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§ 1. Introduction

There areymany interesting flows of viscous fluid past & porous and
permeable body or wall, e.g. filtration;’drift of down, suction 6f injection
of fluid through a porous wall, ete. . In the inﬁestigafion of such a kind
of flow, thé Navier—StokesVequationkmay be the fundamental,éqﬁatipn in the pure

fluid region, while Darcy’s lawl’z)

which expresses that the velocity is propor-
‘tional to the pressure gradient is usually assumed to hold'in & porous medium.
As the boundary condition at the surface of the porous medium for these two

3,4),

equations, the following conditions have been used so far : (i) the pressure

is continuous, (ii) the normal mass flux is continuous, and (iii) the tangen-
tial veloecity just outside the poroué medium is Zero.

When the porous body has large porosity, i.e. the fraction of void to
total volume of the body is close to-unity such as fiber glass, the effect of
viscous stress at the surface is easy to penetrate into the quy through the
pores and seems to produce a flow near the surface in'the bod& even_if'there
is no pressure gradient. Darcy’s law is then impro;er to describe £he flow near
the surface at least. We must uée such kind of equation that takes info account

the effect of the viscous stress. Further, the condition (iii) mey not be

imposed because the local veloeity at the pores must be different from zero.
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Beavers and Joseph5)have proposed an empirical slip boundary condition as

6)

an improvement on the condition (iii). Saffman 'derived a general govering
equation for the flow in a porous medium by use of a statistical method. The
resulting equation is complicated and has a term of viscous stress just as the
so-called generalized Darcy’s law. Using the equation, he gave a similar

7) 8)

boundary condition to that of Beavers an Joseph. Taylor ‘and Richardson

invented a special model of porous material for which an exact analysis can be

carried out, and examined the boundary condition suggested by Beavers and Joseph,

5v8)

These studies treat the case of only one dimensional flow .
In a previous paper,g)the present author investigated a slow flow of

viscous fluid past a porous sphere and discussed +the boundary condition for the

Stokes and Darcy equatioms. The present study is an extension and generaliza-

tion of that work. That is, we consider the flow of viscous fluid at small

Reynolds numbers past a porous and permeable bbdy of arbitrary but smooth shape.

The flow in the pure fluid region is assumed to governed by the Stokes equation,

besides, it is assumed that the generalized Darcy’s law, which contains a term
of viscous stress (cf.(2.5)), holds in the whole region of porous medium
including neighbourhood of the boundary. We investigate the asymptotic

behavior of the flow for small permeability of the porous medium.

§ 2. Fundamental Equations

We consider the steady flow of viscous fluid at small Reynolds numbers
past a porous body. Let the representative speed and length of the flow be
QO and L , respectively. We take the rectangular coordinates X=(X,Y,Z).
It is assumed that the flow in the pure fluid region is governed by the Stokes

equations:

i
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div q = 0, ' ' (2.1)
grad p = Aq, (2.2)
2 uQ a _ ;

P = —-Lops q - Qoq - Qo(q_x:q_yqqz)a X—LX 9 (2.3)

where D 1is the pressure, a the velocity and u the viscosity.
We further assume that the generalized Darcy’é law, which was first
suggested by Brinkman,z)holds in a whole region of the porous medium. Then, the

*
flow equations in the porous region are ,

div Q = o, : (2.4)
grad P =12Q-s, , . (2.5)
=12/, | o (2.6)

where k is the permeability-of the porous medium. We take k to be coﬁstaﬁt'

for simplicity. The generalized Darcy equation is derived analytically by

Tamlo)

as an equation which describes the flow of viécoué fluid at low Reynolds
numbers past a swarm of small spherical particle:*held-statidnally in ‘space.
It is to be expected that the generalized Darcy’s law will give‘good fesultg’in
the case of highly porous media such as fibers.

We now‘considér appropriate boundary’conditioﬁs to‘be applied at the
surface of‘the porous medium to the Stokes and generalized Darcy equations.
It may be‘requiréd that the tangential velocity at the surface should be contin-
uous because of the viscosity. | The normalrvelocity should also b?'continuous,
for the mass flux across the surface is conserved. Taking into account that

the force applied to the fluid by the porous medium is a body force, we may

take that the shear and normal stresses are also continuous.

