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ABSTRACT

Equations for a random-walk model describing the production of nerve impulses
have been derived for the general case in which noisy depolarizations of the membrane
potential are subject to a force that tends to restore the potential to an equilibrium, or
“resting,” value. This model, corresponding to the Ornstein-Uhlenbeck process,
was developed previously to account for observed patterns of firing in neurons in which
the membrane potential starting from a fixed value undergoes a one-dimensional
random walk and triggers an impulse when its value reaches the critical *“‘threshold
value.” Identifying neuron firing intervals with the first-passage time distribution for
the associated random walk allows us to predict the interval statistics for a neuron from
parameters associated with input to the neuron and certain parameters. intinsic to the
neuron itself. The equations for the random-walk model have been solved by several
techniques, permitting, for the first time, direct comparison between the output of the
model and empirically observed interval distributions.

1. INTRODUCTION

The interspike interval histogram, which estimates the dis_tribution
of time intervals between successive discharges of a neuron, has become
the most widely used and convenient statistical measure by which the

* Present address: Department of Biological Sciences, Stanford University, Stanford
California. -
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neurophysiologist quantitatively summarizes the discharge characteristics
and patterns of activity in single neurons [13, 15].

In the neurophysiological laboratory, the widespread availability of
small general-purpose digital computers or special electronic devices has
made such measures almost routine in the analysis of experimental data.
This has been paralleled by an increased interest in these measures as the
basis for comparing the output of models of neuronal networks, which
can be simulated in a variety of ways, with empirically observed neuronal
activity, in the hope that successful models can be used to make inferences
concerning unobserved, or unobservable, processes taking place within
the brain.

In general, the processes that produce the observed train of pulses
emitted by a neuron under investigation are of two types. First, the output
of a neuron depends on a complex spatiotemporal array of impulses that
it receives from other neurons, each of which alters the probability of firing
in the observed cell, typically by directly altering the electrical potential
across the cell membrane. Second, the impulse-generating mechanism
of the cell itself has certain complex features that determine the conditions
under which it will fire. Thus the overall behavior of a neuron depends on
extrinsic features related to its input and connectivity with respect to other
cells, and on certain intrinsic properties that determine its firing times in
relation to the input.

Ideally, we wish to determine or extract the parameters of the intrinsic
processes of each neuron, and the parameters associated with its input
from all other sources, by data-processing techniques applied to the empir-
ically determined interval distribution or related measures. Such a hope
for the solution of this inverse problem cannot be fulfilled even in principle,
however, unless it is first shown how the interspike-interval distribution
can be derived from a knowledge of intrinsic cell parameters and input
distributions. At the present time the problem is usually attacked by
computer modeling in which the assumed processes are simulated accord-
ing to specific describing equations whose parameters are assigned physio-
logically reasonable values. Then, for any given set of assumptions, the
behavior of the network and, specifically, the behavior of any neuron in
the network can be described in terms of computed firing times, and from
these an interval distribution can be tabulated for comparison with that
derived from an observed spike train. For a review of this approach,
see [13]. \

Alternatively, it would be desirable'to derive the mathematical equa-
tions of the interval distribution directly from the mathematical assump-
tions of the model itself. But this is an extremely difficult problem and
efforts to determine analytically neuron firing-interval distributions have

Mathematical Biosciences 8 (1970), 323-341
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been confined to rather simple cases. In general, these attempts fall
into three major categories. The first type of approach (“‘quantal model”)
attempts to treat the case of a neuron with well-defined synaptic input
from few channels (usually conforming to Poisson arrivals) with relatively
large amplitude (so that intrinsic, continuous membrane noise can be
neglected). In the simplest cases, the randomness of the output is derived
from the randomness of the input and the calculated times to firing are
based on counting statistics for the input [7, 9, 12, 16, 21]. More complex
cases have also been treated by generalizations of the simpler model,
which consider additive quantal step changes in potential or threshold
whose duration is randomly distributed [6, 8, 19, 22].

