goooboooogn
0 1890 19730 101-117

1ui

ANALYSIS OF A DISK OPERATING SYSTEM

Jun OKUI, Nobuki TOKURA and Tadao KASAMI

Faculty of Engineering Science, Osaka University

1. Introduction

A PDP-11 dual system with an interprocessor communications channel DA1l-D
installed at Department of Information & Computer Sciences, Osaka University
in February 1972. A disk operating system.(DOS) is one of manufa;turer—supplied
systems. Our group started anélysis of the DOS monitor program. The motivation
for this is the following. First, it is one of our projects to develop a DOS for
the duél system and one of our approach was to modify the existing DOS. Second,
the analysis may be interesting theoretically. Equivalence of program schemata
is in general undecidable. ﬁence, one of the next important problem may be to

" specify classes of program schemata of which equivalence is decidable.

In this direction, somé model for assemblers and others were described in [1].
There are two reasons for us to study systems programs mainly. First, the
classes of system programs are ''mon-numeric" programs and equivalences in the
class are expected to be more easily decidable. It is shown thaﬁ the equivalence
of programs of numerical computations is undecidable even if they are of very
simple structures [12]. Second, it is a real problem to provide‘some systematic
tools for developing programs of this type.

In this paper, some observations on PDP-11 bOS monitor program are shown.
A model of some parts of the DOS monitor is described and related suﬁjects

are discussed.

1v

2. The DOS monitor program

[N

2.1 Loop strucfure

The analysis of the DOS monitor has been done by reading the listing
and by using tracers. The DOS monitor program consists of many modules and
the following exposition is mainly on module's level.

The DOS monitor looks‘véry intricate and difficult to understand partly
because it is written with various programming techniques and partly because
the documentation is not complete. Howevef, it is observed that the DOS

.monitor is rather simple with respect to structure,

It is a problem to select a suitable measure of complexity of programs.
The prime factor seems to be the complexity of loops. The factors of loop
complexity are l)existence of overlaps, 2)depth of nesting, 3) number of
entry points and the number and the destination of exit points, though these
factors are not independent.

In the DOS monitor, the loop structure is very simple. Most loops have
one entry and are properly nested. The depth of nest is in most cases less
than 3.

A number of loops found in the monitor aré listed.

1. loops for wait
2. loops for a fixed number of right (or left) shifts

3. loops for calculating the parity of a word

b, loops for block transfer

5. loops fof searching and updating a table or a bit map
6. loops for traversing a linked list

T. loops for}searching and updating a file directory

8. loops for inserting into a‘priority queue

143

The uses of loop construction may be classified as follows:

a) loops for wait 1
b) loops deal with dynamic data structure 4. 5. 6. 7. 8.
c) loops in place of "straight-line" code 2. 3. L.

2.é Folding

Even though the 1oop'sf}ucture is simple, the DOS monitor's structure
looks still complicated. The pfime reason of'this is considered as a reflex
of one of the design goélé to‘minimize the memory space for the monitor.

In order to shbrten the code, large common parfs are treated as
subroutines or modules and in each module, common parts are shared as much
as possiblé. Fig.l shows the contrél flow of a module in unfolded f?rm.

In tﬁis example, the routine is 67 words in 1ength and the unfolded one is

212 words in length. The "folding coefficient" is about 212/6T7 % 3.2 .

The folding coefficient which is calculated for some modules ranges from 1

' to 360. This difference is caused by "folding" the code so that the common
pérts are shared by many control paths.

The "folding coefficient" is a measure with the tree equivalent as a
basis. The reason to usé the tree-equivalent as a basis is that the tree
is in a sense the simplest structure and it is easy to obtain the tree
eguivalent for a given program. There may Ee another choice of a basis.

To measure the control-flow irregularity; it seems to be better to use a
well-formed program equivalent with respect to the control flow. A definition
of a well-formed program is given in [11]. It is found that all the modules
can be written as well-formed flowchart in the sense of [11] with no extra
cost such as node-splitting. |

The flowchart of Fig.l can not be written using only IF statements
apart from the loop. If the use of GOTO statements is banned, then "node

splitting", that is, duplications of some parts of codes is inevitable.

1014

In this case, the length of equivalent program becomes 91. The ratio

91/67 £ 1.4 seems to reflect the‘complexity with respect to GOTO statements.
Dijkstra warned of the control-flow irregularity induced by the free use of

(2]

GOTO statements. In real operating systems, (conditional and unconditional)

branches are used at the maximum.