* Upper-case letters refer to the quantities evaluated in the porous medium.

¥* The porosity of this medium is unity.
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Magnitude of permeability of ordinary porous media is very small and of

the order of 1077 '\/10_8 cm2.2) In this regard, we consider the flow past

a porous medium with small permeability and investigate the asymptotié behavior
of the flow for large S on the basis of the Stokes and generalized Darcy

equations together with the boundary conditions mentioned above.

§ 3. Asymptotic Theory for Large S

3.1 Darcy’s law

First, we discuss the flow in the main region*of the porous medium where
:the Quantities of the flow field do not change abruptly. Cénsidering that the -

parameter S is large, we may expand the velocity and the pressure in power series’

in gt as follows :

Q)| 52(2)

R () A |
P=P =P +8TRy N cees

D (3.1)

Q=0 =522 + 573> «...

Inserting these expansions into egs.(2.4) and (2.5) and equating the same

ordér terms in S , we have the results

div Qéi) S0 (i=2,3,...), (3.2)
grad Péj)= - Qéj+2) (3=0,1) , (3.3)
grad Péi) - AQéi? - Q£i+2) (i=2,3,...) . (3.4)

From (2.4) and (2.5), the pressure in the porous medium is found to satisfy the
Laplace equation,; .

AP=0. : (3.5)
Hencey, we get

a2l =0 (3=0,1,2,...) . (3.6)

* We denote the quantities in this region by subscript D .
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Applying the Laplacian operator to eq.(3.3) and using eq.(3.6), we have
20{ =0 (32,3) . (3.7)

Putting this into eq.(3.4), we have

+
~grad pld) _ —Q('j 2) (3=2,3)
D D A
Repeating the same procedure successively, we can easily show that
i (i+2 . '
grad Pé ) o Qé ) (i=0,1,2,...) . (3.8)
This is nothing but Darcy’s law. Thus, it turns out that Darcy’s law governs

the main or asymptotic field in the porous medium to any ordéfidf épﬁf;iiﬂation
in 8. The Darcy equations (3.2) and (3.8) are rewritten by (3.1) as follows :
. _ _ 2 ’
div QD =0 , grad Py = -5 QD_ . -(3.9)
In the asymptotic field, the fluid is pushed on through the porous medium by
the action of the pressure against the body force. However, as 1is seen in the

9)

case of flow past a porous sphere,” “there appears a boundary layer near the
surface of the porous medium, where the viscosity affects the flow directly.

We must appeal to the generalized Darcy’s law in order to analyse this layer.

3.2 Fundamental equations in orthogonal curvilinear coordinates
We consider a porous wall of arbitrary but smooth shape. It is convenient

for the analysis of the boundary layer adjacent to the surface to introduce

orthbgonal curvilinear coordinates. We take x3 as a coordinate along the uint
normal N to the boundary (pointed into the porous medium) and X, Xy coordinates
within a parallel surface x3=const. , then

X = g n(xl,xg) + XW(Xl’XQ) . : (3.10)

where X, = (xw,yw,zw) is the position vector on the wall. For simplicity,

we shall take the coordinates % and X, in such a way that the coordinate lines

coincide with the lines of principal curvature of the boundary. Then, the

system of coordinates is triply orthogonal everywhere. Let Rl‘and R2 be the
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*
principal radii of curvature of the boundary . We take Ri>0 when the normal
points towards the center of principal curvature. From eq.(3.10) and Rodrigues®
formula,ll) the metrical coefficientslz) are given by

-1 o X3 y,-1 -1 X3 -1 -1_
H "= (1- R AT, By = (1- R AT, Ho=1, (3.11)
where
2 '
_l_= S_XE + ﬁe, + ajz ’ (3.12)
2 9X, 3K, | ox, :
Ai i i i