A second approach to analytic formulation of the interval dens1ty
generally assumes deterministic equations for the postimpulse time
course of the state variables of the neuron—the membrane potential and
threshold level—and calculates (under the assumption that no input is
arriving at the neuron) the time when the membrane potential will cross
the threshold for the first time. This is particularly applicable to receptor
neurons under sustained stimulus input conditions, since the membrane
potential crosses the threshold level at precise intervals and no additional
discrete (quantal) changes in potential from other sources are present.
Randomness in the output is achieved by assuming that Gaussian noise is
added to the membrane potenual or threshold level, or both [5, 11, 18, 24,
25].

A third approach has been to exploit the natural analogy between the
drift of potential toward threshold following an impulse and the random-
walk problem with an absorbing barrier [3, 4, 10, 17]. The interval
distribution for neuron firings is then identified with the distribution of
first-passage times for the random-walk process. In such a model the fluc-
tuations in potential have generally been assumed to be small in compar-
ison with the difference between the resting membrane potential and the
threshold level, an assumption consistent with certain empirical observa-
tions of membrane “noise”’ [24] or with the assumption that synaptic input
is arriving from multiple channels, each of which has small amplitude.

The Gerstein and Mandelbrot model [3] is a special case corresponding
to a Wiener-Levy process; that is, there is no decay of the membrane
potential toward a resting value in the absence of input. The models of
Johannesma [10], Gluss [4], and Roy and Smith [17] all correspond to the
Ornstein-Uhlenbeck process [2], in which there is a restoring force that
causes an exponential decay of the membrane potential to a resting
asymptotic value in the absence of the input. None of these authors,
however, was able to solve the first-passage-time problem explicitly
to obtain an interspike-interval distribution in closed form, although

Mathematical Biosciences 8 (1970), 323-341



1638 H. SUGIYAMA, G. P. MOORE, AND D. H. PERKEL

Johannesma showed how to derive all the moments of the distribution.
Siebert [20], also using the Ornstein—Uhlenbeck process, has obtained an
explicit solution for a special choice of threshold function, using tech-
niques different from those used here.

In this article we treat the problem of a neuron with decaying membrane
potential and show various new approaches to obtaining solutions to the
first-passage-time problem.

2. THE MATHEMATICAL MODEL FOR NEURONAL DYNAMICS

We approximate the natural behavior of the neuron with a model
having two state variables, the membrane potential and the threshold
potential (Fig. 1). The former is the difference between the potential inside

. Membrane potential
Y

" Threshold [~ — — ——— — — —— — —— e —— e — — @

Effective
asymptotic
potential

Resting
potential

—

Time since end of refractory period

F1G. 1. Neuronal behavior mode] with two state variables.

of the cell and a reference potential (usually taken as zero) outside the cell,
and this potential difference is a variable conventionally recorded by a
microelectrode placed inside the cell. The second variable, the threshold
potential, is taken here to be that value of the membrane potential which,
when exceeded, leads inevitably to the production of an all-or-none event,
the nerve impulse.

We also assume, on the basis of direct experimental observation,
that following each impulse the membrane potential is restored to a so-
called undershoot level w, following which there is an exponential decay of
membrane potential toward an equilibrium level, or “resting potential,”
0,. For the purposes of the present model we assume that the threshold
level is constant, although there is evidence that it has a more complex
time-varying course after an impulse.

Finally, we make the rather general limiting assumption that input to

Mathematical Biosciences 8 (1970), 323-341
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the cell, developed at each synaptic contact made by incoming axons and
generated upon the arrival of an impulse in any such axon, comes from a
large number of axon sources. Each of these contributes only a small
change in membrane potential, in either a positive or negative direction,
- whose amplitude is independent of the existing potential. Under these
conditions we can assume that the net effect of the synaptic input is to
add a noise signal to the exponential drift to the resting level and this
random component may include a net drift toward the threshold corre-
sponding to a surplus of excitatory input over inhibitory input.

