%)

g=(110011000) G=(4, o, o4-2d41,-2a,-20,-204,1 )

There are two patterns on the 3x3 meshed plane as in Fig.4.2,
which correspond to two functions f and g. The on-set of f can
be transformed to be the on-set of g by the nonsingular matrix
A=(é %) , as shown in (4.2).So f and g are linearly equivalent.
Spectra for these two functions show that F and G are equivalent
under permutation of w according to Theorem 3.5. There 1is a
relation as to the affine transform by Theorem 3.4, that is,

4,41

{(Fw) [ I={|G(w) |} = 17274~

Using these invariant parameters of spectrum, patterns which

are transformed linearly are classified without the normalization
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of size of patterns. The property of spectral invariance under
translation of patterns would be also useful in various applications.
The concept of distance, <DF> and <DFA> could be effectively

utilized in the classification of patterns.

4-2 Some Results of Computation

As one example we have examined the classification for all
the functions of 3-ary, 2-variables, that is, all the patterns
' - 2
on the 3x3 plane, whose total number is 23 =512, As to the

affine transformation, we have obtained following results.

weight S=]|F(w)| {|F(w)]|} weight S=)|F(w)| {|Fw)|}
w w
0 . 0.0 0° 9 9.0 089!
1 9.0 1° 8 16.0 1851
2 12.0 1023 7 17.0 16,271
3 9.0 0033 6 12.0 063261
13.4 02,3631 16.4 02,3661
4 15.3 16/7241 5 16.3 16/7%51
16.0 142441 17.0 142451
Table. 4.1.

This shows that in this space of functions there are at least
fourteen affine equivalence classes and the classes that have
the same value S=)|F(w)| are distinguished only by the affine
parameter {IF(w)(Y, and their weight.

- Next we show some patterns in different classes at weight

3n6.

- 13 -



w=3 w=4

w=5
$=9.0 S=15.3 ' S=16.3
®

$=13.4

S=16.0 S=17.0

( 4
Fig. 4.3.

Now we perform the computer simulation for practical patterns.
The Fast Fourier Transform (FFT) can be applied in the computation.
The application of this method to a body in three dimension space

would be also interesting.

The authors would like to express their thanks to the members

of Yajima's Laboratory for their valuable discussion.
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