2.3 Data structures

Various data structures are used in the DOS monitor.

1. Stack The PDP-11 has stack processing capabilities. The stack
pointer (general register 6) maintains a stack for the nested handling
of interrupts and subroutine calls. All of.the general registers can
maintain stacks under program control.

2. Table There are a number of system tables of fixed sizes. The bit
maps are linked tables. There is a dynamic assign table (D.A.T.) whose
size changes dynamically. For each data set assign command, a new entry
whose size is not fixed is linked to the D.A.T.

3. File directory The file directory consists of a master file directory
(MFD) and a number of user file directories (UFD) (Fig.2). A UFD is a |
linear list of fixed size blocks each of which contains a file name and
associated information. The MFD is a linear list of fixed size blocks
each of which contains a user identification code, a pointer to the user's
UFD and other information. Each file-structured device has its file
directory in it.

4. Queue The DOS monitor uses "priority" queues. The queue is formed
for each device and is a linear list of dataset data blocks (DDB) which
represent I/0 requests. If an I/0 is requested for a device A, then a DDB
with parameters of the I/0 request is inserted into the queue for A on
the basis of high-priority first and first-in first-service within the

same priority class. If the current I/0 service is completed, then the

105

top DDB is deleted and the next DDB is serviced.

5. inear list If a dataset is initialized, a DDB is created and the
DDB is linked to the initisted DDB chain. If a dataset is released, the
DDB is removed from the chain.

These data structure are not independent. A DDB belongs both to the
initiated DDB chain and to the priority gqueue by using two pointers. There
are the other pointers in DDB which point other data structures and there
are pointers which point to DDBs. Thus, the whole data structure in the
DOS monitor is rather complicated. But, the routine which handles the
initiated DDB chain is different from the one which handles the priority
queue and only one of these routines is active at any time. It can be said
that each routine treats a substructure which may be regarded as a linear
list. |

3. A model of thé DOS meonitor modules

The models of Ianov, Paterson and others might be considered rather as
models of numerical computations[T7]. They have a definite number of registers.
The loops in them permit computations of arbitrary depth. On the other hand,
in the DOS monitor, there are no loops of the type such that the depth of
computation iﬁcreasés unboundedly. It may be natural to consider the DOS
monitor have an arbitrary number of data cells or registers. The study on

the program schemata with data structures is expected.

In this paper, a simple model is shown. Some other works are reported
in [4] [5].
3.1 Linear list operations
' The functions of loops for data structures amount to the operations on

linear lists. A linear list is a set of n > O blocks B B . Each
. - n

1370

block has a number of fields and one of the fields contains a pointer to the

next block or NIL.

1i

a)
b)
c)

a)

1)

2)

3)

)
The following oﬁerations are found in the DOS monitor.
Insert a new block just before a specified block.
Delete a specified block.
Change the contents of the fields of a specified block.
Search the list for the first occurence of a block which satisfies
a condition.
Let us introduce three macros.
Insert (&, b, y) - (Fig. 3a)
% specifies the block before which a new block pointed by the poihter
b is to be inserted and the pointer to the o0ld block is stored in the
field y of the new block.
Delete (%, y) (Fig. 3b)
Search (%, y, P, L)
% points to the start block Bl of the list searched for. For
i=1, 2,..., the pointer in the field y of block Bi points to the next

block Bi+ P is a predicate whose truth value can be determined only by

1’)
the parameters given before the search is executed and the contents of
fields of a block. When the search is completed, L will contain the
pointer to the first block which satisfies the predicate P and L will

contain NIL if there are no blocks in. the list which satisfy P.

The loops which concern data structures amount to the implementations

of this search macro.

For example, the insertion of a new DDB B with priority p into a priority

queue is written as follows:

Search (Priority queue, link, p > contents of the priority field, L)

Insert (i}lpointer to B, link)

where L is the contents of variable L.