We denote the transmembrane potential at time ¢ by Y, and let
f(t,y |0, w) be the density function (pdf) of Y, at time ¢ given that the
membrane potential is reset to w at time ¢ = 0, corresponding to the time
of the last firing of an impulse by the cell.

Under the assumptions already given, Y, can be regarded as a contin-
uous Markov diffusion process with drift velocity

a(t,y) = X0, —y) + o -

and velocity variance o2, where A is the decay constant of the membrane
potential, ¢ is the net upward drift rate, and 6, is the resting potential.
It follows that f(z, y | 0, w) is governed by the so-called forward diffusion
equation or the Fokker-Planck equation

of
= (t,y10,
at( y]0,w)
g 0
=8 4 v 0w — 10, — ) + AL (63 |0,w) + 470, ¥ |0, W)
2 0y® dy
(2)
Making the substitution ,
x=MNy—"0,)—0=—aly) 3
and substituting into (2), we have
of* 120® 0°f* A0(xf*(t, x))
~—x)= , — 4
at(tX) 262( x) + . 4)

where f*(z, x) = f(1, ).

Equation (4) is the forward equation of the Ornstein~Uhlenbeck
process [2], which then is the formal mathematical equivalent of the physio-
logical process by which the membrane potential drifts toward the threshold
level under the influence of random synaptic input while subject to a force
that tends to restore the potential to an equilibrium level. If there is a net
surplus of excitatory input, this effectively raises the asymptotic membrane

Mathematical Biosciences 8 (1970), 323-341
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potential by an amount equal to §/4. This model is then formally equiva-
lent to the class of simulation models in which there is exponential decay of
membrane potential toward a resting value, superimposed on which is a
constant depolarizing force and added Gaussian noise of infinite band
width. '

In the sections that follow we will examine certain properties of the
behavior of this model; in particular, we will derive (a) the first-passage-
time distribution for a specific choice of threshold level, (b) the distribu-
tion of the membrane potential, (c) the first-passage-time distribution
using Laplace transforms, and (d) the first-passage-time distribution
using finite-difference equations.

3. THE SUBTHRESHOLD DISTRIBUTION OF MEMBRANE POTENTIAL
OF THE NEURON MODEL i

A problem of great importance in the application of mathematical
models to neuronal processes is the determination of the interspike-interval
distribution for each class of model for a given set of parameters. In
subsequent sections we derive the interval density for our random-walk
model of neuronal dynamics by solving the associated first-passage-time
distribution (i.e., the distribution of times required to first reach threshold),
starting from a neuronal firing. First we derive an expression for the
membrane potential density f(¢, y | 0, w), that is, the distribution of poten-
tial values y at time ¢, starting at the postspike restoration value w at
t = 0. The density obtained in this case is the solution to the so-called
free-motional case of a random walk in which an absorbing barrier is
never reached. Physiologically this is equivalent to determining the mem-
brane potential distribution for purely subthreshold behavior, for example,
when the threshold is a considerable distance from the effective asymptotic
value of the membrane potential.

Starting with Eq. (2), the forward diffusion equation, we obtain a
solution by making the change of variables

= e“t, (5)
[ . é it
Y = [y (0r+ z)} . ©)
Then -
169 = £t ) 2
)
— elff/(tl’ yl)
= ()11, y), (7

Mathematical Biosciences 8 (1970), 323-341.



171

and, calculating the several partial derivative terms corresponding to
Eq. (2), it can be shown that f'(¢', y’) satisfies the heat equation

GOy _ YY)
42 oy* o
The solution is known to be [14]
0.2 ~1/2 (yl _ w1)2 .
",y |0, w) = - -0 exp| ——————|. 9
7y 10w =3¢ 0] e[ fhTE Gl o
Returning to the original variables ¢, y, using (5) and (6), we have

A NEURONAL SPIKE PRODUCTION MODEL

(8)

2 -1/2
7,y |0, w) = (7 exp(a2) - 1)