, - *%
The fundamental equations (2.4) and (2.5) are now rewritten as follows

y % 5 %, 5 %
HEH | (=) + =—(=5) + =—(=2)} =0, (3.13)
12 Bx) VH) T ek, E bx, H B,
g B g 8 { 1 8;) 3Q3})
18xl 2 3x3 H2 Bx3 H1 3xl
5 { 5 S y S 2
cu2 [mr (242 —(——)}] 20, (3.14)
28x, (‘12 \ox Hy T Bx, H) 1
Q Q
3P P ( 3 %2 3 1
H, &~ = E-2 [HH, { (55 - ——-(——%}]
2 8x2 Hlaxl 172 3xl H2 8x2 Hl
9Q Q } ]
9 { 2 3 03 2 2
) Sl ol e e G }] - 5%, , (3.15)
18x3 Hl Bxer BXB H2 2
® _a[i‘g{ﬁ_ 3 93)}]
bx; 12 axy E U Bx, " oxg B
’—"HJ.HQ EA[E_I—{B—a (;JL) _?3—}} —SZQ3 (3.16)
: XU By Toxg X ’ .

where Qi is the xi—component of the velocity.

¥ The principal radius of curvature Ri is also normalized by L.
%% Details of the transformation from the Cartesian to the orthogonal

curvilinear coordinates may be found in ref.l12.
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As previously stated, it may be required that the velocity and the shear
and normal stresses are continuous across the surface. These boundary condi-

tions are written by use of the eontinuity equations as follows

9 =9 (=1,2,3) - (3
p=P, (3.18)
] 2Q
a%1 1 -
P v (3.19)
8x3 8x3
3q 3Q
2 __2
3};‘3‘ = o, . , (3.20)

3.3 Analysis of the boundary layer and boundary conditions
for the Stokes and Darcy equations

We now proceed to the anaglysis of the boundary layer. Considering that
1 ,
y,9)

the thickness of this layer is of 0(S ), we introduce a new stretched

coordinate n related to Xg by

n =“SX3 . " , | (3.21)

Taking into account that any solution of the generalized'Darcy’s law should
tend to that of Darcy’s law as n = w,'we assume the solution for the boundary

lgyer in the following forms -:

'1Q§l%(xl,x2,n)' (3.22)

%G =% p*TYptS (2) ( |
-2 2 2) CT
+ 8" {Qi,D(Xl’XZ’XB) + Qi,BKXl’XZ’n>} +..

i i,
The correction terms of the boundary layer should vanish as n + «, i.e.
Q?J) > 0 (n->o, j=l,2,3,..). R (3.23)
i,B . i - L
The pressure is expected to have no abrupt change of the boundary layer type

because it is a solution of the Laplace equation (3.5) :

OIPERC (3.0
1

The solution of the Stokes equation is also expanded in power series in s

P = PD(Xl,X2,X3) =P
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q = qio) + s‘lqil) + S—2q§2) +.. (i=1,2,3) , (3.25)
p = p(o) + S_lp(l) + ... (3.26)

Each order term of these expansions should satisfy the Stokes equations,i.e.
v q(m) =0 , grad p(m) = Aq(m) (m=0,1,...). (3.27)
Insertingkeqs.(3.21),(3.22),(3.2h)¥(3.26) in the boundary conditions {(3.17)~n

(3.20) and equating the same order terms in S on both sides, we have the next

relations at n =0 ( or Xy = 0)

(0) -0, p(O) - Péo) (3.28 a,b)
il) = Qﬁ% , aqgo)/ ax3 = (l) /3n (§=1,2), p )=P]()l) »(3.29a,b,c)
P ) ey e o<

 Equation (3.28a) is the boundary condition for the Stokes equations (3.27)
of the zeroth order (m=0) and is seen to be the same condition as on a non-
permeable wall, Once the solution of the Stokeé equations subject to the bound-~
ary condition (3.28a)is known, the condition (3.28b)may be used to solve eq.(3.6)
and to find the pressure in the porous medium. From eq.(3.8), we then obtain
the velocity Q(i) in the asymptotic field.