1u7

Each routine with neither loops ‘for wait nor some exceptional loops

can be written as a loop-free program by using ﬁhese macro instructions.
3.2 D machines and E machines

As a model of operations on linear lists, the LF machine model was
introduced [3]; In this paper, some other extended machine models are shovm.
First, consider a D machiné.J D machine M has an iﬁput tape and an output
tape. Each tape is divided into fields whose sizes are not bounded. This
covers the cases of an arbitrary number in the binary.notatidn or symbol
strings with ar?itrary length. - M has instructions such as SCANR, SCANL,
OUTPUT and STOP. Its behaviour may be well described by a flowchart.
Each branch point of the flowchart is labelléd with a predicate of the form
Pi(R, &

ey B) where R is a register of M and a .s an are parameters

l,. l,co

given before M starts its action. (These parameters may not be bounded.)
Ifia‘SCANR(or SCANL) is executed, the contents of the field under the input
head is transferred to the register R and M moves its inpﬁt head one field to
the right(or to the left, respectively.) The OUTPUT has three types of
operand;; R, fj(R, Bypatees ajmj) and 8y If OUTPUT X is executed, the
contents or value of X is written out on the output tap¢ as a field and M
moves its output head to the right.

M is a‘kind of two-way automaton with output. It may be in a loop and
will never reach the end of the input tape and it may output on the same field
many times. M is said to be pertinent if the following conditions aie fulfilled.

1) M is never in a loop.

2) M never rescans the field on the input tape whose contents are

transferred to R and then OUTPUT R or OUTPUT f (R, &.,, «ov, &,)
J J1

ij
are executed.
PO: It is effectively decidable whether a D machine is pertinent.

The proofs of PO through Pl are omitted.

1oy

This D machine can model the operations on rather broad class of data
structures; such as linear lists, file directories, structures in PL/1l. For
example, let us consider a file diréctory (Fig.2). The file directory is
transcribed on the input tape so that the input tape looks as #‘Ml, Ull’ UlZ’

p1s tee U2n2: cee 2 Mm’ Upps woeo Umnm # .where # , : are

delimiters, Ujj, «-vs Uiﬁi is a UFD for the user i and {Ml, vees Mm} is a

MFD. Ui;'s and Mi's are blocks whose fields are placed on the tape in order.
i

ees, U : M2, U

lnl

M can simulate various operations on the file directory. For example, DELETE

operation which searches a file name given as a parameter and deletes the
block with the file name is simulated as follows. M searches the field with
the file name block by block and if a block contains the file name, then M
outputs nothing (i.e. delete) and if a block under scan does not contain

the file name, M returns its head to the start of ihe block and copies the

block on the output tape.

The equivalence of two D machines Ml and M2 are defined as follows:

Ml and M2 are equivalent if given the same input tape and the same

parameters, Ml and M2 produce the same output tapes starting from the initial

state with the same contents of R, where the "same" output tapes mean the
strong equivalence in the sense that they are the same under any interpretations.

Pl: It is decidable whether péftinent D machines Ml and M, are equivalent.

2

Outline of the proof: Each field on the input tape is classified according

to values of all the predicates in Ml and MQ. If there are k different predicates,

then each fleld is classified into Qk classes. A new sets of 2k symbols

Cpseres c2* is used and each field is replaced by a symbol. Each field on

the output tape is replaced by a letter R or a symbol string fj(R’ ajl,..a,

ajn) or string aj according to the contents of it. 1In this way, M can be
J

replaced by a two-way finite automaton with 6utput. This can be reduced to

119
a sequential machine. ‘Hence, the equivalence is decidable.
The D model is rather powerful but it does not admit to rescan rewritten
parts. To avoid this restriction, a modified version of the D machine (E
machine) is considered. An E machine M has no output tape but M has a tape
whose initial contents is regarded as an input to the machine and M can
rewrite any fields and rescan them. The restrictions to be pertinent are
no more necessary. If M is permitted to scan the tape indefinitely, then M can
simulate a Turing machine. Thus, it is required that M scans each field less than

K times for a fixed K. This restriction is necessary also from technical

reason because each field must be classified according to the wvalues of

predicates whose operands may be a composite-function's value. On the otger
hand, this restriction is not severe for the modelling of the DOS monitor
program because there can not be found a module which operates on a data
structure indefinitely. Then, we have
P2: The equivalence of scan-limited E machines is decidable.

Let us consider the power of the D machines and E machines. Let T Dbe

k

the class of the input tape t's such that (1) t=S. (2) 8, is of the form

0
#i(FSi+l)*F#i for i=0,..., k-1 and (3) 8, is of the form #RF*#k’ where F
stands for a field or an empty field. Tk is a nested tape of depth < k.
The subtape Si's are of level i.
The Dmachines and E machines can do the following operations on the tépes of Tk.
1) To modify fields in each level.
2) To dele£e fields or a subtape S,.
3) To insert fields or a subtape Si'
L4) To change the level of a subtape Si by rewriting the delimiters in Si.