_ (v =16, + G/D)T}exp(At) — {w — [0, + (§/D)1D*
x exp| @I Dlexp(2t) — 1] ] o
and, using (7),
_ exp(4r)
Sty [0 = {(wa®[M[exp(24t) — 1]}
g — L =k CDISB00 = o — 0+ GBI
(o®/D[exp(24t) — 1]

= {z;_z [1— exp(—-Z/lt)]}_ll2

{y =16, + O/} — {w — [0, + (é/l)]}eXp(—lt))z] (11)
(D1 — exp(—241)] '

Thus the membrane potential has a time-varying normal distribution with

mean
m(t) = (0, + %) + [W - (Br + g)]e“‘, (12)

X exp[—

and variance

) =L (1 - ). e

4. FIRST-PASSAGE-TIME DISTRIBUTION OF THE RANDOM-WALK MODEL

A. Solution for a Specific Choice of Threshold

An analytic solution of the first-passage problem for a neuron whose
potential is governed by (4) may be obtained if we assume, as before, that

Mathematical Biosciences 8 (1970), 323-341
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the threshold is constant, and make the transformation (5), (6)

{ = gt Y = |:y - (97 + _f_):leu,

as discussed in Section 3. Then f’(¢', y') satisfies Eq. (8)

}

of _ oY
or 420y
{ oo (o, AT

1

;s W

F1G. 2. Transformed random walk in #’, y” space.

and the random walk (now governed by the heat equation (8)) in the ¢’, y’
space starts at ¢’ =1 and y' =w — [0, + (6/)] = w' (<0) corre-
sponding to t = 0, y = w (Fig. 2).

Setting 02/2 = o*%* and 7 = ¢’ — 1, we have

o %oy
E a_y'_z— . (14)

O.*
T2

If we make the special choice of the ¢’ axis as the absorbing barrier, we
need only solve (14) for the condition f” = 0 at " = 0. This means that
we choose the threshold to be equal to the value 6, 4 (6/4), which, as
pointed out earlier, is the effective asymptotic potential with drift d or is
the resting potential when 6 = 0. The solution of this boundary-value
problem is obtained by the method of images [2] to be

f= [(2777)1"20*]‘1{%1)[— (y__—____w)2:| — expl:-— (—y—i—-—w)?} (15)

20%%r 20%%
Mathematical Biosciences 8 (1970), 323-341
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The corresponding first-passage-time distribution is obtained as

SRR

__(=w) exp(_ ’ )
: (2777'3)0'*1/ 2 20%2%

lwrl w/2
== — . 16
@) [o](2A)%] exp[ (M)] (16)
Thus,
’ _]W’l (21)1/2 r__ 1\-3/2 — w'?
PO = oy ¢ =0 e~ Gl @

Then, since
’ dt, /
p(t) = p(t) "d~t l = p(t')22e*, (18)
we have the result that for this threshold value

{{6, + (8/N)] — w}24)*"

P = (2m) %

[exp(24r) — 1172

{16, + (8/1)] — w}z) (19)
(0 Dexp(2Ar) — 11)°
a result that has also been obtained by Siebert [20], using a different

approach. A typical interval distribution from Eq. (19) is shown in
Fig. 3.

It can be shown that the mean firing time of the distribution is always
finite; that is, that

X exp(24t) exp ( -

E(1) =ftp(t) dt < o (20)

where p(t) is given by Eq. (19). The proof is as follows. For sufficiently
large ¢, say t > M, there exists a positive constant K such that

[6, -+ (8/3) — wP?
P {_ (*/W)lexp(2At) — 11} <K

If we include the constant terms of (19) in the constant K, we have

© M
E() < Kftem(ez’“ — 1) 4y +ftp(t) dt. (21)
M 0
Mathematical Biosciences 8 (1970), 323-341
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FiG. 3. Interval distribution calculated from Eq. (19) with parameter values 2 = 0.2
b6,=4,w=1,j=50=17.

