goooboooogn
0 1890 19730 2-6

T WO FORMATL SYSTEMS F OR PROVING

ASSERTIONS ABOUT PROGRAMS

Shigeru Igarashi (Kyoto University)

1. First-order logic of typed theories.
1.1 Types. o By Y eeee denote types. Ordered types are

denoted by a0, BRBo, etc.
a) We presuppose that there are finite number of base types.
b) o, B are types ----- »> a»>f is a type.
c) 00 »Bo is a type ——==--> *(0o »Bo)o 1is a type.
1.2 Alphabet.
o —-constants
o -variables (for each a)

(al, ..., on)-predicates
logical symbols:

v 3 7

(r) Min =
1.3 Terms.
a) a is an a-constant —----- - a is an o —term.
h) x is an og-variable ----- - X is an o —term.
c) t is an a»f-term, u is an ao-term ----- > t(u) is a R-term.
d) tis an (o0 -+ a0O)-term ~—--- - Min t is an ao-term.
1.4 Interpretation.
Definitions.

{8 0-inductively ordered set. L is nonempty. Any,linearly ordered
subset (nonempty) X of L has sup X in L. countable

f: L » L' is continuous iff

f(sup X) = sup £ (X) (1)
for any monotone increasing sequence X in L.
a) a 1s a base type that is not ordered ----- + Dag 1is a non-
empty set as the domain of individuals.
b) oo is an ordered base type ----- + D a0 is an 0-inductively

ordered set with the least element O.
c) D(g»B) is the set of functions of Dy into Dg .
d) D(o + Ro)o = { £ | f: continuous, f ¢ D(g”+g%)}.

t (u) denotes the application of t to u.

Min £ = sup{ £(0), ££(0), £££(0), ...} . (2)

Logical axioms.

propositional axiom. A\ A.
identity axiom. X=X.
equality axiom. x=y * Min x = Min vy.
x=y > z(x) = z(y).
xl=yl + ... »> xn=yn » p(x1l, ... , Xn)
+ plyl, ... ,yn).
extensionality axiom. x=y = Vz(x(z) =y(z)).
stationariness axiom. x (Min x) = Min. x.
induction axiom (fixed-point induction).
A[0] ~ Vy@lyl » Alx(y)]) > A[Min x].
2. Admissibility of fixed-point induction.

Truth functions are functions into the two element complete
lattice.
2.1 Hierarchy of admissibility.

I. a.i.w.

IT. a.i.s. (f (sup X)=limsup £(X))

III. weakly continuous. (f (sup X)=liminf f£(X) = limsup f (X))
Iv. continuous.

V. constant.

2.2 Inheritance tables.

AV B
A B a.i.w. a.i.s. w.cont. const.
a.i.w. x*) b4 X ' X
a.i.s. X a.i.sf a.i.s. a.i.s.
w.cont. X a.i.s. w.cont. w.cont.
const. b4 a.i.s. w.cont. const.

*) Dbecomes a.i.w. in case of conjunction.

2.3 Elementary formulas. :
Theorems. Scott's awffs of the form t€u are a.i.s.
If D oo is discrete (upward) (No ascending chains that inter-
polate two elements of D a o exist.), then Scott's awffs of
type 0 o are weakly continuous. _

For A to be weakly continuous it is necessary and
sufficient that A and -7 A are a.i.s. (ETC.)

3. Formal system representing assertions for ALGOL-like
statements.*¥*)

3.1 Statements.

a) g is an (m,n)ary procedure symbol,
x1l, ... ,¥m are variables,
tl, ... , tn are terms in L(T)

---------- > gq(xl, ... ,xm;tl, ... ,tn) is an
atomic statement.

b) A, B are statements ----- +A;B is a statement.
c) A, B are statements, F is a quantifier-free formula in L(T)
—————————— +if F then A else B is a statement.

3.2 Assertions(wffs).

i) 7 {A } G. F, G are formulas in L(T), A is a statement.
i) p(xl, ... ,xm;yl, ... ,yn) proc A.
iii) Formulas in L(T).

3.3 Axioms.

primitive procedures.

assignment axiom. R(f) { x « £} R(X).

invariant axiom. R{g(x1, ... ,xm;tl, ... ,tn)} R.

xl, ... , xm do not occur free in R.

defining axioms for procedures., Wffs of the form {(ii) of 3.2.

logical axioms. Theorems belonging to the theory T.

3.4 Inference rules.

logical rules. P > Q o{ A Ir P {A} R R > S
(1) (2)
p{ A} R . Pp{ A} s .
p {a Ir Qo {a ls
(3)

v Vv
ProlalrRAS

**) This is an exposition of the study by London, Luckham, and
Igarashi.

(WS X}

substitution rules. P(x) {q(x;t(x))} R(x)
(4)

P(z) {g(z:;t(z))} R(z).

z denotes distinct variables which do not occur free in
P(x), t(x), or in R(x).

P(y) { g(x;t(y))} R(y)

(5)
P(u) { g(x;t(u))} R(u).

x does not occur free in u.

recursion rule. [P {g(x:y)} R 1

r(x;y) proc K(r) P {X(g) } R

P {r(x;y)} R
(6)
q is a free procedure variable that does not occur free in
any of the upper formulas except those places that are
explicitly so indicated.

rules for constructors.

p{ A} Q Q {B}IR
(7)

P{ A;B} R

P&F{ A} R P& 7F {B. } R
(8)

P{ if F then A else BIR.

3.5 Relatively sound rules. PsF{A }P

P{ while F do A } P&7 F. (9)

The following rule is a derived rule relative to (9).

psr { A} P > Q
%;? (10)

P{ while F do A} Q

3.6 "Verification conditions"” _

A sufficient set of formulas in L(T) to prove P {A§ R
is called a set of verification conditions for P {A}R.
There is an algorithms to get this set from any given goal to
be proved, which is a kind of backward derivation and similar:
to parsing procedures. A practical version of this algorithm
has been implemented for PDP-10 of the Artificial Intelligence
Project, Stanford University,by London, and has turned out to
be extremely useful.

E.g., AH(x £, R) = Subst(R, x, f).
AH(if F then A else B, R) =(F 7AH(A, R))& (E‘*AH(B,R)).

/
AH(A;B, R) =

} left to the reader.
AH(while F do B, R) =
P

AH(g(z;t), R) = Pre(q)s& Vx(Subst(Res(q),y,t)" R).

(Cf. the rule of adaptation (Hoare))
vC(P, A, R) = P>AH(A, R).

3.7 Consistency and strengthening the interpretation for proving
termination.

" These problems are being successfully studied. We have a
consistency proof up to the recursion rule, and also a formal
system for proving strong correctness (involving termination).

