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Some Remarks in General Theory of Flow-Charts

By Ken Hirose and Makoto Oya

In this note, we state some remarks in general theory of

flowcharts. In order to know the detail of definitions and proofs,

see [1] and [2].

1.

We use following symbols to define "flowcharts'.

(Note:

variable symbols: X1s X9y 775 Yis Yoo
function symbols: fl’ 52,

predicate symbols: P1s Pys

logical connectives: V , -7

logical constants: T, F

auxiliary symbols: ( , ), o

object symbols:

Individual constants are considered as 0O-ary function

symbols.)

From above symbols, terms, formulas, and thus flowcharts are

defined.

Simultaneously, we can give their interpretation. Inter-

preted flowcharts are called programs. Then, we can say programs

are equivalent to relativized partial recursive procedures.



2.

We say a flowchart S 1is in normal form if S 1is as in Fig.l;

where L, Ll and L2 are loop-free flowcharts (i.e. fldwcharts

without loops), and A 1is a formula.
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Fig.l (Normal Form)

We proved following theorem.

Normal Form Theorem. For every flowchart S, there exists
a flowchart in normal form which is equivalent to S.

In this theorem, it is important that there exists effective
procedure to get the equivalent flowchart in normal form from a

given flowchart.

3.

We make mention of some application of Normal Form Theorem.

The first application is that we can effectively get a predicate
which is correct w.r.t. a given program. And we also obtain Davis'
result about diophantine predicates.

The second application is about '"termination'", however we have

not obtained any satisfiable result.

Let (S, I) be a program, where S 1is a flowchart in normal



form and 1 1is an interpretation.

Def.1l Ter (S, I, E) < [(S5, I) terminates for ihput £ 1]

Ter(s, I) <> (Y )Ter(s, I,%)
Ter(S) <& (VY I)Ter(s, 1).

On the other hand, from Normal Form Theorem, we can consider

the condition that (S, I) terminates for s passing the loop

(i.e. L in Fig.1l) n times. This condition is denoted by

Ter(s, I, ¥, n). Then,
(1) Ter(s, I, §) &> (3 n)Ter(s, I, %, n).

Hence,
(2) Ter(s, I) < (V¥ ¥)(3n)Ter(s, I, ¥, n).

We shall define another kind of "termination'". That is,

(S, I) terminates boundedly.

Def.2  b-Ter(S, I) <> (3N (V §)(3n< N)Ter(s, I, I, n).

Then we have,

(3) b-Ter(S, I) = Ter(s, I).
Clearly the converse of (3) is not true.

Moreover,
Def.3 b-Ter(S) < (YI)[b-Ter(s, I)]
b* -Ter(S) & (IN)(VI)( Vg)(3n<N)Ter(S, I,%, n).

Then,
(4) b* -Ter(S) => b -Ter(S) => Ter(S).

( Note : Pros . Wea\wamcﬁ, and Pvos. Nog,txki- showed. us

@ proof of & In 4) ot Kaoxo S‘&MFOSL(&W\;_ )

Following propositions are easily shown:

If we can answer to the problem of equivelence

between loop-free programs, then
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(1) Whether b -Ter(S, I) or not is semidecidable (i.e. if
b -Ter(S, 1), we can show b -Ter(S, I)).

(2) If\§%g;(sl, 1) anétg%ér(sz, I), then eqﬁivalence between
(s |

I) and (S I) 1is decidable.

1’ 27
Prop.2 (1) b*-Ter 1is semidecidable.
(2) ‘IfA b*-—Ter(Sl) and b*-Ter(Sz), then equivalence
between S1 and 82 is decidable.

(Note: 1In Props. 1 and 2, S, S1 and S2 denote flowcharts.)
Furthermore, in the case L (in Fig.l) has some property (e.g.

"has only one path", etc.), b*-Ter is decidable.

4,

We shall mention about the equivalence of loop-free flowcharts.
Ll’ LZ’ *++ denote loop-free flowcharts in this section.

An interpretation with equality is said a structure in this
paper.

We proved following two theorems:

Theorem I If 1 1is a structure, for (Ll’ I) and (Lz, I)
it can be constructed a formula A satisfying

(5) [(Ll’ I) 1is equivalent to (LZ’ I)]

<& [A is valid in 1I].

Theorem II For a formula A, L1 and L2 can be constructed
satisfying (5).

Above two say that the equivalence of loop-free programs is
equivalent to the validity of an open formula.

From Theorem I, we get some results about decidability.
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Prop.3 Whether L1 Asz is decidable. (Where L1f~ L2 means

L1 and L2 are equivalent. That is (Ll’ I) and (Lz, I) are

equivalent for every interpretation 1I.)

ProE;ﬁ If two loop-free programs P1 and P2 has only +

and = as operations, then whether Pl'\-'P2 is decidable.

Proof. Because it is well known that whether given formula A

is valid or not is decidable if A has only + and = as operations.

From Theorem II, we also get a result about undecidability. '
Prop.5 Let T be the set of loop-free programs whose
domain is integers and which has only +, * (product) and = as
operations. Then there is no algorithm that determines whether

P, ~ P, or not for given P, P, € .

Proof. By the negative solution of Hilbert's 10th problem [3],:
there is a Diophantine equation D = 0 having no algorithm that
determines whether any solution of D = 0 exists or not for given
coefficients of D.

Consider D # 0 as A in Theorem II. Then,

(D # 0 1is identically true) & P1’V P2
1° I) and P2 = (L2, I) in Theorem II. Henceé,
(D = 0 has some solution) & not (Plfv P2).

where Pl = (L

So, if whether Pl A’PZ or not 1is decidable, then whether D = 0

has any solution or not 1is decidable. That is a contradiction.

Note: In Theorem II, L1 and L2 are constructed as follows:
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€, e, e’ e;

In the above proposition, we do not mind the domain. But the
equivalence between loop~-free flowcharts is also undecidable even

if we consider "axioms" on it. (See [1].)
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