To prove that E(t) is finite we need only show that the first term on the right
side of (21) is finite. But '
teZ).t(eZZt - 1)-—3/2 — tethe—!Mt(l . e—Zi.t)—3/2

— te—lt(l _ e—2lt)f3/2. (22)
For t> M, 2> M and e 2 > ¢ 2M g0 | — g2t > | — g 22M,
and therefore '

(1 . e—z/lt)3/2 > (1 _ e-—2}.M)3/2’

so finally

(1 _ e—2}.t)—3/2 < (1 _ e—2i.]l!)—3/2_

Using this and relation (22) we have, from (21)

ftezi.t(e2lt _ 1)—3/2 dt < (1 _ e—2).M)—3/2J‘te—M dt
M K/ M

L
which is finite. Clearly, then, the mean! firing time for this model of
neuronal activity will always be finite for threshold values less than or
equal to 6, + (6/2).
Mathematical Biosciences 8 (1970), 323-341
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B. Laplace Transform Approach

In this section we derive the Laplace transform of the distribution,
using an approach different from those previously employed by Gluss
[4] and Roy and Smith [17].

If we let p(r, 0, | 0, w) be the probability density function of the first-
passage times with respect to the threshold value 6,, then exploiting the
Markovian property of the process and referring to the variables of Fig. 4,

v

(v-1)

"‘)/\/’\

(t-v) t=- ( v=T)
FiG. 4. Variable transformations for Eq. (23).

we have the following equation.

f(t,y I t — v, X) =fp('r, /N | 0, x)f(t, y | t—(—1),0p)dr. (23)
0

Then putting

f(t,ylt"‘v, x)Eg(t’)’!U, X), (24)
Eq. (23) becomes

g(t, | v, x) =fp(7, 00 | 0, x)g(t, y | v + 7, 6p) dr. (25)

To obtain an expression for p in terms of g, we take Laplace transforms of
both sides, which converts the convolution integral to the corresponding
product of the two transformed functions of p and g; that is,

g’(t,}’ I s, x) = pA(S, 60 I 09 x)g(tsy [ g, 00) (26)
where a circumflex signifies the Laplace transform of the respective func-
tions. We then have

g(t,y| s, x)
é'(t, y I S, 60)
an expression for which can be derived as follows.

From the basic Markovian properties of the model, f is known to
satisfy the backward equation

()'2 32 f(ta y I tO’ x) af(t9 y I t05 x)
> o =5ty | o, x) + {a(t, ¥)} P + "

Mathematical Biosciences 8 (1970), 323-341
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where a(t, x) is the drift velocity A(6, — x) 4 . Putting ¢, = ¢ — v and
using the variable v, we have the following transformed equation.

?f(t,ylt—y,x)
B " + {a(t, )}
y of(t, y | t — v, x) _ af(t,.y] t— 1, Xx) =0. (29)
ax af)
From (24) it follows that the corresponding equation for g is
2 62 ’ v, a s ), a > ?
ala UL RO LR A LR U AL S e

0x ov

Taking Laplace transforms of both sides of this equation with respect to v,
as before, we obtain

2 ox>

+ {a(t, x)} %ty |5 ayxl 5 X)

— {sg(t, y| s, x) — g(t, y | +0,x} = 0. (31)

0®0%8(1, y | s, x)
2 ox?

But since

gty | +0,x) = @y |t+0,x) = Cy|t,x) =8y —x) (32

where 6 is the Dirac delta function, we have

o? 0’8(t, y | s, x) 0g(1, v | s, x)
DA ST Bk A4 t, x) =
. w + a(t, x) -

From (26) it follows that (7, y [ s, X) can be }factoredyinto the product of a
function of x only and a function of y only, namely,

8@,y | s, %) = ulx)n(y). (34)

— sg(t, y | s, x)=0. (33

Similarly, it follows that |
’ g'(t,)/ I S, 60) = 3‘(90)77()/), (35)
and therefore, from (27),

gt y] s, %) _ u(n(y) _ ux)
gt yls, 00 u@n(») u)
s, x) In (26) into (33), we have

]3(5, 90 l 0, X) = (36)