The followings are some examples of data structures [8] such that their

structure can be represented as a tape of T, for some k and some operations

k

114
5n them can be simulated by the above operations.
a) linear list, circular list, doubly linked list
b) a class of trees, e.g. COBOL structures with bounded level but an
unbounded number of items on each level.
c) & class of graphs, e.g. graph structures with bounded level[9].

The correspondence is straightforward.” The D and E machines can be
regarded as machines which traverse and change-the structure dynamically.
The amount of the change is bounded, though the model might be well as a
model of the DOS monitor modules. The method of traversing on the data
structure is restricted in a sense, indeed, the equivalence becomes un-
decidable if it is admitted to traverse on a data structure freely. Now,
consider a machine called an F machine. The F machine M scans a possibly
infinite 2 dimensional array A whose elements are A[i, j] (i > 0, j > 0).

M only moves its head on A and does not change the array. M can only detect
that it is on the boundaries pf[o,j) and A[i, 0] (i, § > 0). When it halts,
it answers yés or no. The F machine is very simple as comparéd with the D
and E machines. However, we have:

P3: The equivalence of the F machines is not decidable in general.

This is because the F machines can simulate 2-counter machines directly.

The D and E machines can simulate operations on a class of trees. We
have a stronger result. Let us consider a class of G machines. G maqhine
M has a head and M moves its head on a rooted tree. Each node of the tree
is considered as a block with a number of fields which are not necessarily
bounded. M's head moves along the edges to either direction so that it
is an extension of a two-way automaton, where the linear input tape is
replaced with a tree. M starts in its initial state with its head scanning
the root. If M moves off the tree, M halts. A tree will be accepted by

M if and only if M eventually moves off the root at the_ same time it enters

111
a final state. G machines Ml and M2 are said to be équivalent if they
accept the same set of trees. We have,
Ph: The egquivalence of the G machines is decidable.
~ We have some extended results and these will be appeared in the
following papers.
4, An example of the DOS monitor specification

In the preceeding sections, the DOS monitor is analyzed and & model is
constructed. This is "bottom up" approach. The proceés to develop a
program is "top down" approach. Some systematic and efficient methods to
develop programs are waﬁted. The starting point is to describe the program
specification precisely and independently of implementation methods. The
next step is to implement, though its implementation itself may be carried
out step by step.

An example of the user-level specification for a part of file
processing in the DOS monitor is shown in Fig.4. It describes the correct
or permissible monitor requést macro séquences for a certain dataset and
the responses of the DOS monitor.

A file is concepfually regarded as a byte string which is divided
into lines by line delimiters. There are several modes of .READ/.WRITE
services, but for simplicity only Formatted ASCII mode is described.
.READ/.WRITE macros transfer one line at each execution from & file to the
user's line buffer and vice‘verSa. It can be conceptually considered that
there is a pointer associated with each file which points to the start byte

position of the next line transfer. The parameters used are as follows:

a: dataset name

b: device name

c: file name

d: user's line buffer address

|
e: error return address
The predicates are as follows:
P2: Error return address e is specified in the macro.

P3(a): No device assigned to the dataset a.

Ph(a): The device assigned to a is notﬂén input device.
P5(d,a): Transfer of one line is completed from a to the‘user line buffer
whose address is d.
Pe= Peyv Pgo v P63'V Pg), » where V deﬁotes "OR".
Pél(a): The device assigned to a is not a file-structured device and is
already opened.
P62(c): There is no file c¢ or c¢ is already opened for output.
P63(c): ¢ is opened too many times. .
P6h(c): An attempt was made to access a file which the protection code
prohibits.
Fl(d,a): A line pointed by the pointer of the dataset a is transferred
into the user line buffer d. The pointer moves to the next line.
If the line is longer than the size of the line buffer, then an
error code is set on the communication block of the line buffer.
Thé other error conditions are similarly indicated on the error
code .
All that have meanings for users are specified but nothing more. It is
independent of how the monitor is implemented. Indeed, users are not concerned

about how the predicate P3 is evaluated. It is enough to describe that if P

3
is true then the monitor prints a message to the user that the dataset is not
yet assigned. Apart from the discussion whether this description is easier to

understand than usual user's manual, it seems to cover ambiguities and lack of

dynamic description which are usual with manuals.