We now substitute eqs.(3.21), (3.22) and (3.24) into egs.(3.11), (3.13) ~

(3.16). Expanding the results for large S5 and considering that QD and P
(J)

D

satisfy the Darecy equations, we get the boundary layer equations for Q

(1 )

" "The first order equations to be satisfied by Q are given by
2,(1)
"% s (1)
—=2= - Q. . =0 (i=1,2) , (3.31)
2 i,B
an- -
o1 |
%55 =0 - (3.32)
The solution of eq.(3.3Ll) subject to the conditions (3.29b)and (3.23) is
3q(0)

(1) _ .
%,B 7" [’5;?;: ]x3=0 ex?('”) (i=1,2). (3.33)
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On substitution of this solution and (3.32) into the ceoudition (3.29a; we have

the following conditions at X3=0 for the Stokes solution :

| a@§°)' ,
q§l) = - 5§§~ (i=1,2) , qél) = 0. (3.34)

It is found that the normal velocity (q3) at the surface is still zeroc up to
this order of épproximation; The boundary condition for the preséure Pél)
is given by eq.(3.29¢).

It is easy to proceed to second order approximation. The tangentiai

velocity in the boundary layer is :

(2) N | 3q§0) - (3.35)
- (2) _ 3% A CRIO, S, Do U
Qi,B == {{BX }x = * > {Rl + R, } ‘[Bx Jx=o (1+n)} e (i=1,2),
3773 : 3773
Inserting this solution in (3.30a), we have the following relation at x3=0
(1) (0) ‘
. 99,
(2) _ (&) 4% 1, -1, -1y °H .
Q= % p - o - 5( R” + R)7) T (i=1,2) . (3.36)
The normal velocity is as follows :
‘ Cag (1)
o2 o _[23 exp(-n) (3.37)
3,0 “lax, Jx,=0 TP\ - y .
3773,
Putting this expression into (3.30a) we obtain the following relation
(1) ‘ ‘
9q,
(2) _ ,(2) 3 -
q3 QB,D - 3X3 at x3 =0 . ; 13.38)

Equations (3.36), (3.38) and (3.30c) are the relationshiﬁs’to e Satisfiéd at the
surfaée by the solutions of the Stokes and Darcy equations and thus cdnstitute
the second order boundary conditions for these equations.

Using egs.(3.1), (3.25) and (3.26) and considering that the boundary condi-
tions obtained so far are correct up to the order 6f 8—2, we get the refined

forms of these cdnditions as follows :

p = PD s ’ (3-39)
%9 4 o 1 1,99 '
_ %% 1 - - - _
Ea S A (R~ +Ry )Bx3 i=1,2), (3.50)
- -1 :
a5 = Q3’D -8 8q3 / ax3 . (3.11)
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It may be noted that a term representing the effect of wall curvature appears
in the slip condition for the tangential velocity (3.40). When we take

Ry =R, = =in (3.%0), this equation reduces to the form which is suggested
by Beavers and Joseph empirically. It may also be mentioned that the condi-
tion of continuity of the‘normal velocities aq and'Q3’D‘does not hold, but
there occurs a jump between them.‘ The jump is due to the change of the
tangential velocity*'along the surface in the boundary layer.

" The velocity in the boundary layer which is given by egs.(3.33), (3.35) -

and (3.37) mayralso be refined in the forms

3q. ) -
= _a-l|_ 4 1.-1,.-1,-1
QiraB =5 [3}{3)'}(3:0{ 1+ ES (Rl +R2 )(l+n)} eXP(—n) ’ (3.’42)
aq :
= -11773
%78 {SXSJX3=O ~exp(-n) . (3.143)

When a solution of the Stokes and Darcy equations (2.1), (2.2) aﬁd (3.9) subject
to the boundary conditions (3.39) ~(3.41) is obtained, the flow in the
boundary layer is found from egs.(3.42) and (3.43). W

In this study, we have_invéstigated the steady flow at ldw Reynolds numbers
past a porous body and developed an asymptotic theory for large S on the basis
of the linearized equations in which the convection terms are neglected.
In view of prac%ical purposes, it seems worth while to extend the analysis to
the case of large Reynolds numbers. Then the.éull Navier-Stokes equation an&

a generalized Darcy’s law which has a convection term must be used. The -

subject will however be left for the future work.

¥ By use of the continuity equation, 9dq, / 3x, may be related to the change
3

3
of the tangential velocity.
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