If we substitute the expression for g(¢, y

S~
o® 925(s, 6, | 0, x) + a(t, %) 9p(s, b, | 0, x)
—_—— e a , x) -
2 ox” -
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Then substituting for § the expression in (36), we get

o® d®u(x) du(x)
Pl S 7 = 0. 38
T alt ) = = su) (38)
- Letting & = A(6, — x) + 9, u(x) becomes
u(x) = w0, — (£ — 9) = U(H), (39)
and then we have ‘
o® d*U(§) dUu(é)
— —sUE) =0 40
> ae T g U9=0 (40)
or , ‘
Ao? d*U(§) au(¢) s
— — —=U(§) = 0. 41
T ¢ TR ) (41)
But according to [27] Eq. (41) is satisfied by
U(E) = exp (-5-2—) D ,{——5—] 42)
226?) T L(A)2) 20 o

where D_ (a) is the parabolic cylindrical function (Weber function), given
by the following integral representation.

D_J(a) = exp(F— a’j4) J exp [(—axz— xz)} xtdx (v > 0). (43)
(v) 0

Thus frorh (36) and (42) we have our final result for the first-passage-time
distribution in terms of its Laplace transform
u(w)
u(6,)
_ exp{[A0, — w) + 81*/226"} - D_;{[A(6, — w) + 8]/[(4/2)""*0]}
exp{[A(0, — 0o) + 61°/240"} - D_y;,{[A(6, — 0o) + 61/[(2/2)"01}
(44)
This Laplace transform must be inverted to obtain the interval distri-
bution as a function of time, but these results will be presented elsewhere.
It is interesting to note, however, that when we make the physiological
assumption that there is no membrane potential decay, then in the absence

of input, the neuronal dynamics are described by a simpler random-walk
model where fis governed by the diffusion equation [3]; that is,

of oo 661

5(s, 00| 0, w) =

(45)

Mathematical Biosciences 8 (1970), 323-341
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Then the differential equation corresponding to (38) is simply

o? d*u(x) du(x)
z + o —su(x)=0 46
"2 dx? + dx su(x) : (46)
the solution of which is ’
u(x) = ex® ¢
where ’
s 2 1/2
=22 (0 a]"
o ol \¢
Then
n w i
) =" = explie(w — 6)] (48)
u(6,)
or
. (5 2 1/2
5(s) = exp((eo - w){% - 1[(—) + 2s} })
a® ol \o ,
- = explab — a(b® + 25)]''* (49)
where :
a= B0 — w and b= 9 )
o o

Earlier, Gerstein and Mandelbrot had shown that the interspike-interval
distribution for the diffusion-type random-walk model of the neuron was
(in our notation) '

60'—'W | 100—w—6t2
e )
1 .
= (277—)‘11—/2t‘°"2 exp[—— E(at‘”2 - bt”z)z}. (50)

The Laplace transform of (50) is the same as our expressiox\l (49). A
typical distribution from (50) is plotted in Fig. 5 for this simpler model.
C. Finite-difference Equation Approach

In the continuous Markov model we have outlined here, the membrane
potential distribution f satisfies the equation (2)

o 0 o of
2= 29y [A(0, — y) + 9] a‘y+lf,

with the initial condition
~
50, y| Ol/w) =0y —w)
Mathematical Biosciences 8 (1970), 323-341
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0.3

0.2
piT)

0.1

FiG. 5. Interval distribution calculated from Eq. (50) using parameter values a = 4,
b =0.6.

and the additional boundary condition

ey ]0w=0 at y=6b,. 1)

Our problem is to compute the spike-interval distribution

| o o o
. 5 ;
pm%ﬂm0=&ﬁ—jﬂkHQM®i=—ajﬂﬂﬂawwy

(52)

Analytic solutions for p(t, y) for this problem have not been obtained
- except for special choices of the value of the threshold 6, (see Section 4, A).
In this section, therefore, we show how this problem can be solved numeri-
cally using sets of finite-difference equations. Since the usual method by
which the finite-difference equations corresponding to (2) are solved is
quite unstable, we employ an implicit method, which uses a modification
of the Crank-Nicholson type of implicit equations, as our technique [23].