113
From this user-level specification, the specification for the implementer
is derived in the following way. The above specification is concerned with
distinct datasets. 1In genéral, a number of datasets are used at the same
time. Then, a kind of product of the specificatiqn diagrambis considered.
There are predicates whose value can be determined in connéction with other

datasets, e.g. P6 The necessary information to determine the value of

o
the predicates is selected and collected in a suitable form. Thus, for

example the notion of a file directory will be introduced naturally. By
collecting responses for a monitor request macro; a specification of a

module which processes the monitor request macro is obtained. The specification
is detailed step by step by specifying the suitable data structures and

their format and by subdividing the program into independent modules. At

each step, there are many possible choices. It is a problem to be solved

how to make good choicesvat each step.

One of purpose for us to refer the specification in this paper is the
following. It may be interesting to compare the observations and the some
detailed specifications on the implementer level derived‘from,the user level
‘specification. Some thoughts seem to justify the simple loop structure of
the DOS monitor. If there are found some degree of coincidence, the
observations stated might be considered not a characteristic of the PDP-11
DOS monitor only but a characteristic common to many operating systems in

a extent.

The authors are grateful for the discussions by the members of the

Kasami Laboratory.

References

1. S.Hatanaka, K.Taniguchi, M.Fujii, N.Tokura and T.Kasami,
"Equivalence problems of a certain class of program schemata,"
Papers of Technical Group on Automata and Information Theory,
I.E.C.E., Japan (Jan. 1970).

2. E.W.Dijkstra, "GOTO statement considered harmful," CACM,11l, 1h7-148 (1968).

3. J.0kui, N.Tokura.and T.Kasami, "Analysis of a control program.._a model of
linear list processing machine,” Papers of Technical Group on Automata and
languege, I.E.C.E., Japan (April, 1972).

4, T.Hosomi, N.Tokura and T.Kasami, "Some program schemata for file processing,"
Op. cit. (June, 1972) The full paper is in preparation.

5. S.Furuta, N.Tokura and T.Kasami, "Program schemata with pushdown store,"
Op. cit. (Oct. 1972).

6. J.0kui, N.Tokura and T.Kasami, "A épecification method for systems programs,”
Joint Convention Records of Electrical Engrs. in Kansai 1972.

7. D.C.Luckham, D.M.R.Park and M.S.Paterson, "On formalized computer progrems,"
Jcss L, 220-249 (1970).

8. D.E.Knuth, "The Art of Computer Programming, vol.l," Addison-Wesley,
Massachusetts, (1968).

9. J.L.Pfaltz, "Graph Structures,”" JACM,19, u4ll-k22 (1972).

10..PDP-11 Disk Operating System Monitor, Programmar's handbook, DEC-11-MWDA-D

and Listing, LBKIT-11-DSLS-Ol.

11, W.W.Peterson, T.Kasami and N.Tokura, "On the capabilities of WHILE, REPEAT
and EXIT Statements," to appear.in C.ACM.

12. Tadao Kasami and Nobuki Tokura, "Equivalence problem on programs without

loops," Trans. IECE, Japan 5h-C 657-658 (1971).

—_—1h —

(S
—y

S e i . 4

%" SRS
i

' Kommm o m o m e - = - - X — SO E BRI
X USEEmeSE

i e LR e ™
0
'
' X - s ERERRTRORE, [ce}
'
. . -x O
f) }.\u
' ' . ~ o= H
! S LR ~ O
1]
. ! ' -
’ . e -
L .
' , ' i -
N) ' :
' b . ' X IR
A m
1 t ro—
] " 1 S - T teems
X N ; m
=

o

T

%
5

ik 6 16 6

1k 6 16 6

67

3.2)

(212/67=

Unfolded

Original

Fig. 1

Control Flow of a Module

=]
5
P
FE)
O —
a .
St
8
[¢]
[eTH9]
S0 O
(O]
l
[e]
%
ISR
N

NIL Fig.2 File Directory

b T
Insert(f ,b,y) Delete(£ ,y)

a) b)

Fig.3 Insert and Delete

—_16 —

.RELEASE(a)

p2[\ ..

error code
set

-~

Pg

.CLOSE(d,a) __ e

WAIT(a)
.WAITR(a)

1:7
()

INIT(a,b,e)

message

"dataset not
yet assigned"

.OPENI(c,a,e)

DO,
PgA D, fatal error

Pointer is set to the
start of the file

.READ(d,a)

/7 WAITR(a)
Ps5

.CLOSE(c,a)

Fig.4 An example of the functional specification
{The bold lines represent the user's action.)