As in Fig. 6, if A is the mesh size along the y axis and k is the mesh size

Mathematical Biosciences 8 (1970), 323-341
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fiot, i+ - S fer, e
k
h \
fo o - e
=1, f'l I fi‘*’]: i

Fi1G. 6. Grid scheme for finite difference computation.

along the ¢ axis, then we have the following finite-difference approximation.
ng l(fiﬂ,i + fia — i n Jirr,imn S — 2ﬁ,j+1) . (53)
9y~ 2 C h? ’
and, letting 0% = 2, we have
Jomr —fui _ _]_(f;'+1,a' + fio1s — 2o + Serv i+ fin — 2fi,:i+1)

h® h?

k 2

Vi fi,s — fimvs Jirvimn — fimvys
—[/1(97")’1"!'5]5‘(]2“’] le,a+f+1,+1 fl’ﬂ)—lf;j. (54)

2h 2h
Then, putting f = 0 for y = 0, and letting r = k/h?, we have the following
implicit equations corresponding to (2), fori=1,2,3 ... mandj =0,
L2 ....

. v |
{‘;‘ + %‘ (406, — y) + 5]}fz‘—1,y‘+1 =+ 1fim

r r

+ 5= 506, = 2+ 0| e

= Z—h ["1(67 - yi) + 6](ﬁ+1,7 "“ﬁ_l,j) -_ lkﬁ,j _fz‘,j

= % (i + fions = 260 (55)

Then to obtain approximation of the first-passage distribution, we generate
the sums

Sri+foit - /‘*‘fma =S
and compute Aj =S, — S, , correﬁbnding to Eq. (52). It is then only
Mathematical Biosciences 8 (1970), 323-341
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necessary to plot the values of Aj(j =0, 1,2...) to obtain a curve that
has the approximate shape of our interspike-interval distribution curve.
In our trial cases, we used 7 = 0.1, k = 0.01 ( = 1.0); 4 =0.1, 1, 10;
6,=0.5; 6 =0.1,0.5,1.0; and m = 6.

Even with this larger mesh size, we obtain rather smooth interspike-
interval curves, as shown in Fig. 7. It is simple to obtain finer and more

1.0

plt)

0.5-

T = T =
0 025 050 - .075 .100 .125

Fic. 7. Interval distribution calculated by finite-difference equation techniques. Param-
eter values: x =0.1; 6, =0.5; j =0.5; o =2, Meshsizes: & =0.1; k = 0.001.

precise estimates of the distribution curves. Indeed, this method for
obtaining interval distributions is simpler and computationally shorter
than the corresponding Monte Carlo simulations, which have been widely
used.

SUMMARY

Despite the increasing reliance by neurophysiologists on the interspike-
interval distribution as a quantitative measure of the behavior of single
neurons, relatively little attention has been given to the theoretical prob-
lem of how, starting from elementary physiological considerations, such
interval distributions could be predicted. Recently, efforts have been
made to treat the neuronal firing problem as an example of a random-walk
process to a boundary, treating the firing threshold as the boundary and
the complex array of synaptic input and intrinsic cell noise as contributors
to the random walk. The first-passage distribution then becomes identified
with the interval distribution.

Several steps in the solution of this problem have been taken, starting
with the approach of Gerstein and Mandelbrot [3], who treated the case in
which no decay of membrane potential occurred in the absence of input.

Mathematical Biosciences 8 (1970), 323-341
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Johannesma [10], Gluss [4], and Roy and Smith [17] generalized the
process to include decay, but were unable to obtain solutions to the
first-passage problem. Siebert [20] has recently derived a simple solution
for the case of a particular choice of threshold function, which we have
also derived here. In the present article we obtain closed-form solutions
for the Laplace transform of the first-passage-time distribution and have
obtained numerical results for these distributions, using sets of finite-
difference equations. It is our hope that the properties of these solutions
will be of value in interpreting neurophysiological data and will lead to
new techniques for modeling and simulation of neuronal networks and
processes.
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